Search results for: vacuum drying
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 910

Search results for: vacuum drying

910 Drying Kinetics of Vacuum Dried Beef Meat Slices

Authors: Elif Aykin Dincer, Mustafa Erbas

Abstract:

The vacuum drying behavior of beef slices (10 x 4 x 0.2 cm3) was experimentally investigated at the temperature of 60, 70, and 80°C under 25 mbar ultimate vacuum pressure and the mathematical models (Lewis, Page, Midilli, Two-term, Wangh and Singh and Modified Henderson and Pabis) were used to fit the vacuum drying of beef slices. The increase in drying air temperature resulted in a decrease in drying time. It took approximately 206, 180 and 157 min to dry beef slices from an initial moisture content to a final moisture content of 0.05 kg water/kg dry matter at 60, 70 and 80 °C of vacuum drying, respectively. It is also observed that the drying rate increased with increasing drying temperature. The coefficients (R2), the reduced chi-square (x²) and root mean square error (RMSE) values were obtained by application of six models to the experimental drying data. The best model with the highest R2 and, the lowest x² and RMSE values was selected to describe the drying characteristics of beef slices. The Page model has shown a better fit to the experimental drying data as compared to other models. In addition, the effective moisture diffusivities of beef slices in the vacuum drying at 60 - 80 °C varied in the range of 1.05 – 1.09 x 10-10 m2/s. Consequently, this results can be used to simulate vacuum drying process of beef slices and improve efficiency of the drying process.

Keywords: beef slice, drying models, effective diffusivity, vacuum

Procedia PDF Downloads 288
909 The Effects of Drying Technology on Rehydration Time and Quality of Mung Bean Vermicelli

Authors: N. P. Tien, S. Songsermpong, T. H. Quan

Abstract:

Mung bean vermicelli is a popular food in Asian countries and is made from mung bean starch. The preparation process involves several steps, including drying, which affects the structure and quality of the vermicelli. This study aims to examine the effects of different drying technologies on the rehydration time and quality of mung bean vermicelli. Three drying technologies, namely hot air drying, microwave continuous drying, and microwave vacuum drying, were used for the drying process. The vermicelli strands were dried at 45°C for 12h in a hot air dryer, at 70 Hz of conveyor belt speed inverter in a microwave continuous dryer, and at 30 W.g⁻¹ of microwave power density in a microwave vacuum dryer. The results showed that mung bean vermicelli dried using hot air drying had the longest rehydration time of 12.69 minutes. On the other hand, vermicelli dried through microwave continuous drying and microwave vacuum drying had shorter rehydration times of 2.79 minutes and 2.14 minutes, respectively. Microwave vacuum drying also resulted in larger porosity, higher water absorption, and cooking loss. The tensile strength and elasticity of vermicelli dried using hot air drying were higher compared to microwave drying technologies. The sensory evaluation did not reveal significant differences in most attributes among the vermicelli treatments. Overall, microwave drying technology proved to be effective in reducing rehydration time and producing good-quality mung bean vermicelli.

Keywords: mung bean vermicelli, drying, hot air, microwave continuous, microwave vacuum

Procedia PDF Downloads 79
908 Influence of Vacuum Pressure on the Thermal Bonding Energy of Water in Wood

Authors: Aleksandar Dedic, Dusko Salemovic, Milorad Danilovic, Radomir Kuzmanovic

Abstract:

This paper takes into consideration the influence of bonding energy of water on energy demand of vacuum wood drying using the specific method of obtaining sorption isotherms. The experiment was carried out on oak wood at vacuum pressures of: 0.7 bar, 0.5bar and 0.3bar. The experimental work was done to determine a mathematical equation between the moisture content and energy of water-bonding. This equation helps in finding the average amount of energy of water-bonding necessary in calculation of energy consumption by use of the equation of heat balance in real drying chambers. It is concluded that the energy of water-bonding is large enough to be included into consideration. This energy increases at lower values of moisture content, when drying process approaches to the end, and its average values are lower on lower pressure.

Keywords: bonding energy, drying, isosters, oak, vacuum

Procedia PDF Downloads 273
907 Preservation of Sensitive Biological Products: An Insight into Conventional and Upcoming Drying Techniques

Authors: Jannika Dombrowski, Sabine Ambros, Ulrich Kulozik

Abstract:

Several drying techniques are used to preserve sensitive substances such as probiotic lactic acid bacteria. With the aim to better understand differences between these processes, this work gives new insights into structural variations resulting from different preservation methods and their impact on product quality and storage stability. Industrially established methods (freeze drying, spray drying) were compared to upcoming vacuum, microwave-freeze, and microwave-vacuum drying. For freeze and microwave-freeze dried samples, survival and activity maintained 100%, whereas vacuum and microwave-vacuum dried cultures achieved 30-40% survival. Spray drying yielded in lowest viability. The results are directly related to temperature and oxygen content during drying. Interestingly, most storage stable products resulted from vacuum and microwave-vacuum drying due to denser product structures as determined by helium pycnometry and SEM images. Further, lower water adsorption velocities were responsible for lower inactivation rates. Concluding, resulting product structures as well as survival rates and storage stability mainly depend on the type of water removal instead of energy input. Microwave energy compared to conductive heating did not lead to significant differences regarding the examined factors. Correlations could be proven for three investigated microbial strains. The presentation will be completed by an overview on the energy efficiency of the presented methods.

Keywords: drying techniques, energy efficiency, lactic acid bacteria, probiotics, survival rates, structure characterization

Procedia PDF Downloads 239
906 Pulsed Electric Field as Pretreatment for Different Drying Method in Chilean Abalone (Concholepas Concholepas) Mollusk: Effects on Product Physical Properties and Drying Methods Sustainability

Authors: Luis González-Cavieres, Mario Perez-Won, Anais Palma-Acevedo, Gipsy Tabilo-Munizaga, Erick Jara-Quijada, Roberto Lemus-Mondaca

Abstract:

In this study, pulsed electric field (PEF: 2.0 kV/cm) was used as pretreatment in drying methods, vacuum microwave (VMD); freeze-drying (FD); and hot air (HAD), in Chilean abalone mollusk. Drying parameters, quality, energy consumption, and Sustainability parameters were evaluated. PEF+VMD showed better values than the other drying systems, with drying times 67% and 83% lower than PEF+FD and FD. In the quality parameters, PEF+FD showed a significantly lower value for hardness (250 N), and a lower change of color value (ΔE = 12). In the case of HAD, the PEF application did not significantly influence its processing. In energy parameters, VMD and PEF+VMD reduced energy consumption and CO2 emissions.

Keywords: PEF technology, vacuum microwave drying, energy consumption, CO2 emissions

Procedia PDF Downloads 92
905 Alternative Animal Feed Additive Obtain with Different Drying Methods from Carrot Unsuitable for Human Consumption

Authors: Rabia Göçmen, Gülşah Kanbur, Sinan Sefa Parlat

Abstract:

This study was conducted to determine that carrot powder obtain by different drying methods (oven and vacuum-freeze dryer) of carrot unfit for human consumption that whether feed additives in animal nutrition or not. Carrots randomly divided 2 groups. First group was dried by using oven, second group was by using vacuum freeze dryer methods. Dried carrot prepared from fresh carrot was analysed nutrient matter (energy, crude protein, crude oil, crude ash, beta carotene, mineral concentration and colour). The differences between groups in terms of energy, crude protein, ash, Ca and Mg was not significant (P> 0,05). Crude oil, P, beta carotene content and colour values (L, a, b) with vacuum-freeze dryer group was greater than oven group (P<0,05). Consequently, carrot powder obtained by drying the vacuum-freeze dryer method can be used as a source of carotene.

Keywords: carrot, vacuum freeze dryer, oven, beta carotene

Procedia PDF Downloads 324
904 Experimental Study on Drying Parameters of Freeze Drying Systems

Authors: Ali Osman Suiçmez, Emrah Deniz

Abstract:

In this study, control experiments were made on a freeze drying system of which were built a prototype. In experiments, apple slices in different geometrical shapes were dried and drying curves were gained. Then, the shapes which were the fastest for drying were determined. Twenty samples for each apple shapes were put in the prototype and dried. After the experiments, the humidity ratio of the samples and water activity values of the samples have been obtained. Obtained results show that the prototype is working and by comparing the results the shape which dried fastest was determined.

Keywords: freeze drying, vacuum, energy consumption, drying process, apple

Procedia PDF Downloads 279
903 Effect of Three Drying Methods on Antioxidant Efficiency and Vitamin C Content of Moringa oleifera Leaf Extract

Authors: Kenia Martínez, Geniel Talavera, Juan Alonso

Abstract:

Moringa oleifera is a plant containing many nutrients that are mostly concentrated within the leaves. Commonly, the separation process of these nutrients involves solid-liquid extraction followed by evaporation and drying to obtain a concentrated extract, which is rich in proteins, vitamins, carbohydrates, and other essential nutrients that can be used in the food industry. In this work, three drying methods were used, which involved very different temperature and pressure conditions, to evaluate the effect of each method on the vitamin C content and the antioxidant efficiency of the extracts. Solid-liquid extractions of Moringa leaf (LE) were carried out by employing an ethanol solution (35% v/v) at 50 °C for 2 hours. The resulting extracts were then dried i) in a convective oven (CO) at 100 °C and at an atmospheric pressure of 750 mbar for 8 hours, ii) in a vacuum evaporator (VE) at 50 °C and at 300 mbar for 2 hours, and iii) in a freeze-drier (FD) at -40 °C and at 0.050 mbar for 36 hours. The antioxidant capacity (EC50, mg solids/g DPPH) of the dry solids was calculated by the free radical inhibition method employing DPPH˙ at 517 nm, resulting in a value of 2902.5 ± 14.8 for LE, 3433.1 ± 85.2 for FD, 3980.1 ± 37.2 for VE, and 8123.5 ± 263.3 for CO. The calculated antioxidant efficiency (AE, g DPPH/(mg solids·min)) was 2.920 × 10-5 for LE, 2.884 × 10-5 for FD, 2.512 × 10-5 for VE, and 1.009 × 10-5 for CO. Further, the content of vitamin C (mg/L) determined by HPLC was 59.0 ± 0.3 for LE, 49.7 ± 0.6 for FD, 45.0 ± 0.4 for VE, and 23.6 ± 0.7 for CO. The results indicate that the convective drying preserves vitamin C and antioxidant efficiency to 40% and 34% of the initial value, respectively, while vacuum drying to 76% and 86%, and freeze-drying to 84% and 98%, respectively.

Keywords: antioxidant efficiency, convective drying, freeze-drying, Moringa oleifera, vacuum drying, vitamin C content

Procedia PDF Downloads 269
902 Comparative Survival Rates of Yeasts during Freeze-Drying, Traditional Drying and Spray Drying

Authors: Latifa Hamoudi-Belarbi, L'Hadi Nouri, Khaled Belkacemi

Abstract:

The effect of three methods of drying (traditional drying, freeze-drying and spray-drying) on the survival of concentrated cultures of Geotrichum fragrans and Wickerhamomyces anomalus was studied. The survival of yeast cultures was initially compared immediately after freeze-drying using HES 12%(w/v)+Sucrose 7% (w/v) as protectant, traditional drying in dry rice cakes and finally spray-drying with whey proteins. The survival of G. fragrans and W. anomalus was studied during 4 months of storage at 4°C and 25°C, in the darkness, under vacuum and at 0% relative humidity. The results demonstrated that high survival was obtained using traditional method of preservation in rice cakes (60% for G. fragrans and 65% for W. anomalus) and freeze-drying in (68% for G. fragrans and 74% for W. anomalus). However, poor survival was obtained by spray-drying method in whey protein with 20% for G. fragrans and 29% for W. anomalus. During storage at 25°C, yeast cultures of G. fragrans and W. anomalus preserved by traditional and freeze-drying methods showed no significant loss of viable cells up to 3 months of storage. Spray-dried yeast cultures had the greatest loss of viable count during the 4 months of storage at 25°C. During storage at 4°C, preservation of yeasts cultures using traditional method of preservation provided better survival than freeze-drying. This study demonstrated the effectiveness of the traditional method to preserve yeasts cultures compared to the high cost methods like freeze-drying and spray-drying.

Keywords: freeze-drying, traditional drying, spray drying, yeasts

Procedia PDF Downloads 490
901 Assessment of Functional Properties and Antioxidant Capacity Murta (Ugni molinae T.) Berry Subjected to Different Drying Methods

Authors: Liliana Zura-Brravo, Antonio Vega-Galvez, Roberto Lemus-Mondaca, Jessica Lopez

Abstract:

Murta (Ugni molinae T.) is an endemic fruit of Southern Chile, possesses qualities exceptional as its high antioxidants content, that make it increasingly more appreciated for marketing. Dehydration has the potential providing safe food products through the decreased activity water while maintaining their functional properties. The objective of this study was to evaluate the effect of different drying methods on the antioxidant capacity (AC), total flavonoid content (TFC), rehydration indexes and texture the dried murta berry. Five drying technologies were used: convective drying, vacuum drying, sun-air drying, infrared drying and freezing-drying. The antioxidant capacity was measured by the ORAC method, CFT was determined by spectrophotometry, rehydration capacity (CR) and water retention (WHC) by gravimetry, texture profile (TPA) by a texture analyzer TA-XT2 and microstructure by SEM. The results showed that the lyophilized murta had smaller losses AC and TFC with values of 2886.27 routine mg rutin/ 100 g dm and 23359.99 μmol ET/100 g dm, respectively. According to the rehydration indexes, these were affected by the drying methods, where the maximum value of WHC was 92.60 g retained water/100 g sample for the vacuum drying, and the lowest value of CR was 1.43 g water absorbed/g dm for the sun-air drying. Furthermore, the microstructure and TPA showed that lyophilized samples had characteristics similar to the fresh sample. Therefore, it is possible to mention that lyophilization achieved greater extent preserving the characteristics of the murta samples, showing that this method can be used in the food industry and encourage the consumption of dried fruit and thus give it greater added value.

Keywords: antioxidant, drying method, flavonoid, murta berry, texture

Procedia PDF Downloads 302
900 Mango (Mangifera indica L.) Lyophilization Using Vacuum-Induced Freezing

Authors: Natalia A. Salazar, Erika K. Méndez, Catalina Álvarez, Carlos E. Orrego

Abstract:

Lyophilization, also called freeze-drying, is an important dehydration technique mainly used for pharmaceuticals. Food industry also uses lyophilization when it is important to retain most of the nutritional quality, taste, shape and size of dried products and to extend their shelf life. Vacuum-Induced during freezing cycle (VI) has been used in order to control ice nucleation and, consequently, to reduce the time of primary drying cycle of pharmaceuticals preserving quality properties of the final product. This procedure has not been applied in freeze drying of foods. The present work aims to investigate the effect of VI on the lyophilization drying time, final moisture content, density and reconstitutional properties of mango (Mangifera indica L.) slices (MS) and mango pulp-maltodextrin dispersions (MPM) (30% concentration of total solids). Control samples were run at each freezing rate without using induced vacuum. The lyophilization endpoint was the same for all treatments (constant difference between capacitance and Pirani vacuum gauges). From the experimental results it can be concluded that at the high freezing rate (0.4°C/min) reduced the overall process time up to 30% comparing process time required for the control and VI of the lower freeze rate (0.1°C/min) without affecting the quality characteristics of the dried product, which yields a reduction in costs and energy consumption for MS and MPM freeze drying. Controls and samples treated with VI at freezing rate of 0.4°C/min in MS showed similar results in moisture and density parameters. Furthermore, results from MPM dispersion showed favorable values when VI was applied because dried product with low moisture content and low density was obtained at shorter process time compared with the control. There were not found significant differences between reconstitutional properties (rehydration for MS and solubility for MPM) of freeze dried mango resulting from controls, and VI treatments.

Keywords: drying time, lyophilization, mango, vacuum induced freezing

Procedia PDF Downloads 410
899 Heat and Mass Transfer Modelling of Industrial Sludge Drying at Different Pressures and Temperatures

Authors: L. Al Ahmad, C. Latrille, D. Hainos, D. Blanc, M. Clausse

Abstract:

A two-dimensional finite volume axisymmetric model is developed to predict the simultaneous heat and mass transfers during the drying of industrial sludge. The simulations were run using COMSOL-Multiphysics 3.5a. The input parameters of the numerical model were acquired from a preliminary experimental work. Results permit to establish correlations describing the evolution of the various parameters as a function of the drying temperature and the sludge water content. The selection and coupling of the equation are validated based on the drying kinetics acquired experimentally at a temperature range of 45-65 °C and absolute pressure range of 200-1000 mbar. The model, incorporating the heat and mass transfer mechanisms at different operating conditions, shows simulated values of temperature and water content. Simulated results are found concordant with the experimental values, only at the first and last drying stages where sludge shrinkage is insignificant. Simulated and experimental results show that sludge drying is favored at high temperatures and low pressure. As experimentally observed, the drying time is reduced by 68% for drying at 65 °C compared to 45 °C under 1 atm. At 65 °C, a 200-mbar absolute pressure vacuum leads to an additional reduction in drying time estimated by 61%. However, the drying rate is underestimated in the intermediate stage. This rate underestimation could be improved in the model by considering the shrinkage phenomena that occurs during sludge drying.

Keywords: industrial sludge drying, heat transfer, mass transfer, mathematical modelling

Procedia PDF Downloads 134
898 Protein Stabilized Foam Structures as Protective Carrier Systems during Microwave Drying of Probiotics

Authors: Jannika Dombrowski, Sabine Ambros, Ulrich Kulozik

Abstract:

Due to the increasing popularity of healthy products, probiotics are still of rising importance in food manufacturing. With the aim to amplify the field of probiotic application to non-chilled products, the cultures have to be preserved by drying. Microwave drying has proved to be a suitable technique to achieve relatively high survival rates, resulting from drying at gentle temperatures, among others. However, diffusion limitation due to compaction of cell suspension during drying can prolong drying times as well as deteriorate product properties (grindability, rehydration performance). Therefore, we aimed to embed probiotics in an aerated matrix of whey proteins (surfactants) and di-/polysaccharides (foam stabilization, probiotic protection) during drying. As a result of the manifold increased inner surface of the cell suspension, drying performance was enhanced significantly as compared to non-foamed suspensions. This work comprises investigations on suitable foam matrices, being stable under vacuum (variation of protein concentration, type and concentration of di-/polysaccharide) as well as development of an applicable microwave drying process in terms of microwave power, chamber pressure and maximum product temperatures. Performed analyses included foam characteristics (overrun, drainage, firmness, bubble sizes), and properties of the dried cultures (survival, activity). In addition, efficiency of the drying process was evaluated.

Keywords: foam structure, microwave drying, polysaccharides, probiotics

Procedia PDF Downloads 262
897 Characteristics and Quality of Chilean Abalone Undergoing Different Drying Emerging Technologies

Authors: Mario Pérez-Won, Anais Palma-Acevedo, Luis González-Cavieres, Roberto Lemus-Mondaca, Gipsy Tabilo-Munizaga

Abstract:

The Chilean abalone (Concholepas Concholepas) is a gastropod mollusk; it has a high commercial value due to the qualities of its meat, especially hardness, as a critical acceptance parameter. However, its main problem is its short shelf-life which is usually extended using traditional technologies with high energy consumption. Therefore, applying different technologies for the pre-treatment and drying process is necessary. In this research, pulsed electric field (PEF) was used as a pre-treatment for vacuum microwave drying (VMD), freeze-drying (FD), and hot-air drying (HAD). Drying conditions and characteristics were set according to previous experiments. The Drying samples were analyzed in terms of physical quality (color, texture, microstructure, and rehydration capacity), protein quality (degree of hydrolysis and computer protein efficiency ratio), and energy parameters. Regarding quality, the treatment that obtained lower harness was PEF+FD (195 N ± 10), the lowest change of color was for treatment PEF+VMD (ΔE: 17 ± 1.5), and the best rehydration capacity was for treatment PEF+VMD (1.2 h for equilibrium). For protein quality, the highest Computer-Protein Efficiency Ratio was the sample 2.0 kV/ cm of PEF (index of 4.18 ± 0.26 at the end of the digestion). Moreover, about energetic consumption, results show that VMD decreases the drying process by 97% whether PEF was used or not. Consequently, it is possible to conclude that using PEF as a pre-treatment for VMD and FD treatments has advantages that must be used following the consumer’s needs or preferences.

Keywords: chilean abalone, freeze-drying, proteins, pulsed electric fields

Procedia PDF Downloads 109
896 Persian Pistachio Nut (Pistacia vera L.) Dehydration in Natural and Industrial Conditions

Authors: Hamid Tavakolipour, Mohsen Mokhtarian, Ahmad Kalbasi Ashtari

Abstract:

In this study, the effect of various drying methods (sun drying, shade drying and industrial drying) on final moisture content, shell splitting degree, shrinkage and color change were studied. Sun drying resulted higher degree of pistachio nuts shell splitting on pistachio nuts relative other drying methods. The ANOVA results showed that the different drying methods did not significantly effects on color change of dried pistachio nut. The results illustrated that pistachio nut dried by industrial drying had the lowest moisture content. After the end of drying process, initially, the experimental drying data were fitted with five famous drying models namely Newton, Page, Silva et al., Peleg and Henderson and Pabis. The results indicated that Peleg and Page models gave better results compared with other models to monitor the moisture ratio’s pistachio nut in industrial drying and open sun (or shade drying) methods, respectively.

Keywords: industrial drying, pistachio, quality properties, traditional drying

Procedia PDF Downloads 335
895 Soft Ground Improved by Prefabricated Vertical Drains with Vacuum and Thermal Preloading

Authors: Gia Lam Le, Dennis T. Bergado, Thi Ngoc Truc Nguyen

Abstract:

This study focuses on behaviors of improved soft clay using prefabricated vertical drain (PVD) combined with vacuum and electro-osmotic preloading. Large-scale consolidations of reconstituted soft Bangkok clay were conducted for PVD improvement with vacuum (vacuum-PVD), and vacuum combined with heat (vacuum-thermo-PVD). The research revealed that vacuum-thermo-PVD gives high efficiency of the consolidation rate compared to the vacuum-PVD. In addition, the magnitude of settlement of the specimen improved by the vacuum-thermo-PVD is higher than the vacuum-PVD because the assistance of heat causes the collapse of the clay structure. Particularly, to reach 90% degree of consolidation, the thermal-vacuum-PVD reduced about 58% consolidation time compared to the vacuum-PVD. The increase in consolidation rate is resulted from the increase in horizontal coefficient of consolidation, Ch, the reduction of the smear effect expressed by the ratio of the horizontal hydraulic conductivity in the undisturbed zone, kh, and the horizontal hydraulic conductivity in the smeared zone, ks. Furthermore, the shear strength, Su, increased about 100% when compared using the vacuum-thermal-PVD to the vacuum PVD. In addition, numerical simulations gave reasonable results compared to the laboratory data.

Keywords: PVD improvement, vacuum preloading, prefabricated vertical drain, thermal PVD

Procedia PDF Downloads 465
894 Mathematical Modeling of the Effect of Pretreatment on the Drying Kinetics, Energy Requirement and Physico-Functional Properties of Yam (Dioscorea Rotundata) and Cocoyam (Colocasia Esculenta)

Authors: Felix U. Asoiro, Kingsley O. Anyichie, Meshack I. Simeon, Chinenye E. Azuka

Abstract:

The work was aimed at studying the effects of microwave drying (450 W) and hot air oven drying on the drying kinetics and physico-functional properties of yams and cocoyams species. The yams and cocoyams were cut into chips of thicknesses of 3mm, 5mm, 7mm, 9mm, and 11mm. The drying characteristics of yam and cocoyam chips were investigated under microwave drying and hot air oven temperatures (50oC – 90oC). Drying methods, temperature, and thickness had a significant effect on the drying characteristics and physico-functional properties of yam and cocoyam. The result of the experiment showed that an increase in the temperature increased the drying time. The result also showed that the microwave drying method took lesser time to dry the samples than the hot air oven drying method. The iodine affinity of starch for yam was higher than that of cocoyam for the microwaved dried samples over those of hot air oven-dried samples. The results of the analysis would be useful in modeling the drying behavior of yams and cocoyams under different drying methods. It could also be useful in the improvement of shelf life for yams and cocoyams as well as designs of efficient systems for drying, handling, storage, packaging, processing, and transportation of yams and cocoyams.

Keywords: coco yam, drying, microwave, modeling, energy consumption, iodine affinity, drying ate

Procedia PDF Downloads 105
893 To Study the Effect of Drying Temperature Towards Extraction of Aquilaria subintegra Dry Leaves Using Vacuum Far Infrared

Authors: Tengku Muhammad Rafi Nazmi Bin Tengku Razali, Habsah Alwi

Abstract:

This article based on effect of temperature towards extraction of Aquilaria Subintegra. Aquilaria Subintegra which its main habitat is in Asia-tropical and particularly often found in its native which is Thailand. There is claim which is Aquilaria Subintegra contains antipyretic properties that helps fight fever. Research nowadays also shown that paracetamol consumed bring bad effect towards consumers. This sample will first dry using Vacuum Far Infrared which provides better drying than conventional oven. Soxhlet extractor used to extract oil from sample. Gas Chromatography Mass Spectrometer used to analyze sample to determine its compound. Objective from this research was to determine the active ingredients that exist in the Aquilaria Subintegra leaves and to determine whether compound of Acetaminophen exist or not inside the leaves. Moisture content from 400C was 80%, 500C was 620% and 600C was 36%. The greater temperature resulting lower moisture content inside sample leaves. 7 components were identified in sample T=400C while only 5 components were identified in sample at T=50C and T=60C. Four components were commonly identified in three sample which is 1n-Hexadecanoic acid, 9,12,15-Octadecatrienoic acid, methyl ester (z,z,z), Vitamin E and Squalene. Further studies are needed with new series of temperature to refine the best results.

Keywords: aquilaria subintegra, vacuum far infrared, SOXHLET extractor, gas chromatography mass spectrometer, paracetamol

Procedia PDF Downloads 484
892 Mathematical Modeling of Eggplant Slices Drying Using Microwave-Oven

Authors: M.H. Keshek, M.N. Omar, A.H. Amer

Abstract:

Eggplant (Solanum melongena L.) is considered one of the most important crops in summer season, and it is grown in most cultivated area in Egypt. Eggplant has a very limited shelf life for freshness and physiological changes occur after harvest. Nowadays, microwave drying offers an alternative way to drying agricultural products. microwave drying is not only faster but also requiring less energy consumption than conventional drying. The main objective of this research was to evaluate using the microwave oven in Eggplant drying, to determine the optimum drying time of higher drying efficiency and lower energy consumption. The eggplants slices, having a thickness of about 5, 10, 15, and 20 mm, with diameter 50±2 mm was dried using microwave oven (KOR-9G2B) using three different levels were 450, 630, and 810 Watt (50%, 70%, and 90% of 900 Watt). The results show that, the initial moisture content of the eggplant slices was around 93 % wet basis (13.28 g water/g dry matter). The results indicated that, the moisture transfer within the sample was more rapidly during higher microwave power heating (810 watt) and lower thickness (5 mm) of the eggplant slices. In addition, the results show that, the drying efficiency increases by increasing slices thickness at power levels 450, 630 and 810 Watt. The higher drying efficiency was 83.13% occurred when drying the eggplant slices 20 mm thickness in microwave oven at power 630 Watt. the higher total energy consumption per dry kilogram was 1.275 (kWh/ dry kg) occurred at used microwave 810 Watt for drying eggplant slices 5 mm thickness, and the lower total energy consumption per dry kilogram was 0.55 (kWh/ dry kg) occurred at used microwave 810 Watt for drying eggplant slices 20 mm thickness.

Keywords: microwave drying, eggplant, drying rate, drying efficiency, energy consumption

Procedia PDF Downloads 157
891 Empirical Research to Improve Performances of Paddy Columnar Dryer

Authors: Duong Thi Hong, Nguyen Van Hung, Martin Gummert

Abstract:

Good practices of mechanical drying can reduce losses of grain quality. Recently, with demands of higher capacity for paddy drying in the Mekong River Delta of Vietnam, columnar dryers have been introduced rapidly in this area. To improve the technology, this study was conducted to investigate and optimize the parameters for drying Jasmine paddy using an empirical cross-flow columnar dryer. The optimum parameters were resulted in air flow rate and drying temperature that are 1-1.5 m³ s-¹ t-¹ of paddy and 40-42°C, respectively. The investigation also addressed a solution of reversing drying air to achieve the uniformity of grain temperature and quality. Results of this study should be significant for developments of grain drying, contributing to reduce post harvest losses

Keywords: paddy drying, columnar dryer, air flow rate, drying temperature

Procedia PDF Downloads 371
890 Effect of Drying on the Concrete Structures

Authors: A. Brahma

Abstract:

The drying of hydraulics materials is unavoidable and conducted to important spontaneous deformations. In this study, we show that it is possible to describe the drying shrinkage of the high-performance concrete by a simple expression. A multiple regression model was developed for the prediction of the drying shrinkage of the high-performance concrete. The assessment of the proposed model has been done by a set of statistical tests. The model developed takes in consideration the main parameters of confection and conservation. There was a very good agreement between drying shrinkage predicted by the multiple regression model and experimental results. The developed model adjusts easily to all hydraulic concrete types.

Keywords: hydraulic concretes, drying, shrinkage, prediction, modeling

Procedia PDF Downloads 368
889 Drying Kinetics, Energy Requirement, Bioactive Composition, and Mathematical Modeling of Allium Cepa Slices

Authors: Felix U. Asoiro, Meshack I. Simeon, Chinenye E. Azuka, Harami Solomon, Chukwuemeka J. Ohagwu

Abstract:

The drying kinetics, specific energy consumed (SEC), effective moisture diffusivity (EMD), flavonoid, phenolic, and vitamin C contents of onion slices dried under convective oven drying (COD) were compared with microwave drying (MD). Drying was performed with onion slice thicknesses of 2, 4, 6, and 8 mm; air drying temperatures of 60, 80, and 100°C for COD, and microwave power of 450 W for MD. A decrease in slice thickness and an increase in drying air temperature led to a drop in the drying time. As thickness increased from 2 – 8 mm, EMD rose from 1.1-4.35 x 10⁻⁸ at 60°C, 1.1-5.6 x 10⁻⁸ at 80°C, and 1.25-6.12 x 10⁻⁸ at 100°C with MD treatments yielding the highest mean value (6.65 x 10⁻⁸ m² s⁻¹) at 8 mm. Maximum SEC for onion slices in COD was 238.27 kWh/kg H₂O (2 mm thickness), and the minimum was 39.4 kWh/kg H₂O (8 mm thickness) whereas maximum during MD was 25.33 kWh/kg H₂O (8 mm thickness) and minimum, 18.7 kWh/kg H₂O (2 mm thickness). MD treatment gave a significant (p 0.05) increase in the flavonoid (39.42 – 64.4%), phenolic (38.0 – 46.84%), and vitamin C (3.7 – 4.23 mg 100 g⁻¹) contents, while COD treatment at 60°C and 100°C had positive effects on only vitamin C and phenolic contents, respectively. In comparison, the Weibull model gave the overall best fit (highest R²=0.999; lowest SSE=0.0002, RSME=0.0123, and χ²= 0.0004) when drying 2 mm onion slices at 100°C.

Keywords: allium cepa, drying kinetics, specific energy consumption, flavonoid, vitamin C, microwave oven drying

Procedia PDF Downloads 134
888 Tga Analysis on the Decomposition of Active Material of Aquilaria Malaccencis

Authors: Nurshafika Adira Bt Audi Ashraf, Habsah Alwi

Abstract:

This study describes the series of analysis conducted after the use of Vacuum far Infra Red. Parameter including the constant drying temperature at 40°C with pressure difference (-400 bar, -500 bar and -600 bar) and constant drying pressure at -400 bar with difference temperature (40°C, 50°C and 60°C). The dried leaves with constant temperature and constant pressure is compared with the fresh leaves via several analysis including TGA, FTIR and Chromameter. Results indicated that the fresh leaves shows three degradation stages while temperature constant shows four stages of degradation and at constant pressure of -400 bar, five stages of degradation is shown. However, at the temperature constant with pressure -500 bar, five degradation stages are identified and at constant pressure with temperature 40°C, three stage of degradation is presence. It is assumed that it is due to the difference size of the sample as the particle size is decrease, the peak temperature shown in TG curves is also decrease which lead to the rapid ignition. Based on the FTIR analysis, fresh leaves gives the high presence of O-H and C=O group where both of the constant parameters give the absence of those due to the drying effects. In color analysis, the constant drying parameters (pressure and temperature) both shows that as the temperature increases, the average total of color change is also increases.

Keywords: chromameter, FTIR, TGA, Vaccum far infrared dying

Procedia PDF Downloads 365
887 Transparency Phenomenon in Kuew Teow

Authors: Muhammad Heikal Ismail, Law Chung Lim, Hii Ching Lik

Abstract:

In maintaining food quality and shelf life, drying is employed in food industry as the most reliable perseverance technique. In this way, heat pump drying and hot air drying of fresh rice noodles was deduced to freeze drying in achieving quality attributes of oil content Scanning Electron Microscope (SEM) images, texture, and colour. Soxthlet analysis shows freeze dried noodles contain more than 10 times oil content, distinct pores of SEM images, higher hardness by more than three times, and wider colour changes by average more than two times to both methods to explain the less transparency physical outlook of freeze dried samples.

Keywords: freeze drying, heat pump drying, noodles, Soxthlet

Procedia PDF Downloads 485
886 Structure Design of Vacuum Vessel with Large Openings for Spacecraft Thermal Vacuum Test

Authors: Han Xiao, Ruan Qi, Zhang Lei, Qi Yan

Abstract:

Space environment simulator is a facility used to conduct thermal test for spacecraft, and vacuum vessel is the main body of it. According to the requirements for thermal tests of the spacecraft and its solar array panels, the primary vessel and the side vessels are designed to be a combinative structure connected with aperture, which ratio reaches 0.7. Since the vacuum vessel suffers 0.1MPa external pressure during the process of thermal test, in order to ensure the simulator’s reliability and safety, it’s necessary to calculate the vacuum vessel’s intensity and stability. Based on the impact of large openings to vacuum vessel structure, this paper explored the reinforce design and analytical way of vacuum vessel with large openings, using a large space environment simulator’s vacuum vessel design as an example. Tests showed that the reinforce structure is effective to fulfill the requirements of external pressure and the gravity. This ensured the reliability of the space environment simulator, providing a guarantee for developing the spacecraft.

Keywords: vacuum vessel, large opening, space environment simulator, structure design

Procedia PDF Downloads 535
885 Eucalyptus camendulensis and Its Drying Effect on Water and Essential Oil Content

Authors: Mehani Mouna, Segni Ladjel

Abstract:

Medicinal and aromatic plants are promising and are characterized by the biosynthesis of odorous molecules that make up the so-called essential oils (EO), which have long been known for their antiseptic and therapeutic activity in folk medicine. The objective of this study was to evaluate the influence of drying in the shade on the water content and on the content of essential oils extracted from leaves of Eucalyptus camendulensis for better quality control of medicinal and aromatic plants. The water content of the Eucalyptus camendulensis plant material decreases during the drying process. It increased from 100 % to 0.006 % for the drying in the shade after ten days. The moisture content is practically constant at the end of the drying period. The drying in the shade increases the concentration of essential oils of Eucalyptus camendulensis. When the leaves of Eucalyptus camendulensis plant are in the shade, the maximum of the essential oil content was obtained on the eighth days; the recorded value was 1.43% ± 0.01%. Beyond these periods, the content continuously drops in before stabilizing. The optimum drying time is between 6 and 9 days.

Keywords: Eucalyptus camendulensis, drying, essential oils, water, content

Procedia PDF Downloads 357
884 Influence of Drying Method in Parts of Alumina Obtained for Rapid Prototyping and Uniaxial Dry Pressing

Authors: N. O. Muniz, F. A. Vechietti, L. Treccani, K. Rezwan, Luis Alberto dos Santos

Abstract:

Developing new technologies in the manufacture of biomaterials is a major challenge for researchers in the tissue engineering area. Many in vitro and in vivo studies have revealed the significance of the porous structure of the biomaterials on the promotion of bone ingrowth. The use of Rapid Prototyping in the manufacture of ceramics in the biomedical area has increased in recent years and few studies are conducted on obtaining alumina pieces. The aim of this work was the study of alumina pieces obtained by 3D printing and uniaxial dry pressing (DP) in order to evaluate porosity achieved by this two different techniques. Also, the influence of the powder drying process was determined. The row alumina powders were drying by freeze drying and oven. Apparent porosity, apparent density, retraction after thermal treatment were evaluated. The porosity values obtained by DP, regardless of method of drying powders, were much lower than those obtained by RP as expected. And for the prototyped samples, the method of powder drying significantly influenced porosities, reached 48% for drying oven versus 65% for freeze-drying. Therefore, the method of 3D printing, using different powder drying, allows a better control over the porosity.

Keywords: rapid prototyping, freeze-drying, porosity, alumina

Procedia PDF Downloads 471
883 Thin-Layer Drying Characteristics and Modelling of Instant Coffee Solution

Authors: Apolinar Picado, Ronald Solís, Rafael Gamero

Abstract:

The thin-layer drying characteristics of instant coffee solution were investigated in a laboratory tunnel dryer. Drying experiments were carried out at three temperatures (80, 100 and 120 °C) and an air velocity of 1.2 m/s. Drying experimental data obtained are fitted to six (6) thin-layer drying models using the non-linear least squares regression analysis. The acceptability of the thin-layer drying model has been based on a value of the correlation coefficient that should be close to one, and low values for root mean square error (RMSE) and chi-square (x²). According to this evaluation, the most suitable model for describing drying process of thin-layer instant coffee solution is the Page model. Further, the effective moisture diffusivity and the activation energy were computed employing the drying experimental data. The effective moisture diffusivity values varied from 1.6133 × 10⁻⁹ to 1.6224 × 10⁻⁹ m²/s over the temperature range studied and the activation energy was estimated to be 162.62 J/mol.

Keywords: activation energy, diffusivity, instant coffee, thin-layer models

Procedia PDF Downloads 262
882 Thermal Analysis of Vertical Kiln Dryer for Drying Sunflower Seeds in the Oil Mill “Banat” Ad, Nova Crnja

Authors: Aleksandar Dedić, Duško Salemović, Matilda Lazić, Dragan Halas

Abstract:

The aim of the paper was the thermal balance control of vertical kiln dryer indirect type (VSU-36) for drying sunflower seed, produced by "Cer" - Cacak, capacity 39 [t/h]. The balance control was executed because the dryer was damaged by NATO bombing in 1999, and it was planned for its reconstruction. The structural and geometric characteristics of the dryer were known, and it was necessary to determine the parameters of wet air as a drying agent and the sunflower seeds. The thermal balance control was the basis for the replacement of damaged parts of the dryer during its reconstruction. After that, it was necessary to perform the subsequent calculation of strength. The accuracy of strength had a large influence on the cost-effectiveness and safety of a single drying chamber. Also, the work provides guidelines for the regimes of drying grain crops with an explanation of the specificity of drying sunflowers.

Keywords: sunflower seeds, regimes of drying, vertical kiln dryer, thermal analysis

Procedia PDF Downloads 70
881 Design and Evaluation of a Fully-Automated Fluidized Bed Dryer for Complete Drying of Paddy

Authors: R. J. Pontawe, R. C. Martinez, N. T. Asuncion, R. V. Villacorte

Abstract:

Drying of high moisture paddy remains a major problem in the Philippines, especially during inclement weather condition. To alleviate the problem, mechanical dryers were used like a flat bed and recirculating batch-type dryers. However, drying to 14% (wet basis) final moisture content is long which takes 10-12 hours and tedious which is not the ideal for handling high moisture paddy. Fully-automated pilot-scale fluidized bed drying system with 500 kilograms per hour capacity was evaluated using a high moisture paddy. The developed fluidized bed dryer was evaluated using four drying temperatures and two variations in fluidization time at a constant airflow, static pressure and tempering period. Complete drying of paddy with ≥28% (w.b.) initial MC was attained after 2 passes of fluidized-bed drying at 2 minutes exposure to 70 °C drying temperature and 4.9 m/s superficial air velocity, followed by 60 min ambient air tempering period (30 min without ventilation and 30 min with air ventilation) for a total drying time of 2.07 h. Around 82% from normal mechanical drying time was saved at 70 °C drying temperature. The drying cost was calculated to be P0.63 per kilogram of wet paddy. Specific heat energy consumption was only 2.84 MJ/kg of water removed. The Head Rice Yield recovery of the dried paddy passed the Philippine Agricultural Engineering Standards. Sensory evaluation showed that the color and taste of the samples dried in the fluidized bed dryer were comparable to air dried paddy. The optimum drying parameters of using fluidized bed dryer is 70 oC drying temperature at 2 min fluidization time, 4.9 m/s superficial air velocity, 10.16 cm grain depth and 60 min ambient air tempering period.

Keywords: drying, fluidized bed dryer, head rice yield, paddy

Procedia PDF Downloads 325