Search results for: structural feedback
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5324

Search results for: structural feedback

5234 An Early Attempt of Artificial Intelligence-Assisted Language Oral Practice and Assessment

Authors: Paul Lam, Kevin Wong, Chi Him Chan

Abstract:

Constant practicing and accurate, immediate feedback are the keys to improving students’ speaking skills. However, traditional oral examination often fails to provide such opportunities to students. The traditional, face-to-face oral assessment is often time consuming – attending the oral needs of one student often leads to the negligence of others. Hence, teachers can only provide limited opportunities and feedback to students. Moreover, students’ incentive to practice is also reduced by their anxiety and shyness in speaking the new language. A mobile app was developed to use artificial intelligence (AI) to provide immediate feedback to students’ speaking performance as an attempt to solve the above-mentioned problems. Firstly, it was thought that online exercises would greatly increase the learning opportunities of students as they can now practice more without the needs of teachers’ presence. Secondly, the automatic feedback provided by the AI would enhance students’ motivation to practice as there is an instant evaluation of their performance. Lastly, students should feel less anxious and shy compared to directly practicing oral in front of teachers. Technically, the program made use of speech-to-text functions to generate feedback to students. To be specific, the software analyzes students’ oral input through certain speech-to-text AI engine and then cleans up the results further to the point that can be compared with the targeted text. The mobile app has invited English teachers for the pilot use and asked for their feedback. Preliminary trials indicated that the approach has limitations. Many of the users’ pronunciation were automatically corrected by the speech recognition function as wise guessing is already integrated into many of such systems. Nevertheless, teachers have confidence that the app can be further improved for accuracy. It has the potential to significantly improve oral drilling by giving students more chances to practice. Moreover, they believe that the success of this mobile app confirms the potential to extend the AI-assisted assessment to other language skills, such as writing, reading, and listening.

Keywords: artificial Intelligence, mobile learning, oral assessment, oral practice, speech-to-text function

Procedia PDF Downloads 82
5233 Evaluation of Structural Integrity for Composite Lattice Structure

Authors: Jae Moon Im, Kwang Bok Shin, Sang Woo Lee

Abstract:

In this paper, evaluation of structural integrity for composite lattice structure was conducted by compressive test. Composite lattice structure was manufactured by carbon fiber using filament winding method. In order to evaluate the structural integrity of composite lattice structure, compressive test was done using anti-buckling fixture. The delamination occurred 84 Tons of compressive load. It was found that composite lattice structure satisfied the design requirements.

Keywords: composite material, compressive test, lattice structure, structural integrity

Procedia PDF Downloads 461
5232 The Features of Formation of Russian Agriculture’s Sectoral Structure

Authors: Natalya G. Filimonova, Mariya G. Ozerova, Irina N. Ermakova

Abstract:

The long-term strategy of the economic development of Russia up to 2030 is based on the concept of sustainable growth. The determining factor of such development is complex changes in the economic system which may be achieved by making progressive changes in its structure. The structural changes determine the character and the direction of economic development, as well as they include all elements of this system without exception, and their regulated character ensures the most rapid aim achievement. This article has discussed the industrial structure of the agriculture in Russia. With the use of the system of indexes, the article has determined the directions, intensity, and speed of structural shifts. The influence of structural changes on agricultural production development has been found out. It is noticed that the changes in the industrial structure are synchronized with the changes in the organisation and economic structure. Efficiency assessment of structural changes allowed to trace the efficiency of structural changes and elaborate the main directions for agricultural policy improvement.

Keywords: Russian agricultural sectors, sectoral structure, organizational and economic structure, structural changes

Procedia PDF Downloads 141
5231 Enhancing Students' Utilization of Written Corrective Feedback through Teacher-Student Writing Conferences: A Case Study in English Writing Instruction

Authors: Tsao Jui-Jung

Abstract:

Previous research findings have shown that most students do not fully utilize the written corrective feedback provided by teachers (Stone, 2014). This common phenomenon results in the ineffective utilization of teachers' written corrective feedback. As Ellis (2010) points out, the effectiveness of written corrective feedback depends on the level of student engagement with it. Therefore, it is crucial to understand how students utilize the written corrective feedback from their teachers. Previous studies have confirmed the positive impact of teacher-student writing conferences on students' engagement in the writing process and their writing abilities (Hum, 2021; Nosratinia & Nikpanjeh, 2019; Wong, 1996; Yeh, 2016, 2019). However, due to practical constraints such as time limitations, this instructional activity is not fully utilized in writing classrooms (Alfalagg, 2020). Therefore, to address this research gap, the purpose of this study was to explore several aspects of teacher-student writing conferences, including the frequency of meaning negotiation (i.e., comprehension checks, confirmation checks, and clarification checks) and teacher scaffolding techniques (i.e., feedback, prompts, guidance, explanations, and demonstrations) in teacher-student writing conferences, examining students’ self-assessment of their writing strengths and weaknesses in post-conference journals and their experiences with teacher-student writing conferences (i.e., interaction styles, communication levels, how teachers addressed errors, and overall perspectives on the conferences), and gathering insights from their responses to open-ended questions in the final stage of the study (i.e., their preferences and reasons for different written corrective feedback techniques used by teachers and their perspectives and suggestions on teacher-student writing conferences). Data collection methods included transcripts of audio recordings of teacher-student writing conferences, students’ post-conference journals, and open-ended questionnaires. The participants of this study were sophomore students enrolled in an English writing course for a duration of one school year. Key research findings are as follows: Firstly, in terms of meaning negotiation, students attempted to clearly understand the corrective feedback provided by the teacher-researcher twice as often as the teacher-researcher attempted to clearly understand the students' writing content. Secondly, the most commonly used scaffolding technique in the conferences was prompting (indirect feedback). Thirdly, the majority of participants believed that teacher-student writing conferences had a positive impact on their writing abilities. Fourthly, most students preferred direct feedback from the teacher-research as it directly pointed out their errors and saved them time in revision. However, some students still preferred indirect feedback, as they believed it encouraged them to think and self-correct. Based on the research findings, this study proposes effective teaching recommendations for English writing instruction aimed at optimizing teaching strategies and enhancing students' writing abilities.

Keywords: written corrective feedback, student engagement, teacher-student writing conferences, action research

Procedia PDF Downloads 44
5230 Nonuniformity Correction Technique in Infrared Video Using Feedback Recursive Least Square Algorithm

Authors: Flavio O. Torres, Maria J. Castilla, Rodrigo A. Augsburger, Pedro I. Cachana, Katherine S. Reyes

Abstract:

In this paper, we present a scene-based nonuniformity correction method using a modified recursive least square algorithm with a feedback system on the updates. The feedback is designed to remove impulsive noise contamination images produced by a recursive least square algorithm by measuring the output of the proposed algorithm. The key advantage of the method is based on its capacity to estimate detectors parameters and then compensate for impulsive noise contamination image in a frame by frame basics. We define the algorithm and present several experimental results to demonstrate the efficacy of the proposed method in comparison to several previously published recursive least square-based methods. We show that the proposed method removes impulsive noise contamination image.

Keywords: infrared focal plane arrays, infrared imaging, least mean square, nonuniformity correction

Procedia PDF Downloads 116
5229 Study Case of Spacecraft Instruments in Structural Modelling with Nastran-Patran

Authors: Francisco Borja de Lara, Ali Ravanbakhsh, Robert F. Wimmer-Schweingruber, Lars Seimetz, Fermín Navarro

Abstract:

The intense structural loads during the launch of a spacecraft represent a challenge for the space structure designers because enough resistance has to be achieved while maintaining at the same time the mass and volume within the allowable margins of the mission requirements and inside the limits of the budget project. In this conference, we present the structural analysis of the Lunar Lander Neutron Dosimetry (LND) experiment on the Chang'E4 mission, the first probe to land on the moon’s far side included in the Chinese’ Moon Exploration Program by the Chinese National Space Administration. To this target, the software Nastran/Patran has been used: a structural model in Patran and a structural analysis through Nastran have been realized. Next, the results obtained are used both for the optimization process of the spacecraft structure, and as input parameters for the model structural test campaign. In this way, the feasibility of the lunar instrument structure is demonstrated in terms of the modal modes, stresses, and random vibration and a better understanding of the structural tests design is provided by our results.

Keywords: Chang’E4, Chinese national space administration, lunar lander neutron dosimetry, nastran-patran, structural analysis

Procedia PDF Downloads 485
5228 Using VR as a Training Tool in the Banking Industry

Authors: Bjørn Salskov, Nicolaj Bang, Charlotte Falko

Abstract:

Future labour markets demand employees that can carry out a non-linear task which is still not possible for computers. This means that employees must have well-developed soft-skills to perform at high levels in such a work environment. One of these soft-skills is presenting a message effectively. To be able to present a message effectively, one needs to practice this. To practice effectively, the trainee needs feedback on the current performance. Here VR environments can be used as a practice tool because it gives the trainee a sense of presence and reality. VR environments are becoming a cost-effective training method since it does not demand the presence of an expert to provide this feedback. The research article analysed in this study suggests that VR environment can be used and are able to provide the necessary feedback to the trainee which in turn will help the trainee become better at the task. The research analysed in this review does, however, show that there is a need for a study with larger sample size and a study which runs over a longer period.

Keywords: training, presentation, presentation skills, VR training, VR as a training tool, VR and presentation

Procedia PDF Downloads 91
5227 Learning Gains and Constraints Resulting from Haptic Sensory Feedback among Preschoolers' Engagement during Science Experimentation

Authors: Marios Papaevripidou, Yvoni Pavlou, Zacharias Zacharia

Abstract:

Embodied cognition and additional (touch) sensory channel theories indicate that physical manipulation is crucial to learning since it provides, among others, touch sensory input, which is needed for constructing knowledge. Given these theories, the use of Physical Manipulatives (PM) becomes a prerequisite for learning. On the other hand, empirical research on Virtual Manipulatives (VM) (e.g., simulations) learning has provided evidence showing that the use of PM, and thus haptic sensory input, is not always a prerequisite for learning. In order to investigate which means of experimentation, PM or VM, are required for enhancing student science learning at the kindergarten level, an empirical study was conducted that sought to investigate the impact of haptic feedback on the conceptual understanding of pre-school students (n=44, age mean=5,7) in three science domains: beam balance (D1), sinking/floating (D2) and springs (D3). The participants were equally divided in two groups according to the type of manipulatives used (PM: presence of haptic feedback, VM: absence of haptic feedback) during a semi-structured interview for each of the domains. All interviews followed the Predict-Observe-Explain (POE) strategy and consisted of three phases: initial evaluation, experimentation, final evaluation. The data collected through the interviews were analyzed qualitatively (open-coding for identifying students’ ideas in each domain) and quantitatively (use of non-parametric tests). Findings revealed that the haptic feedback enabled students to distinguish heavier to lighter objects when held in hands during experimentation. In D1 the haptic feedback did not differentiate PM and VM students' conceptual understanding of the function of the beam as a mean to compare the mass of objects. In D2 the haptic feedback appeared to have a negative impact on PM students’ learning. Feeling the weight of an object strengthen PM students’ misconception that heavier objects always sink, whereas the scientifically correct idea that the material of an object determines its sinking/floating behavior in the water was found to be significantly higher among the VM students than the PM ones. In D3 the PM students outperformed significantly the VM students with regard to the idea that the heavier an object is the more the spring will expand, indicating that the haptic input experienced by the PM students served as an advantage to their learning. These findings point to the fact that PMs, and thus touch sensory input, might not always be a requirement for science learning and that VMs could be considered, under certain circumstances, as a viable means for experimentation.

Keywords: haptic feedback, physical and virtual manipulatives, pre-school science learning, science experimentation

Procedia PDF Downloads 112
5226 Developing Pavement Structural Deterioration Curves

Authors: Gregory Kelly, Gary Chai, Sittampalam Manoharan, Deborah Delaney

Abstract:

A Structural Number (SN) can be calculated for a road pavement from the properties and thicknesses of the surface, base course, sub-base, and subgrade. Historically, the cost of collecting structural data has been very high. Data were initially collected using Benkelman Beams and now by Falling Weight Deflectometer (FWD). The structural strength of pavements weakens over time due to environmental and traffic loading factors, but due to a lack of data, no structural deterioration curve for pavements has been implemented in a Pavement Management System (PMS). International Roughness Index (IRI) is a measure of the road longitudinal profile and has been used as a proxy for a pavement’s structural integrity. This paper offers two conceptual methods to develop Pavement Structural Deterioration Curves (PSDC). Firstly, structural data are grouped in sets by design Equivalent Standard Axles (ESA). An ‘Initial’ SN (ISN), Intermediate SN’s (SNI) and a Terminal SN (TSN), are used to develop the curves. Using FWD data, the ISN is the SN after the pavement is rehabilitated (Financial Accounting ‘Modern Equivalent’). Intermediate SNIs, are SNs other than the ISN and TSN. The TSN was defined as the SN of the pavement when it was approved for pavement rehabilitation. The second method is to use Traffic Speed Deflectometer data (TSD). The road network already divided into road blocks, is grouped by traffic loading. For each traffic loading group, road blocks that have had a recent pavement rehabilitation, are used to calculate the ISN and those planned for pavement rehabilitation to calculate the TSN. The remaining SNs are used to complete the age-based or if available, historical traffic loading-based SNI’s.

Keywords: conceptual, pavement structural number, pavement structural deterioration curve, pavement management system

Procedia PDF Downloads 519
5225 Creative Thinking in Structural Design of Historic Constructions

Authors: Avraham Mosseri

Abstract:

The architectural conservation process of the built heritage is a very complex process dealing with the integration of professional knowledge from many fields like history, sociology, economy, engineering, etc. One of the most important fields is the structural field, which has a great influence on the final architectural and aesthetic solution of the built heritage. In many cases, the ability to protect and save the heritage values of the historical buildings is an outcome of the structural creativity and conceptual design of the conservation engineers. This creativity is especially important when dealing with structural engineering of historic construction, where there are a lot of constraints and contradictions between different aspects like aesthetics, artistic values, culture, authenticity, structural performance, etc. But in spite of the importance of this creativity in conservation engineering, many research efforts are mainly devoted to the structural analysis of historic construction, which of course is very important and vital. But, in general, more attention can be paid to the creative process in the conceptual stage. In this situation there is a need, in parallel to analysis research, to devote more resources in order to improve the creative and conceptual theories in relation to conservation engineering. This paper focuses on the creativity aspects in the structural design process in the conservation of historic buildings as part of conservation theories.

Keywords: conservation, creativity, historic constructions, structural design

Procedia PDF Downloads 209
5224 Structural Health Monitoring-Integrated Structural Reliability Based Decision Making

Authors: Caglayan Hizal, Kutay Yuceturk, Ertugrul Turker Uzun, Hasan Ceylan, Engin Aktas, Gursoy Turan

Abstract:

Monitoring concepts for structural systems have been investigated by researchers for decades since such tools are quite convenient to determine intervention planning of structures. Despite the considerable development in this regard, the efficient use of monitoring data in reliability assessment, and prediction models are still in need of improvement in their efficiency. More specifically, reliability-based seismic risk assessment of engineering structures may play a crucial role in the post-earthquake decision-making process for the structures. After an earthquake, professionals could identify heavily damaged structures based on visual observations. Among these, it is hard to identify the ones with minimum signs of damages, even if they would experience considerable structural degradation. Besides, visual observations are open to human interpretations, which make the decision process controversial, and thus, less reliable. In this context, when a continuous monitoring system has been previously installed on the corresponding structure, this decision process might be completed rapidly and with higher confidence by means of the observed data. At this stage, the Structural Health Monitoring (SHM) procedure has an important role since it can make it possible to estimate the system reliability based on a recursively updated mathematical model. Therefore, integrating an SHM procedure into the reliability assessment process comes forward as an important challenge due to the arising uncertainties for the updated model in case of the environmental, material and earthquake induced changes. In this context, this study presents a case study on SHM-integrated reliability assessment of the continuously monitored progressively damaged systems. The objective of this study is to get instant feedback on the current state of the structure after an extreme event, such as earthquakes, by involving the observed data rather than the visual inspections. Thus, the decision-making process after such an event can be carried out on a rational basis. In the near future, this can give wing to the design of self-reported structures which can warn about its current situation after an extreme event.

Keywords: condition assessment, vibration-based SHM, reliability analysis, seismic risk assessment

Procedia PDF Downloads 110
5223 Seismic Performance Evaluation of the Composite Structural System with Separated Gravity and Lateral Resistant Systems

Authors: Zi-Ang Li, Mu-Xuan Tao

Abstract:

During the process of the industrialization of steel structure housing, a composite structural system with separated gravity and lateral resistant systems has been applied in engineering practices, which consists of composite frame with hinged beam-column joints, steel brace and RC shear wall. As an attempt in steel structural system area, seismic performance evaluation of the separated composite structure is important for further application in steel housing. This paper focuses on the seismic performance comparison of the separated composite structural system and traditional steel frame-shear wall system under the same inter-story drift ratio (IDR) provision limit. The same architectural layout of a high-rise building is designed as two different structural systems at the same IDR level, and finite element analysis using pushover method is carried out. Static pushover analysis implies that the separated structural system exhibits different lateral deformation mode and failure mechanism with traditional steel frame-shear wall system. Different indexes are adopted and discussed in seismic performance evaluation, including IDR, safe factor (SF), shear wall damage, etc. The performance under maximum considered earthquake (MCE) demand spectrum shows that the shear wall damage of two structural systems are similar; the separated composite structural system exhibits less plastic hinges; and the SF index value of the separated composite structural system is higher than the steel frame shear wall structural system.

Keywords: finite element analysis, new composite structural system, seismic performance evaluation, static pushover analysis

Procedia PDF Downloads 108
5222 Experimental Investigation on Residual Stresses in Welded Medium-Walled I-shaped Sections Fabricated from Q460GJ Structural Steel Plates

Authors: Qian Zhu, Shidong Nie, Bo Yang, Gang Xiong, Guoxin Dai

Abstract:

GJ steel is a new type of high-performance structural steel which has been increasingly adopted in practical engineering. Q460GJ structural steel has a nominal yield strength of 460 MPa, which does not decrease significantly with the increase of steel plate thickness like normal structural steel. Thus, Q460GJ structural steel is normally used in medium-walled welded sections. However, research works on the residual stress in GJ steel members are few though it is one of the vital factors that can affect the member and structural behavior. This article aims to investigate the residual stresses in welded I-shaped sections fabricated from Q460GJ structural steel plates by experimental tests. A total of four full scale welded medium-walled I-shaped sections were tested by sectioning method. Both circular curve correction method and straightening measurement method were adopted in this study to obtain the final magnitude and distribution of the longitudinal residual stresses. In addition, this paper also explores the interaction between flanges and webs. And based on the statistical evaluation of the experimental data, a multilayer residual stress model is proposed.

Keywords: Q460GJ structural steel, residual stresses, sectioning method, welded medium-walled I-shaped sections

Procedia PDF Downloads 289
5221 Identifying the Structural Components of Old Buildings from Floor Plans

Authors: Shi-Yu Xu

Abstract:

The top three risk factors that have contributed to building collapses during past earthquake events in Taiwan are: "irregular floor plans or elevations," "insufficient columns in single-bay buildings," and the "weak-story problem." Fortunately, these unsound structural characteristics can be directly identified from the floor plans. However, due to the vast number of old buildings, conducting manual inspections to identify these compromised structural features in all existing structures would be time-consuming and prone to human errors. This study aims to develop an algorithm that utilizes artificial intelligence techniques to automatically pinpoint the structural components within a building's floor plans. The obtained spatial information will be utilized to construct a digital structural model of the building. This information, particularly regarding the distribution of columns in the floor plan, can then be used to conduct preliminary seismic assessments of the building. The study employs various image processing and pattern recognition techniques to enhance detection efficiency and accuracy. The study enables a large-scale evaluation of structural vulnerability for numerous old buildings, providing ample time to arrange for structural retrofitting in those buildings that are at risk of significant damage or collapse during earthquakes.

Keywords: structural vulnerability detection, object recognition, seismic capacity assessment, old buildings, artificial intelligence

Procedia PDF Downloads 52
5220 Passive Seismic Energy Dissipation Mechanisms for Smart Green Structural System (SGSS)

Authors: Daniel Y. Abebe, Jaehyouk Choi

Abstract:

The design philosophy of building structure has been changing over time. The reason behind this is an increase in human interest regarding the improvements in building materials and technology that will affect how we live, the aim to speed up construction period, and the environmental effect which includes earthquakes and other natural disasters. One technique which takes into account the above case is using a prefabricable structural system, in which each and every structural element is designed and prefabricated and assembled on a site so that the construction speed is increased and the environmental impact is also enhanced. This system has immense advantages such as reduced construction cost, reusability, recyclability, faster construction period and less enviromental effect. In this study, some of the developed and evaluated structural elements of building structures are presented.

Keywords: eccentrically braced frame, natural disaster, prefabricable structural system, removable link, SGSS

Procedia PDF Downloads 409
5219 Carbon Sequestering and Structural Capabilities of Eucalyptus Cloeziana

Authors: Holly Sandberg, Christina McCoy, Khaled Mansy

Abstract:

Eucalyptus Cloeziana, commonly known as Gympie Messmate, is a fast-growing hardwood native to Australia. Its quick growth makes it advantageous for carbon sequestering, while its strength class lends itself to structural applications. Market research shows that the demand for timber is growing, especially mass timber. An environmental product declaration, or EPD, for eucalyptus Cloeziana in the Australian market has been evaluated and compared to the EPD’s of steel and Douglas fir of the same region. An EPD follows a product throughout its life cycle, stating values for global warming potential, ozone depletion potential, acidification potential, eutrophication potential, photochemical ozone creation potential, and abiotic depletion potential. This paper highlights the market potential, as well as the environmental benefits and challenges to using Gympie Messmate as a structural building material. In addition, a case study is performed to compare steel, Douglas fir, and eucalyptus in terms of embodied carbon and structural weight within a single structural bay. Comparisons among the three materials highlight both the differences in structural capabilities as well as environmental impact.

Keywords: eucalyptus, timber, construction, structural, material

Procedia PDF Downloads 152
5218 Efficacy of Self-Assessment in Written Production among High School Students

Authors: Yoko Suganuma Oi

Abstract:

The purpose of the present study is to find the efficacy of high school student self-assessment of written production. It aimed to explore the following two research questions: 1)How is topic development of their written production improved after student self-assessment and teacher feedback? 2)Does the consistency between student self-assessment and teacher assessment develop after student self-assessment and teacher feedback? The data came from the written production of 82 Japanese high school students aged from 16 to 18 years old, an American English teacher and one Japanese English teacher. Students were asked to write English compositions, about 150 words, for thirty minutes without using dictionaries. It was conducted twice at intervals of two months. Students were supposed to assess their own compositions by themselves. Teachers also assessed students’ compositions using the same assessment sheet. The results showed that both teachers and students assessed the second compositions higher than the first compositions. However, there was not the development of the consistency in coherence.

Keywords: feedback, self-assessment, topic development, high school students

Procedia PDF Downloads 477
5217 Development of a Real-Time Simulink Based Robotic System to Study Force Feedback Mechanism during Instrument-Object Interaction

Authors: Jaydip M. Desai, Antonio Valdevit, Arthur Ritter

Abstract:

Robotic surgery is used to enhance minimally invasive surgical procedure. It provides greater degree of freedom for surgical tools but lacks of haptic feedback system to provide sense of touch to the surgeon. Surgical robots work on master-slave operation, where user is a master and robotic arms are the slaves. Current, surgical robots provide precise control of the surgical tools, but heavily rely on visual feedback, which sometimes cause damage to the inner organs. The goal of this research was to design and develop a real-time simulink based robotic system to study force feedback mechanism during instrument-object interaction. Setup includes three Velmex XSlide assembly (XYZ Stage) for three dimensional movement, an end effector assembly for forceps, electronic circuit for four strain gages, two Novint Falcon 3D gaming controllers, microcontroller board with linear actuators, MATLAB and Simulink toolboxes. Strain gages were calibrated using Imada Digital Force Gauge device and tested with a hard-core wire to measure instrument-object interaction in the range of 0-35N. Designed simulink model successfully acquires 3D coordinates from two Novint Falcon controllers and transfer coordinates to the XYZ stage and forceps. Simulink model also reads strain gages signal through 10-bit analog to digital converter resolution of a microcontroller assembly in real time, converts voltage into force and feedback the output signals to the Novint Falcon controller for force feedback mechanism. Experimental setup allows user to change forward kinematics algorithms to achieve the best-desired movement of the XYZ stage and forceps. This project combines haptic technology with surgical robot to provide sense of touch to the user controlling forceps through machine-computer interface.

Keywords: surgical robot, haptic feedback, MATLAB, strain gage, simulink

Procedia PDF Downloads 508
5216 Correction of Frequent English Writing Errors by Using Coded Indirect Corrective Feedback and Error Treatment

Authors: Chaiwat Tantarangsee

Abstract:

The purposes of this study are: 1) to study the frequent English writing errors of students registering the course: Reading and Writing English for Academic Purposes II, and 2) to find out the results of writing error correction by using coded indirect corrective feedback and writing error treatments. Samples include 28 2nd year English Major students, Faculty of Education, Suan Sunandha Rajabhat University. Tool for experimental study includes the lesson plan of the course; Reading and Writing English for Academic Purposes II, and tool for data collection includes 4 writing tests of short texts. The research findings disclose that frequent English writing errors found in this course comprise 7 types of grammatical errors, namely Fragment sentence, Subject-verb agreement, Wrong form of verb tense, Singular or plural noun endings, Run-ons sentence, Wrong form of verb pattern and Lack of parallel structure. Moreover, it is found that the results of writing error correction by using coded indirect corrective feedback and error treatment reveal the overall reduction of the frequent English writing errors and the increase of students’ achievement in the writing of short texts with the significance at .05.

Keywords: coded indirect corrective feedback, error correction, error treatment, frequent English writing errors

Procedia PDF Downloads 210
5215 Adaptive Decision Feedback Equalizer Utilizing Fixed-Step Error Signal for Multi-Gbps Serial Links

Authors: Alaa Abdullah Altaee

Abstract:

This paper presents an adaptive decision feedback equalizer (ADFE) for multi-Gbps serial links utilizing a fix-step error signal extracted from cross-points of received data symbols. The extracted signal is generated based on violation of received data symbols with minimum detection requirements at the clock and data recovery (CDR) stage. The iterations of the adaptation process search for the optimum feedback tap coefficients to maximize the data eye-opening and minimize the adaptation convergence time. The effectiveness of the proposed architecture is validated using the simulation results of a serial link designed in an IBM 130 nm 1.2V CMOS technology. The data link with variable channel lengths is analyzed using Spectre from Cadence Design Systems with BSIM4 device models.

Keywords: adaptive DFE, CMOS equalizer, error detection, serial links, timing jitter, wire-line communication

Procedia PDF Downloads 91
5214 Utilizing Reflection as a Tool for Experiential Learning through a Simulated Activity

Authors: Nadira Zaidi

Abstract:

The aim of this study is to gain direct feedback of interviewees in a simulated interview process. Reflection based on qualitative data analysis has been utilized through the Gibbs Reflective Cycle, with 30 students as respondents at the Undergraduate level. The respondents reflected on the positive and negative aspects of this active learning process in order to increase their performance in actual job interviews. Results indicate that students engaged in the process successfully imbibed the feedback that they received from the interviewers and also identified the areas that needed improvement.

Keywords: experiential learning, positive and negative impact, reflection, simulated

Procedia PDF Downloads 115
5213 Analysing the Variables That Affect Digital Game-Based L2 Vocabulary Learning

Authors: Jose Ramon Calvo-Ferrer

Abstract:

Video games have been extensively employed in educational contexts to teach contents and skills, upon the premise that they engage students and provide instant feedback, which makes them adequate tools in the field of education and training. Term frequency, along with metacognition and implicit corrective feedback, has often been identified as powerful variables in the learning of vocabulary in a foreign language. This study analyses the learning of L2 mobile operating system terminology by a group of students and uses the data collected by the video game The Conference Interpreter to identify the predictive strength of term frequency (times a term is shown), positive metacognition (times a right answer is provided), and negative metacognition (times a term is shown as wrong) regarding L2 vocabulary learning and perceived learning outcomes. The regression analysis shows that the factor ‘positive metacognition’ is a positive predictor of both dependent variables, whereas the other factors seem to have no statistical effect on any of them.

Keywords: digital game-based learning, feedback, metacognition, frequency, video games

Procedia PDF Downloads 134
5212 The Effects of Aging on Visuomotor Behaviors in Reaching

Authors: Mengjiao Fan, Thomson W. L. Wong

Abstract:

It is unavoidable that older adults may have to deal with aging-related motor problems. Aging is highly likely to affect motor learning and control as well. For example, older adults may suffer from poor motor function and quality of life due to age-related eye changes. These adverse changes in vision results in impairment of movement automaticity. Reaching is a fundamental component of various complex movements, which is therefore beneficial to explore the changes and adaptation in visuomotor behaviors. The current study aims to explore how aging affects visuomotor behaviors by comparing motor performance and gaze behaviors between two age groups (i.e., young and older adults). Visuomotor behaviors in reaching under providing or blocking online visual feedback (simulated visual deficiency) conditions were investigated in 60 healthy young adults (Mean age=24.49 years, SD=2.12) and 37 older adults (Mean age=70.07 years, SD=2.37) with normal or corrected-to-normal vision. Participants in each group were randomly allocated into two subgroups. Subgroup 1 was provided with online visual feedback of the hand-controlled mouse cursor. However, in subgroup 2, visual feedback was blocked to simulate visual deficiency. The experimental task required participants to complete 20 times of reaching to a target by controlling the mouse cursor on the computer screen. Among all the 20 trials, start position was upright in the center of the screen and target appeared at a randomly selected position by the tailor-made computer program. Primary outcomes of motor performance and gaze behaviours data were recorded by the EyeLink II (SR Research, Canada). The results suggested that aging seems to affect the performance of reaching tasks significantly in both visual feedback conditions. In both age groups, blocking online visual feedback of the cursor in reaching resulted in longer hand movement time (p < .001), longer reaching distance away from the target center (p<.001) and poorer reaching motor accuracy (p < .001). Concerning gaze behaviors, blocking online visual feedback increased the first fixation duration time in young adults (p<.001) but decreased it in older adults (p < .001). Besides, under the condition of providing online visual feedback of the cursor, older adults conducted a longer fixation dwell time on target throughout reaching than the young adults (p < .001) although the effect was not significant under blocking online visual feedback condition (p=.215). Therefore, the results suggested that different levels of visual feedback during movement execution can affect gaze behaviors differently in older and young adults. Differential effects by aging on visuomotor behaviors appear on two visual feedback patterns (i.e., blocking or providing online visual feedback of hand-controlled cursor in reaching). Several specific gaze behaviors among the older adults were found, which imply that blocking of visual feedback may act as a stimulus to seduce extra perceptive load in movement execution and age-related visual degeneration might further deteriorate the situation. It indeed provides us with insight for the future development of potential rehabilitative training method (e.g., well-designed errorless training) in enhancing visuomotor adaptation for our aging population in the context of improving their movement automaticity by facilitating their compensation of visual degeneration.

Keywords: aging effect, movement automaticity, reaching, visuomotor behaviors, visual degeneration

Procedia PDF Downloads 289
5211 Applied Methods for Lightweighting Structural Systems

Authors: Alireza Taghdiri, Sara Ghanbarzade Ghomi

Abstract:

With gravity load reduction in the structural and non-structural components, the lightweight construction will be achieved as well as the improvement of efficiency and functional specifications. The advantages of lightweight construction can be examined in two levels. The first is the mass reduction of load bearing structure which results in increasing internal useful space and the other one is the mass reduction of building which decreases the effects of seismic load as a result. In order to achieve this goal, the essential building materials specifications and also optimum load bearing geometry of structural systems and elements have to be considered, so lightweight materials selection particularly with lightweight aggregate for building components will be the first step of lightweight construction. In the next step, in addition to selecting the prominent samples of Iran's traditional architecture, the process of these works improvement is analyzed through the viewpoints of structural efficiency and lightweighting and also the practical methods of lightweight construction have been extracted. The optimum design of load bearing geometry of structural system has to be considered not only in the structural system elements, but also in their composition and the selection of dimensions, proportions, forms and optimum orientations, can lead to get a maximum materials efficiency for loads and stresses bearing.

Keywords: gravity load, lightweighting structural system, load bearing geometry, seismic behavior

Procedia PDF Downloads 483
5210 Multifunctional Composite Structural Elements for Sensing and Energy Harvesting

Authors: Amir H. Alavi, Kaveh Barri, Qianyun Zhang

Abstract:

This study presents a new generation of lightweight and mechanically tunable structural composites with sensing and energy harvesting functionalities. This goal is achieved by integrating metamaterial and triboelectric energy harvesting concepts. Proof-of-concept polymeric beam prototypes are fabricated using 3D printing methods based on the proposed concept. Experiments and theoretical analyses are conducted to quantitatively investigate the mechanical and electrical properties of the designed multifunctional beams. The results show that these integrated structural elements can serve as nanogenerators and distributed sensing mediums without a need to incorporating any external sensing modules and electronics. The feasibility of design self-sensing and self-powering structural elements at multiscale for next generation infrastructure systems is further discussed.

Keywords: multifunctional structures, composites, metamaterial, triboelectric nanogenerator, sensors, structural health monitoring, energy harvesting

Procedia PDF Downloads 169
5209 Student Performance and Confidence Analysis on Education Virtual Environments through Different Assessment Strategies

Authors: Rubén Manrique, Delio Balcázar, José Parrado, Sebastián Rodríguez

Abstract:

Hand in hand with the evolution of technology, education systems have moved to virtual environments to provide increased coverage and facilitate the access to education. However, measuring student performance in virtual environments presents significant challenges to ensure students are acquiring the expected skills. In this study, the confidence and performance of engineering students in virtual environments is analyzed through different evaluation strategies. The effect of the assessment strategy in student confidence is identified using educational data mining techniques. Four assessment strategies were used. First, a conventional multiple choice test; second, a multiple choice test with feedback; third, a multiple choice test with a second chance; and fourth; a multiple choice test with feedback and second chance. Our results show that applying testing with online feedback strategies can influence positively student confidence.

Keywords: assessment strategies, educational data mining, student performance, student confidence

Procedia PDF Downloads 323
5208 TutorBot+: Automatic Programming Assistant with Positive Feedback based on LLMs

Authors: Claudia Martínez-Araneda, Mariella Gutiérrez, Pedro Gómez, Diego Maldonado, Alejandra Segura, Christian Vidal-Castro

Abstract:

The purpose of this document is to showcase the preliminary work in developing an EduChatbot-type tool and measuring the effects of its use aimed at providing effective feedback to students in programming courses. This bot, hereinafter referred to as tutorBot+, was constructed based on chatGPT and is tasked with assisting and delivering timely positive feedback to students in the field of computer science at the Universidad Católica de Concepción. The proposed working method consists of four stages: (1) Immersion in the domain of Large Language Models (LLMs), (2) Development of the tutorBot+ prototype and integration, (3) Experiment design, and (4) Intervention. The first stage involves a literature review on the use of artificial intelligence in education and the evaluation of intelligent tutors, as well as research on types of feedback for learning and the domain of chatGPT. The second stage encompasses the development of tutorBot+, and the final stage involves a quasi-experimental study with students from the Programming and Database labs, where the learning outcome involves the development of computational thinking skills, enabling the use and measurement of the tool's effects. The preliminary results of this work are promising, as a functional chatBot prototype has been developed in both conversational and non-conversational versions integrated into an open-source online judge and programming contest platform system. There is also an exploration of the possibility of generating a custom model based on a pre-trained one tailored to the domain of programming. This includes the integration of the created tool and the design of the experiment to measure its utility.

Keywords: assessment, chatGPT, learning strategies, LLMs, timely feedback

Procedia PDF Downloads 38
5207 The Influence of Online Audience Response on Journalists

Authors: Raja Arslan Ahmad Khan

Abstract:

Audience feedback and data play an increasingly crucial role, particularly in the digital age. The advent of digital media and the digitalization of news have given rise to novel forms of audience feedback, markedly different from traditional channels. The engagement of online audiences challenges the conventional role of journalists, introducing a dynamic where audiences can wield both direct and indirect influence. This struggle between the audience and journalists is evident in their contributions and interactions. Media professionals are grappling with challenges such as derogatory remarks, hate speech, online harassment, audience hostility, and attacks from online audiences. The influence of online audiences extends to shaping journalists' daily routines and work practices. Consequently, this study seeks to analyze the impact of online audience feedback on journalists at a routine level within the Malaysian context. Employing a Hierarchy of Influence model as a theoretical framework, the study will utilize a quantitative approach with a snowball survey method. The study's findings aim to enhance our understanding of how online audiences influence journalists and their work practices, encompassing aspects like journalists' autonomy and integrity, editorial decision-making, performance and accountability, daily routines, work practices, as well as the psychological and emotional costs they bear. It's important to note that the study has limitations due to the use of the snowball survey method and its focus within the specific context of Malaysia, making it relatively small in scale.

Keywords: online audiences, feedback, influence, journalists, Malaysia

Procedia PDF Downloads 29
5206 Numerical Simulation of Two-Dimensional Flow over a Stationary Circular Cylinder Using Feedback Forcing Scheme Based Immersed Boundary Finite Volume Method

Authors: Ranjith Maniyeri, Ahamed C. Saleel

Abstract:

Two-dimensional fluid flow over a stationary circular cylinder is one of the bench mark problem in the field of fluid-structure interaction in computational fluid dynamics (CFD). Motivated by this, in the present work, a two-dimensional computational model is developed using an improved version of immersed boundary method which combines the feedback forcing scheme of the virtual boundary method with Peskin’s regularized delta function approach. Lagrangian coordinates are used to represent the cylinder and Eulerian coordinates are used to describe the fluid flow. A two-dimensional Dirac delta function is used to transfer the quantities between the sold to fluid domain. Further, continuity and momentum equations governing the fluid flow are solved using fractional step based finite volume method on a staggered Cartesian grid system. The developed code is validated by comparing the values of drag coefficient obtained for different Reynolds numbers with that of other researcher’s results. Also, through numerical simulations for different Reynolds numbers flow behavior is well captured. The stability analysis of the improved version of immersed boundary method is tested for different values of feedback forcing coefficients.

Keywords: Feedback Forcing Scheme, Finite Volume Method, Immersed Boundary Method, Navier-Stokes Equations

Procedia PDF Downloads 279
5205 Preparation of Papers: Impacts of COVIDSAFE Practices and CO₂ Feedback Devices on Indoor Air Quality in Classrooms

Authors: Chun Yu, Tahlia M. Farrant, Max G. Marschall

Abstract:

Most of Australia’s school classrooms are equipped with operable windows and occupant-controlled air-conditioners that do not provide fresh air. This can result in insufficient ventilation and high indoor CO₂ levels, which comes at a detriment to occupant productivity and health. This paper reports on the results of an in-situ study capturing indoor CO₂ levels in classrooms at a school in Victoria, Australia. The study consisted of 3 measurement periods: First, CO₂ levels pre-pandemic were measured, finding that the readings exceeded the recommended ASHRAE threshold of 1000 ppm more than 50% of the time, with levels often rising as high as 5000 ppm. Then, after the staff had been informed of the poor indoor air quality and the Victorian government had put COVIDSAFE measures in place, a second data set was captured; the impact was significant, with now only about 30% of readings above the ASHRAE threshold, and values rarely exceeding 2500 ppm. Finally, devices were installed that gave the occupants visual feedback when CO₂ levels were high, thus prompting them to open the windows; this further improved the air quality, with now less than 20% of readings above the threshold and values rarely exceeding 1500 ppm. The study suggests that, while relying on occupants to operate windows can lead to poor indoor air quality due to insufficient ventilation, it is possible to considerably influence occupant behavior through education and feedback devices. While these interventions alone did not mitigate the problem of inadequate ventilation entirely, they were sufficient to keep CO₂ levels within a generally healthy range. Considering the large energy savings that are possible by foregoing mechanical ventilation, it is evident that natural ventilation is a feasible operation method for school buildings in temperate climates, as long as classrooms are equipped with CO₂ feedback devices.

Keywords: COVID, CO₂, education, feedback devices, health, indoor air quality, natural ventilation, occupant behaviour

Procedia PDF Downloads 78