Search results for: satellite images
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2812

Search results for: satellite images

592 Beam Coding with Orthogonal Complementary Golay Codes for Signal to Noise Ratio Improvement in Ultrasound Mammography

Authors: Y. Kumru, K. Enhos, H. Köymen

Abstract:

In this paper, we report the experimental results on using complementary Golay coded signals at 7.5 MHz to detect breast microcalcifications of 50 µm size. Simulations using complementary Golay coded signals show perfect consistence with the experimental results, confirming the improved signal to noise ratio for complementary Golay coded signals. For improving the success on detecting the microcalcifications, orthogonal complementary Golay sequences having cross-correlation for minimum interference are used as coded signals and compared to tone burst pulse of equal energy in terms of resolution under weak signal conditions. The measurements are conducted using an experimental ultrasound research scanner, Digital Phased Array System (DiPhAS) having 256 channels, a phased array transducer with 7.5 MHz center frequency and the results obtained through experiments are validated by Field-II simulation software. In addition, to investigate the superiority of coded signals in terms of resolution, multipurpose tissue equivalent phantom containing series of monofilament nylon targets, 240 µm in diameter, and cyst-like objects with attenuation of 0.5 dB/[MHz x cm] is used in the experiments. We obtained ultrasound images of monofilament nylon targets for the evaluation of resolution. Simulation and experimental results show that it is possible to differentiate closely positioned small targets with increased success by using coded excitation in very weak signal conditions.

Keywords: coded excitation, complementary golay codes, DiPhAS, medical ultrasound

Procedia PDF Downloads 240
591 Fluctuations in Radical Approaches to State Ownership of the Means of Production Over the Twentieth Century

Authors: Tom Turner

Abstract:

The recent financial crisis in 2008 and the growing inequality in developed industrial societies would appear to present significant challenges to capitalism and the free market. Yet there have been few substantial mainstream political or economic challenges to the dominant capitalist and market paradigm to-date. There is no dearth of critical and theoretical (academic) analyses regarding the prevailing systems failures. Yet despite the growing inequality in the developed industrial societies and the financial crisis in 2008 few commentators have advocated the comprehensive socialization or state ownership of the means of production to our knowledge – a core principle of radical Marxism in the 19th and early part of the 20th century. Undoubtedly the experience in the Soviet Union and satellite countries in the 20th century has cast a dark shadow over the notion of centrally controlled economies and state ownership of the means of production. In this paper, we explore the history of a doctrine advocating the socialization or state ownership of the means of production that was central to Marxism and socialism generally. Indeed this doctrine provoked an intense and often acrimonious debate especially for left-wing parties throughout the 20th century. The debate within the political economy tradition has historically tended to divide into a radical and a revisionist approach to changing or reforming capitalism. The radical perspective views the conflict of interest between capital and labor as a persistent and insoluble feature of a capitalist society and advocates the public or state ownership of the means of production. Alternatively, the revisionist perspective focuses on issues of distribution rather than production and emphasizes the possibility of compromise between capital and labor in capitalist societies. Over the 20th century, the radical perspective has faded and even the social democratic revisionist tradition has declined in recent years. We conclude with the major challenges that confront both the radical and revisionist perspectives in the development of viable policy agendas in mature developed democratic societies. Additionally, we consider whether state ownership of the means of production still has relevance in the 21st century and to what extent state ownership is off the agenda as a political issue in the political mainstream in developed industrial societies. A central argument in the paper is that state ownership of the means of production is unlikely to feature as either a practical or theoretical solution to the problems of capitalism post the financial crisis among mainstream political parties of the left. Although the focus here is solely on the shifting views of the radical and revisionist socialist perspectives in the western European tradition the analysis has relevance for the wider socialist movement.

Keywords: sate ownership, ownership means of production, radicals, revisionists

Procedia PDF Downloads 96
590 Complicating Representations of Domestic Violence Perpetration through a Qualitative Content Analysis and Socio-Ecological Approach

Authors: Charlotte Lucke

Abstract:

This study contributes to the body of literature that analyzes and complicates oversimplified and sensationalized representations of trauma and violence through a close examination and complication of representations of perpetrators of domestic violence in the mass media. This study determines the ways the media frames perpetrators of domestic violence through a qualitative content analysis and socio-ecological approach to the perpetration of violence. While the qualitative analysis has not been carried out, through preliminary research, this study hypothesizes that the media represents perpetrators through tropes such as the 'predator' or 'offender,' or as a demonized 'other.' It is necessary to expose and work through such stereotypes because cultivation theory demonstrates that the mass media determines societal beliefs about and perceptions of the world. Thus, representations of domestic violence in the mass media can lead people to believe that perpetrators of violence are mere animals or criminals and overlook the trauma that many perpetrators experience. When the media represents perpetrators as pure evil, monsters, or absolute 'others,' it leaves out the complexities of what moves people to commit domestic violence. By analyzing and placing media representations of perpetrators into conversation with the socio-ecological approach to violence perpetration, this study complicates domestic violence stereotypes. The socio-ecological model allows researchers to consider the way the interplay between individuals and their families, friends, communities, and cultures can move people to act violently. Using this model, along with psychological and psychoanalytic approaches to the etiology of domestic violence, this paper argues that media stereotypes conceal the way people’s experiences of trauma, along with community and cultural norms, perpetuates the cycle of systemic trauma and violence in the home.

Keywords: domestic violence, media images, representing trauma, theorising trauma

Procedia PDF Downloads 200
589 FRATSAN: A New Software for Fractal Analysis of Signals

Authors: Hamidreza Namazi

Abstract:

Fractal analysis is assessing fractal characteristics of data. It consists of several methods to assign fractal characteristics to a dataset which may be a theoretical dataset or a pattern or signal extracted from phenomena including natural geometric objects, sound, market fluctuations, heart rates, digital images, molecular motion, networks, etc. Fractal analysis is now widely used in all areas of science. An important limitation of fractal analysis is that arriving at an empirically determined fractal dimension does not necessarily prove that a pattern is fractal; rather, other essential characteristics have to be considered. For this purpose a Visual C++ based software called FRATSAN (FRActal Time Series ANalyser) was developed which extract information from signals through three measures. These measures are Fractal Dimensions, Jeffrey’s Measure and Hurst Exponent. After computing these measures, the software plots the graphs for each measure. Besides computing three measures the software can classify whether the signal is fractal or no. In fact, the software uses a dynamic method of analysis for all the measures. A sliding window is selected with a value equal to 10% of the total number of data entries. This sliding window is moved one data entry at a time to obtain all the measures. This makes the computation very sensitive to slight changes in data, thereby giving the user an acute analysis of the data. In order to test the performance of this software a set of EEG signals was given as input and the results were computed and plotted. This software is useful not only for fundamental fractal analysis of signals but can be used for other purposes. For instance by analyzing the Hurst exponent plot of a given EEG signal in patients with epilepsy the onset of seizure can be predicted by noticing the sudden changes in the plot.

Keywords: EEG signals, fractal analysis, fractal dimension, hurst exponent, Jeffrey’s measure

Procedia PDF Downloads 424
588 Organic Co-Polymer Monolithic Columns for Liquid Chromatography Mixed Mode Protein Separations

Authors: Ahmed Alkarimi, Kevin Welham

Abstract:

Organic mixed mode monolithic columns were fabricated from; glycidyl methacrylate-co-ethylene dimethacrylate-co-stearyl methacrylate, using glycidyl methacrylate and stearyl methacrylate as co monomers representing 30% and 70% respectively of the liquid volume with ethylene dimethacrylate crosslinker and 2,2-dimethoxy-2-phenylacetophenone as the free radical initiator. The monomers were mixed with a binary porogenic solvent, comprising propan-1-ol, and methanol (0.825 mL each). The monolith was formed by photo polymerization (365 nm) inside a borosilicate glass tube (1.5 mm ID and 3 mm OD x 50 mm length). The monolith was observed to have formed correctly by optical examination and generated reasonable backpressure, approximately 650 psi at a flow rate of 0.2 mL min⁻¹ 50:50 acetonitrile: water. The morphological properties of the monolithic columns were investigated using scanning electron microscopy images, and Brunauer-Emmett-Teller analysis, the results showed that the monolith was formed properly with 19.98 ± 0.01 mm² surface area, 0.0205 ± 0.01 cm³ g⁻¹ pore volume and 6.93 ± 0.01 nm average pore size. The polymer monolith formed was further investigated using proton nuclear magnetic resonance, and Fourier transform infrared spectroscopy. The monolithic columns were investigated using high-performance liquid chromatography to test their ability to separate different samples with a range of properties. The columns displayed both hydrophobic/hydrophilic and hydrophobic/ion exchange interactions with the compounds tested indicating that true mixed mode separations. The mixed mode monolithic columns exhibited significant separation of proteins.

Keywords: LC separation, proteins separation, monolithic column, mixed mode

Procedia PDF Downloads 135
587 Immobilized Iron Oxide Nanoparticles for Stem Cell Reconstruction in Magnetic Particle Imaging

Authors: Kolja Them, Johannes Salamon, Harald Ittrich, Michael Kaul, Tobias Knopp

Abstract:

Superparamagnetic iron oxide nanoparticles (SPIONs) are nanoscale magnets which can be biologically functionalized for biomedical applications. Stem cell therapies to repair damaged tissue, magnetic fluid hyperthermia for cancer therapy and targeted drug delivery based on SPIONs are prominent examples where the visualization of a preferably low concentrated SPION distribution is essential. In 2005 a new method for tomographic SPION imaging has been introduced. The method named magnetic particle imaging (MPI) takes advantage of the nanoparticles magnetization change caused by an oscillating, external magnetic field and allows to directly image the time-dependent nanoparticle distribution. The SPION magnetization can be changed by the electron spin dynamics as well as by a mechanical rotation of the nanoparticle. In this work different calibration methods in MPI are investigated for image reconstruction of magnetically labeled stem cells. It is shown that a calibration using rotationally immobilized SPIONs provides a higher quality of stem cell images with fewer artifacts than a calibration using mobile SPIONs. The enhancement of the image quality and the reduction of artifacts enables the localization and identification of a smaller number of magnetically labeled stem cells. This is important for future medical applications where low concentrations of functionalized SPIONs interacting with biological matter have to be localized.

Keywords: biomedical imaging, iron oxide nanoparticles, magnetic particle imaging, stem cell imaging

Procedia PDF Downloads 439
586 Pilot-free Image Transmission System of Joint Source Channel Based on Multi-Level Semantic Information

Authors: Linyu Wang, Liguo Qiao, Jianhong Xiang, Hao Xu

Abstract:

In semantic communication, the existing joint Source Channel coding (JSCC) wireless communication system without pilot has unstable transmission performance and can not effectively capture the global information and location information of images. In this paper, a pilot-free image transmission system of joint source channel based on multi-level semantic information (Multi-level JSCC) is proposed. The transmitter of the system is composed of two networks. The feature extraction network is used to extract the high-level semantic features of the image, compress the information transmitted by the image, and improve the bandwidth utilization. Feature retention network is used to preserve low-level semantic features and image details to improve communication quality. The receiver also is composed of two networks. The received high-level semantic features are fused with the low-level semantic features after feature enhancement network in the same dimension, and then the image dimension is restored through feature recovery network, and the image location information is effectively used for image reconstruction. This paper verifies that the proposed multi-level JSCC algorithm can effectively transmit and recover image information in both AWGN channel and Rayleigh fading channel, and the peak signal-to-noise ratio (PSNR) is improved by 1~2dB compared with other algorithms under the same simulation conditions.

Keywords: deep learning, JSCC, pilot-free picture transmission, multilevel semantic information, robustness

Procedia PDF Downloads 88
585 An Image Processing Scheme for Skin Fungal Disease Identification

Authors: A. A. M. A. S. S. Perera, L. A. Ranasinghe, T. K. H. Nimeshika, D. M. Dhanushka Dissanayake, Namalie Walgampaya

Abstract:

Nowadays, skin fungal diseases are mostly found in people of tropical countries like Sri Lanka. A skin fungal disease is a particular kind of illness caused by fungus. These diseases have various dangerous effects on the skin and keep on spreading over time. It becomes important to identify these diseases at their initial stage to control it from spreading. This paper presents an automated skin fungal disease identification system implemented to speed up the diagnosis process by identifying skin fungal infections in digital images. An image of the diseased skin lesion is acquired and a comprehensive computer vision and image processing scheme is used to process the image for the disease identification. This includes colour analysis using RGB and HSV colour models, texture classification using Grey Level Run Length Matrix, Grey Level Co-Occurrence Matrix and Local Binary Pattern, Object detection, Shape Identification and many more. This paper presents the approach and its outcome for identification of four most common skin fungal infections, namely, Tinea Corporis, Sporotrichosis, Malassezia and Onychomycosis. The main intention of this research is to provide an automated skin fungal disease identification system that increase the diagnostic quality, shorten the time-to-diagnosis and improve the efficiency of detection and successful treatment for skin fungal diseases.

Keywords: Circularity Index, Grey Level Run Length Matrix, Grey Level Co-Occurrence Matrix, Local Binary Pattern, Object detection, Ring Detection, Shape Identification

Procedia PDF Downloads 204
584 ‘Undressed Star’, Sexual Scenes and Discourses in Mass Media: Exploring 1980s Taiwan Female Film Stars’ Onscreen Erotic Acting

Authors: Xinchen Zhu

Abstract:

In the history of Chinese-language film, female stars’ acting is connected with issues of national ideology, consumerism, and sexual politics. In the 1980s, Taiwan entered a period of ‘soft authoritarianism’ in which the economy prospered politics became more democratic, and mass culture became more diverse. Film censorship was more flexible and sexual scenes were increasingly shown on screen. Female stars’ bodies were eroticized and commercialized through sexual and nude scenes and, by challenging conservative film censorship and social taboos, became the focus of mass media. This article will explore how discourses in mass media constructed the erotic images of female stars and, conversely, impacted film censorship, filmmakers and film actresses in 1980s’ Taiwan. This article will regard the eroticized female film stars’ acting as a ‘field’ of internal interaction and continuous reproduction, where the ideology of male dominance and voices of female film stars conflict with each other. Based on textual analysis of female stars’ sexual acting and the debate in mass media, the argument is that the eroticized female bodies were gazed upon on and off the screen. In the discourses of mass media, the artistry of actresses’ erotic acting was not only ignored, devalued and delegitimized, these stars were also labelled as ‘undressed star’ or ‘nude star’ and construed as victims of the film industry. However, the female stars were able to speak through mass media platforms, emphasizing their efforts in erotic acting and highlighting modern female subjectivity.

Keywords: sexual scenes, Taiwan female stars, erotic acting, discourses in mass media, female subjectivity

Procedia PDF Downloads 139
583 The Effect of Fibre Orientation on the Mechanical Behaviour of Skeletal Muscle: A Finite Element Study

Authors: Christobel Gondwe, Yongtao Lu, Claudia Mazzà, Xinshan Li

Abstract:

Skeletal muscle plays an important role in the human body system and function by generating voluntary forces and facilitating body motion. However, The mechanical properties and behaviour of skeletal muscle are still not comprehensively known yet. As such, various robust engineering techniques have been applied to better elucidate the mechanical behaviour of skeletal muscle. It is considered that muscle mechanics are highly governed by the architecture of the fibre orientations. Therefore, the aim of this study was to investigate the effect of different fibre orientations on the mechanical behaviour of skeletal muscle.In this study, a continuum mechanics approach–finite element (FE) analysis was applied to the left bicep femoris long head to determine the contractile mechanism of the muscle using Hill’s three-element model. The geometry of the muscle was segmented from the magnetic resonance images. The muscle was modelled as a quasi-incompressible hyperelastic (Mooney-Rivlin) material. Two types of fibre orientations were implemented: one with the idealised fibre arrangement, i.e. parallel single-direction fibres going from the muscle origin to insertion sites, and the other with curved fibre arrangement which is aligned with the muscle shape.The second fibre arrangement was implemented through the finite element method; non-uniform rational B-spline (FEM-NURBs) technique by means of user material (UMAT) subroutines. The stress-strain behaviour of the muscle was investigated under idealised exercise conditions, and will be further analysed under physiological conditions. The results of the two different FE models have been outputted and qualitatively compared.

Keywords: FEM-NURBS, finite element analysis, Mooney-Rivlin hyperelastic, muscle architecture

Procedia PDF Downloads 456
582 The Impact of Surface Roughness and PTFE/TiF3/FeF3 Additives in Plain ZDDP Oil on the Friction and Wear Behavior Using Thermal and Tribological Analysis under Extreme Pressure Condition

Authors: Gabi N. Nehme, Saeed Ghalambor

Abstract:

The use of titanium fluoride and iron fluoride (TiF3/FeF3) catalysts in combination with polutetrafluoroethylene (PTFE) in plain zinc dialkyldithiophosphate (ZDDP) oil is important for the study of engine tribocomponents and is increasingly a strategy to improve the formation of tribofilm and to provide low friction and excellent wear protection in reduced phosphorus plain ZDDP oil. The influence of surface roughness and the concentration of TiF3/FeF3/PTFE were investigated using bearing steel samples dipped in lubricant solution @100°C for two different heating time durations. This paper addresses the effects of water drop contact angle using different surface finishes after treating them with different lubricant combination. The calculated water drop contact angles were analyzed using Design of Experiment software (DOE) and it was determined that a 0.05 μm Ra surface roughness would provide an excellent TiF3/FeF3/PTFE coating for antiwear resistance as reflected in the scanning electron microscopy (SEM) images and the tribological testing under extreme pressure conditions. Both friction and wear performance depend greatly on the PTFE/and catalysts in plain ZDDP oil with 0.05% phosphorous and on the surface finish of bearing steel. The friction and wear reducing effects, which was observed in the tribological tests, indicated a better micro lubrication effect of the 0.05 μm Ra surface roughness treated at 100°C for 24 hours when compared to the 0.1 μm Ra surface roughness with the same treatment.

Keywords: scanning electron microscopy, ZDDP, catalysts, PTFE, friction, wear

Procedia PDF Downloads 314
581 Noise Mitigation Techniques to Minimize Electromagnetic Interference/Electrostatic Discharge Effects for the Lunar Mission Spacecraft

Authors: Vabya Kumar Pandit, Mudit Mittal, N. Prahlad Rao, Ramnath Babu

Abstract:

TeamIndus is the only Indian team competing for the Google Lunar XPRIZE(GLXP). The GLXP is a global competition to challenge the private entities to soft land a rover on the moon, travel minimum 500 meters and transmit high definition images and videos to Earth. Towards this goal, the TeamIndus strategy is to design and developed lunar lander that will deliver a rover onto the surface of the moon which will accomplish GLXP mission objectives. This paper showcases the various system level noise control techniques adopted by Electrical Distribution System (EDS), to achieve the required Electromagnetic Compatibility (EMC) of the spacecraft. The design guidelines followed to control Electromagnetic Interference by proper electronic package design, grounding, shielding, filtering, and cable routing within the stipulated mass budget, are explained. The paper also deals with the challenges of achieving Electromagnetic Cleanliness in presence of various Commercial Off-The-Shelf (COTS) and In-House developed components. The methods of minimizing Electrostatic Discharge (ESD) by identifying the potential noise sources, susceptible areas for charge accumulation and the methodology to prevent arcing inside spacecraft are explained. The paper then provides the EMC requirements matrix derived from the mission requirements to meet the overall Electromagnetic compatibility of the Spacecraft.

Keywords: electromagnetic compatibility, electrostatic discharge, electrical distribution systems, grounding schemes, light weight harnessing

Procedia PDF Downloads 270
580 Calculation of the Normalized Difference Vegetation Index and the Spectral Signature of Coffee Crops: Benefits of Image Filtering on Mixed Crops

Authors: Catalina Albornoz, Giacomo Barbieri

Abstract:

Crop monitoring has shown to reduce vulnerability to spreading plagues and pathologies in crops. Remote sensing with Unmanned Aerial Vehicles (UAVs) has made crop monitoring more precise, cost-efficient and accessible. Nowadays, remote monitoring involves calculating maps of vegetation indices by using different software that takes either Truecolor (RGB) or multispectral images as an input. These maps are then used to segment the crop into management zones. Finally, knowing the spectral signature of a crop (the reflected radiation as a function of wavelength) can be used as an input for decision-making and crop characterization. The calculation of vegetation indices using software such as Pix4D has high precision for monoculture plantations. However, this paper shows that using this software on mixed crops may lead to errors resulting in an incorrect segmentation of the field. Within this work, authors propose to filter all the elements different from the main crop before the calculation of vegetation indices and the spectral signature. A filter based on the Sobel method for border detection is used for filtering a coffee crop. Results show that segmentation into management zones changes with respect to the traditional situation in which a filter is not applied. In particular, it is shown how the values of the spectral signature change in up to 17% per spectral band. Future work will quantify the benefits of filtering through the comparison between in situ measurements and the calculated vegetation indices obtained through remote sensing.

Keywords: coffee, filtering, mixed crop, precision agriculture, remote sensing, spectral signature

Procedia PDF Downloads 362
579 MRI R2* of Liver in an Animal Model

Authors: Chiung-Yun Chang, Po-Chou Chen, Jiun-Shiang Tzeng, Ka-Wai Mac, Chia-Chi Hsiao, Jo-Chi Jao

Abstract:

This study aimed to measure R2* relaxation rates in the liver of New Zealand White (NZW) rabbits. R2* relaxation rate has been widely used in various hepatic diseases for iron overload by quantifying iron contents in liver. R2* relaxation rate is defined as the reciprocal of T2* relaxation time and mainly depends on the composition of tissue. Different tissues would have different R2* relaxation rates. The signal intensity decay in Magnetic resonance imaging (MRI) may be characterized by R2* relaxation rates. In this study, a 1.5T GE Signa HDxt whole body MR scanner equipped with an 8-channel high resolution knee coil was used to observe R2* values in NZW rabbit’s liver and muscle. Eight healthy NZW rabbits weighted 2 ~ 2.5 kg were recruited. After anesthesia using Zoletil 50 and Rompun 2% mixture, the abdomen of rabbit was landmarked at the center of knee coil to perform 3-plane localizer scan using fast spoiled gradient echo (FSPGR) pulse sequence. Afterward, multi-planar fast gradient echo (MFGR) scans were performed with 8 various echo times (TEs) (2/4/6/8/10/12/14/16 ms) to acquire images for R2* calculations. Regions of interest (ROIs) at liver and muscle were measured using Advantage workstation. Finally, the R2* was obtained by a linear regression of ln(SI) on TE. The results showed that the longer the echo time, the smaller the signal intensity. The R2* values of liver and muscle were 44.8  10.9 s-1 and 37.4  9.5 s-1, respectively. It implies that the iron concentration of liver is higher than that of muscle. In conclusion, R2* is correlated with iron contents in tissue. The correlations between R2* and iron content in NZW rabbit might be valuable for further exploration.

Keywords: liver, magnetic resonance imaging, muscle, R2* relaxation rate

Procedia PDF Downloads 411
578 SEM Detection of Folate Receptor in a Murine Breast Cancer Model Using Secondary Antibody-Conjugated, Gold-Coated Magnetite Nanoparticles

Authors: Yasser A. Ahmed, Juleen M Dickson, Evan S. Krystofiak, Julie A. Oliver

Abstract:

Cancer cells urgently need folate to support their rapid division. Folate receptors (FR) are over-expressed on a wide range of tumor cells, including breast cancer cells. FR are distributed over the entire surface of cancer cells, but are polarized to the apical surface of normal cells. Targeting of cancer cells using specific surface molecules such as folate receptors may be one of the strategies used to kill cancer cells without hurting the neighing normal cells. The aim of the current study was to try a method of SEM detecting FR in a murine breast cancer cell model (4T1 cells) using secondary antibody conjugated to gold or gold-coated magnetite nanoparticles. 4T1 cells were suspended in RPMI medium witth FR antibody and incubated with secondary antibody for fluorescence microscopy. The cells were cultured on 30mm Thermanox coverslips for 18 hours, labeled with FR antibody then incubated with secondary antibody conjugated to gold or gold-coated magnetite nanoparticles and processed to scanning electron microscopy (SEM) analysis. The fluorescence microscopy study showed strong punctate FR expression on 4T1 cell membrane. With SEM, the labeling with gold or gold-coated magnetite conjugates showed a similar pattern. Specific labeling occurred in nanoparticle clusters, which are clearly visualized in backscattered electron images. The 4T1 tumor cell model may be useful for the development of FR-targeted tumor therapy using gold-coated magnetite nano-particles.

Keywords: cancer cell, nanoparticles, cell culture, SEM

Procedia PDF Downloads 709
577 Improving Vocabulary and Listening Comprehension via Watching French Films without Subtitles: Positive Results

Authors: Yelena Mazour-Matusevich, Jean-Robert Ancheta

Abstract:

This study is based on more than fifteen years of experience of teaching a foreign language, in my case French, to the English-speaking students. It represents a qualitative research on foreign language learners’ reaction and their gains in terms of vocabulary and listening comprehension through repeatedly viewing foreign feature films with the original sountrack but without English subtitles. The initial idea emerged upon realization that the first challenge faced by my students when they find themselves in a francophone environment has been their lack of listening comprehension. Their inability to understand colloquial speech affects not only their academic performance, but their psychological health as well. To remedy this problem, I have designed and applied for many years my own teaching method based on one particular French film, exceptionally suited, for the reasons described in detail in the paper, for the intermediate-advanced level foreign language learners. This project, conducted together with my undergraduate assistant and mentoree J-R Ancheta, aims at showing how the paralinguistic features, such as characters’ facial expressions, settings, music, historical background, images provided before the actual viewing, etc., offer crucial support and enhance students’ listening comprehension. The study, based on students’ interviews, also offers special pedagogical techniques, such as ‘anticipatory’ vocabulary lists and exercises, drills, quizzes and composition topics that have proven to boost students’ performance. For this study, only the listening proficiency and vocabulary gains of the interviewed participants were assessed.

Keywords: comprehension, film, listening, subtitles, vocabulary

Procedia PDF Downloads 594
576 Preservation of Sensitive Biological Products: An Insight into Conventional and Upcoming Drying Techniques

Authors: Jannika Dombrowski, Sabine Ambros, Ulrich Kulozik

Abstract:

Several drying techniques are used to preserve sensitive substances such as probiotic lactic acid bacteria. With the aim to better understand differences between these processes, this work gives new insights into structural variations resulting from different preservation methods and their impact on product quality and storage stability. Industrially established methods (freeze drying, spray drying) were compared to upcoming vacuum, microwave-freeze, and microwave-vacuum drying. For freeze and microwave-freeze dried samples, survival and activity maintained 100%, whereas vacuum and microwave-vacuum dried cultures achieved 30-40% survival. Spray drying yielded in lowest viability. The results are directly related to temperature and oxygen content during drying. Interestingly, most storage stable products resulted from vacuum and microwave-vacuum drying due to denser product structures as determined by helium pycnometry and SEM images. Further, lower water adsorption velocities were responsible for lower inactivation rates. Concluding, resulting product structures as well as survival rates and storage stability mainly depend on the type of water removal instead of energy input. Microwave energy compared to conductive heating did not lead to significant differences regarding the examined factors. Correlations could be proven for three investigated microbial strains. The presentation will be completed by an overview on the energy efficiency of the presented methods.

Keywords: drying techniques, energy efficiency, lactic acid bacteria, probiotics, survival rates, structure characterization

Procedia PDF Downloads 213
575 Cone Beam Computed Tomography: A Useful Diagnostic Tool to Determine Root Canal Morphology in a Sample of Egyptian Population

Authors: H. El-Messiry, M. El-Zainy, D. Abdelkhalek

Abstract:

Cone-beam computed tomography (CBCT) provides high-quality 3-dimensional images of dental structures because of its high spatial resolution. The study of dental morphology is important in research as it provides information about diversities within a population. Many studies have shown different shapes and numbers of roots canals among different races, especially in molars. The aim of this study was to determine the morphology of root canals of mandibular first and third molars in a sample of Egyptian population using CBCT scanning. Fifty mandibular first Molars (M1) and fifty mandibular third (M3) extracted molars were collected. Thick rectangular molds were made using pink wax to hold the samples. Molars were embedded in the wax mold by aligning them in rows leaving arbitrary 0.5cm space between them. The molds with the samples in were submitted for CBCT scan. The number and morphology of root canals were assessed and classified according to Vertucci's classification. The mesial and the distal roots were examined separately. Finally, data was analyzed using Fisher exact test. The most prevalent mesial root canal frequency in M1 was type IV (60%) and type II (40 %), while M3 showed prevalence of type I (40%) and II (40%). Distal root canal morphology showed prevalence of type I in both M1 (66%) and M3 (86%). So, it can be concluded that CBCT scanning provides supplemental information about the root canal configurations of mandibular molars in a sample of Egyptian population. This study may help clinicians in the root canal treatment of mandibular molars.

Keywords: cone beam computed tomography, mandibular first molar, mandibular third molar, root canal morphology

Procedia PDF Downloads 288
574 Synthesis and Characterization of Cellulose-Based Halloysite-Carbon Adsorbent

Authors: Laura Frydel, Piotr M. Slomkiewicz, Beata Szczepanik

Abstract:

Triclosan has been used as a disinfectant in many medical products, such as: hand disinfectant soaps, creams, mouthwashes, pastes and household cleaners. Due to its strong antimicrobial activity, triclosan is becoming more and more popular and the consumption of disinfectants with triclosan in it is increasing. As a result, this compound increasingly finds its way into waters and soils in an unchanged form, pollutes the environment and may have a negative effect on organisms. The aim of this study was to investigate the synthesis of cellulose-based halloysite-carbon adsorbent and perform its characterization. The template in the halloysite-carbon adsorbent was halloysite nanotubes and the carbon precursor was microcrystalline cellulose. Scanning electron microscope (SEM) images were obtained and the elementary composition (qualitative and quantitative) of the sample was determined by energy dispersion spectroscopy (EDS). The identification of the crystallographic composition of the halloysite nanotubes and the sample of the halloysite-carbon composite was carried out using the X-ray powder diffraction (XRPD) method. The FTIR spectra were acquired before and after the adsorption process in order to determine the functional groups on the adsorbent surface and confirm the interactions between adsorbent and adsorbate molecules. The parameters of the porous structure of the adsorbent, such as the specific surface area (Brunauer-Emmett-Teller method), the total pore volume and the volume of mesopores and micropores were determined. Total carbon and total organic carbon were also determined in the samples. A cellulose-based halloysite-carbon adsorbent was used to remove triclosan from water. The degree of removal of triclosan from water was approximately 90%. The results indicate that the halloysite-carbon composite can be successfully used as an effective adsorbent for removing triclosan from water.

Keywords: Adsorption, cellulose, halloysite, triclosan

Procedia PDF Downloads 98
573 Carbonation of Wollastonite (001) competing Hydration: Microscopic Insights from Ion Spectroscopy and Density Functional Theory

Authors: Peter Thissen

Abstract:

In this work, we report about the influence of the chemical potential of water on the carbonation reaction of wollastonite (CaSiO3) as model surface of cement and concrete. Total energy calculations based on density functional theory (DFT) combined with kinetic barrier predictions based on nudge elastic band (NEB) method show that the exposure of the water-free wollastonite surface to CO2 results in a barrier-less carbonation. CO2 reacts with the surface oxygen and forms carbonate (CO32-) complexes together with a major reconstruction of the surface. The reaction comes to a standstill after one carbonate monolayer has been formed. In case one water monolayer is covering the wollastonite surface, the carbonation is no more barrier-less, yet ending in a localized monolayer. Covered with multilayers of water, the thermodynamic ground state of the wollastonite completely changes due to a metal-proton exchange reaction (MPER, also called early stage hydration) and Ca2+ ions are partially removed from solid phase into the H2O/wollastonite interface. Mobile Ca2+ react again with CO2 and form carbonate complexes, ending in a delocalized layer. By means of high resolution time-of-flight secondary-ion mass-spectroscopy images (ToF-SIMS), we confirm that hydration can lead to a partially delocalization of Ca2+ ions on wollastonite surfaces. Finally, we evaluate the impact of our model surface results by means of Low Energy Ion Scattering (LEIS) spectroscopy combined with careful discussion about the competing reactions of carbonation vs. hydration.

Keywords: Calcium-silicate, carbonation, hydration, metal-proton exchange reaction

Procedia PDF Downloads 335
572 The Discovery and Application of Perspective Representation in Modern Italy

Authors: Matthias Stange

Abstract:

In the early modern period, a different image of man began to prevail in Europe. The focus was on the self-determined human being and his abilities. At first, these developments could be seen in Italian painting and architecture, which again oriented itself to the concepts and forms of antiquity. For example, through the discovery of perspective representation by Brunelleschi or later the orthogonal projection by Alberti, after the ancient knowledge of optics had been forgotten in the Middle Ages. The understanding of reality in the Middle Ages was not focused on the sensually perceptible world but was determined by ecclesiastical dogmas. The empirical part of this study examines the rediscovery and development of perspective. With the paradigm of antiquity, the figure of the architect was also recognised again - the cultural man trained theoretically and practically in numerous subjects, as Vitruvius describes him. In this context, the role of the architect, the influence on the painting of the Quattrocento as well as the influence on architectural representation in the Baroque period are examined. Baroque is commonly associated with the idea of illusionistic appearance as opposed to the tangible reality presented in the Renaissance. The study has shown that the central perspective projection developed by Filippo Brunelleschi enabled another understanding of seeing and the dissemination of painted images. Brunelleschi's development made it possible to understand the sight of nature as a reflection of what is presented to the viewer's eye. Alberti later shortened Brunelleschi's central perspective representation for practical use in painting. In early modern Italian architecture and painting, these developments apparently supported each other. The pictorial representation of architecture initially served the development of an art form before it became established in building practice itself.

Keywords: Alberti, Brunelleschi, central perspective projection, orthogonal projection, quattrocento, baroque

Procedia PDF Downloads 53
571 The application of Gel Dosimeters and Comparison with other Dosimeters in Radiotherapy: A Literature Review

Authors: Sujan Mahamud

Abstract:

Purpose: A major challenge in radiotherapy treatment is to deliver precise dose of radiation to the tumor with minimum dose to the healthy normal tissues. Recently, gel dosimetry has emerged as a powerful tool to measure three-dimensional (3D) dose distribution for complex delivery verification and quality assurance. These dosimeters act both as a phantom and detector, thus confirming the versatility of dosimetry technique. The aim of the study is to know the application of Gel Dosimeters in Radiotherapy and find out the comparison with 1D and 2D dimensional dosimeters. Methods and Materials: The study is carried out from Gel Dosimeter literatures. Secondary data and images have been collected from different sources such as different guidelines, books, and internet, etc. Result: Analyzing, verifying, and comparing data from treatment planning system (TPS) is determined that gel dosimeter is a very excellent powerful tool to measure three-dimensional (3D) dose distribution. The TPS calculated data were in very good agreement with the dose distribution measured by the ferrous gel. The overall uncertainty in the ferrous-gel dose determination was considerably reduced using an optimized MRI acquisition protocol and a new MRI scanner. The method developed for comparing measuring gel data with calculated treatment plans, the gel dosimetry method, was proven to be a useful for radiation treatment planning verification. In 1D and 2D Film, the depth dose and lateral for RMSD are 1.8% and 2%, and max (Di-Dj) are 2.5% and 8%. Other side 2D+ ( 3D) Film Gel and Plan Gel for RMSDstruct and RMSDstoch are 2.3% & 3.6% and 1% & 1% and system deviation are -0.6% and 2.5%. The study is investigated that the result fined 2D+ (3D) Film Dosimeter is better than the 1D and 2D Dosimeter. Discussion: Gel Dosimeters is quality control and quality assurance tool which will used the future clinical application.

Keywords: gel dosimeters, phantom, rmsd, QC, detector

Procedia PDF Downloads 126
570 BiFeO3-CoFe2O4-PbTiO3 Composites: Structural, Multiferroic and Optical Characteristics

Authors: Nidhi Adhlakha, K. L. Yadav

Abstract:

Three phase magnetoelectric (ME) composites (1-x)(0.7BiFeO3-0.3CoFe2O4)-xPbTiO3 (or equivalently written as (1-x)(0.7BFO-0.3CFO)-xPT) with x variations 0, 0.30, 0.35, 0.40, 0.45 and 1.0 were synthesized using hybrid processing route. The effects of PT addition on structural, multiferroic and optical properties have been subsequently investigated. A detailed Rietveld refinement analysis of X-ray diffraction patterns has been performed, which confirms the presence of structural phases of individual constituents in the composites. Field emission scanning electron microscopy (FESEM) images are taken for microstructural analysis and grain size determination. Transmission electron microscopy (TEM) analysis of 0.3CFO-0.7BFO reveals the average particle size to be lying in the window of 8-10 nm. The temperature dependent dielectric constant at various frequencies (1 kHz, 10 kHz, 50 kHz, 100 kHz and 500 kHz) has been studied and the dielectric study reveals that the increase of dielectric constant and decrease of average dielectric loss of composites with incorporation of PT content. The room temperature ferromagnetic behavior of composites is confirmed through the observation of Magnetization vs. Magnetic field (M-H) hysteresis loops. The variation of magnetization with temperature indicates the presence of spin glass behavior in composites. Magnetoelectric coupling is evidenced in the composites through the observation of the dependence of the dielectric constant on the magnetic field, and magnetodielectric response of 2.05 % is observed for 45 mol% addition of PT content. The fractional change of magnetic field induced dielectric constant can also be expressed as ∆ε_r~γM^2 and the value of γ is found to be ~1.08×10-2 (emu/g)-2 for composite with x=0.40. Fourier transformed infrared (FTIR) spectroscopy of samples is carried out to analyze various bonds formation in the composites.

Keywords: composite, X-ray diffraction, dielectric properties, optical properties

Procedia PDF Downloads 280
569 Analysis of Vibration of Thin-Walled Parts During Milling Made of EN AW-7075 Alloy

Authors: Jakub Czyżycki, Paweł Twardowski

Abstract:

Thin-walled components made of aluminum alloys are increasingly found in many fields of industry, and they dominate the aerospace industry. The machining of thinwalled structures encounters many difficulties related to the high susceptibility of the workpiece, which causes vibrations including the most unfavorable ones called chatter. The effect of these phenomena is the difficulty in obtaining the required geometric dimensions and surface quality. The purpose of this study is to analyze vibrations arising during machining of thin-walled workpieces made of aluminum alloy EN AW-7075. Samples representing actual thin-walled workpieces were examined in a different range of dimensions characterizing thin-walled workpieces. The tests were carried out in HSM high-speed machining (cutting speed vc = 1400 m/min) using a monolithic solid carbide endmill. Measurement of vibration was realized using a singlecomponent piezoelectric accelerometer 4508C from Brüel&Kjær which was mounted directly on the sample before machining, the measurement was made in the normal feed direction AfN. In addition, the natural frequency of the tested thin-walled components was investigated using a laser vibrometer for an broader analysis of the tested samples. The effect of vibrations on machining accuracy was presented in the form of surface images taken with an optical measuring device from Alicona. A classification of the vibrations produced during the test was carried out, and were analyzed in both the time and frequency domains. Observed significant influence of the thickness of the thin-walled component on the course of vibrations during machining.

Keywords: high-speed machining, thin-walled elements, thin-walled components, milling, vibrations

Procedia PDF Downloads 14
568 Performance Analysis of New Types of Reference Targets Based on Spaceborne and Airborne SAR Data

Authors: Y. S. Zhou, C. R. Li, L. L. Tang, C. X. Gao, D. J. Wang, Y. Y. Guo

Abstract:

Triangular trihedral corner reflector (CR) has been widely used as point target for synthetic aperture radar (SAR) calibration and image quality assessment. The additional “tip” of the triangular plate does not contribute to the reflector’s theoretical RCS and if it interacts with a perfectly reflecting ground plane, it will yield an increase of RCS at the radar bore-sight and decrease the accuracy of SAR calibration and image quality assessment. Regarding this problem, two types of CRs were manufactured. One was the hexagonal trihedral CR. It is a self-illuminating CR with relatively small plate edge length, while large edge length usually introduces unexpected edge diffraction error. The other was the triangular trihedral CR with extended bottom plate which considers the effect of ‘tip’ into the total RCS. In order to assess the performance of the two types of new CRs, flight campaign over the National Calibration and Validation Site for High Resolution Remote Sensors was carried out. Six hexagonal trihedral CRs and two bottom-extended trihedral CRs, as well as several traditional triangular trihedral CRs, were deployed. KOMPSAT-5 X-band SAR image was acquired for the performance analysis of the hexagonal trihedral CRs. C-band airborne SAR images were acquired for the performance analysis of the bottom-extended trihedral CRs. The analysis results showed that the impulse response function of both the hexagonal trihedral CRs and bottom-extended trihedral CRs were much closer to the ideal sinc-function than the traditional triangular trihedral CRs. The flight campaign results validated the advantages of new types of CRs and they might be useful in the future SAR calibration mission.

Keywords: synthetic aperture radar, calibration, corner reflector, KOMPSAT-5

Procedia PDF Downloads 250
567 The Correlation between Three-Dimensional Implant Positions and Esthetic Outcomes of Single-Tooth Implant Restoration

Authors: Pongsakorn Komutpol, Pravej Serichetaphongse, Soontra Panmekiate, Atiphan Pimkhaokham

Abstract:

Statement of Problem: The important parameter of esthetic assessment in anterior maxillary implant include pink esthetic of gingiva and white esthetic of restoration. While the 3 dimensional (3D) implant position are recently concerned as a key for succeeding in implant treatment. However, to our knowledge, the authors did not come across any publication that demonstrated the relations of esthetic outcome and 3D implant position. Objectives: To investigate the correlation between positional accuracy of single-tooth implant restoration (STIR) in all 3 dimensions and their esthetic outcomes. Materials and Methods: 17 patients’ data who had a STIR at central incisor with pristine contralateral tooth were included in this study. Intraoral photographs, dental models, and cone beam computed tomography (CBCT) images were retrieved. The esthetic outcome was assessed in accordance with pink esthetic score and white esthetic score (PES/WES). While the number of correct position in each dimension (mesiodistal, labiolingual, apicocoronal) of the implant were evaluated and defined as 'right' or 'wrong' according to ITI consensus conference by one investigator using CBCT data. The different mean score between right and wrong position in all dimensions was analyzed by Mann-Whitney U test with 0.05 was the significant level of the study. Results: The average score of PES/WES was 15.88 ± 1.65 which was considered as clinically acceptable. The average PES/WES score in 1, 2 and 3 right dimension of the implant position were 16.71, 15.75 and 15.17 respectively. None of the implants placed wrongly in all three dimensions. Statistically significant difference of the PES/WES score was found between the implants that placed right in 3 dimensions and 1 dimension (p = 0.041). Conclusion: This study supported the principle of 3D position of implant. The more properly implant was placed, the higher esthetic outcome was found.

Keywords: accuracy, dental implant, esthetic, 3D implant position

Procedia PDF Downloads 147
566 Sensitivity and Uncertainty Analysis of Hydrocarbon-In-Place in Sandstone Reservoir Modeling: A Case Study

Authors: Nejoud Alostad, Anup Bora, Prashant Dhote

Abstract:

Kuwait Oil Company (KOC) has been producing from its major reservoirs that are well defined and highly productive and of superior reservoir quality. These reservoirs are maturing and priority is shifting towards difficult reservoir to meet future production requirements. This paper discusses the results of the detailed integrated study for one of the satellite complex field discovered in the early 1960s. Following acquisition of new 3D seismic data in 1998 and re-processing work in the year 2006, an integrated G&G study was undertaken to review Lower Cretaceous prospectivity of this reservoir. Nine wells have been drilled in the area, till date with only three wells showing hydrocarbons in two formations. The average oil density is around 300API (American Petroleum Institute), and average porosity and water saturation of the reservoir is about 23% and 26%, respectively. The area is dissected by a number of NW-SE trending faults. Structurally, the area consists of horsts and grabens bounded by these faults and hence compartmentalized. The Wara/Burgan formation consists of discrete, dirty sands with clean channel sand complexes. There is a dramatic change in Upper Wara distributary channel facies, and reservoir quality of Wara and Burgan section varies with change of facies over the area. So predicting reservoir facies and its quality out of sparse well data is a major challenge for delineating the prospective area. To characterize the reservoir of Wara/Burgan formation, an integrated workflow involving seismic, well, petro-physical, reservoir and production engineering data has been used. Porosity and water saturation models are prepared and analyzed to predict reservoir quality of Wara and Burgan 3rd sand upper reservoirs. Subsequently, boundary conditions are defined for reservoir and non-reservoir facies by integrating facies, porosity and water saturation. Based on the detailed analyses of volumetric parameters, potential volumes of stock-tank oil initially in place (STOIIP) and gas initially in place (GIIP) were documented after running several probablistic sensitivity analysis using Montecalro simulation method. Sensitivity analysis on probabilistic models of reservoir horizons, petro-physical properties, and oil-water contacts and their effect on reserve clearly shows some alteration in the reservoir geometry. All these parameters have significant effect on the oil in place. This study has helped to identify uncertainty and risks of this prospect particularly and company is planning to develop this area with drilling of new wells.

Keywords: original oil-in-place, sensitivity, uncertainty, sandstone, reservoir modeling, Monte-Carlo simulation

Procedia PDF Downloads 172
565 Pre-Transformation Phase Reconstruction for Deformation-Induced Transformation in AISI 304 Austenitic Stainless Steel

Authors: Manendra Singh Parihar, Sandip Ghosh Chowdhury

Abstract:

Austenitic stainless steels are widely used and give a good combination of properties. When this steel is plastically deformed, a phase transformation of the metastable Face Centred Cubic Austenite to the stable Body Centred Cubic (α’) or to the Hexagonal close packed (ԑ) martensite may occur, leading to the enhancement in the mechanical properties like strength. The work was based on variant selection and corresponding texture analysis for the strain induced martensitic transformation during deformation of the parent austenite FCC phase to form the product HCP and the BCC martensite phases separately, obeying their respective orientation relationships. The automated method for reconstruction of the parent phase orientation using the EBSD data of the product phase orientation is done using the MATLAB and TSL-OIM software. The method of triplets was used which involves the formation of a triplet of neighboring product grains having a common variant and linking them using a misorientation-based criterion. This led to the proper reconstruction of the pre-transformation phase orientation data and thus to its microstructure and texture. The computational speed of current method is better compared to the previously used methods of reconstruction. The reconstruction of austenite from ԑ and α’ martensite was carried out for multiple samples and their IPF images, pole figures, inverse pole figures and ODFs were compared. Similar type of results was observed for all samples. The comparison gives the idea for estimating the correct sequence of the transformation i.e. γ → ε → α’ or γ → α’, during deformation of AISI 304 austenitic stainless steel.

Keywords: variant selection, reconstruction, EBSD, austenitic stainless steel, martensitic transformation

Procedia PDF Downloads 462
564 Nanoparticulated (U,Gd)O2 Characterization

Authors: A. Fernandez Zuvich, I. Gana Watkins, H. Zolotucho, H. Troiani, A. Caneiro, M. Prado, A. L. Soldati

Abstract:

The study of actinide nanoparticles (NPs) has attracted the attention of the scientific community not only because the lack of information about their ecotoxicological effects but also because the use of NPs could open a new way in the production of nuclear energy. Indeed, it was recently demonstrated that UO2 NPs sintered pellets exhibit closed porosity with improved fission gas retention and radiation-tolerance , ameliorated mechanical properties, and less detriment of the thermal conductivity upon use, making them an interesting option for new nuclear fuels. In this work, we used a combination of diffraction and microscopy tools to characterize the morphology, the crystalline structure and the composition of UO2 nanoparticles doped with 10%wt Gd2O3. The particles were synthesized by a modified sol-gel method at low temperatures. X-ray Diffraction (XRD) studies determined the presence of a unique phase with the cubic structure and Fm3m spatial group, supporting that Gd atoms substitute U atoms in the fluorite structure of UO2. In addition, Field Emission Gun Scanning (FEG-SEM) and Transmission (FEG-TEM) Electron Microscopy images revealed the presence of micrometric agglomerates of nanoparticles, with rounded morphology and an average crystallite size < 50 nm. Energy Dispersive Spectroscopy (EDS) coupled to TEM determined the presence of Gd in all the analyzed crystallites. Besides, FEG-SEM-EDS showed a homogeneous concentration distribution at the micrometer scale indicating that the small size of the crystallites compensates the variation in composition by averaging a large number of crystallites. These techniques, as combined tools resulted thus essential to find out details of morphology and composition distribution at the sub-micrometer scale, and set a standard for developing and analyzing nanoparticulated nuclear fuels.

Keywords: actinide nanoparticles, burnable poison, nuclear fuel, sol-gel

Procedia PDF Downloads 308
563 Radiation Protection Assessment of the Emission of a d-t Neutron Generator: Simulations with MCNP Code and Experimental Measurements in Different Operating Conditions

Authors: G. M. Contessa, L. Lepore, G. Gandolfo, C. Poggi, N. Cherubini, R. Remetti, S. Sandri

Abstract:

Practical guidelines are provided in this work for the safe use of a portable d-t Thermo Scientific MP-320 neutron generator producing pulsed 14.1 MeV neutron beams. The neutron generator’s emission was tested experimentally and reproduced by MCNPX Monte Carlo code. Simulations were particularly accurate, even generator’s internal components were reproduced on the basis of ad-hoc collected X-ray radiographic images. Measurement campaigns were conducted under different standard experimental conditions using an LB 6411 neutron detector properly calibrated at three different energies, and comparing simulated and experimental data. In order to estimate the dose to the operator vs. the operating conditions and the energy spectrum, the most appropriate value of the conversion factor between neutron fluence and ambient dose equivalent has been identified, taking into account both direct and scattered components. The results of the simulations show that, in real situations, when there is no information about the neutron spectrum at the point where the dose has to be evaluated, it is possible - and in any case conservative - to convert the measured value of the count rate by means of the conversion factor corresponding to 14 MeV energy. This outcome has a general value when using this type of generator, enabling a more accurate design of experimental activities in different setups. The increasingly widespread use of this type of device for industrial and medical applications makes the results of this work of interest in different situations, especially as a support for the definition of appropriate radiation protection procedures and, in general, for risk analysis.

Keywords: instrumentation and monitoring, management of radiological safety, measurement of individual dose, radiation protection of workers

Procedia PDF Downloads 108