Search results for: silver nanoclusters
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 420

Search results for: silver nanoclusters

150 Processing and Characterization of Oxide Dispersion Strengthened (ODS) Fe-14Cr-3W-0.5Ti-0.3Y₂O₃ (14YWT) Ferritic Steel

Authors: Farha Mizana Shamsudin, Shahidan Radiman, Yusof Abdullah, Nasri Abdul Hamid

Abstract:

Oxide dispersion strengthened (ODS) ferritic steels are amongst the most promising candidates for large scale structural materials to be applied in next generation fission and fusion nuclear power reactors. This kind of material is relatively stable at high temperature, possess remarkable mechanical properties and comparatively good resistance from neutron radiation damage. The superior performance of ODS ferritic steels over their conventional properties is attributed to the high number density of nano-sized dispersoids that act as nucleation sites and stable sinks for many small helium bubbles resulting from irradiation, and also as pinning points to dislocation movement and grain growth. ODS ferritic steels are usually produced by powder metallurgical routes involving mechanical alloying (MA) process of Y2O3 and pre-alloyed or elemental metallic powders, and then consolidated by hot isostatic pressing (HIP) or hot extrusion (HE) techniques. In this study, Fe-14Cr-3W-0.5Ti-0.3Y₂O₃ (designated as 14YWT) was produced by mechanical alloying process and followed by hot isostatic pressing (HIP) technique. Crystal structure and morphology of this sample were identified and characterized by using X-ray Diffraction (XRD) and field emission scanning electron microscope (FESEM) respectively. The magnetic measurement of this sample at room temperature was carried out by using a vibrating sample magnetometer (VSM). FESEM micrograph revealed a homogeneous microstructure constituted by fine grains of less than 650 nm in size. The ultra-fine dispersoids of size between 5 nm to 19 nm were observed homogeneously distributed within the BCC matrix. The EDS mapping reveals that the dispersoids contain Y-Ti-O nanoclusters and from the magnetization curve plotted by VSM, this sample approaches the behavior of soft ferromagnetic materials. In conclusion, ODS Fe-14Cr-3W-0.5Ti-0.3Y₂O₃ (14YWT) ferritic steel was successfully produced by HIP technique in this present study.

Keywords: hot isostatic pressing, magnetization, microstructure, ODS ferritic steel

Procedia PDF Downloads 292
149 Broadband Optical Plasmonic Antennas Using Fano Resonance Effects

Authors: Siamak Dawazdah Emami, Amin Khodaei, Harith Bin Ahmad, Hairul A. Adbul-Rashid

Abstract:

The Fano resonance effect on plasmonic nanoparticle materials results in such materials possessing a number of unique optical properties, and the potential applicability for sensing, nonlinear devices and slow-light devices. A Fano resonance is a consequence of coherent interference between superradiant and subradiant hybridized plasmon modes. Incident light on subradiant modes will initiate excitation that results in superradiant modes, and these superradient modes possess zero or finite dipole moments alongside a comparable negligible coupling with light. This research work details the derivation of an electrodynamics coupling model for the interaction of dipolar transitions and radiation via plasmonic nanoclusters such as quadrimers, pentamers and heptamers. The directivity calculation is analyzed in order to qualify the redirection of emission. The geometry of a configured array of nanostructures strongly influenced the transmission and reflection properties, which subsequently resulted in the directivity of each antenna being related to the nanosphere size and gap distances between the nanospheres in each model’s structure. A well-separated configuration of nanospheres resulted in the structure behaving similarly to monomers, with spectra peaks of a broad superradiant mode being centered within the vicinity of 560 nm wavelength. Reducing the distance between ring nanospheres in pentamers and heptamers to 20~60 nm caused the coupling factor and charge distributions to increase and invoke a subradiant mode centered within the vicinity of 690 nm. Increasing the outside ring’s nanosphere distance from the centered nanospheres caused the coupling factor to decrease, with the coupling factor being inversely proportional to cubic of the distance between nanospheres. This phenomenon led to a dramatic decrease of the superradiant mode at a 200 nm distance between the central nanosphere and outer rings. Effects from a superradiant mode vanished beyond a 240 nm distance between central and outer ring nanospheres.

Keywords: fano resonance, optical antenna, plasmonic, nano-clusters

Procedia PDF Downloads 408
148 Cotton Fabrics Functionalized with Green and Commercial Ag Nanoparticles

Authors: Laura Gonzalez, Santiago Benavides, Martha Elena Londono, Ana Elisa Casas, Adriana Restrepo-Osorio

Abstract:

Cotton products are sensitive to microorganisms due to its ability to retain moisture, which might cause change into the coloration, mechanical properties reduction or foul odor generation; consequently, this represents risks to the health of users. Nowadays, have been carried out researches to give antibacterial properties to textiles using different strategies, which included the use of silver nanoparticles (AgNPs). The antibacterial behavior can be affected by laundering process reducing its effectiveness. In the other way, the environmental impact generated for the synthetic antibacterial agents has motivated to seek new and more ecological ways for produce AgNPs. The aims of this work are to determine the antibacterial activity of cotton fabric functionalized with green (G) and commercial (C) AgNPs after twenty washing cycles, also to evaluate morphological and color changes. A plain weave cotton fabric suitable for dyeing and two AgNPs solutions were use. C a commercial product and G produced using an ecological method, both solutions with 0.5 mM concentration were impregnated on cotton fabric without stabilizer, at a liquor to fabric ratio of 1:20 in constant agitation during 30min and then dried at 70 °C by 10 min. After that the samples were subjected to twenty washing cycles using phosphate-free detergent simulated on agitated flask at 150 rpm, then were centrifuged and dried on a tumble. The samples were characterized using Kirby-Bauer test determine antibacterial activity against E. coli y S. aureus microorganisms, the results were registered by photographs establishing the inhibition halo before and after the washing cycles, the tests were conducted in triplicate. Scanning electron microscope (SEM) was used to observe the morphologies of cotton fabric and treated samples. The color changes of cotton fabrics in relation to the untreated samples were obtained by spectrophotometer analysis. The images, reveals the presence of inhibition halo in the samples treated with C and G AgNPs solutions, even after twenty washing cycles, which indicated a good antibacterial activity and washing durability, with a tendency to better results against to S. aureus bacteria. The presence of AgNPs on the surface of cotton fiber and morphological changes were observed through SEM, after and before washing cycles. The own color of the cotton fiber has been significantly altered with both antibacterial solutions. According to the colorimetric results, the samples treated with C lead to yellowing while the samples modified with G to red yellowing Cotton fabrics treated AgNPs C and G from 0.5 mM solutions exhibited excellent antimicrobial activity against E. coli and S. aureus with good laundering durability effects. The surface of the cotton fibers was modified with the presence of AgNPs C and G due to the presence of NPs and its agglomerates. There are significant changes in the natural color of cotton fabric due to deposition of AgNPs C and G which were maintained after laundering process.

Keywords: antibacterial property, cotton fabric, fastness to wash, Kirby-Bauer test, silver nanoparticles

Procedia PDF Downloads 218
147 Cytotoxic Effects of Ag/TiO2 Nanoparticles on the Unicellular Organism Paramecium tetraurelia

Authors: Juan Bernal-Martinez, Zoe Quinones-Jurado, Miguel Waldo-Mendoza, Elias Perez

Abstract:

Introduction and Objective: Ag-TiO2 nanoparticles (NP) have been characterized as effective antibacterial compounds against E. aureous, E. coli, Salmonella and others. Because these nanoparticles have been used in plastic-food containers, there is a concern about the toxicity of Ag-TiO2 NP for higher organisms from protozoan, invertebrates, and mammals. The objective of this study is to evaluate the cytotoxic effect of Ag-TiO2 NP on the survival and swimming behavior of the unicellular organism Paramecium tetraurelia. Material and Methods: Preparation of metallic silver on TiO2 surface was based on chemical reduction route of AgNO3. Aqueous suspension of TiO2 nanoparticles was preparing by adding 5 g of TiO2 to 250 ml of deionized water and followed by sonication for 10 min. The required amount of AgNO3 solutions was added to TiO2 suspension, maintaining heating and stirring. Silver concentration was 0.5, 1.5, 5.0, 25, 35 and 45 % w/w versus TiO2. Paramecium tetraurelia (Carolina Biological, Cat. # 131560) was used as a biological preparation. It was cultured in artificial culture media made as follows: Stigmasterol 5 mg/ml of ethanol, Caseaminoacids 0.3 gr/lt.; KCl 4mM; CaCl2 1mM; MgCl2 100uM and MOPS 1mM, pH 7.3. This media was inoculated with Enterobacter-sp. Paramecium was concentrated after 24 hours of incubation by centrifugation. The pellet of cells was resuspended in 4.1.1 solution prepared as follows (in mM): KCl, 4 mM; CaCl2, 1mM and Trizma, 1mM; pH 7.3. Transmission electron microscopy (TEM) studies were performed to evaluate the appropriate dispersion and topographic distribution AgNPs deposited on TiO2. The experimental solutions were prepared as follows: 50 mg of Polyvinyhlpirolidone were added to 5 ml of 4.1.1. solution. Then, 50 mg of powder 25-Ag-TiO2 was added, mixing for 10 min and sonicated for 60 min. Survival of Paramecium and possible toxic effects after 25-Ag-TiO2 treatment was observed through an inverted microscope. The Paramecium swimming behavior and possible dead cells were recorded for periods of approximately 20-50 seconds by using a digital USB camera adapted to the microscope. Results and Discussion: TEM micrographs demonstrated the topographic distribution of AgNPs deposited on TiO2. 25Ag-TiO2 NP was efficiently dissolved and dispersed in 4.1.1 solution at concentrations from 0.1, 1 and 10 mg/ml. When Paramecium were treated with 25Ag-TiO2 NP at 100 ug/ml, it was observed that cells started swimming backwards. This backward swimming behavior is the typical avoiding reaction of the ciliate in response to a noxious stimulus. After 10 min of incubation, it was observed that Paramecium stopped swimming backwards and exploited. We can argue that this toxic effect of 25Ag-TiO2 NP is probably due to the calcium influx and calcium accumulation during the long-lasting swimming backwards. Conclusions: Here we have demonstrated that 25Ag-TiO2 NP has a specific toxic effect on an organism higher than bacteria such as the protozoan Paremecium. Probably these toxic phenomena could be expected to be observed in a higher organism such as invertebrates and mammals.

Keywords: Ag-TiO2, calcium permeability, cytotoxicity, paramecium

Procedia PDF Downloads 269
146 Morphology, Qualitative, and Quantitative Elemental Analysis of Pheasant Eggshells in Thailand

Authors: Kalaya Sribuddhachart, Mayuree Pumipaiboon, Mayuva Youngsabanant-Areekijseree

Abstract:

The ultrastructure of 20 species of pheasant eggshells in Thailand, (Simese Fireback, Lophura diardi), (Silver Pheasant, Lophura nycthemera), (Kalij Pheasant, Lophura leucomelanos crawfurdii), (Kalij Pheasant, Lophura leucomelanos lineata), (Red Junglefowl, Gallus gallus spadiceus), (Crested Fireback, Lophura ignita rufa), (Green Peafowl, Pavo muticus), (Indian Peafowl, Pavo cristatus), (Grey Peacock Pheasant, Polyplectron bicalcaratum bicalcaratum), (Lesser Bornean Fireback, Lophura ignita ignita), (Green Junglefowl, Gallus varius), (Hume's Pheasant, Syrmaticus humiae humiae), (Himalayan Monal, Lophophorus impejanus), Golden Pheasant, Chrysolophus pictus, (Ring-Neck Pheasant, Phasianus sp.), (Reeves’s Pheasant, Syrmaticus reevesi), (Polish Chicken, Gallus sp.), (Brahma Chicken, Gallus sp.), (Yellow Golden Pheasant, Chrysolophus pictus luteus), and (Lady Amhersts Pheasant, Chrysolophus amherstiae) were studied by Secondary electron imaging (SEI) and Energy dispersive X-ray analysis (EDX) detectors of scanning electron microscope. Generally, all pheasant eggshells showed 3 layers of cuticle, palisade, and mammillary. The total thickness was ranging from 190.28±5.94-838.96±16.31µm. The palisade layer is the most thickness layer following by mammillary and cuticle layers. The palisade layer in all pheasant eggshells consisted of numerous vesicle holes that were firmly forming as network thorough the layer. The vesicle holes in all pheasant eggshells had difference porosity ranging from 0.44±0.11-0.23±0.05 µm. While the mammillary layer was the most compact layer with a variable shape (broad-base V and U-shape) connect to shell membrane. Elemental analysis by of 20 specie eggshells showed 9 apparent elements including carbon (C), oxygen (O), calcium (Ca), phosphorous (P), sulfur (S), magnesium (Mg), silicon (Si), aluminum (Al), and copper (Cu) at the percentage of 28.90- 8.33%, 60.64-27.61%, 55.30-14.49%, 1.97-0.03%, 0.08-0.03%, 0.50-0.16%, 0.30-0.04%, 0.06-0.02%, and 2.67-1.73%, respectively. It was found that Ca, C, and O showed highest elemental compositions, which essential for pheasant embryonic development, mainly presented as composited structure of calcium carbonate (CaCO3) more than 97%. Meanwhile, Mg, S, Si, Al, and P were major inorganic constituents of the eggshells which directly related to an increase of the shell hardness. Finally, the percentage of heavy metal copper (Cu) has been observed in 4 eggshell species. There are Golden Pheasant (2.67±0.16%), Indian Peafowl (2.61±0.13%), Green Peafowl (1.97±0.74%), and Silver Pheasant (1.73±0.11%), respectively. A non-significant difference was found in the percentages of 9 elements in all pheasant eggshells. This study is useful to provide the information of biology and taxonomic of pheasant study in Thailand for conservation.

Keywords: pheasants eggshells, secondary electron imaging (SEI) and energy dispersive X-ray analysis (EDX), morphology, Thailand

Procedia PDF Downloads 213
145 Optical and Structural Characterization of Rare Earth Doped Phosphate Glasses

Authors: Zélia Maria Da Costa Ludwig, Maria José Valenzuela Bell, Geraldo Henriques Da Silva, Thales Alves Faraco, Victor Rocha Da Silva, Daniel Rotmeister Teixeira, Vírgilio De Carvalho Dos Anjos, Valdemir Ludwig

Abstract:

Advances in telecommunications grow with the development of optical amplifiers based on rare earth ions. The focus has been concentrated in silicate glasses although their amplified spontaneous emission is limited to a few tens of nanometers (~ 40nm). Recently, phosphate glasses have received great attention due to their potential application in optical data transmission, detection, sensors and laser detector, waveguide and optical fibers, besides its excellent physical properties such as high thermal expansion coefficients and low melting temperature. Compared with the silica glasses, phosphate glasses provide different optical properties such as, large transmission window of infrared, and good density. Research on the improvement of physical and chemical durability of phosphate glass by addition of heavy metals oxides in P2O5 has been performed. The addition of Na2O further improves the solubility of rare earths, while increasing the Al2O3 links in the P2O5 tetrahedral results in increased durability and aqueous transition temperature and a decrease of the coefficient of thermal expansion. This work describes the structural and spectroscopic characterization of a phosphate glass matrix doped with different Er (Erbium) concentrations. The phosphate glasses containing Er3+ ions have been prepared by melt technique. A study of the optical absorption, luminescence and lifetime was conducted in order to characterize the infrared emission of Er3+ ions at 1540 nm, due to the radiative transition 4I13/2 → 4I15/2. Our results indicate that the present glass is a quite good matrix for Er3+ ions, and the quantum efficiency of the 1540 nm emission was high. A quenching mechanism for the mentioned luminescence was not observed up to 2,0 mol% of Er concentration. The Judd-Ofelt parameters, radiative lifetime and quantum efficiency have been determined in order to evaluate the potential of Er3+ ions in new phosphate glass. The parameters follow the trend as Ω2 > Ω4 > Ω6. It is well known that the parameter Ω2 is an indication of the dominant covalent nature and/or structural changes in the vicinity of the ion (short range effects), while Ω4 and Ω6 intensity parameters are long range parameters that can be related to the bulk properties such as viscosity and rigidity of the glass. From the PL measurements, no red or green upconversion was measured when pumping the samples with laser excitation at 980 nm. As future prospects: Synthesize this glass system with silver in order to determine the influence of silver nanoparticles on the Er3+ ions.

Keywords: phosphate glass, erbium, luminescence, glass system

Procedia PDF Downloads 488
144 Thin and Flexible Zn-Air Battery by Inexpensive Screen Printing Technique

Authors: Sira Suren, Soorathep Kheawhom

Abstract:

This work focuses the development of thin and flexible zinc-air battery. The battery with an overall thickness of about 300 μm was fabricated by an inexpensive screen-printing technique. Commercial nano-silver ink was used as both current collectors and catalyst layer. Carbon black ink was used to fabricate cathode electrode. Polypropylene membrane was used as the cathode substrate and separator. 9 M KOH was used as the electrolyte. A mixture of Zn powder and ZnO was used to prepare the anode electrode. Types of conductive materials (Bi2O3, Na2O3Si and carbon black) for the anode and its concentration were investigated. Results showed that the battery using 29% carbon black showed the best performance. The open-circuit voltage and energy density observed were 1.6 V and 694 Wh/kg, respectively. When the battery was discharged at 10 mA/cm2, the potential voltage observed was 1.35 V. Furthermore, the battery was tested for its flexibility. Upon bending, no significant loss in performance was observed.

Keywords: flexible, Gel Electrolyte, screen printing, thin battery, Zn-Air battery

Procedia PDF Downloads 183
143 Preparation of Metallic Nanoparticles with the Use of Reagents of Natural Origin

Authors: Anna Drabczyk, Sonia Kudlacik-Kramarczyk, Dagmara Malina, Bozena Tyliszczak, Agnieszka Sobczak-Kupiec

Abstract:

Nowadays, nano-size materials are very popular group of materials among scientists. What is more, these materials find an application in a wide range of various areas. Therefore constantly increasing demand for nanomaterials including metallic nanoparticles such as silver of gold ones is observed. Therefore, new routes of their preparation are sought. Considering potential application of nanoparticles, it is important to select an adequate methodology of their preparation because it determines their size and shape. Among the most commonly applied methods of preparation of nanoparticles chemical and electrochemical techniques are leading. However, currently growing attention is directed into the biological or biochemical aspects of syntheses of metallic nanoparticles. This is associated with a trend of developing of new routes of preparation of given compounds according to the principles of green chemistry. These principles involve e.g. the reduction of the use of toxic compounds in the synthesis as well as the reduction of the energy demand or minimization of the generated waste. As a result, a growing popularity of the use of such components as natural plant extracts, infusions or essential oils is observed. Such natural substances may be used both as a reducing agent of metal ions and as a stabilizing agent of formed nanoparticles therefore they can replace synthetic compounds previously used for the reduction of metal ions or for the stabilization of obtained nanoparticles suspension. Methods that proceed in the presence of previously mentioned natural compounds are environmentally friendly and proceed without the application of any toxic reagents. Methodology: Presented research involves preparation of silver nanoparticles using selected plant extracts, e.g. artichoke extract. Extracts of natural origin were used as reducing and stabilizing agents at the same time. Furthermore, syntheses were carried out in the presence of additional polymeric stabilizing agent. Next, such features of obtained suspensions of nanoparticles as total antioxidant activity as well as content of phenolic compounds have been characterized. First of the mentioned studies involved the reaction with DPPH (2,2-Diphenyl-1-picrylhydrazyl) radical. The content of phenolic compounds was determined using Folin-Ciocalteu technique. Furthermore, an essential issue was also the determining of the stability of formed suspensions of nanoparticles. Conclusions: In the research it was demonstrated that metallic nanoparticles may be obtained using plant extracts or infusions as stabilizing or reducing agent. The methodology applied, i.e. a type of plant extract used during the synthesis, had an impact on the content of phenolic compounds as well as on the size and polydispersity of obtained nanoparticles. What is more, it is possible to prepare nano-size particles that will be characterized by properties desirable from the viewpoint of their potential application and such an effect may be achieved with the use of non-toxic reagents of natural origin. Furthermore, proposed methodology stays in line with the principles of green chemistry.

Keywords: green chemistry principles, metallic nanoparticles, plant extracts, stabilization of nanoparticles

Procedia PDF Downloads 107
142 Ion Beam Sputtering Deposition of Inorganic-Fluoropolymer Nano-Coatings for Real-Life Applications

Authors: M. Valentini, D. Melisi, M. A. Nitti, R A. Picca, M. C. Sportelli, E. Bonerba, G. Casamassima, N. Cioffi, L. Sabbatini, G. Tantillo, A. Valentini

Abstract:

In recent years antimicrobial coatings are receiving increasing attention due to their high demand in medical applications as well as in healthcare and hygiene. Research and technology are constantly involved to develop advanced finishing which can provide bacteriostatic growth without compromising the other typical properties of a textile as durability and non-toxicity, just to cite a few. Here we report on the antimicrobial coatings obtained, at room temperature and without the use of solvents, by means of the ion beam co-sputtering technique of an Ag target and a polytetrafluoroethylene one. In particular, such method allows to conjugate the well-known antimicrobial action of silver with the anti-stain and water-repellent properties of the fluoropolymer. Moreover, different Ag nanoparticle loadings (φ) were prepared by tuning the material deposition conditions achieving a fine control on film thickness and their antimicrobial/anti-stain properties.

Keywords: antimicrobial, ion beam sputtering, nanocoatings, anti-stain

Procedia PDF Downloads 366
141 The Relationship between the Epithermal Mineralization, Thermalism, and Basement Faults in the Region of Guelma: NE of Algeria

Authors: B. Merdas

Abstract:

The Guelma region constitutes a vast geothermal field whose local geothermal gradient is very high. Indeed, various thermal and thermo sources emerging in the region, including some at relatively high temperatures. In the mio Pliocene Hammam N'bails, basin emerges a hot spring that leaves develop a thick series of thermal travertine linked to it. Near the thermal emergences has settled a very special mineralization antimony and zinc and lead. The results of analyses of the thermal waters of the source of Hammam N'bails and the associated travertine, show abnormal values in Pb, Sb, Zn, As, and other metals, demonstrating the genetic link between those waters and mineralization. Hammam N'bails mineralizations by their mineral assembling represented and their association with the hot springs, are very similar to epithermal deposits with precious metals (gold and silver) like Senator mine in Turkey or ‘Carlin-type’ in Nevada (USA).

Keywords: hot springs, mineralization; basement faults, Guelma, NE Algeria

Procedia PDF Downloads 404
140 Synthesis of Carbon Nanotubes from Coconut Oil and Fabrication of a Non Enzymatic Cholesterol Biosensor

Authors: Mitali Saha, Soma Das

Abstract:

The fabrication of nanoscale materials for use in chemical sensing, biosensing and biological analyses has proven a promising avenue in the last few years. Cholesterol has aroused considerable interest in recent years on account of its being an important parameter in clinical diagnosis. There is a strong positive correlation between high serum cholesterol level and arteriosclerosis, hypertension, and myocardial infarction. Enzyme-based electrochemical biosensors have shown high selectivity and excellent sensitivity, but the enzyme is easily denatured during its immobilization procedure and its activity is also affected by temperature, pH, and toxic chemicals. Besides, the reproducibility of enzyme-based sensors is not very good which further restrict the application of cholesterol biosensor. It has been demonstrated that carbon nanotubes could promote electron transfer with various redox active proteins, ranging from cytochrome c to glucose oxidase with a deeply embedded redox center. In continuation of our earlier work on the synthesis and applications of carbon and metal based nanoparticles, we have reported here the synthesis of carbon nanotubes (CCNT) by burning coconut oil under insufficient flow of air using an oil lamp. The soot was collected from the top portion of the flame, where the temperature was around 6500C which was purified, functionalized and then characterized by SEM, p-XRD and Raman spectroscopy. The SEM micrographs showed the formation of tubular structure of CCNT having diameter below 100 nm. The XRD pattern indicated the presence of two predominant peaks at 25.20 and 43.80, which corresponded to (002) and (100) planes of CCNT respectively. The Raman spectrum (514 nm excitation) showed the presence of 1600 cm-1 (G-band) related to the vibration of sp2-bonded carbon and at 1350 cm-1 (D-band) responsible for the vibrations of sp3-bonded carbon. A nonenzymatic cholesterol biosensor was then fabricated on an insulating Teflon material containing three silver wires at the surface, covered by CCNT, obtained from coconut oil. Here, CCNTs worked as working as well as counter electrodes whereas reference electrode and electric contacts were made of silver. The dimensions of the electrode was 3.5 cm×1.0 cm×0.5 cm (length× width × height) and it is ideal for working with 50 µL volume like the standard screen printed electrodes. The voltammetric behavior of cholesterol at CCNT electrode was investigated by cyclic voltammeter and differential pulse voltammeter using 0.001 M H2SO4 as electrolyte. The influence of the experimental parameters on the peak currents of cholesterol like pH, accumulation time, and scan rates were optimized. Under optimum conditions, the peak current was found to be linear in the cholesterol concentration range from 1 µM to 50 µM with a sensitivity of ~15.31 μAμM−1cm−2 with lower detection limit of 0.017 µM and response time of about 6s. The long-term storage stability of the sensor was tested for 30 days and the current response was found to be ~85% of its initial response after 30 days.

Keywords: coconut oil, CCNT, cholesterol, biosensor

Procedia PDF Downloads 259
139 Numerical Investigation of Thermal Energy Storage Panel Using Nanoparticle Enhanced Phase Change Material for Micro-Satellites

Authors: Jelvin Tom Sebastian, Vinod Yeldho Baby

Abstract:

In space, electronic devices are constantly attacked with radiation, which causes certain parts to fail or behave in unpredictable ways. To advance the thermal controllability for microsatellites, we need a new approach and thermal control system that is smaller than that on conventional satellites and that demand no electric power. Heat exchange inside the microsatellites is not that easy as conventional satellites due to the smaller size. With slight mass gain and no electric power, accommodating heat using phase change materials (PCMs) is a strong candidate for solving micro satellites' thermal difficulty. In other words, PCMs can absorb or produce heat in the form of latent heat, changing their phase and minimalizing the temperature fluctuation around the phase change point. The main restriction for these systems is thermal conductivity weakness of common PCMs. As PCM is having low thermal conductivity, it increases the melting and solidification time, which is not suitable for specific application like electronic cooling. In order to increase the thermal conductivity nanoparticles are introduced. Adding the nanoparticles in base PCM increases the thermal conductivity. Increase in weight concentration increases the thermal conductivity. This paper numerically investigates the thermal energy storage panel with nanoparticle enhanced phase change material. Silver nanostructure have increased the thermal properties of the base PCM, eicosane. Different weight concentration (1, 2, 3.5, 5, 6.5, 8, 10%) of silver enhanced phase change material was considered. Both steady state and transient analysis was performed to compare the characteristics of nanoparticle enhanced phase material at different heat loads. Results showed that in steady state, the temperature near the front panel reduced and temperature on NePCM panel increased as the weight concentration increased. With the increase in thermal conductivity more heat was absorbed into the NePCM panel. In transient analysis, it was found that the effect of nanoparticle concentration on maximum temperature of the system was reduced as the melting point of the material reduced with increase in weight concentration. But for the heat load of maximum 20W, the model with NePCM did not attain the melting point temperature. Therefore it showed that the model with NePCM is capable of holding more heat load. In order to study the heat load capacity double the load is given, maximum of 40W was given as first half of the cycle and the other is given constant OW. Higher temperature was obtained comparing the other heat load. The panel maintained a constant temperature for a long duration according to the NePCM melting point. In both the analysis, the uniformity of temperature of the TESP was shown. Using Ag-NePCM it allows maintaining a constant peak temperature near the melting point. Therefore, by altering the weight concentration of the Ag-NePCM it is possible to create an optimum operating temperature required for the effective working of the electronics components.

Keywords: carbon-fiber-reinforced polymer, micro/nano-satellite, nanoparticle phase change material, thermal energy storage

Procedia PDF Downloads 185
138 Antibacterial Activity of Green Synthesis Silver Nanoparticles from Moringa Oleifera

Authors: Ali Fadhel Ahmed, Tuqa Abdulkareem Hameed

Abstract:

Moringa oleifera (leaves and seeds) ethanolic and aqueous extracts were tested for antibacterial activity. The effect of plant extracts on three types of bacterial species: Staphylococcus aureus, Escherichia coli, and Klebsiella pneumoniae, was investigated. Using the agar well diffusion method, ethanolic extracts of Moringa oleifera demonstrated a significant antibacterial effect on the forty tested bacterial strains. Seed-induced inhibition zones (ethanolic extracts)were ranged from16 to 24 mm in diameter against S. aureus, respectively, whileE. coli and K. pneumonia had no effect. Gram-positive and Gram-negative bacteria were not affected by alcoholic and aqueous plant leaf extracts. The purpose of this present study was to look at the cytotoxic effects of M.Oleifera plant (alcoholic extracts).

Keywords: moringa oleifera, escherichia coli, klebsiella pneumoniae, staphylococcus aureus

Procedia PDF Downloads 130
137 Enhanced Optical and Electrical Properties of P-Type AgBiS₂ Energy Harvesting Materials as an Absorber of Solar Cell by Copper Doping

Authors: Yasaman Tabari-Saadi, Kaiwen Sun, Jialiang Huang, Martin Green, Xiaojing Hao

Abstract:

Optical and electrical properties of p-type AgBiS₂ absorber material have been improved by copper doping on silver sites. X-Ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis suggest that complete solid solutions of Ag₁₋ₓCuₓBiS₂ thin film have been formed. The carrier concentration of pure AgBiS₂ thin film deposited by the chemical process is 4.5*E+14 cm⁻³, and copper doping leads to the improved carrier concentration despite the semiconductor AgBiS₂ remains p-type semiconductor. Copper doping directly changed the absorption coefficient and increased the optical band gap (~1.5eV), which makes it a promising absorber for thin-film solar cell applications.

Keywords: copper doped, AgBiS₂, thin-film solar cell, carrier concentration, p-type semiconductor

Procedia PDF Downloads 93
136 Photo-Reflective Mulches For Saving Water in Agriculture

Authors: P. Mormile, M. Rippa, G. Bonanomi, F. Scala, Changrong Yan, L. Petti

Abstract:

Photo-reflective films represent, in the panorama of agricultural films, a valid support for Spring and Summer cultivations, both in open field and under greenhouse. In fact, thanks to the high reflectivity of these films, thermal aggression, that causes serious problems to plants when traditional black mulch films are used, is avoided. Yellow or silver colored photo-reflective films protect plants from damages, assure the mulching effect, give a valid support to Integrated Pest Management and, according to recent trials, greatly contribute in saving water. This further advantage is determined by the high water condensation under the mulch film and this gives rise to reduction of irrigation. Water saving means also energy saving for electric system of water circulation. Trials performed at different geographic and ambient context confirm that the use of photo-reflective mulch films during the hot season allows to save water up to 30%.

Keywords: photo-selective mulches, saving water, water circulation, irrigation

Procedia PDF Downloads 491
135 A Flexible High Energy Density Zn-Air Battery by Screen Printing Technique

Authors: Sira Suren, Soorathep Kheawhom

Abstract:

This work investigates the development of a high energy density zinc-air battery. Printed and flexible thin film zinc-air battery with an overall thickness of about 350 μm was fabricated by an inexpensive screen-printing technique. Commercial nano-silver ink was used as both current collectors and catalyst layer. Carbon black ink was used to fabricate cathode electrode. Polypropylene membrane was used as the cathode substrate and separator. 9 M KOH was used as the electrolyte. A mixture of Zn powder, ZnO, and Bi2O3 was used to prepare the anode electrode. The suitable concentration of Bi2O3 and types of binders (styrene-butadiene and sodium silicate) were investigated. Results showed that battery using 20% Bi2O3 and sodium silicate binder provided the best performance. The open-circuit voltage and energy density observed were 1.59 V and 690 Wh/kg, respectively. When the battery was discharged at 20 mA/cm2, the potential voltage observed was 1.3 V. Furthermore, the battery was tested for its flexibility. Upon bending, no significant loss in performance was observed.

Keywords: flexible, printed battery, screen printing, Zn-air

Procedia PDF Downloads 249
134 Carbon-Foam Supported Electrocatalysts for Polymer Electrolyte Membrane Fuel Cells

Authors: Albert Mufundirwa, Satoru Yoshioka, K. Ogi, Takeharu Sugiyama, George F. Harrington, Bretislav Smid, Benjamin Cunning, Kazunari Sasaki, Akari Hayashi, Stephen M. Lyth

Abstract:

Polymer electrolyte membrane fuel cells (PEMFCs) are electrochemical energy conversion devices used for portable, residential and vehicular applications due to their low emissions, high efficiency, and quick start-up characteristics. However, PEMFCs generally use expensive, Pt-based electrocatalysts as electrode catalysts. Due to the high cost and limited availability of platinum, research and development to either drastically reduce platinum loading, or replace platinum with alternative catalysts is of paramount importance. A combination of high surface area supports and nano-structured active sites is essential for effective operation of catalysts. We synthesize carbon foam supports by thermal decomposition of sodium ethoxide, using a template-free, gram scale, cheap, and scalable pyrolysis method. This carbon foam has a high surface area, highly porous, three-dimensional framework which is ideal for electrochemical applications. These carbon foams can have surface area larger than 2500 m²/g, and electron microscopy reveals that they have micron-scale cells, separated by few-layer graphene-like carbon walls. We applied this carbon foam as a platinum catalyst support, resulting in the improved electrochemical surface area and mass activity for the oxygen reduction reaction (ORR), compared to carbon black. Similarly, silver-decorated carbon foams showed higher activity and efficiency for electrochemical carbon dioxide conversion than silver-decorated carbon black. A promising alternative to Pt-catalysts for the ORR is iron-impregnated nitrogen-doped carbon catalysts (Fe-N-C). Doping carbon with nitrogen alters the chemical structure and modulates the electronic properties, allowing a degree of control over the catalytic properties. We have adapted our synthesis method to produce nitrogen-doped carbon foams with large surface area, using triethanolamine as a nitrogen feedstock, in a novel bottom-up protocol. These foams are then infiltrated with iron acetate (FeAc) and pyrolysed to form Fe-N-C foams. The resulting Fe-N-C foam catalysts have high initial activity (half-wave potential of 0.68 VRHE), comparable to that of commercially available Pt-free catalysts (e.g., NPC-2000, Pajarito Powder) in acid solution. In alkaline solution, the Fe-N-C carbon foam catalysts have a half-wave potential of 0.89 VRHE, which is higher than that of NPC-2000 by almost 10 mVRHE, and far out-performing platinum. However, the durability is still a problem at present. The lessons learned from X-ray absorption spectroscopy (XAS), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and electrochemical measurements will be used to carefully design Fe-N-C catalysts for higher performance PEMFCs.

Keywords: carbon-foam, polymer electrolyte membrane fuel cells, platinum, Pt-free, Fe-N-C, ORR

Procedia PDF Downloads 149
133 Fully Printed Strain Gauges: A Comparison of Aerosoljet-Printing and Micropipette-Dispensing

Authors: Benjamin Panreck, Manfred Hild

Abstract:

Strain sensors based on a change in resistance are well established for the measurement of forces, stresses, or material fatigue. Within the scope of this paper, fully additive manufactured strain sensors were produced using an ink of silver nanoparticles. Their behavior was evaluated by periodic tensile tests. Printed strain sensors exhibit two advantages: Their measuring grid is adaptable to the use case and they do not need a carrier-foil, as the measuring structure can be printed directly onto a thin sprayed varnish layer on the aluminum specimen. In order to compare quality characteristics, the sensors have been manufactured using two different technologies, namely aerosoljet-printing and micropipette-dispensing. Both processes produce structures which exhibit continuous features (in contrast to what can be achieved with droplets during inkjet printing). Briefly summarized the results show that aerosoljet-printing is the preferable technology for specimen with non-planar surfaces whereas both technologies are suitable for flat specimen.

Keywords: aerosoljet-printing, micropipette-dispensing, printed electronics, printed sensors, strain gauge

Procedia PDF Downloads 181
132 Antimicrobial Nanocompositions Made of Amino Acid Based Biodegradable Polymers

Authors: Nino Kupatadze, Mzevinar Bedinashvili, Tamar Memanishvili, Manana Gurielidze, David Tugushi, Ramaz Katsarava

Abstract:

Bacteria easily colonize the surfaces of tissues, surgical devices (implants, orthopedics, catheters, etc.), and instruments causing surgical device related infections. Therefore, the battle against bacteria and the prevention of surgical devices from biofilm formation is one of the main challenges of biomedicine today. Our strategy to the solution of this problem consists in using antimicrobial polymeric coatings as effective “shields” to protect surfaces from bacteria’s colonization and biofilm formation. As one of the most promising approaches look be the use of antimicrobial bioerodible polymeric nanocomposites containing silver nanoparticles (AgNPs). We assume that the combination of an erodible polymer with a strong bactericide should put obstacles to bacteria to occupy the surface and to form biofilm. It has to be noted that this kind of nanocomposites are also promising as wound dressing materials to treat infected superficial wounds. Various synthetic and natural polymers were used for creating biocomposites containing AgNPs as both particles' stabilizers and matrices forming elastic films at surfaces. One of the most effective systems to fabricate AgNPs is an ethanol solution of polyvinylpyrrolidone(PVP) with dissolved AgNO3–ethanol serves as a AgNO3 reductant and PVP as AgNPs stabilizer (through the interaction of nanoparticles with nitrogen atom of the amide group). Though PVP is biocompatible and film-forming polymer, it is not a good candidate to design either "biofilm shield" or wound dressing material because of a high solubility in water – though the solubility of PVP provides the desirable release of AgNPs from the matrix, but the coating is easily washable away from the surfaces. More promising as matrices look water insoluble but bioerodible polymers that can provide the release of AgNPs and form long-lasting coatings at the surfaces. For creating bioerodible water-insoluble antimicrobial coatings containing AgNPs, we selected amino acid based biodegradable polymers(AABBPs)–poly(ester amide)s, poly(ester urea)s, their copolymers containing amide and related groups capable to stabilize AgNPs. Among a huge variety of AABBPs reported we selected the polymers soluble in ethanol. For preparing AgNPs containing nanocompositions AABBPs and AgNO3 were dissolved in ethanol and subjected to photochemical reduction using daylight-irradiation. The formation of AgNPs was observed visually by coloring the solutions in brownish-red. The obtained AgNPs were characterized by UV-spectroscopy, transmission electron microscopy(TEM), and dynamic light scattering(DLS). According to the UV and TEM data, the photochemical reduction resulted presumably in spherical AgNPs with rather high contribution of the particles below 10 nm that are known as responsible for the antimicrobial activity. DLS study showed that average size of nanoparticles formed after photo-reduction in ethanol solution ranged within 50 nm. The in vitro antimicrobial activity study of the new nanocomposite material is in progress now.

Keywords: nanocomposites, silver nanoparticles, polymer, biodegradable

Procedia PDF Downloads 376
131 Ag and Au Nanoparticles Fabrication in Cross-Linked Polymer Microgels for Their Comparative Catalytic Study

Authors: Luqman Ali Shah, Murtaza Sayed, Mohammad Siddiq

Abstract:

Three-dimensional cross-linked polymer microgels with temperature responsive N-isopropyl acrylamide (NIPAM) and pH-sensitive methacrylic acid (MAA) were successfully synthesized by free radical emulsion polymerization with different amount of MAA. Silver and gold nanoparticles with size of 6.5 and 3.5 nm (±0.5 nm) respectively were homogeneously reduced inside these materials by chemical reduction method at pH 2.78 and 8.36 for the preparation of hybrid materials. The samples were characterized by FTIR, DLS and TEM techniques. The catalytic activity of the hybrid materials was investigated for the reduction of 4-nitrophenol (4- NP) using NaBH4 as reducing agent by UV-visible spectroscopy. The hybrid polymer network synthesized at pH 8.36 shows enhanced catalytic efficiency compared to catalysts synthesized at pH 2.78. In this study, it has been explored that catalyst activity strongly depends on amount of MAA, synthesis pH and type of metal nanoparticles entrapped.

Keywords: cross-linked polymer microgels, free radical polymerization, metal nanoparticles, catalytic activity, comparative study

Procedia PDF Downloads 299
130 Substitution of Silver-Thiosulfate (STS) with Some Essential Oils on Vase-Life of Cut Carnation cv. Liberty

Authors: Mohammad Bagher Hassanpouraghdam, Mohammad Ali Aazami Mavaloo

Abstract:

Due to the huge side-effects of chemicals; essential oils have been considered as suitable alternatives for keeping the vase-life of cut flowers mainly owing to the availability and environment-friend nature of these bio-chemicals. In the present experiment, 50% substitution of STS was achieved and tested on cut carnation flowers cv. Liberty by using the essential oils from four plants; Satureja sahendica Bornm., Echinophora platyloba DC., Tanacetum balsamita L. and Cupressus arizonica Greene., as CRD with five treatments and 3 replications. Vase-life and flower diameter were affected with 50% substitution of STS by essential oils from C. arizonica and T. balsamita. Membrane stability index, Malondialdehyde (MDA) content and Hydrogen peroxide (H2O2) amounts were affected by the substitution treatments as well. The main preservative effect belonged to the substitution with C. arizonica. So that, 50% STS substitution with Cupressus oil holds the highest membrane integrity and the least data for MDA and H2O2 content.

Keywords: Carnation, essential oil, Membrane stability index (MSI), vase life

Procedia PDF Downloads 470
129 Inhibitory Mechanism of Ag and Fe Colloidal Nanoparticles on P. aeruginosa and E.coli Growth

Authors: Fatemeh Moradian, Razieh Ghorbani, Poria Biparva

Abstract:

Growing resistance of microorganisms to potent antibiotics has renewed a great interest towards investigating bactericidal properties of nanoparticles and their Nano composites as an alternative. The use of metal nanoparticles to combat bacterial infections is one of the most wide spread applications of nanotechnology in the field of antibacterial. Nanomaterials have unique properties compared to their bulk counterparts. In this report, we demonstrate the antimicrobial activity of zerovalent Iron(ZVI) and Ag(silver) nanoparticles against Gram-negative bacteria E.coli(DH5α) and Pseudomonas aeruginosa. At first ZVI and Ag nanoparticles were synthesized by chemical reduction method and using scanning electron microscopy (SEM) the nanoparticle size determined. Different concentrations of Ag and ZVI nanoparticles were added to bacteria on nutrient agar medium. Minimum inhibitory concentration (MIC) of Ag and Fe nanoparticles for P. aeruginosa were 5µM and 1µg as well as for E.coli were 6µM. and 10 µg, respectively. Among the two nanoparticles, ZVI showed that the greatest antimicrobial activity against E.coli and Ag nanoparticle on P.aeruginosa. Results suggested that the bactericidal effect of metal nanoparticles has been attributed to their small size as well as high surface to volume ratio and NPs could be used as an effective antibacterial material.

Keywords: bactericidal properties, MIC, nanoparticle, SEM

Procedia PDF Downloads 567
128 Microstructure and Excess Conductivity of Bulk, Ag-Added FeSe Superconductors

Authors: Michael Koblischka, Yassine Slimani, Thomas Karwoth, Anjela Koblischka-Veneva, Essia Hannachi

Abstract:

On bulk FeSe superconductors containing different additions of Ag, a thorough investigation of the microstructures was performed using optical microscopy, SEM and TEM. The electrical resistivity was measured using four-point measurements in the temperature range 2 K ≤ T ≤ 150 K. The data obtained are analyzed in the framework of the excess conductivity approach using the Aslamazov-Larkin (AL) model. The investigated samples comprised of five distinct fluctuation regimes, namely short-wave (SWF), onedimensional (1D), two-dimensional (2D), three-dimensional (3D), and critical (CR) fluctuation regimes. The coherence length along the c-axis at zero-temperature (ξc(0)), the lower and upper critical magnetic fields (Bc1 and Bc2), the critical current density (Jc) and numerous other superconducting parameters were estimated with respect to the Ag content in the samples. The data reveal a reduction of the resistivity and a strong decrease of ξc(0) when doping the 11-samples with silver. The optimum content of the Ag-addition is found at 4 wt.-% Ag, yielding the highest critical current density.

Keywords: iron-based superconductors, FeSe, Ag-addition, excess conductivity, microstructure

Procedia PDF Downloads 125
127 Investigation of Genetic Diversity of Tilia tomentosa Moench. (Silver Lime) in Duzce-Turkey

Authors: Ibrahim Ilker Ozyigit, Ertugrul Filiz, Seda Birbilener, Semsettin Kulac, Zeki Severoglu

Abstract:

In this study, we have performed genetic diversity analysis of Tilia tomentosa genotypes by using randomly amplified polymorphic DNA (RAPD) primers. A total of 28 genotypes, including 25 members from the urban ecosystem and 3 genotypes from forest ecosystem as outgroup were used. 8 RAPD primers produced a total of 53 bands, of which 48 (90.6 %) were polymorphic. Percentage of polymorphic loci (P), observed number of alleles (Na), effective number of alleles (Ne), Nei's (1973) gene diversity (h), and Shannon's information index (I) were found as 94.29 %, 1.94, 1.60, 0.34, and 0.50, respectively. The unweighted pair-group method with arithmetic average (UPGMA) cluster analysis revealed that two major groups were observed. The genotypes of urban and forest ecosystems showed a high genetic similarity between 28% and 92% and these genotypes did not separate from each other in UPGMA tree. Also, urban and forest genotypes clustered together in principal component analysis (PCA).

Keywords: Tilia tomentosa, genetic diversity, urban ecosystem, RAPD, UPGMA

Procedia PDF Downloads 486
126 Determination of Mercury in Gold Ores by CVAAS Method

Authors: Ratna Siti Khodijah, Mirzam Abdurrachman

Abstract:

Gold is recovered from gold ores. Within the ores, there are not only gold but also several types of precious metals. Copper, silver, and platinum group elements (ruthenium, rhodium, palladium, rhenium, osmium, and iridium) are metals commonly found in the ores. These metals combine to form an ore because they have the same properties. It is due to their position in periodic-system-of-elements are near to gold. However, the presence of mercury in every gold ore has not been mentioned, even though it is located right next to gold in the periodic-system-of-elements and they are located in the same block, d-block. Thus, it is possible that mercury is contained in the ores. Moreover, the elements of the same group with mercury—zinc and cadmium—sometimes can be found in the ores. It is suspected that mercury can not be detected because the processing of gold ores usually using fire assay method. Before the ores melting, mercury would evaporate because it has the lowest boiling point of all precious metal in the ores. Therefore, it suggested doing research on the presence of mercury in gold ores by CVAAS method. The results of this study would obtain the amount of mercury in gold ores that should be purified. So it can be produced economically if possible.

Keywords: boiling point, d-block, fire assay, precious metal

Procedia PDF Downloads 311
125 Is Ag@TiO2 Core-Shell Nanoparticles Superior to Ag Surface Doped TiO2 Nanostructures?

Authors: Xiaohong Yang, Haitao Fu, Xizhong An, Aibing Yu

Abstract:

Silver@titanium dioxide (Ag@TiO2) core-shell nanostructures and Ag surface doped TiO2 particles (TiO2@Ag) have been designed and synthesized by sol-gel and hydrothermal methods under mild conditions. These two types of Ag/TiO2 nanocomposites were characterized in terms of their properties by various techniques such as transmission electron microscope (TEM), X-ray diffraction (XRD), Brunauer Emmett Teller (BET) and ultra violet-visible absorption spectroscopy (UV-Vis). Specifically, the photocatalystic performance and antibacterial behavior of such nanocomposites have been investigated and compared. It was found that The Ag@TiO2 core-shell nanostructures exhibit superior photocatalytic property to the Ag surface doped TiO2 particles under the reported conditions. While with UV pre-irradiation, the Ag@TiO2 core-shell composites exhibit better bactericidal performance. This is probably because the Ag cores tend to facilitate charge separation for TiO2, producing greater hydroxyl radicals on the surface of the TiO2 particles. These findings would be useful for the design and synthesis of Ag/TiO2 nanocomposites with desirable photocatalystic and antimicrobial activity for environmental applications.

Keywords: Ag@TiO2 core-shell nanoparticles, Ag surface doped TiO2 nanoparticles, photocatalysis, antibacterial

Procedia PDF Downloads 454
124 Lubricant-Impregnated Nanoporous Surfaces for Biofilm Prevention

Authors: Yuen Yee Li Sip, Lei Zhai

Abstract:

Biofilms are formed by the attachment of microorganisms onto substrates via self-synthesized extracellular polymeric substances. They have been observed in the International Space Stations (ISS), in which biofilms can jeopardize the performance of key equipment and can pose health threats to the astronauts. This project aims at building conformal nanoporous surfaces that are infused with lubricant and decorated with antimicrobial nanoparticles while simultaneously evaluating their efficacy in preventing biofilm formation. Lubricant-impregnated surfaces (LIS) are fabricated by using a layer-by-layer assembly of silica nanoparticles to generate conformal nanoporous coatings on substrates and fill the films with fluorinated fluids. LIS has demonstrated excellent repellency to a broad range of liquids, preventing microbe adhesion (anti-biofouling). Silver or copper nanoparticles were deposited on the coatings prior to lubricant infusion in order to provide antimicrobial characteristics to the coating. Surface morphology and biofilm growth were characterized to understand how the coating morphology affects the LIS stability and anti-biofouling behaviors (stationary and in a flow).

Keywords: biofilm, coatings, nanoporous, antifouling

Procedia PDF Downloads 72
123 Surface-Enhanced Raman Detection in Chip-Based Chromatography via a Droplet Interface

Authors: Renata Gerhardt, Detlev Belder

Abstract:

Raman spectroscopy has attracted much attention as a structurally descriptive and label-free detection method. It is particularly suited for chemical analysis given as it is non-destructive and molecules can be identified via the fingerprint region of the spectra. In this work possibilities are investigated how to integrate Raman spectroscopy as a detection method for chip-based chromatography, making use of a droplet interface. A demanding task in lab-on-a-chip applications is the specific and sensitive detection of low concentrated analytes in small volumes. Fluorescence detection is frequently utilized but restricted to fluorescent molecules. Furthermore, no structural information is provided. Another often applied technique is mass spectrometry which enables the identification of molecules based on their mass to charge ratio. Additionally, the obtained fragmentation pattern gives insight into the chemical structure. However, it is only applicable as an end-of-the-line detection because analytes are destroyed during measurements. In contrast to mass spectrometry, Raman spectroscopy can be applied on-chip and substances can be processed further downstream after detection. A major drawback of Raman spectroscopy is the inherent weakness of the Raman signal, which is due to the small cross-sections associated with the scattering process. Enhancement techniques, such as surface enhanced Raman spectroscopy (SERS), are employed to overcome the poor sensitivity even allowing detection on a single molecule level. In SERS measurements, Raman signal intensity is improved by several orders of magnitude if the analyte is in close proximity to nanostructured metal surfaces or nanoparticles. The main gain of lab-on-a-chip technology is the building block-like ability to seamlessly integrate different functionalities, such as synthesis, separation, derivatization and detection on a single device. We intend to utilize this powerful toolbox to realize Raman detection in chip-based chromatography. By interfacing on-chip separations with a droplet generator, the separated analytes are encapsulated into numerous discrete containers. These droplets can then be injected with a silver nanoparticle solution and investigated via Raman spectroscopy. Droplet microfluidics is a sub-discipline of microfluidics which instead of a continuous flow operates with the segmented flow. Segmented flow is created by merging two immiscible phases (usually an aqueous phase and oil) thus forming small discrete volumes of one phase in the carrier phase. The study surveys different chip designs to realize coupling of chip-based chromatography with droplet microfluidics. With regards to maintaining a sufficient flow rate for chromatographic separation and ensuring stable eluent flow over the column different flow rates of eluent and oil phase are tested. Furthermore, the detection of analytes in droplets with surface enhanced Raman spectroscopy is examined. The compartmentalization of separated compounds preserves the analytical resolution since the continuous phase restricts dispersion between the droplets. The droplets are ideal vessels for the insertion of silver colloids thus making use of the surface enhancement effect and improving the sensitivity of the detection. The long-term goal of this work is the first realization of coupling chip based chromatography with droplets microfluidics to employ surface enhanced Raman spectroscopy as means of detection.

Keywords: chip-based separation, chip LC, droplets, Raman spectroscopy, SERS

Procedia PDF Downloads 222
122 Online Escape Room for Intergenerational Play

Authors: David Kaufman

Abstract:

Despite the ‘silver Tsunami’ that is occurring worldwide, ageism is still a problem in modern society. As well, families are becoming increasingly separated geographically. This paper will discuss these issues and one potential solution - an online escape room game that is played by two players over the internet while talking to each other. The payers can be two seniors or one senior and one youth, e.g., a grandchild. Each player sees a different view of the game environment and players must collaborate in order to solve the puzzles presented and escape from the three rooms, all connected by a maze. The game was developed by Masters students at the Centre for Digital Media in Vancouver, BC in collaboration with a team of post-doctoral scholar, graduate students and faculty member, as well as 10 seniors who assisted. This paper will describe the game, development process and results of our pilot studies. The research study conducted comprises several stages: 1. several formative evaluation sessions with seniors to obtain feedback to assist further design, and 2. field testing of the game. Preliminary results have been extremely positive and results of our field tests will be presented in this paper.

Keywords: digital game, online escape room, intergenerational play, seniors

Procedia PDF Downloads 337
121 Control of Microbial Pollution Using Biodegradable Polymer

Authors: Mahmoud H. Abu Elella, Riham R. Mohamed, Magdy W. Sabaa

Abstract:

Introduction: Microbial pollution is global problem threatening the human health. It is resulted by pathogenic microorganisms such as Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and other pathogenic strains. They cause a dangerous effect on human health, so great efforts have been exerted to produce new and effective antimicrobial agents. Nowadays, natural polysaccharides, such as chitosan and its derivatives are used as antimicrobial agents. The aim of our work is to synthesize of a biodegradable polymer such as N-quaternized chitosan (NQC) then Characterization of NQC by using different analysis techniques such as Fourier transform infrared (FTIR) and Scanning electron microscopy (SEM) and using it as an antibacterial agent against different pathogenic bacteria. Methods: Synthesis of NQC using dimethylsulphate. Results: FTIR technique exhibited absorption peaks of NQC, SEM images illustrated that surface of NQC was smooth and antibacterial results showed that NQC had a high antibacterial effect. Discussion: NQC was prepared and it was proved by FTIR technique and SEM images antibacterial results exhibited that NQC was an antibacterial agent.

Keywords: antimicrobial agent, N-quaternized chitosan chloride, silver nanocomposites, sodium polyacrylate

Procedia PDF Downloads 254