Search results for: technical efficiency
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8081

Search results for: technical efficiency

131 Fully Instrumented Small-Scale Fire Resistance Benches for Aeronautical Composites Assessment

Authors: Fabienne Samyn, Pauline Tranchard, Sophie Duquesne, Emilie Goncalves, Bruno Estebe, Serge Boubigot

Abstract:

Stringent fire safety regulations are enforced in the aeronautical industry due to the consequences that potential fire event on an aircraft might imply. This is so much true that the fire issue is considered right from the design of the aircraft structure. Due to the incorporation of an increasing amount of polymer matrix composites in replacement of more conventional materials like metals, the nature of the fire risks is changing. The choice of materials used is consequently of prime importance as well as the evaluation of its resistance to fire. The fire testing is mostly done using the so-called certification tests according to standards such as the ISO2685:1998(E). The latter describes a protocol to evaluate the fire resistance of structures located in fire zone (ability to withstand fire for 5min). The test consists in exposing an at least 300x300mm² sample to an 1100°C propane flame with a calibrated heat flux of 116kW/m². This type of test is time-consuming, expensive and gives access to limited information in terms of fire behavior of the materials (pass or fail test). Consequently, it can barely be used for material development purposes. In this context, the laboratory UMET in collaboration with industrial partners has developed a horizontal and a vertical small-scale instrumented fire benches for the characterization of the fire behavior of composites. The benches using smaller samples (no more than 150x150mm²) enables to cut downs costs and hence to increase sampling throughput. However, the main added value of our benches is the instrumentation used to collect useful information to understand the behavior of the materials. Indeed, measurements of the sample backside temperature are performed using IR camera in both configurations. In addition, for the vertical set up, a complete characterization of the degradation process, can be achieved via mass loss measurements and quantification of the gasses released during the tests. These benches have been used to characterize and study the fire behavior of aeronautical carbon/epoxy composites. The horizontal set up has been used in particular to study the performances and durability of protective intumescent coating on 2mm thick 2D laminates. The efficiency of this approach has been validated, and the optimized coating thickness has been determined as well as the performances after aging. Reductions of the performances after aging were attributed to the migration of some of the coating additives. The vertical set up has enabled to investigate the degradation process of composites under fire. An isotropic and a unidirectional 4mm thick laminates have been characterized using the bench and post-fire analyses. The mass loss measurements and the gas phase analyses of both composites do not present significant differences unlike the temperature profiles in the thickness of the samples. The differences have been attributed to differences of thermal conductivity as well as delamination that is much more pronounced for the isotropic composite (observed on the IR-images). This has been confirmed by X-ray microtomography. The developed benches have proven to be valuable tools to develop fire safe composites.

Keywords: aeronautical carbon/epoxy composite, durability, intumescent coating, small-scale ‘ISO 2685 like’ fire resistance test, X-ray microtomography

Procedia PDF Downloads 248
130 Supplementation of Yeast Cell Wall on Growth Performance in Broiler Reared under High Ambient Temperature

Authors: Muhammad Shahzad Hussain

Abstract:

Two major problems are facing generally by conventional poultry farming that is disease outbreaks and poor performance, which results due to improper management. To enhance the growth performance and efficiency of feed and reduce disease outbreaks, antibiotic growth promoters (AGPs) which are antibiotics at sub-therapeutic levels, are extensively used in the poultry industry. European Union has banned the use of antibiotics due to their presence in poultry products, development of antibiotic-resistant pathogens, and disturbance of normal gut microbial ecology. These residues cause serious health concerns and produce antibiotic resistance in pathogenic microbes in human beings. These issues strengthen the need for the withdrawal of AGPs from poultry feed. Nowadays, global warming is a major issue, and it is more critical in tropical areas like Pakistan, where heat stress is already a major problem. Heat stress leads to poor production performance, high mortality, immuno-suppression, and concomitant diseases outbreak. The poultry feed industry in Pakistan, like other countries of the world, has been facing shortages and high prices of local as well as imported feed ingredients. Prebiotics are potential replacer for AGP as prebiotics has properties to enhance the production potential and reduce the growth of harmful bacteria as well as stimulate the growth/activity of beneficial bacteria. The most commonly used prebiotics in poultry includes mannan oligosaccharide (MOS). MOS is an essential component of the yeast cell wall (YCW) (Saccharomyces cerevisiae); therefore, the YCW wall possesses prebiotic properties. The use of distillery yeast wall (YCW) has the potential to replace conventional AGPs and to reduce mortality due to heat stress as well as to bind toxins in the feed. The dietary addition of YCW has not only positive effects on production performance in poultry during normal conditions but during stressful conditions. A total of 168-day-old broilers were divided into 6 groups, each of which has 28 birds with 4 replicates (n=7).Yeast cell wall (YCW) supplementation @ 0%, 1%, 1.5%, 2%, 2.5%, 3% from day 0 to 35. Heat stress was exposed from day 21 to 35 at 30±1.1ᵒC with relative humidity 65±5%. Zootechnical parameters like body weight, FCR, Organ development, and histomorphometric parameters were studied. A significant weight gain was observed at group C supplemented @ 1.5% YCW during the fifth week. Significant organ weight gain of Gizzard, spleen, small intestine, and cecum was observed at group C supplemented @ 1.5% YCW. According to morphometric indices Duodenum, Jejunum, and Ileum has significant villus height, while Jejunum and Ileum have also significant villus surface area in the group supplemented with 1.5% YCW. IEL count was only decreased in 1.5% YCW-fed group in jejunum and ileum, not in duodenum, that was less in 2% YCW-supplemented group. Dietary yeast cell wall of saccharomyces cerevisiae partially reduced the effects of high ambient temperature in terms of better growth and modified gut histology and components of mucosal immune response to better withstand heat stress in broilers.

Keywords: antibiotics, AGPs, broilers, MOS, prebiotics, YCW

Procedia PDF Downloads 63
129 Improved Approach to the Treatment of Resistant Breast Cancer

Authors: Lola T. Alimkhodjaeva, Lola T. Zakirova, Soniya S. Ziyavidenova

Abstract:

Background: Breast cancer (BC) is still one of the urgent oncology problems. The essential obstacle to the full anti-tumor therapy implementation is drug resistance development. Taking into account the fact that chemotherapy is main antitumor treatment in BC patients, the important task is to improve treatment results. Certain success in overcoming this situation has been associated with the use of methods of extracorporeal blood treatment (ECBT), plasmapheresis. Materials and Methods: We examined 129 women with resistant BC stages 3-4, aged between 56 to 62 years who had previously received 2 courses of CAF chemotherapy. All patients additionally underwent 2 courses of CAF chemotherapy but against the background ECBT with ultrasonic exposure. We studied the following parameters: 1. The highlights of peripheral blood before and after therapy. 2. The state of cellular immunity and identification of activation markers CD23 +, CD25 +, CD38 +, CD95 + on lymphocytes was performed using monoclonal antibodies. Evaluation of humoral immunity was determined by the level of main classes of immunoglobulins IgG, IgA, IgM in serum. 3. The degree of tumor regression was assessed by WHO recommended 4 gradations. (complete - 100%, partial - more than 50% of initial size, process stabilization–regression is less than 50% of initial size and tumor advance progressing). 4. Medical pathomorphism in the tumor was determined by Lavnikova. 5. The study of immediate and remote results, up to 3 years and more. Results and Discussion: After performing extracorporeal blood treatment anemia occurred in 38.9%, leukopenia in 36.8%, thrombocytopenia in 34.6%, hypolymphemia in 26.8%. Studies of immunoglobulin fractions in blood serum were able to establish a certain relationship between the classes of immunoglobulin A, G, M and their functions. The results showed that after treatment the values of main immunoglobulins in patients’ serum approximated to normal. Analysis of expression of activation markers CD25 + cells bearing receptors for IL-2 (IL-2Rα chain) and CD95 + lymphocytes that were mediated physiological apoptosis showed the tendency to increase, which apparently was due to activation of cellular immunity cytokines allocated by ultrasonic treatment. To carry out ECBT on the background of ultrasonic treatment improved the parameters of the immune system, which were expressed in stimulation of cellular immunity and correcting imbalances in humoral immunity. The key indicator of conducted treatment efficiency is the immediate result measured by the degree of tumor regression. After ECBT performance the complete regression was 10.3%, partial response - 55.5%, process stabilization - 34.5%, tumor advance progressing no observed. Morphological investigations of tumor determined therapeutic pathomorphism grade 2 in 15%, in 25% - grade 3 and therapeutic pathomorphism grade 4 in 60% of patients. One of the main criteria for the effect of conducted treatment is to study the remission terms in the postoperative period (up to 3 years or more). The remission terms up to 3 years with ECBT was 34.5%, 5-year survival was 54%. Carried out research suggests that a comprehensive study of immunological and clinical course of breast cancer allows the differentiated approach to the choice of methods for effective treatment.

Keywords: breast cancer, immunoglobulins, extracorporeal blood treatment, chemotherapy

Procedia PDF Downloads 246
128 On-Farm Biopurification Systems: Fungal Bioaugmentation of Biomixtures For Carbofuran Removal

Authors: Carlos E. Rodríguez-Rodríguez, Karla Ruiz-Hidalgo, Kattia Madrigal-Zúñiga, Juan Salvador Chin-Pampillo, Mario Masís-Mora, Elizabeth Carazo-Rojas

Abstract:

One of the main causes of contamination linked to agricultural activities is the spillage and disposal of pesticides, especially during the loading, mixing or cleaning of agricultural spraying equipment. One improvement in the handling of pesticides is the use of biopurification systems (BPS), simple and cheap degradation devices where the pesticides are biologically degraded at accelerated rates. The biologically active core of BPS is the biomixture, which is constituted by soil pre-exposed to the target pesticide, a lignocellulosic substrate to promote the activity of ligninolitic fungi and a humic component (peat or compost), mixed at a volumetric proportion of 50:25:25. Considering the known ability of lignocellulosic fungi to degrade a wide range of organic pollutants, and the high amount of lignocellulosic waste used in biomixture preparation, the bioaugmentation of biomixtures with these fungi represents an interesting approach for improving biomixtures. The present work aimed at evaluating the effect of the bioaugmentation of rice husk based biomixtures with the fungus Trametes versicolor in the removal of the insectice/nematicide carbofuran (CFN) and to optimize the composition of the biomixture to obtain the best performance in terms of CFN removal and mineralization, reduction in formation of transformation products and decrease in residual toxicity of the matrix. The evaluation of several lignocellulosic residues (rice husk, wood chips, coconut fiber, sugarcane bagasse or newspaper print) revealed the best colonization by T. versicolor in rice husk. Pre-colonized rice husk was then used in the bioaugmentation of biomixtures also containing soil pre-exposed to CFN and either peat (GTS biomixture) or compost (GCS biomixture). After spiking with 10 mg/kg CBF, the efficiency of the biomixture was evaluated through a multi-component approach that included: monitoring of CBF removal and production of CBF transformation products, mineralization of radioisotopically labeled carbofuran (14C-CBF) and changes in the toxicity of the matrix after the treatment (Daphnia magna acute immobilization test). Estimated half-lives of CBF in the biomixtures were 3.4 d and 8.1 d in GTS and GCS, respectively. The transformation products 3-hydroxycarbofuran and 3-ketocarbofuran were detected at the moment of CFN application, however their concentration continuously disappeared. Mineralization of 14C-CFN was also faster in GTS than GCS. The toxicological evaluation showed a complete toxicity removal in the biomixtures after 48 d of treatment. The composition of the GCS biomixture was optimized using a central composite design and response surface methodology. The design variables were the volumetric content of fungally pre-colonized rice husk and the volumetric ratio compost/soil. According to the response models, maximization of CFN removal and mineralization rate, and minimization in the accumulation of transformation products were obtained with an optimized biomixture of composition 30:43:27 (pre-colonized rice husk:compost:soil), which differs from the 50:25:25 composition commonly employed in BPS. Results suggest that fungal bioaugmentation may enhance the performance of biomixtures in CFN removal. Optimization reveals the importance of assessing new biomixture formulations in order to maximize their performance.

Keywords: bioaugmentation, biopurification systems, degradation, fungi, pesticides, toxicity

Procedia PDF Downloads 288
127 Low- and High-Temperature Methods of CNTs Synthesis for Medicine

Authors: Grzegorz Raniszewski, Zbigniew Kolacinski, Lukasz Szymanski, Slawomir Wiak, Lukasz Pietrzak, Dariusz Koza

Abstract:

One of the most promising area for carbon nanotubes (CNTs) application is medicine. One of the most devastating diseases is cancer. Carbon nanotubes may be used as carriers of a slowly released drug. It is possible to use of electromagnetic waves to destroy cancer cells by the carbon nanotubes (CNTs). In our research we focused on thermal ablation by ferromagnetic carbon nanotubes (Fe-CNTs). In the cancer cell hyperthermia functionalized carbon nanotubes are exposed to radio frequency electromagnetic field. Properly functionalized Fe-CNTs join the cancer cells. Heat generated in nanoparticles connected to nanotubes warm up nanotubes and then the target tissue. When the temperature in tumor tissue exceeds 316 K the necrosis of cancer cells may be observed. Several techniques can be used for Fe-CNTs synthesis. In our work, we use high-temperature methods where arc-discharge is applied. Low-temperature systems are microwave plasma with assisted chemical vapor deposition (MPCVD) and hybrid physical-chemical vapor deposition (HPCVD). In the arc discharge system, the plasma reactor works with a pressure of He up to 0,5 atm. The electric arc burns between two graphite rods. Vapors of carbon move from the anode, through a short arc column and forms CNTs which can be collected either from the reactor walls or cathode deposit. This method is suitable for the production of multi-wall and single-wall CNTs. A disadvantage of high-temperature methods is a low purification, short length, random size and multi-directional distribution. In MPCVD system plasma is generated in waveguide connected to the microwave generator. Then containing carbon and ferromagnetic elements plasma flux go to the quartz tube. The additional resistance heating can be applied to increase the reaction effectiveness and efficiency. CNTs nucleation occurs on the quartz tube walls. It is also possible to use substrates to improve carbon nanotubes growth. HPCVD system involves both chemical decomposition of carbon containing gases and vaporization of a solid or liquid source of catalyst. In this system, a tube furnace is applied. A mixture of working and carbon-containing gases go through the quartz tube placed inside the furnace. As a catalyst ferrocene vapors can be used. Fe-CNTs may be collected then either from the quartz tube walls or on the substrates. Low-temperature methods are characterized by higher purity product. Moreover, carbon nanotubes from tested CVD systems were partially filled with the iron. Regardless of the method of Fe-CNTs synthesis the final product always needs to be purified for applications in medicine. The simplest method of purification is an oxidation of the amorphous carbon. Carbon nanotubes dedicated for cancer cell thermal ablation need to be additionally treated by acids for defects amplification on the CNTs surface what facilitates biofunctionalization. Application of ferromagnetic nanotubes for cancer treatment is a promising method of fighting with cancer for the next decade. Acknowledgment: The research work has been financed from the budget of science as a research project No. PBS2/A5/31/2013

Keywords: arc discharge, cancer, carbon nanotubes, CVD, thermal ablation

Procedia PDF Downloads 422
126 Migration as a Trigger Causing Change to the Levant Literary Modernism

Authors: Aathira Peedikaparambil Somasundaran

Abstract:

The beginning of the 20th century marked the perios when a new generation of Lebanese radicals sowed the seeds for the second phase of Levant literary modernism, situated in the Levant. Beirut, during this era popularly fit every radical writer’s criterion owing to its weakened censorship and political control, despite the absence of a protective womb for the development of literary modernism, caused by the natively prevalent political unsettlement. The third stage of literary modernization, in which scholars used Western-inspired critical techniques to better understand their own cultures, coincides with the time period examined in this paper, which involved the international-inspired critical analysis of native cultural stimulants, which raised questions among Arab freethinking intellectuals. Locals who ventured outside recognised the difference between the West's progress and their own nations' stagnation. The awareness of such ‘gap of success’ aroused an ambition from journalists, authors, and proletarian revolutionaries who had studied in Europe, and finally developed enlightened ideas. Some Middle Eastern authors and artists only adopted current social and political frameworks after discovering western modernity. After learning about the upheavals that were happening in the West, these thinkers aspired to bring about equally broad drastic developments in their own country's social, political, and cultural milieu. These occurrences illustrate the increased power of migration to alter the cultural and literary scene in the Levant. The paper intends to discuss the different effects of migration that contributed to Levant literary modernism. The exploration of these factors as causes begins with addressing the politically influenced activism, that has always been a relevant part of Beirut, and then diving into the psychological effects of migration in the individuals of the society, which might have induced an accommodability to alien thoughts and ideas over time, as a coping mechanism. Nature or environmental stimuli, a common trigger for any creative output, often having the highest influence during travel will be identified and analysed to inspect the extent of its impact on the exchange of ideas that resulted in Levant modernism. The efficiency of both the stimulating component of travel and the diaspora of the indigenous, a by-product of travel in catalysing modernism in the Levant has to be proven in order to understand how migration indirectly affected the transmission and adoption of ideas in Levant literature. The paper will revisit the events revolving around these key players and platforms like Shir, to understand how the Lebanese literature, tied down in poetry drastically mutated under the leadership of Adonis, Yusuf et Khal, and other pioneers of Levant literary modernism. The conclision will identify the triggers that helped authors overcome personal and geographical barriers to unite the West and the Levant, and investigate the extent to which the bi-directional migration prompted a transformation in the local poetry. Consequently, the paper aims to shed light into the unique factor that provoked the shift in the literary scene of Twentieth century in the Middle East.

Keywords: literature, modernism, Middle East, levant, Beirut

Procedia PDF Downloads 58
125 Hygrothermal Interactions and Energy Consumption in Cold Climate Hospitals: Integrating Numerical Analysis and Case Studies to Investigate and Analyze the Impact of Air Leakage and Vapor Retarding

Authors: Amir E. Amirzadeh, Richard K. Strand

Abstract:

Moisture-induced problems are a significant concern for building owners, architects, construction managers, and building engineers, as they can have substantial impacts on building enclosures' durability and performance. Computational analyses, such as hygrothermal and thermal analysis, can provide valuable information and demonstrate the expected relative performance of building enclosure systems but are not grounded in absolute certainty. This paper evaluates the hygrothermal performance of common enclosure systems in hospitals in cold climates. The study aims to investigate the impact of exterior wall systems on hospitals, focusing on factors such as durability, construction deficiencies, and energy performance. The study primarily examines the impact of air leakage and vapor retarding layers relative to energy consumption. While these factors have been studied in residential and commercial buildings, there is a lack of information on their impact on hospitals in a holistic context. The study integrates various research studies and professional experience in hospital building design to achieve its objective. The methodology involves surveying and observing exterior wall assemblies, reviewing common exterior wall assemblies and details used in hospital construction, performing simulations and numerical analyses of various variables, validating the model and mechanism using available data from industry and academia, visualizing the outcomes of the analysis, and developing a mechanism to demonstrate the relative performance of exterior wall systems for hospitals under specific conditions. The data sources include case studies from real-world projects and peer-reviewed articles, industry standards, and practices. This research intends to integrate and analyze the in-situ and as-designed performance and durability of building enclosure assemblies with numerical analysis. The study's primary objective is to provide a clear and precise roadmap to better visualize and comprehend the correlation between the durability and performance of common exterior wall systems used in the construction of hospitals and the energy consumption of these buildings under certain static and dynamic conditions. As the construction of new hospitals and renovation of existing ones have grown over the last few years, it is crucial to understand the effect of poor detailing or construction deficiencies on building enclosure systems' performance and durability in healthcare buildings. This study aims to assist stakeholders involved in hospital design, construction, and maintenance in selecting durable and high-performing wall systems. It highlights the importance of early design evaluation, regular quality control during the construction of hospitals, and understanding the potential impacts of improper and inconsistent maintenance and operation practices on occupants, owner, building enclosure systems, and Heating, Ventilation, and Air Conditioning (HVAC) systems, even if they are designed to meet the project requirements.

Keywords: hygrothermal analysis, building enclosure, hospitals, energy efficiency, optimization and visualization, uncertainty and decision making

Procedia PDF Downloads 42
124 Characteristics of Plasma Synthetic Jet Actuator in Repetitive Working Mode

Authors: Haohua Zong, Marios Kotsonis

Abstract:

Plasma synthetic jet actuator (PSJA) is a new concept of zero net mass flow actuator which utilizes pulsed arc/spark discharge to rapidly pressurize gas in a small cavity under constant-volume conditions. The unique combination of high exit jet velocity (>400 m/s) and high actuation frequency (>5 kHz) provides a promising solution for high-speed high-Reynolds-number flow control. This paper focuses on the performance of PSJA in repetitive working mode which is more relevant to future flow control applications. A two-electrodes PSJA (cavity volume: 424 mm3, orifice diameter: 2 mm) together with a capacitive discharge circuit (discharge energy: 50 mJ-110 mJ) is designed to enable repetitive operation. Time-Resolved Particle Imaging Velocimetry (TR-PIV) system working at 10 kHz is exploited to investigate the influence of discharge frequency on performance of PSJA. In total, seven cases are tested, covering a wide range of discharge frequencies (20 Hz-560 Hz). The pertinent flow features (shock wave, vortex ring and jet) remain the same for single shot mode and repetitive working mode. Shock wave is issued prior to jet eruption. Two distinct vortex rings are formed in one cycle. The first one is produced by the starting jet whereas the second one is related with the shock wave reflection in cavity. A sudden pressure rise is induced at the throat inlet by the reflection of primary shock wave, promoting the shedding of second vortex ring. In one cycle, jet exit velocity first increases sharply, then decreases almost linearly. Afterwards, an alternate occurrence of multiple jet stages and refresh stages is observed. By monitoring the dynamic evolution of exit velocity in one cycle, some integral performance parameters of PSJA can be deduced. As frequency increases, the jet intensity in steady phase decreases monotonically. In the investigated frequency range, jet duration time drops from 250 µs to 210 µs and peak jet velocity decreases from 53 m/s to approximately 39 m/s. The jet impulse and the expelled gas mass (0.69 µN∙s and 0.027 mg at 20 Hz) decline by 48% and 40%, respectively. However, the electro-mechanical efficiency of PSJA defined by the ratio of jet mechanical energy to capacitor energy doesn’t show significant difference (o(0.01%)). Fourier transformation of the temporal exit velocity signal indicates two dominant frequencies. One corresponds to the discharge frequency, while the other accounts for the alternation frequency of jet stage and refresh stage in one cycle. The alternation period (300 µs approximately) is independent of discharge frequency, and possibly determined intrinsically by the actuator geometry. A simple analytical model is established to interpret the alternation of jet stage and refresh stage. Results show that the dynamic response of exit velocity to a small-scale disturbance (jump in cavity pressure) can be treated as a second-order under-damping system. Oscillation frequency of the exit velocity, namely alternation frequency, is positively proportional to exit area, but inversely proportional to cavity volume and throat length. Theoretical value of alternation period (305 µs) agrees well with the experimental value.

Keywords: plasma, synthetic jet, actuator, frequency effect

Procedia PDF Downloads 228
123 Automated End of Sprint Detection for Force-Velocity-Power Analysis with GPS/GNSS Systems

Authors: Patrick Cormier, Cesar Meylan, Matt Jensen, Dana Agar-Newman, Chloe Werle, Ming-Chang Tsai, Marc Klimstra

Abstract:

Sprint-derived horizontal force-velocity-power (FVP) profiles can be developed with adequate validity and reliability with satellite (GPS/GNSS) systems. However, FVP metrics are sensitive to small nuances in data processing procedures such that minor differences in defining the onset and end of the sprint could result in different FVP metric outcomes. Furthermore, in team-sports, there is a requirement for rapid analysis and feedback of results from multiple athletes, therefore developing standardized and automated methods to improve the speed, efficiency and reliability of this process are warranted. Thus, the purpose of this study was to compare different methods of sprint end detection on the development of FVP profiles from 10Hz GPS/GNSS data through goodness-of-fit and intertrial reliability statistics. Seventeen national team female soccer players participated in the FVP protocol which consisted of 2x40m maximal sprints performed towards the end of a soccer specific warm-up in a training session (1020 hPa, wind = 0, temperature = 30°C) on an open grass field. Each player wore a 10Hz Catapult system unit (Vector S7, Catapult Innovations) inserted in a vest in a pouch between the scapulae. All data were analyzed following common procedures. Variables computed and assessed were the model parameters, estimated maximal sprint speed (MSS) and the acceleration constant τ, in addition to horizontal relative force (F₀), velocity at zero (V₀), and relative mechanical power (Pmax). The onset of the sprints was standardized with an acceleration threshold of 0.1 m/s². The sprint end detection methods were: 1. Time when peak velocity (MSS) was achieved (zero acceleration), 2. Time after peak velocity drops by -0.4 m/s, 3. Time after peak velocity drops by -0.6 m/s, and 4. When the integrated distance from the GPS/GNSS signal achieves 40-m. Goodness-of-fit of each sprint end detection method was determined using the residual sum of squares (RSS) to demonstrate the error of the FVP modeling with the sprint data from the GPS/GNSS system. Inter-trial reliability (from 2 trials) was assessed utilizing intraclass correlation coefficients (ICC). For goodness-of-fit results, the end detection technique that used the time when peak velocity was achieved (zero acceleration) had the lowest RSS values, followed by -0.4 and -0.6 velocity decay, and 40-m end had the highest RSS values. For intertrial reliability, the end of sprint detection techniques that were defined as the time at (method 1) or shortly after (method 2 and 3) when MSS was achieved had very large to near perfect ICC and the time at the 40 m integrated distance (method 4) had large to very large ICCs. Peak velocity was reached at 29.52 ± 4.02-m. Therefore, sport scientists should implement end of sprint detection either when peak velocity is determined or shortly after to improve goodness of fit to achieve reliable between trial FVP profile metrics. Although, more robust processing and modeling procedures should be developed in future research to improve sprint model fitting. This protocol was seamlessly integrated into the usual training which shows promise for sprint monitoring in the field with this technology.

Keywords: automated, biomechanics, team-sports, sprint

Procedia PDF Downloads 94
122 Estimated Heat Production, Blood Parameters and Mitochondrial DNA Copy Number of Nellore Bulls with High and Low Residual Feed Intake

Authors: Welder A. Baldassini, Jon J. Ramsey, Marcos R. Chiaratti, Amália S. Chaves, Renata H. Branco, Sarah F. M. Bonilha, Dante P. D. Lanna

Abstract:

With increased production costs there is a need for animals that are more efficient in terms of meat production. In this context, the role of mitochondrial DNA (mtDNA) on physiological processes in liver, muscle and adipose tissues may account for inter-animal variation in energy expenditures and heat production. The purpose this study was to investigate if the amounts of mtDNA in liver, muscle and adipose tissue (subcutaneous and visceral depots) of Nellore bulls are associated with residual feed intake (RFI) and estimated heat production (EHP). Eighteen animals were individually fed in a feedlot for 90 days. RFI values were obtained by regression of dry matter intake (DMI) in relation to average daily gain (ADG) and mid-test metabolic body weight (BW). The animals were classified into low (more efficient) and high (less efficient) RFI groups. The bulls were then randomly distributed in individual pens where they were given excess feed twice daily to result in 5 to 10% orts for 90 d with diet containing 15% crude protein and 2.7 Mcal ME/kg DM. The heart rate (HR) of bulls was monitored for 4 consecutive days and used for calculation of EHP. Electrodes were fitted to bulls with stretch belts (POLAR RS400; Kempele, Finland). To calculate oxygen pulse (O2P), oxygen consumption was obtained using a facemask connected to the gas analyzer (EXHALYZER, ECOMedics, Zurich, Switzerland) and HR were simultaneously measured for 15 minutes period. Daily oxygen (O2) consumption was calculated by multiplying the volume of O2 per beat by total daily beats. EHP was calculated multiplying O2P by the average HR obtained during the 4 days, assuming 4.89 kcal/L of O2 to measure daily EHP that was expressed in kilocalories/day/kilogram metabolic BW (kcal/day/kg BW0.75). Blood samples were collected between days 45 and 90th after the beginning of the trial period in order to measure the concentration of hemoglobin and hematocrit. The bulls were slaughtered in an experimental slaughter house in accordance with current guidelines. Immediately after slaughter, a section of liver, a portion of longissimus thoracis (LT) muscle, plus a portion of subcutaneous fat (surrounding LT muscle) and portions of visceral fat (kidney, pelvis and inguinal fat) were collected. Samples of liver, muscle and adipose tissues were used to quantify mtDNA copy number per cell. The number of mtDNA copies was determined by normalization of mtDNA amount against a single copy nuclear gene (B2M). Mean of EHP, hemoglobin and hematocrit of high and low RFI bulls were compared using two-sample t-tests. Additionally, the one-way ANOVA was used to compare mtDNA quantification considering the mains effects of RFI groups. We found lower EHP (83.047 vs. 97.590 kcal/day/kgBW0.75; P < 0.10), hemoglobin concentration (13.533 vs. 15.108 g/dL; P < 0.10) and hematocrit percentage (39.3 vs. 43.6 %; P < 0.05) in low compared to high RFI bulls, respectively, which may be useful traits to identify efficient animals. However, no differences were observed between the mtDNA content in liver, muscle and adipose tissue of Nellore bulls with high and low RFI.

Keywords: bioenergetics, Bos indicus, feed efficiency, mitochondria

Procedia PDF Downloads 220
121 An Engineer-Oriented Life Cycle Assessment Tool for Building Carbon Footprint: The Building Carbon Footprint Evaluation System in Taiwan

Authors: Hsien-Te Lin

Abstract:

The purpose of this paper is to introduce the BCFES (building carbon footprint evaluation system), which is a LCA (life cycle assessment) tool developed by the Low Carbon Building Alliance (LCBA) in Taiwan. A qualified BCFES for the building industry should fulfill the function of evaluating carbon footprint throughout all stages in the life cycle of building projects, including the production, transportation and manufacturing of materials, construction, daily energy usage, renovation and demolition. However, many existing BCFESs are too complicated and not very designer-friendly, creating obstacles in the implementation of carbon reduction policies. One of the greatest obstacle is the misapplication of the carbon footprint inventory standards of PAS2050 or ISO14067, which are designed for mass-produced goods rather than building projects. When these product-oriented rules are applied to building projects, one must compute a tremendous amount of data for raw materials and the transportation of construction equipment throughout the construction period based on purchasing lists and construction logs. This verification method is very cumbersome by nature and unhelpful to the promotion of low carbon design. With a view to provide an engineer-oriented BCFE with pre-diagnosis functions, a component input/output (I/O) database system and a scenario simulation method for building energy are proposed herein. Most existing BCFESs base their calculations on a product-oriented carbon database for raw materials like cement, steel, glass, and wood. However, data on raw materials is meaningless for the purpose of encouraging carbon reduction design without a feedback mechanism, because an engineering project is not designed based on raw materials but rather on building components, such as flooring, walls, roofs, ceilings, roads or cabinets. The LCBA Database has been composited from existing carbon footprint databases for raw materials and architectural graphic standards. Project designers can now use the LCBA Database to conduct low carbon design in a much more simple and efficient way. Daily energy usage throughout a building's life cycle, including air conditioning, lighting, and electric equipment, is very difficult for the building designer to predict. A good BCFES should provide a simplified and designer-friendly method to overcome this obstacle in predicting energy consumption. In this paper, the author has developed a simplified tool, the dynamic Energy Use Intensity (EUI) method, to accurately predict energy usage with simple multiplications and additions using EUI data and the designed efficiency levels for the building envelope, AC, lighting and electrical equipment. Remarkably simple to use, it can help designers pre-diagnose hotspots in building carbon footprint and further enhance low carbon designs. The BCFES-LCBA offers the advantages of an engineer-friendly component I/O database, simplified energy prediction methods, pre-diagnosis of carbon hotspots and sensitivity to good low carbon designs, making it an increasingly popular carbon management tool in Taiwan. To date, about thirty projects have been awarded BCFES-LCBA certification and the assessment has become mandatory in some cities.

Keywords: building carbon footprint, life cycle assessment, energy use intensity, building energy

Procedia PDF Downloads 119
120 Electrical Transport through a Large-Area Self-Assembled Monolayer of Molecules Coupled with Graphene for Scalable Electronic Applications

Authors: Chunyang Miao, Bingxin Li, Shanglong Ning, Christopher J. B. Ford

Abstract:

While it is challenging to fabricate electronic devices close to atomic dimensions in conventional top-down lithography, molecular electronics is promising to help maintain the exponential increase in component densities via using molecular building blocks to fabricate electronic components from the bottom up. It offers smaller, faster, and more energy-efficient electronic and photonic systems. A self-assembled monolayer (SAM) of molecules is a layer of molecules that self-assembles on a substrate. They are mechanically flexible, optically transparent, low-cost, and easy to fabricate. A large-area multi-layer structure has been designed and investigated by the team, where a SAM of designed molecules is sandwiched between graphene and gold electrodes. Each molecule can act as a quantum dot, with all molecules conducting in parallel. When a source-drain bias is applied, significant current flows only if a molecular orbital (HOMO or LUMO) lies within the source-drain energy window. If electrons tunnel sequentially on and off the molecule, the charge on the molecule is well-defined and the finite charging energy causes Coulomb blockade of transport until the molecular orbital comes within the energy window. This produces ‘Coulomb diamonds’ in the conductance vs source-drain and gate voltages. For different tunnel barriers at either end of the molecule, it is harder for electrons to tunnel out of the dot than in (or vice versa), resulting in the accumulation of two or more charges and a ‘Coulomb staircase’ in the current vs voltage. This nanostructure exhibits highly reproducible Coulomb-staircase patterns, together with additional oscillations, which are believed to be attributed to molecular vibrations. Molecules are more isolated than semiconductor dots, and so have a discrete phonon spectrum. When tunnelling into or out of a molecule, one or more vibronic states can be excited in the molecule, providing additional transport channels and resulting in additional peaks in the conductance. For useful molecular electronic devices, achieving the optimum orbital alignment of molecules to the Fermi energy in the leads is essential. To explore it, a drop of ionic liquid is employed on top of the graphene to establish an electric field at the graphene, which screens poorly, gating the molecules underneath. Results for various molecules with different alignments of Fermi energy to HOMO have shown highly reproducible Coulomb-diamond patterns, which agree reasonably with DFT calculations. In summary, this large-area SAM molecular junction is a promising candidate for future electronic circuits. (1) The small size (1-10nm) of the molecules and good flexibility of the SAM lead to the scalable assembly of ultra-high densities of functional molecules, with advantages in cost, efficiency, and power dissipation. (2) The contacting technique using graphene enables mass fabrication. (3) Its well-observed Coulomb blockade behaviour, narrow molecular resonances, and well-resolved vibronic states offer good tuneability for various functionalities, such as switches, thermoelectric generators, and memristors, etc.

Keywords: molecular electronics, Coulomb blokade, electron-phonon coupling, self-assembled monolayer

Procedia PDF Downloads 33
119 Thinking Lean in ICU: A Time Motion Study Quantifying ICU Nurses’ Multitasking Time Allocation

Authors: Fatma Refaat Ahmed, PhD, RN. Assistant Professor, Department of Nursing, College of Health Sciences, University of Sharjah, UAE. ([email protected]). Sally Mohamed Farghaly, Nursing Administration Department, Faculty of Nursing, Alexandria University, Alexandria, Egypt. ([email protected])

Abstract:

Context: Intensive care unit (ICU) nurses often face pressure and constraints in their work, leading to the rationing of care when demands exceed available time and resources. Observations suggest that ICU nurses are frequently distracted from their core nursing roles by non-core tasks. This study aims to provide evidence on ICU nurses' multitasking activities and explore the association between nurses' personal and clinical characteristics and their time allocation. Research Aim: The aim of this study is to quantify the time spent by ICU nurses on multitasking activities and investigate the relationship between their personal and clinical characteristics and time allocation. Methodology: A self-observation form utilizing the "Diary" recording method was used to record the number of tasks performed by ICU nurses and the time allocated to each task category. Nurses also reported on the distractions encountered during their nursing activities. A convenience sample of 60 ICU nurses participated in the study, with each nurse observed for one nursing shift (6 hours), amounting to a total of 360 hours. The study was conducted in two ICUs within a university teaching hospital in Alexandria, Egypt. Findings: The results showed that ICU nurses completed 2,730 direct patient-related tasks and 1,037 indirect tasks during the 360-hour observation period. Nurses spent an average of 33.65 minutes on ventilator care-related tasks, 14.88 minutes on tube care-related tasks, and 10.77 minutes on inpatient care-related tasks. Additionally, nurses spent an average of 17.70 minutes on indirect care tasks per hour. The study identified correlations between nursing time and nurses' personal and clinical characteristics. Theoretical Importance: This study contributes to the existing research on ICU nurses' multitasking activities and their relationship with personal and clinical characteristics. The findings shed light on the significant time spent by ICU nurses on direct care for mechanically ventilated patients and the distractions that require attention from ICU managers. Data Collection: Data were collected using self-observation forms completed by participating ICU nurses. The forms recorded the number of tasks performed, the time allocated to each task category, and any distractions encountered during nursing activities. Analysis Procedures: The collected data were analyzed to quantify the time spent on different tasks by ICU nurses. Correlations were also examined between nursing time and nurses' personal and clinical characteristics. Question Addressed: This study addressed the question of how ICU nurses allocate their time across multitasking activities and whether there is an association between nurses' personal and clinical characteristics and time allocation. Conclusion: The findings of this study emphasize the need for a lean evaluation of ICU nurses' activities to identify and address potential gaps in patient care and distractions. Implementing lean techniques can improve efficiency, safety, clinical outcomes, and satisfaction for both patients and nurses, ultimately enhancing the quality of care and organizational performance in the ICU setting.

Keywords: motion study, ICU nurse, lean, nursing time, multitasking activities

Procedia PDF Downloads 43
118 An Empirical Study of Determinants Influencing Telemedicine Services Acceptance by Healthcare Professionals: Case of Selected Hospitals in Ghana

Authors: Jonathan Kissi, Baozhen Dai, Wisdom W. K. Pomegbe, Abdul-Basit Kassim

Abstract:

Protecting patient’s digital information is a growing concern for healthcare institutions as people nowadays perpetually live their lives through telemedicine services. These telemedicine services have been confronted with several determinants that hinder their successful implementations, especially in developing countries. Identifying such determinants that influence the acceptance of telemedicine services is also a problem for healthcare professionals. Despite the tremendous increase in telemedicine services, its adoption, and use has been quite slow in some healthcare settings. Generally, it is accepted in today’s globalizing world that the success of telemedicine services relies on users’ satisfaction. Satisfying health professionals and patients are one of the crucial objectives of telemedicine success. This study seeks to investigate the determinants that influence health professionals’ intention to utilize telemedicine services in clinical activities in a sub-Saharan African country in West Africa (Ghana). A hybridized model comprising of health adoption models, including technology acceptance theory, diffusion of innovation theory, and protection of motivation theory, were used to investigate these quandaries. The study was carried out in four government health institutions that apply and regulate telemedicine services in their clinical activities. A structured questionnaire was developed and used for data collection. Purposive and convenience sampling methods were used in the selection of healthcare professionals from different medical fields for the study. The collected data were analyzed based on structural equation modeling (SEM) approach. All selected constructs showed a significant relationship with health professional’s behavioral intention in the direction expected from prior literature including perceived usefulness, perceived ease of use, management strategies, financial sustainability, communication channels, patients security threat, patients privacy risk, self efficacy, actual service use, user satisfaction, and telemedicine services systems securities threat. Surprisingly, user characteristics and response efficacy of health professionals were not significant in the hybridized model. The findings and insights from this research show that health professionals are pragmatic when making choices for technology applications and also their willingness to use telemedicine services. They are, however, anxious about its threats and coping appraisals. The identified significant constructs in the study may help to increase efficiency, quality of services, quality patient care delivery, and satisfactory user satisfaction among healthcare professionals. The implantation and effective utilization of telemedicine services in the selected hospitals will aid as a strategy to eradicate hardships in healthcare services delivery. The service will help attain universal health access coverage to all populace. This study contributes to empirical knowledge by identifying the vital factors influencing health professionals’ behavioral intentions to adopt telemedicine services. The study will also help stakeholders of healthcare to formulate better policies towards telemedicine service usage.

Keywords: telemedicine service, perceived usefulness, perceived ease of use, management strategies, security threats

Procedia PDF Downloads 112
117 Improving Contributions to the Strengthening of the Legislation Regarding Road Infrastructure Safety Management in Romania, Case Study: Comparison Between the Initial Regulations and the Clarity of the Current Regulations - Trends Regarding the Efficiency

Authors: Corneliu-Ioan Dimitriu, Gheorghe Frățilă

Abstract:

Romania and Bulgaria have high rates of road deaths per million inhabitants. Directive (EU) 2019/1936, known as the RISM Directive, has been transposed into national law by each Member State. The research focuses on the amendments made to Romanian legislation through Government Ordinance no. 3/2022, which aims to improve road safety management on infrastructure. The aim of the research is two-fold: to sensitize the Romanian Government and decision-making entities to develop an integrated and competitive management system and to establish a safe and proactive mobility system that ensures efficient and safe roads. The research includes a critical analysis of European and Romanian legislation, as well as subsequent normative acts related to road infrastructure safety management. Public data from European Union and national authorities, as well as data from the Romanian Road Authority-ARR and Traffic Police database, are utilized. The research methodology involves comparative analysis, criterion analysis, SWOT analysis, and the use of GANTT and WBS diagrams. The Excel tool is employed to process the road accident databases of Romania and Bulgaria. Collaboration with Bulgarian specialists is established to identify common road infrastructure safety issues. The research concludes that the legislative changes have resulted in a relaxation of road safety management in Romania, leading to decreased control over certain management procedures. The amendments to primary and secondary legislation do not meet the current safety requirements for road infrastructure. The research highlights the need for legislative changes and strengthened administrative capacity to enhance road safety. Regional cooperation and the exchange of best practices are emphasized for effective road infrastructure safety management. The research contributes to the theoretical understanding of road infrastructure safety management by analyzing legislative changes and their impact on safety measures. It highlights the importance of an integrated and proactive approach in reducing road accidents and achieving the "zero deaths" objective set by the European Union. Data collection involves accessing public data from relevant authorities and using information from the Romanian Road Authority-ARR and Traffic Police database. Analysis procedures include critical analysis of legislation, comparative analysis of transpositions, criterion analysis, and the use of various diagrams and tools such as SWOT, GANTT, WBS, and Excel. The research addresses the effectiveness of legislative changes in road infrastructure safety management in Romania and the impact on control over management procedures. It also explores the need for strengthened administrative capacity and regional cooperation in addressing road safety issues. The research concludes that the legislative changes made in Romania have not strengthened road safety management and emphasize the need for immediate action, legislative amendments, and enhanced administrative capacity. Collaboration with Bulgarian specialists and the exchange of best practices are recommended for effective road infrastructure safety management. The research contributes to the theoretical understanding of road safety management and provides valuable insights for policymakers and decision-makers in Romania.

Keywords: management, road infrastructure safety, legislation, amendments, collaboration

Procedia PDF Downloads 49
116 Rigorous Photogrammetric Push-Broom Sensor Modeling for Lunar and Planetary Image Processing

Authors: Ahmed Elaksher, Islam Omar

Abstract:

Accurate geometric relation algorithms are imperative in Earth and planetary satellite and aerial image processing, particularly for high-resolution images that are used for topographic mapping. Most of these satellites carry push-broom sensors. These sensors are optical scanners equipped with linear arrays of CCDs. These sensors have been deployed on most EOSs. In addition, the LROC is equipped with two push NACs that provide 0.5 meter-scale panchromatic images over a 5 km swath of the Moon. The HiRISE carried by the MRO and the HRSC carried by MEX are examples of push-broom sensor that produces images of the surface of Mars. Sensor models developed in photogrammetry relate image space coordinates in two or more images with the 3D coordinates of ground features. Rigorous sensor models use the actual interior orientation parameters and exterior orientation parameters of the camera, unlike approximate models. In this research, we generate a generic push-broom sensor model to process imageries acquired through linear array cameras and investigate its performance, advantages, and disadvantages in generating topographic models for the Earth, Mars, and the Moon. We also compare and contrast the utilization, effectiveness, and applicability of available photogrammetric techniques and softcopies with the developed model. We start by defining an image reference coordinate system to unify image coordinates from all three arrays. The transformation from an image coordinate system to a reference coordinate system involves a translation and three rotations. For any image point within the linear array, its image reference coordinates, the coordinates of the exposure center of the array in the ground coordinate system at the imaging epoch (t), and the corresponding ground point coordinates are related through the collinearity condition that states that all these three points must be on the same line. The rotation angles for each CCD array at the epoch t are defined and included in the transformation model. The exterior orientation parameters of an image line, i.e., coordinates of exposure station and rotation angles, are computed by a polynomial interpolation function in time (t). The parameter (t) is the time at a certain epoch from a certain orbit position. Depending on the types of observations, coordinates, and parameters may be treated as knowns or unknowns differently in various situations. The unknown coefficients are determined in a bundle adjustment. The orientation process starts by extracting the sensor position and, orientation and raw images from the PDS. The parameters of each image line are then estimated and imported into the push-broom sensor model. We also define tie points between image pairs to aid the bundle adjustment model, determine the refined camera parameters, and generate highly accurate topographic maps. The model was tested on different satellite images such as IKONOS, QuickBird, and WorldView-2, HiRISE. It was found that the accuracy of our model is comparable to those of commercial and open-source software, the computational efficiency of the developed model is high, the model could be used in different environments with various sensors, and the implementation process is much more cost-and effort-consuming.

Keywords: photogrammetry, push-broom sensors, IKONOS, HiRISE, collinearity condition

Procedia PDF Downloads 40
115 Predictive Maintenance: Machine Condition Real-Time Monitoring and Failure Prediction

Authors: Yan Zhang

Abstract:

Predictive maintenance is a technique to predict when an in-service machine will fail so that maintenance can be planned in advance. Analytics-driven predictive maintenance is gaining increasing attention in many industries such as manufacturing, utilities, aerospace, etc., along with the emerging demand of Internet of Things (IoT) applications and the maturity of technologies that support Big Data storage and processing. This study aims to build an end-to-end analytics solution that includes both real-time machine condition monitoring and machine learning based predictive analytics capabilities. The goal is to showcase a general predictive maintenance solution architecture, which suggests how the data generated from field machines can be collected, transmitted, stored, and analyzed. We use a publicly available aircraft engine run-to-failure dataset to illustrate the streaming analytics component and the batch failure prediction component. We outline the contributions of this study from four aspects. First, we compare the predictive maintenance problems from the view of the traditional reliability centered maintenance field, and from the view of the IoT applications. When evolving to the IoT era, predictive maintenance has shifted its focus from ensuring reliable machine operations to improve production/maintenance efficiency via any maintenance related tasks. It covers a variety of topics, including but not limited to: failure prediction, fault forecasting, failure detection and diagnosis, and recommendation of maintenance actions after failure. Second, we review the state-of-art technologies that enable a machine/device to transmit data all the way through the Cloud for storage and advanced analytics. These technologies vary drastically mainly based on the power source and functionality of the devices. For example, a consumer machine such as an elevator uses completely different data transmission protocols comparing to the sensor units in an environmental sensor network. The former may transfer data into the Cloud via WiFi directly. The latter usually uses radio communication inherent the network, and the data is stored in a staging data node before it can be transmitted into the Cloud when necessary. Third, we illustrate show to formulate a machine learning problem to predict machine fault/failures. By showing a step-by-step process of data labeling, feature engineering, model construction and evaluation, we share following experiences: (1) what are the specific data quality issues that have crucial impact on predictive maintenance use cases; (2) how to train and evaluate a model when training data contains inter-dependent records. Four, we review the tools available to build such a data pipeline that digests the data and produce insights. We show the tools we use including data injection, streaming data processing, machine learning model training, and the tool that coordinates/schedules different jobs. In addition, we show the visualization tool that creates rich data visualizations for both real-time insights and prediction results. To conclude, there are two key takeaways from this study. (1) It summarizes the landscape and challenges of predictive maintenance applications. (2) It takes an example in aerospace with publicly available data to illustrate each component in the proposed data pipeline and showcases how the solution can be deployed as a live demo.

Keywords: Internet of Things, machine learning, predictive maintenance, streaming data

Procedia PDF Downloads 359
114 Thai Cane Farmers' Responses to Sugar Policy Reforms: An Intentions Survey

Authors: Savita Tangwongkit, Chittur S Srinivasan, Philip J. Jones

Abstract:

Thailand has become the world’s fourth largest sugarcane producer and second largest sugar exporter. While there have been a number of drivers of this growth, the primary driver has been wide-ranging government support measures. Recently, the Thai government has emphasized the need for policy reform as part of a broader industry restructuring to bring the sector up-to-date with the current and future developments in the international sugar market. Because of the sectors historical dependence on government support, any such reform is likely to have a very significant impact on the fortunes of Thai cane farmers. This study explores the impact of three policy scenarios, representing a spectrum of policy approaches, on Thai cane producers. These reform scenarios were designed in consultation with policy makers and academics working in the cane sector. Scenario 1 captures the current ‘government proposal’ for policy reform. This scenario removes certain domestic production subsidies but seeks to maintain as much support as is permissible under current WTO rules. The second scenario, ‘protectionism’, maintains the current internal market producer supports, but otherwise complies with international (WTO) commitments. Third, the ‘libertarian scenario’ removes all production support and market interventions, trade and domestic consumption distortions. Most important driver of producer behaviour in all of the scenarios is the producer price of cane. Cane price is obviously highest under the protectionism scenario, followed by government proposal and libertarian scenarios, respectively. Likely producer responses to these three policy scenarios was determined by means of a large-scale survey of cane farmers. The sample was stratified by size group and quotas filled by size group and region. One scenario was presented to each of three sub-samples, consisting of approx.150 farmers. Total sample size was 462 farms. Data was collected by face-to-face interview between June and August 2019. There was a marked difference in farmer response to the three scenarios. Farmers in the ‘Protectionism’ scenario, which maintains the highest cane price and those who farm larger cane areas are more likely to continue cane farming. The libertarian scenario is likely to result in the greatest losses in terms of cane production volume broadly double that of the ‘protectionism’ scenario, primarily due to farmers quitting cane production altogether. Over half of loss cane production volume comes from medium-size farm, i.e. the largest and smallest producers are the most resilient. This result is likely due to the fact that the medium size group are large enough to require hired labour but lack the economies of scale of the largest farms. Over all size groups the farms most heavily specialized in cane production, i.e. those devoting 26-50% of arable land to cane, are also the most vulnerable, with 70% of all farmers quitting cane production coming from this group. This investigation suggests that cane price is the most significant determinant of farmer behaviour. Also, that where scenarios drive significantly lower cane price, policy makers should target support towards mid-sized producers, with policies that encourage efficiency gains and diversification into alternative agricultural crops.

Keywords: farmer intentions, farm survey, policy reform, Thai cane production

Procedia PDF Downloads 91
113 DSF Elements in High-Rise Timber Buildings

Authors: Miroslav Premrov, Andrej Štrukelj, Erika Kozem Šilih

Abstract:

The utilization of prefabricated timber-wall elements with double glazing, called as double-skin façade element (DSF), represents an innovative structural approach in the context of new high-rise timber construction, simultaneously combining sustainable solutions with improved energy efficiency and living quality. In addition to the minimum energy needs of buildings, the design of modern buildings is also increasingly focused on the optimal indoor comfort, in particular on sufficient natural light indoors. An optimally energy-designed building with an optimal layout of glazed areas around the building envelope represents a great potential in modern timber construction. Usually, all these transparent façade elements, because of energy benefits, are primary asymmetrical oriented and if they are considered as non-resisting against a horizontal load impact, a strong torsion effects in the building can appear. The problem of structural stability against a strong horizontal load impact of such modern timber buildings especially increase in a case of high-rise structures where additional bracing elements have to be used. In such a case, special diagonal bracing systems or other bracing solutions with common timber wall elements have to be incorporated into the structure of the building to satisfy all prescribed resisting requirements given by the standards. However, all such structural solutions are usually not environmentally friendly and also not contribute to an improved living comfort, or they are not accepted by the architects at all. Consequently, it is a special need to develop innovative load-bearing timber-glass wall elements which are in the same time environmentally friendly, can increase internal comfort in the building, but are also load-bearing. The new developed load-bearing DSF elements can be a good answer on all these requirements. Timber-glass façade elements DSF wall elements consist of two transparent layers, thermal-insulated three-layered glass pane on the internal side and an additional single-layered glass pane on the external side of the wall. The both panes are separated by an air channel which can be of any dimensions and can have a significant influence on the thermal insulation or acoustic response of such a wall element. Most already published studies on DSF elements primarily deal only with energy and LCA solutions and do not address any structural problems. In previous studies according to experimental analysis and mathematical modeling it was already presented a possible benefit of such load-bearing DSF elements, especially comparing with previously developed load-bearing single-skin timber wall elements, but they were not applicate yet in any high-rise timber structure. Therefore, in the presented study specially selected 10-storey prefabricated timber building constructed in a cross-laminated timber (CLT) structural wall system is analyzed using the developed DSF elements in a sense to increase a structural lateral stability of the whole building. The results evidently highlight the importance the load-bearing DSF elements, as their incorporation can have a significant impact on the overall behavior of the structure through their influence on the stiffness properties. Taking these considerations into account is crucial to ensure compliance with seismic design codes and to improve the structural resilience of high-rise timber buildings.

Keywords: glass, high-rise buildings, numerical analysis, timber

Procedia PDF Downloads 18
112 Sorbitol Galactoside Synthesis Using β-Galactosidase Immobilized on Functionalized Silica Nanoparticles

Authors: Milica Carević, Katarina Banjanac, Marija ĆOrović, Ana Milivojević, Nevena Prlainović, Aleksandar Marinković, Dejan Bezbradica

Abstract:

Nowadays, considering the growing awareness of functional food beneficial effects on human health, due attention is dedicated to the research in the field of obtaining new prominent products exhibiting improved physiological and physicochemical characteristics. Therefore, different approaches to valuable bioactive compounds synthesis have been proposed. β-Galactosidase, for example, although mainly utilized as hydrolytic enzyme, proved to be a promising tool for these purposes. Namely, under the particular conditions, such as high lactose concentration, elevated temperatures and low water activities, reaction of galactose moiety transfer to free hydroxyl group of the alternative acceptor (e.g. different sugars, alcohols or aromatic compounds) can generate a wide range of potentially interesting products. Up to now, galacto-oligosaccharides and lactulose have attracted the most attention due to their inherent prebiotic properties. The goal of this study was to obtain a novel product sorbitol galactoside, using the similar reaction mechanism, namely transgalactosylation reaction catalyzed by β-galactosidase from Aspergillus oryzae. By using sugar alcohol (sorbitol) as alternative acceptor, a diverse mixture of potential prebiotics is produced, enabling its more favorable functional features. Nevertheless, an introduction of alternative acceptor into the reaction mixture contributed to the complexity of reaction scheme, since several potential reaction pathways were introduced. Therefore, the thorough optimization using response surface method (RSM), in order to get an insight into different parameter (lactose concentration, sorbitol to lactose molar ratio, enzyme concentration, NaCl concentration and reaction time) influences, as well as their mutual interactions on product yield and productivity, was performed. In view of product yield maximization, the obtained model predicted optimal lactose concentration 500 mM, the molar ratio of sobitol to lactose 9, enzyme concentration 0.76 mg/ml, concentration of NaCl 0.8M, and the reaction time 7h. From the aspect of productivity, the optimum substrate molar ratio was found to be 1, while the values for other factors coincide. In order to additionally, improve enzyme efficiency and enable its reuse and potential continual application, immobilization of β-galactosidase onto tailored silica nanoparticles was performed. These non-porous fumed silica nanoparticles (FNS)were chosen on the basis of their biocompatibility and non-toxicity, as well as their advantageous mechanical and hydrodinamical properties. However, in order to achieve better compatibility between enzymes and the carrier, modifications of the silica surface using amino functional organosilane (3-aminopropyltrimethoxysilane, APTMS) were made. Obtained support with amino functional groups (AFNS) enabled high enzyme loadings and, more importantly, extremely high expressed activities, approximately 230 mg proteins/g and 2100 IU/g, respectively. Moreover, this immobilized preparation showed high affinity towards sorbitol galactoside synthesis. Therefore, the findings of this study could provided a valuable contribution to the efficient production of physiologically active galactosides in immobilized enzyme reactors.

Keywords: β-galactosidase, immobilization, silica nanoparticles, transgalactosylation

Procedia PDF Downloads 269
111 Regulatory Governance as a De-Parliamentarization Process: A Contextual Approach to Global Constitutionalism and Its Effects on New Arab Legislatures

Authors: Abderrahim El Maslouhi

Abstract:

The paper aims to analyze an often-overlooked dimension of global constitutionalism, which is the rise of the regulatory state and its impact on parliamentary dynamics in transition regimes. In contrast to Majone’s technocratic vision of convergence towards a single regulatory system based on competence and efficiency, national transpositions of regulatory governance and, in general, the relationship to global standards primarily depend upon a number of distinctive parameters. These include policy formation process, speed of change, depth of parliamentary tradition and greater or lesser vulnerability to the normative conditionality of donors, interstate groupings and transnational regulatory bodies. Based on a comparison between three post-Arab Spring countries -Morocco, Tunisia, and Egypt, whose constitutions have undergone substantive review in the period 2011-2014- and some European Union state members, the paper intends, first, to assess the degree of permeability to global constitutionalism in different contexts. A noteworthy divide emerges from this comparison. Whereas European constitutions still seem impervious to the lexicon of global constitutionalism, the influence of the latter is obvious in the recently drafted constitutions in Morocco, Tunisia, and Egypt. This is evidenced by their reference to notions such as ‘governance’, ‘regulators’, ‘accountability’, ‘transparency’, ‘civil society’, and ‘participatory democracy’. Second, the study will provide a contextual account of internal and external rationales underlying the constitutionalization of regulatory governance in the cases examined. Unlike European constitutionalism, where parliamentarism and the tradition of representative government function as a structural mechanism that moderates the de-parliamentarization effect induced by global constitutionalism, Arab constitutional transitions have led to a paradoxical situation; contrary to the public demands for further parliamentarization, the 2011 constitution-makers have opted for a de-parliamentarization pattern. This is particularly reflected in the procedures established by constitutions and regular legislation, to handle the interaction between lawmakers and regulatory bodies. Once the ‘constitutional’ and ‘independent’ nature of these agencies is formally endorsed, the birth of these ‘fourth power’ entities, which are neither elected nor directly responsible to elected officials, will raise the question of their accountability. Third, the paper shows that, even in the three selected countries, the de-parliamentarization intensity is significantly variable. By contrast to the radical stance of the Moroccan and Egyptian constituents who have shown greater concern to shield regulatory bodies from legislatures’ scrutiny, the Tunisian case indicates a certain tendency to provide lawmakers with some essential control instruments (e. g. exclusive appointment power, adversarial discussion of regulators’ annual reports, dismissal power, later held unconstitutional). In sum, the comparison reveals that the transposition of the regulatory state model and, more generally, sensitivity to the legal implications of global conditionality essentially relies on the evolution of real-world power relations at both national and international levels.

Keywords: Arab legislatures, de-parliamentarization, global constitutionalism, normative conditionality, regulatory state

Procedia PDF Downloads 113
110 Academic Major, Gender, and Perceived Helpfulness Predict Help-Seeking Stigma

Authors: Tran Tran

Abstract:

Mental health issues are prevalent among Vietnamese undergraduate students, and they are greatly exacerbated during the COVID-19 pandemic for this population. While there is empirical evidence supporting the effectiveness and efficiency of therapy on mental health issues among college students, the rates of Vietnamese college students seeking professional mental health services were alarmingly low. Multiple factors can prevent those in need from finding support. The Internalized Stigma Model posits that public stigma directly affects intentions to seek psychological help via self-stigma and attitudes toward seeking help. However, little research has focused on what factors can predict public stigma toward seeking professional psychological support, especially among this population. A potential predictor is academic majors since academic majors can influence undergraduate students' perceptions, attitudes, and intentions. A study suggested that students who have completed two or more psychology courses have a more positive attitude toward seeking care for mental health issues and reduced stigma, which might be attributed to increased mental health literacy. In addition, research has shown that women are more likely to utilize mental health services and have lower stigma than men. Finally, studies have also suggested that experience of mental health services can increase endorsement of perceived need and lower stigma. Thus, it is expected that perceived helpfulness from past service uses can reduce stigma. This study aims to address this gap in the literature and investigate which factors can predict public stigma, specifically academic major, gender, and perceived helpfulness, potentially suggesting an avenue of prevention and ultimately improving the well-being of Vietnamese college students. The sample includes 408 undergraduate students (Mage = 20.44; 80.88% female) Hanoi city, Vietnam. Participants completed a pen-and-paper questionnaire. Students completed the Stigma Scale for Receiving Psychological Help, which yielded a mean public stigma score. Participants also completed a measurement assessing their perceived helpfulness of their university’s counseling center, which included eight subscales: future self-development, learning issues, career counseling, medical and health issues, mental health issues, conflicts between teachers and students, conflicts between parents and students, and interpersonal relationships. Items were summed to create a composite perceived helpfulness score. Finally, participants provided demographic information. This included gender, which was dichotomized between female and other. Additionally, it included academic major, which was also similarly dichotomized between psychology and other (e.g., natural science, social science, and pedagogy & social work). Linear relationships between public stigma and gender, academic major, and perceived helpfulness were analyzed individually with a regression model. Findings suggested that academic major, gender, and perceived counseling center's helpfulness predicted stigma against seeking professional psychological help. Specifically, being a psychology major predicted lower levels of public stigma (β = -.25, p < .001). Additionally, gender female predicted lower levels of public stigma (β = -.11, p < .05). Lastly, higher levels of perceived helpfulness of the counseling center also predicted lower levels of public stigma (β = -.16, p < .01). The study’s results offer potential intervention avenues to help reduce stigma and increase well-being for Vietnamese college students.

Keywords: stigma, vietnamese college students, counseling services, help-seeking

Procedia PDF Downloads 63
109 Improved Morphology in Sequential Deposition of the Inverted Type Planar Heterojunction Solar Cells Using Cheap Additive (DI-H₂O)

Authors: Asmat Nawaz, Ceylan Zafer, Ali K. Erdinc, Kaiying Wang, M. Nadeem Akram

Abstract:

Hybrid halide Perovskites with the general formula ABX₃, where X = Cl, Br or I, are considered as an ideal candidates for the preparation of photovoltaic devices. The most commonly and successfully used hybrid halide perovskite for photovoltaic applications is CH₃NH₃PbI₃ and its analogue prepared from lead chloride, commonly symbolized as CH₃NH₃PbI₃_ₓClₓ. Some researcher groups are using lead free (Sn replaces Pb) and mixed halide perovskites for the fabrication of the devices. Both mesoporous and planar structures have been developed. By Comparing mesoporous structure in which the perovskite materials infiltrate into mesoporous metal oxide scaffold, the planar architecture is much simpler and easy for device fabrication. In a typical perovskite solar cell, a perovskite absorber layer is sandwiched between the hole and electron transport. Upon the irradiation, carriers are created in the absorber layer that can travel through hole and electron transport layers and the interface in between. We fabricated inverted planar heterojunction structure ITO/PEDOT/ Perovskite/PCBM/Al, based solar cell via two-step spin coating method. This is also called Sequential deposition method. A small amount of cheap additive H₂O was added into PbI₂/DMF to make a homogeneous solution. We prepared four different solution such as (W/O H₂O, 1% H₂O, 2% H₂O, 3% H₂O). After preparing, the whole night stirring at 60℃ is essential for the homogenous precursor solutions. We observed that the solution with 1% H₂O was much more homogenous at room temperature as compared to others. The solution with 3% H₂O was precipitated at once at room temperature. The four different films of PbI₂ were formed on PEDOT substrates by spin coating and after that immediately (before drying the PbI₂) the substrates were immersed in the methyl ammonium iodide solution (prepared in isopropanol) for the completion of the desired perovskite film. After getting desired films, rinse the substrates with isopropanol to remove the excess amount of methyl ammonium iodide and finally dried it on hot plate only for 1-2 minutes. In this study, we added H₂O in the PbI₂/DMF precursor solution. The concept of additive is widely used in the bulk- heterojunction solar cells to manipulate the surface morphology, leading to the enhancement of the photovoltaic performance. There are two most important parameters for the selection of additives. (a) Higher boiling point w.r.t host material (b) good interaction with the precursor materials. We observed that the morphology of the films was improved and we achieved a denser, uniform with less cavities and almost full surface coverage films but only using precursor solution having 1% H₂O. Therefore, we fabricated the complete perovskite solar cell by sequential deposition technique with precursor solution having 1% H₂O. We concluded that with the addition of additives in the precursor solutions one can easily be manipulate the morphology of the perovskite film. In the sequential deposition method, thickness of perovskite film is in µm and the charge diffusion length of PbI₂ is in nm. Therefore, by controlling the thickness using other deposition methods for the fabrication of solar cells, we can achieve the better efficiency.

Keywords: methylammonium lead iodide, perovskite solar cell, precursor composition, sequential deposition

Procedia PDF Downloads 217
108 Electrochemical Activity of NiCo-GDC Cermet Anode for Solid Oxide Fuel Cells Operated in Methane

Authors: Kamolvara Sirisuksakulchai, Soamwadee Chaianansutcharit, Kazunori Sato

Abstract:

Solid Oxide Fuel Cells (SOFCs) have been considered as one of the most efficient large unit power generators for household and industrial applications. The efficiency of an electronic cell depends mainly on the electrochemical reactions in the anode. The development of anode materials has been intensely studied to achieve higher kinetic rates of redox reactions and lower internal resistance. Recent studies have introduced an efficient cermet (ceramic-metallic) material for its ability in fuel oxidation and oxide conduction. This could expand the reactive site, also known as the triple-phase boundary (TPB), thus increasing the overall performance. In this study, a bimetallic catalyst Ni₀.₇₅Co₀.₂₅Oₓ was combined with Gd₀.₁Ce₀.₉O₁.₉₅ (GDC) to be used as a cermet anode (NiCo-GDC) for an anode-supported type SOFC. The synthesis of Ni₀.₇₅Co₀.₂₅Oₓ was carried out by ball milling NiO and Co3O4 powders in ethanol and calcined at 1000 °C. The Gd₀.₁Ce₀.₉O₁.₉₅ was prepared by a urea co-precipitation method. Precursors of Gd(NO₃)₃·6H₂O and Ce(NO₃)₃·6H₂O were dissolved in distilled water with the addition of urea and were heated subsequently. The heated mixture product was filtered and rinsed thoroughly, then dried and calcined at 800 °C and 1500 °C, respectively. The two powders were combined followed by pelletization and sintering at 1100 °C to form an anode support layer. The fabrications of an electrolyte layer and cathode layer were conducted. The electrochemical performance in H₂ was measured from 800 °C to 600 °C while for CH₄ was from 750 °C to 600 °C. The maximum power density at 750 °C in H₂ was 13% higher than in CH₄. The difference in performance was due to higher polarization resistances confirmed by the impedance spectra. According to the standard enthalpy, the dissociation energy of C-H bonds in CH₄ is slightly higher than the H-H bond H₂. The dissociation of CH₄ could be the cause of resistance within the anode material. The results from lower temperatures showed a descending trend of power density in relevance to the increased polarization resistance. This was due to lowering conductivity when the temperature decreases. The long-term stability was measured at 750 °C in CH₄ monitoring at 12-hour intervals. The maximum power density tends to increase gradually with time while the resistances were maintained. This suggests the enhanced stability from charge transfer activities in doped ceria due to the transition of Ce⁴⁺ ↔ Ce³⁺ at low oxygen partial pressure and high-temperature atmosphere. However, the power density started to drop after 60 h, and the cell potential also dropped from 0.3249 V to 0.2850 V. These phenomena was confirmed by a shifted impedance spectra indicating a higher ohmic resistance. The observation by FESEM and EDX-mapping suggests the degradation due to mass transport of ions in the electrolyte while the anode microstructure was still maintained. In summary, the electrochemical test and stability test for 60 h was achieved by NiCo-GDC cermet anode. Coke deposition was not detected after operation in CH₄, hence this confirms the superior properties of the bimetallic cermet anode over typical Ni-GDC.

Keywords: bimetallic catalyst, ceria-based SOFCs, methane oxidation, solid oxide fuel cell

Procedia PDF Downloads 127
107 Wheat Cluster Farming Approach: Challenges and Prospects for Smallholder Farmers in Ethiopia

Authors: Hanna Mamo Ergando

Abstract:

Climate change is already having a severe influence on agriculture, affecting crop yields, the nutritional content of main grains, and livestock productivity. Significant adaptation investments will be necessary to sustain existing yields and enhance production and food quality to fulfill demand. Climate-smart agriculture (CSA) provides numerous potentials in this regard, combining a focus on enhancing agricultural output and incomes while also strengthening resilience and responding to climate change. To improve agriculture production and productivity, the Ethiopian government has adopted and implemented a series of strategies, including the recent agricultural cluster farming that is practiced as an effort to change, improve, and transform subsistence farming to modern, productive, market-oriented, and climate-smart approach through farmers production cluster. Besides, greater attention and focus have been given to wheat production and productivity by the government, and wheat is the major crop grown in cluster farming. Therefore, the objective of this assessment was to examine various opportunities and challenges farmers face in a cluster farming system. A qualitative research approach was used to generate primary and secondary data. Respondents were chosen using the purposeful sampling technique. Accordingly, experts from the Federal Ministry of Agriculture, the Ethiopian Agricultural Transformation Institute, the Ethiopian Agricultural Research Institute, and the Ethiopian Environment Protection Authority were interviewed. The assessment result revealed that farming in clusters is an economically viable technique for sustaining small, resource-limited, and socially disadvantaged farmers' agricultural businesses. The method assists farmers in consolidating their products and delivering them in bulk to save on transportation costs while increasing income. Smallholders' negotiating power has improved as a result of cluster membership, as has knowledge and information spillover. The key challenges, on the other hand, were identified as a lack of timely provision of modern inputs, insufficient access to credit services, conflict of interest in crop selection, and a lack of output market for agro-processing firms. Furthermore, farmers in the cluster farming approach grow wheat year after year without crop rotation or diversification techniques. Mono-cropping has disadvantages because it raises the likelihood of disease and insect outbreaks. This practice may result in long-term consequences, including soil degradation, reduced biodiversity, and economic risk for farmers. Therefore, the government must devote more resources to addressing the issue of environmental sustainability. Farmers' access to complementary services that promote production and marketing efficiencies through infrastructure and institutional services has to be improved. In general, the assessment begins with some hint that leads to a deeper study into the efficiency of the strategy implementation, upholding existing policy, and scaling up good practices in a sustainable and environmentally viable manner.

Keywords: cluster farming, smallholder farmers, wheat, challenges, opportunities

Procedia PDF Downloads 147
106 Identification of Failures Occurring on a System on Chip Exposed to a Neutron Beam for Safety Applications

Authors: S. Thomet, S. De-Paoli, F. Ghaffari, J. M. Daveau, P. Roche, O. Romain

Abstract:

In this paper, we present a hardware module dedicated to understanding the fail reason of a System on Chip (SoC) exposed to a particle beam. Impact of Single-Event Effects (SEE) on processor-based SoCs is a concern that has increased in the past decade, particularly for terrestrial applications with automotive safety increasing requirements, as well as consumer and industrial domains. The SEE created by the impact of a particle on an SoC may have consequences that can end to instability or crashes. Specific hardening techniques for hardware and software have been developed to make such systems more reliable. SoC is then qualified using cosmic ray Accelerated Soft-Error Rate (ASER) to ensure the Soft-Error Rate (SER) remains in mission profiles. Understanding where errors are occurring is another challenge because of the complexity of operations performed in an SoC. Common techniques to monitor an SoC running under a beam are based on non-intrusive debug, consisting of recording the program counter and doing some consistency checking on the fly. To detect and understand SEE, we have developed a module embedded within the SoC that provide support for recording probes, hardware watchpoints, and a memory mapped register bank dedicated to software usage. To identify CPU failure modes and the most important resources to probe, we have carried out a fault injection campaign on the RTL model of the SoC. Probes are placed on generic CPU registers and bus accesses. They highlight the propagation of errors and allow identifying the failure modes. Typical resulting errors are bit-flips in resources creating bad addresses, illegal instructions, longer than expected loops, or incorrect bus accesses. Although our module is processor agnostic, it has been interfaced to a RISC-V by probing some of the processor registers. Probes are then recorded in a ring buffer. Associated hardware watchpoints are allowing to do some control, such as start or stop event recording or halt the processor. Finally, the module is also providing a bank of registers where the firmware running on the SoC can log information. Typical usage is for operating system context switch recording. The module is connected to a dedicated debug bus and is interfaced to a remote controller via a debugger link. Thus, a remote controller can interact with the monitoring module without any intrusiveness on the SoC. Moreover, in case of CPU unresponsiveness, or system-bus stall, the recorded information can still be recovered, providing the fail reason. A preliminary version of the module has been integrated into a test chip currently being manufactured at ST in 28-nm FDSOI technology. The module has been triplicated to provide reliable information on the SoC behavior. As the primary application domain is automotive and safety, the efficiency of the module will be evaluated by exposing the test chip under a fast-neutron beam by the end of the year. In the meantime, it will be tested with alpha particles and electromagnetic fault injection (EMFI). We will report in the paper on fault-injection results as well as irradiation results.

Keywords: fault injection, SoC fail reason, SoC soft error rate, terrestrial application

Procedia PDF Downloads 202
105 Satellite Connectivity for Sustainable Mobility

Authors: Roberta Mugellesi Dow

Abstract:

As the climate crisis becomes unignorable, it is imperative that new services are developed addressing not only the needs of customers but also taking into account its impact on the environment. The Telecommunication and Integrated Application (TIA) Directorate of ESA is supporting the green transition with particular attention to the sustainable mobility.“Accelerating the shift to sustainable and smart mobility” is at the core of the European Green Deal strategy, which seeks a 90% reduction in related emissions by 2050 . Transforming the way that people and goods move is essential to increasing mobility while decreasing environmental impact, and transport must be considered holistically to produce a shared vision of green intermodal mobility. The use of space technologies, integrated with terrestrial technologies, is an enabler of smarter traffic management and increased transport efficiency for automated and connected multimodal mobility. Satellite connectivity, including future 5G networks, and digital technologies such as Digital Twin, AI, Machine Learning, and cloud-based applications are key enablers of sustainable mobility.SatCom is essential to ensure that connectivity is ubiquitously available, even in remote and rural areas, or in case of a failure, by the convergence of terrestrial and SatCom connectivity networks, This is especially crucial when there are risks of network failures or cyber-attacks targeting terrestrial communication. SatCom ensures communication network robustness and resilience. The combination of terrestrial and satellite communication networks is making possible intelligent and ubiquitous V2X systems and PNT services with significantly enhanced reliability and security, hyper-fast wireless access, as well as much seamless communication coverage. SatNav is essential in providing accurate tracking and tracing capabilities for automated vehicles and in guiding them to target locations. SatNav can also enable location-based services like car sharing applications, parking assistance, and fare payment. In addition to GNSS receivers, wireless connections, radar, lidar, and other installed sensors can enable automated vehicles to monitor surroundings, to ‘talk to each other’ and with infrastructure in real-time, and to respond to changes instantaneously. SatEO can be used to provide the maps required by the traffic management, as well as evaluate the conditions on the ground, assess changes and provide key data for monitoring and forecasting air pollution and other important parameters. Earth Observation derived data are used to provide meteorological information such as wind speed and direction, humidity, and others that must be considered into models contributing to traffic management services. The paper will provide examples of services and applications that have been developed aiming to identify innovative solutions and new business models that are allowed by new digital technologies engaging space and non space ecosystem together to deliver value and providing innovative, greener solutions in the mobility sector. Examples include Connected Autonomous Vehicles, electric vehicles, green logistics, and others. For the technologies relevant are the hybrid satcom and 5G providing ubiquitous coverage, IoT integration with non space technologies, as well as navigation, PNT technology, and other space data.

Keywords: sustainability, connectivity, mobility, satellites

Procedia PDF Downloads 101
104 Temperature Distribution Inside Hybrid photovoltaic-Thermoelectric Generator Systems and their Dependency on Exposition Angles

Authors: Slawomir Wnuk

Abstract:

Due to widespread implementation of the renewable energy development programs the, solar energy use increasing constantlyacross the world. Accordingly to REN21, in 2020, both on-grid and off-grid solar photovoltaic systems installed capacity reached 760 GWDCand increased by 139 GWDC compared to previous year capacity. However, the photovoltaic solar cells used for primary solar energy conversion into electrical energy has exhibited significant drawbacks. The fundamentaldownside is unstable andlow efficiencythe energy conversion being negatively affected by a rangeof factors. To neutralise or minimise the impact of those factors causing energy losses, researchers have come out withvariedideas. One ofpromising technological solutionsoffered by researchers is PV-MTEG multilayer hybrid system combiningboth photovoltaic cells and thermoelectric generators advantages. A series of experiments was performed on Glasgow Caledonian University laboratory to investigate such a system in operation. In the experiments, the solar simulator Sol3A series was employed as a stable solar irradiation source, and multichannel voltage and temperature data loggers were utilised for measurements. The two layer proposed hybrid systemsimulation model was built up and tested for its energy conversion capability under a variety of the exposure angles to the solar irradiation with a concurrent examination of the temperature distribution inside proposed PV-MTEG structure. The same series of laboratory tests were carried out for a range of various loads, with the temperature and voltage generated being measured and recordedfor each exposure angle and load combination. It was found that increase of the exposure angle of the PV-MTEG structure to an irradiation source causes the decrease of the temperature gradient ΔT between the system layers as well as reduces overall system heating. The temperature gradient’s reduction influences negatively the voltage generation process. The experiments showed that for the exposureangles in the range from 0° to 45°, the ‘generated voltage – exposure angle’ dependence is reflected closely by the linear characteristics. It was also found that the voltage generated by MTEG structures working with the optimal load determined and applied would drop by approximately 0.82% per each 1° degree of the exposure angle increase. This voltage drop occurs at the higher loads applied, getting more steep with increasing the load over the optimal value, however, the difference isn’t significant. Despite of linear character of the generated by MTEG voltage-angle dependence, the temperature reduction between the system structure layers andat tested points on its surface was not linear. In conclusion, the PV-MTEG exposure angle appears to be important parameter affecting efficiency of the energy generation by thermo-electrical generators incorporated inside those hybrid structures. The research revealedgreat potential of the proposed hybrid system. The experiments indicated interesting behaviour of the tested structures, and the results appear to provide valuable contribution into thedevelopment and technological design process for large energy conversion systems utilising similar structural solutions.

Keywords: photovoltaic solar systems, hybrid systems, thermo-electrical generators, renewable energy

Procedia PDF Downloads 61
103 Application of Alumina-Aerogel in Post-Combustion CO₂ Capture: Optimization by Response Surface Methodology

Authors: S. Toufigh Bararpour, Davood Karami, Nader Mahinpey

Abstract:

Dependence of global economics on fossil fuels has led to a large growth in the emission of greenhouse gases (GHGs). Among the various GHGs, carbon dioxide is the main contributor to the greenhouse effect due to its huge emission amount. To mitigate the threatening effect of CO₂, carbon capture and sequestration (CCS) technologies have been studied widely in recent years. For the combustion processes, three main CO₂ capture techniques have been proposed such as post-combustion, pre-combustion and oxyfuel combustion. Post-combustion is the most commonly used CO₂ capture process as it can be readily retrofit into the existing power plants. Multiple advantages have been reported for the post-combustion by solid sorbents such as high CO₂ selectivity, high adsorption capacity, and low required regeneration energy. Chemical adsorption of CO₂ over alkali-metal-based solid sorbents such as K₂CO₃ is a promising method for the selective capture of diluted CO₂ from the huge amount of nitrogen existing in the flue gas. To improve the CO₂ capture performance, K₂CO₃ is supported by a stable and porous material. Al₂O₃ has been employed commonly as the support and enhanced the cyclic CO₂ capture efficiency of K₂CO₃. Different phases of alumina can be obtained by setting the calcination temperature of boehmite at 300, 600 (γ-alumina), 950 (δ-alumina) and 1200 °C (α-alumina). By increasing the calcination temperature, the regeneration capacity of alumina increases, while the surface area reduces. However, sorbents with lower surface areas have lower CO₂ capture capacity as well (except for the sorbents prepared by hydrophilic support materials). To resolve this issue, a highly efficient alumina-aerogel support was synthesized with a BET surface area of over 2000 m²/g and then calcined at a high temperature. The synthesized alumina-aerogel was impregnated on K₂CO₃ based on 50 wt% support/K₂CO₃, which resulted in the preparation of a sorbent with remarkable CO₂ capture performance. The effect of synthesis conditions such as types of alcohols, solvent-to-co-solvent ratios, and aging times was investigated on the performance of the support. The best support was synthesized using methanol as the solvent, after five days of aging time, and at a solvent-to-co-solvent (methanol-to-toluene) ratio (v/v) of 1/5. Response surface methodology was used to investigate the effect of operating parameters such as carbonation temperature and H₂O-to-CO₂ flowrate ratio on the CO₂ capture capacity. The maximum CO₂ capture capacity, at the optimum amounts of operating parameters, was 7.2 mmol CO₂ per gram K₂CO₃. Cyclic behavior of the sorbent was examined over 20 carbonation and regenerations cycles. The alumina-aerogel-supported K₂CO₃ showed a great performance compared to unsupported K₂CO₃ and γ-alumina-supported K₂CO₃. Fundamental performance analyses and long-term thermal and chemical stability test will be performed on the sorbent in the future. The applicability of the sorbent for a bench-scale process will be evaluated, and a corresponding process model will be established. The fundamental material knowledge and respective process development will be delivered to industrial partners for the design of a pilot-scale testing unit, thereby facilitating the industrial application of alumina-aerogel.

Keywords: alumina-aerogel, CO₂ capture, K₂CO₃, optimization

Procedia PDF Downloads 89
102 Speech and Swallowing Function after Tonsillo-Lingual Sulcus Resection with PMMC Flap Reconstruction: A Case Study

Authors: K. Rhea Devaiah, B. S. Premalatha

Abstract:

Background: Tonsillar Lingual sulcus is the area between the tonsils and the base of the tongue. The surgical resection of the lesions in the head and neck results in changes in speech and swallowing functions. The severity of the speech and swallowing problem depends upon the site and extent of the lesion, types and extent of surgery and also the flexibility of the remaining structures. Need of the study: This paper focuses on the importance of speech and swallowing rehabilitation in an individual with the lesion in the Tonsillar Lingual Sulcus and post-operative functions. Aim: Evaluating the speech and swallow functions post-intensive speech and swallowing rehabilitation. The objectives are to evaluate the speech intelligibility and swallowing functions after intensive therapy and assess the quality of life. Method: The present study describes a report of an individual aged 47years male, with the diagnosis of basaloid squamous cell carcinoma, left tonsillar lingual sulcus (pT2n2M0) and underwent wide local excision with left radical neck dissection with PMMC flap reconstruction. Post-surgery the patient came with a complaint of reduced speech intelligibility, and difficulty in opening the mouth and swallowing. Detailed evaluation of the speech and swallowing functions were carried out such as OPME, articulation test, speech intelligibility, different phases of swallowing and trismus evaluation. Self-reported questionnaires such as SHI-E(Speech handicap Index- Indian English), DHI (Dysphagia handicap Index) and SESEQ -K (Self Evaluation of Swallowing Efficiency in Kannada) were also administered to know what the patient feels about his problem. Based on the evaluation, the patient was diagnosed with pharyngeal phase dysphagia associated with trismus and reduced speech intelligibility. Intensive speech and swallowing therapy was advised weekly twice for the duration of 1 hour. Results: Totally the patient attended 10 intensive speech and swallowing therapy sessions. Results indicated misarticulation of speech sounds such as lingua-palatal sounds. Mouth opening was restricted to one finger width with difficulty chewing, masticating, and swallowing the bolus. Intervention strategies included Oro motor exercise, Indirect swallowing therapy, usage of a trismus device to facilitate mouth opening, and change in the food consistency to help to swallow. A practice session was held with articulation drills to improve the production of speech sounds and also improve speech intelligibility. Significant changes in articulatory production and speech intelligibility and swallowing abilities were observed. The self-rated quality of life measures such as DHI, SHI and SESE Q-K revealed no speech handicap and near-normal swallowing ability indicating the improved QOL after the intensive speech and swallowing therapy. Conclusion: Speech and swallowing therapy post carcinoma in the tonsillar lingual sulcus is crucial as the tongue plays an important role in both speech and swallowing. The role of Speech-language and swallowing therapists in oral cancer should be highlighted in treating these patients and improving the overall quality of life. With intensive speech-language and swallowing therapy post-surgery for oral cancer, there can be a significant change in the speech outcome and swallowing functions depending on the site and extent of lesions which will thereby improve the individual’s QOL.

Keywords: oral cancer, speech and swallowing therapy, speech intelligibility, trismus, quality of life

Procedia PDF Downloads 82