Search results for: rotating packed bed
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 498

Search results for: rotating packed bed

408 Atmospheric Full Scale Testing of a Morphing Trailing Edge Flap System for Wind Turbine Blades

Authors: Thanasis K. Barlas, Helge A. Madsen

Abstract:

A novel Active Flap System (AFS) has been developed at DTU Wind Energy, as a result of a 3-year R\&D project following almost 10 years of innovative research in this field. The full-scale AFS comprises an active deformable trailing edge has been tested at the unique rotating test facility at the Risoe Campus of DTU Wind Energy in Denmark. The design and instrumentation of the wing section and the active flap system (AFS) are described. The general description and objectives of the rotating test rig at the Risoe campus of DTU are presented, as used for the aeroelastic testing of the AFS in the recently finalized INDUFLAP project. The general description and objectives are presented, along with an overview of sensors on the setup and the test cases. The post-processing of data is discussed and results of steady flap step and azimuth control flap cases are presented.

Keywords: morphing, adaptive, flap, smart blade, wind turbine

Procedia PDF Downloads 374
407 Numerical Study on Self-Confined Plasmoid Transport Phenomena in an Electrodeless Plasma Thruster for Space Propulsion

Authors: Xiaodong Wen, Lijuan Liu, Xinfeng Sun

Abstract:

A high power electrodeless plasma thruster is being developed at Lanzhou Institute of Physics. In this thruster, a rotating magnetic field (RMF) driven by two radio-frequency coils which dephased by 90 degrees are applied both for propellant ionization and plasma acceleration. In the ionization stage, a very high azimuthal current can be driven by RMF and then makes plasma forms a field reversed configuration, namely self-confined plasmoid. Profoundly understanding the transport characteristics of the plasmoid in the following acceleration stage is the key to improve the thruster performances. In this paper, a 3D MHD model is established and the influences of the RMF and an applied magnetic field on the self-confined plasmoid acceleration are investigated. The simulation results show that, by applying a RMF with strength and frequency of 250 G and 370 kHz, the plasmoid can be accelerated to an average velocity of 17 km/s at the exit of the thruster.

Keywords: electric space propulsion, field reversed configuration, rotating magnetic field, transport phenomena

Procedia PDF Downloads 105
406 Experimental Study on the Preparation of Pelletizing of the Panzhihua's Fine Ilmenite Concentrate

Authors: Han Kexi, Lv Xuewei, Song Bing

Abstract:

This paper focuses on the preparation of pelletizing with the Panzhihua ilmenite concentrate to satisfy the requirement of smelting titania slag. The effects of the moisture content, mixing time of raw materials, pressure of pellet, roller rotating speed of roller, drying temperature and time on the pelletizing yield and compressive strength were investigated. The experimental results show that the moister content was controlled at 2.0%~2.5%, mixing time at 20 min, the pressure of the ball forming machine at 13~15 mpa, the pelletizing yield can reach up 85%. When the roller rotating speed is 6~8 r/min while the drying temperature and time respectively is 350 ℃ and 40~60 min, the compressive strength of pelletizing more than 1500 N. The preparation of pelletizing can meet the requirement of smelting titania slag.

Keywords: Panzhihua fine ilmenite concentrate, pelletizing, pelletizing yield, compressive strength, drying

Procedia PDF Downloads 194
405 The Association of Excessive Work Stress with Job Satisfaction and Turnover Intention in Operating Room Nurses: A Cross-Sectional Study in a Metropolitan Teaching Hospital in Southern Taiwan

Authors: Chia Yu Chen, Shu Fen Wu, Chen-Fuh Lam, I-Ling Tsai, Shu Jiuan Chen, Yen Ling Liu

Abstract:

Aim: It remains undetermined that whether increased work stress may affect the job satisfaction and career loyalty among nursing staffs in the operating room. The long-term goal of this study is to lengthen the professional life of operating room nurses by attenuating the work stress and enhancing their contentment in work. Method: This was a cross-sectional, descriptive study performed in a metropolitan teaching hospital in the southern Taiwan between May 2017 to July 2017. A structured self-administered questionnaire, modified from the Occupational Stress Indicator-2 (OSI-2) and Maslach Burnout Inventory (MBI) manual was collected from the operating room nurses. Chi-square test was used to analyze the categorical data and Pearson correlation was used to analyze the association between two numerical datasets (SPSS version 20.0). Results: The response rate was 80% (80/100) and a total of 73 (73%) completed forms were eventually proceeded for analysis. The average scores for work stress and job satisfaction of the operating room nurses were 145.96±32.91 and 47.38±6.07, respectively. The correlation coefficients of work stress versus job satisfaction and organizational identity were (r=-0.338, p=0.003 and r=-0.354, p=0.002), respectively. There were more nurses who took rotating shift quitted works from the operating room than those who took only dayshift (2=5.176, p<0.05). Nurses who reported of having lower job satisfaction were associated with significantly higher turnover intention (t=3.714, p< 0.01). Following multivariate regression analysis, rotating shift and low job satisfaction were identified as the two independent predictors of intention to quit from working in the operating room. Conclusion: Our study clearly demonstrates that increased work stress significantly attenuates job satisfaction and organizational identity. Rotating shift is associated with higher work stress, lower job satisfaction, and higher turnover intention, which is consistent with the previous surveys carried out in the department of medical technology. Therefore, improvement of working quality in the operating rooms is essential to increase the retain intention of the well-trained nursing staffs. Further investigation into types of work shifts and other strategies of attenuating stress in workplace is currently undertaken in order to improve the job satisfaction and to decrease turnover intention in the operating room.

Keywords: rotating shift, work stress, job satisfaction, turnover intention

Procedia PDF Downloads 160
404 A Comparison of Computational and Experimental Data to Investigate the Influence of the Tangential Velocity of Inner Rotating Wall on Axial Velocity Profile of Flow through Vertical Annular Pipe with Rotating Inner Surface

Authors: Abdusalam Sharf

Abstract:

In the oil and gas industries, one of the most important issues in drilling wells is understanding the behavior of a flow through an annulus gap in a vertical position, whose outer wall is stationary whilst the inner wall rotates. The main emphasis is placed on a comparison of experimental and computational investigations into the effects of the rotation speed of the inner pipe on the axial velocity profiles. The computational investigations were carried out by employing CFD software, and Gambit and Fluent. Three turbulence models were used: standard, RNG with enhanced wall treatment, and SST model. The profiles of the axial velocity had investigated at different rotation speeds of the inner pipe with three different volumetric flow rates. The comparison results showed that the calculations satisfactorily predict the qualitative features of the axial and swirl velocity profiles and the RNG model performs the best results.

Keywords: computational fluid dynamics (CFD), SST k−ω shear-stress transport (k−ω mode variant), RNG k–ε renormalisation group (k−ε mode variant), y+ dimensionless distance from wall

Procedia PDF Downloads 352
403 Mass Transfer in Reactor with Magnetic Field Generator

Authors: Tomasz Borowski, Dawid Sołoducha, Rafał Rakoczy, Marian Kordas

Abstract:

The growing interest in magnetic fields applications is visible due to the increased number of articles on this topic published in the last few years. In this study, the influence of various magnetic fields (MF) on the mass transfer process was examined. To carry out the prototype set-up equipped with an MF generator that is able to generate a pulsed magnetic field (PMF), oscillating magnetic field (OMF), rotating magnetic field (RMF) and static magnetic field (SMF) was used. To demonstrate the effect of MF’s on mass transfer, the calcium carbonate precipitation process was selected. To the vessel with attached conductometric probes and placed inside the generator, specific doses of calcium chloride and sodium carbonate were added. Electrical conductivity changes of the mixture inside the vessel were measured over time until equilibrium was established. Measurements were conducted for various MF strengths and concentrations of added chemical compounds. Obtained results were analyzed, which allowed to creation of mathematical correlation models showing the influence of MF’s on the studied process.

Keywords: mass transfer, oscillating magnetic field, rotating magnetic field, static magnetic field

Procedia PDF Downloads 176
402 Mathematical Properties of the Resonance of the Inner Waves in Rotating Stratified Three-Dimensional Fluids

Authors: A. Giniatoulline

Abstract:

We consider the internal oscillations of the ocean which are caused by the gravity force and the Coriolis force, for different models with changeable density, heat transfer, and salinity. Traditionally, the mathematical description of the resonance effect is related to the growing amplitude as a result of input vibrations. We offer a different approach: the study of the relation between the spectrum of the internal oscillations and the properties of the limiting amplitude of the solution for the harmonic input vibrations of the external forces. Using the results of the spectral theory of self-adjoint operators in Hilbert functional spaces, we prove that there exists an explicit relation between the localization of the frequency of the external input vibrations with respect to the essential spectrum of proper inner oscillations and the non-uniqueness of the limiting amplitude. The results may find their application in various problems concerning mathematical modeling of turbulent flows in the ocean.

Keywords: computational fluid dynamics, essential spectrum, limiting amplitude, rotating fluid, spectral theory, stratified fluid, the uniqueness of solutions of PDE equations

Procedia PDF Downloads 229
401 Pressure Drop Study in Moving and Stationary Beds with Lateral Gas Injection

Authors: Vinci Mojamdar, Govind S. Gupta

Abstract:

Moving beds in the presence of gas flow are widely used in metallurgical and chemical industries like blast furnaces, catalyst reforming, drying, etc. Pressure drop studies in co- and counter – current conditions have been done by a few researchers. However, to the best of authours knowledge, proper pressure drop study with lateral gas injection lacks especially in the presence of cavity and nozzle protrusion inside the packed bed. The latter study is more useful for metallurgical industries for the processes such as blast furnaces, shaft reduction and, COREX. In this experimental work, a two dimensional cold model with slot type nozzle for lateral gas injection along with the plastic beads as packing material and dry air as gas have been used. The variation of pressure drop is recorded at various horizontal and vertical directions in the presence of cavity and nozzle protrusion. The study has been performed in both moving and stationary beds. Also, the experiments have been carried out in both increasing as well as decreasing gas flow conditions. Experiments have been performed at various gas flow rates and packed bed heights. Some interesting results have been reported such as there is no pressure variation in the moving bed for both the increasing and decreasing gas flow condition that is different from the stationary bed. Pressure hysteresis loop has been observed in a stationary bed.

Keywords: lateral gas injection, moving bed, pressure drop, pressure hysteresis, stationary bed

Procedia PDF Downloads 279
400 Simulation of Internal Flow Field of Pitot-Tube Jet Pump

Authors: Iqra Noor, Ihtzaz Qamar

Abstract:

Pitot-tube Jet pump, single-stage pump with low flow rate and high head, consists of a radial impeller that feeds water to rotating cavity. Water then enters stationary pitot-tube collector (diffuser), which discharges to the outside. By means of ANSYS Fluent 15.0, the internal flow characteristics for Pitot-tube Jet pump with standard pitot and curved pitot are studied. Under design condition, realizable k-e turbulence model and SIMPLEC algorithm are used to calculate 3D flow field inside both pumps. The simulation results reveal that energy is imparted to the flow by impeller and inside the rotor, forced vortex type flow is observed. Total pressure decreases inside pitot-tube whereas static pressure increases. Changing pitot-tube from standard to curved shape results in minimum flow circulation inside pitot-tube and leads to a higher pump performance.

Keywords: CFD, flow circulation, high pressure pump, impeller, internal flow, pickup tube pump, rectangle channels, rotating casing, turbulence

Procedia PDF Downloads 132
399 Calculating of the Heat Exchange in a Rotating Pipe: Application to the Cooling of Turbine Blades

Authors: A. Miloud

Abstract:

In this work, the results of numerical simulations of the turbulent flow with 3D heat transfer are presented for the case of two U-shaped channels and rotating rectangular section. The purpose of this investigation was to study the effect of the corrugated walls of the heated portion on the improved cooling, in particular the influence of the wavelength. The calculations were performed for a Reynolds number ranging from 10 000 to 100 000, two values of the number of rotation (Ro = 0.0 to 0.14) and a ratio of the restricted density to 0.13. In these simulations, ANSYS FLUENT code was used to solve the Reynolds equations expressing relations between different fields averaged variables over time. Model performance k-omega SST model and RSM are evaluated through a comparison of the numerical results for each model and the experimental and numerical data available. In this work, detailed average temperature predictions, the scope of the secondary flow and distributions of local Nusselt are presented. It turns out that the corrugated configuration further urges the heat exchange provided to reduce the velocity of the coolant inside the channel.

Keywords: cooling blades, corrugated walls, model k-omega SST and RSM, fluent code, rotation effect

Procedia PDF Downloads 225
398 Numerical Simulation of the Rotating Vertical Bridgman Growth

Authors: Nouri Sabrina

Abstract:

Numerical parametric study is conducted to study the effects of ampoule rotation on the flows and the dopant segregation in Vertical Bridgman (VB) crystal growth. Calculations were performed in unsteady state. The extended darcy model, whıch includes the time derivative and coriolis terms, has been employed in the momentum equation. It is found that the convection, and dopant segregation can be affected significantly by ampoule rotation, and the effect is similar to that by an axial magnetıc field. Ampoule rotation decreases the intensity of convection and stretches the flow cell axıally. When the convectıon is weak, the flow can be suppressed almost completely by moderate ampoule rotation and the dopant segregation becomes diffusion-controlled. For stronger convection, the elongated flow cell by ampoule rotation may bring dopant mixing into the bulk melt reducing axial segregation at the early stage of the growth. However, if the cellular flow cannot be suppressed completely, ampoule rotation may induce larger radial segregation due to poor mixing.

Keywords: rotating vertical solidification, Finite Volume Method, heat and mass transfer, porous medium, phase change

Procedia PDF Downloads 402
397 Enhancing Fault Detection in Rotating Machinery Using Wiener-CNN Method

Authors: Mohamad R. Moshtagh, Ahmad Bagheri

Abstract:

Accurate fault detection in rotating machinery is of utmost importance to ensure optimal performance and prevent costly downtime in industrial applications. This study presents a robust fault detection system based on vibration data collected from rotating gears under various operating conditions. The considered scenarios include: (1) both gears being healthy, (2) one healthy gear and one faulty gear, and (3) introducing an imbalanced condition to a healthy gear. Vibration data was acquired using a Hentek 1008 device and stored in a CSV file. Python code implemented in the Spider environment was used for data preprocessing and analysis. Winner features were extracted using the Wiener feature selection method. These features were then employed in multiple machine learning algorithms, including Convolutional Neural Networks (CNN), Multilayer Perceptron (MLP), K-Nearest Neighbors (KNN), and Random Forest, to evaluate their performance in detecting and classifying faults in both the training and validation datasets. The comparative analysis of the methods revealed the superior performance of the Wiener-CNN approach. The Wiener-CNN method achieved a remarkable accuracy of 100% for both the two-class (healthy gear and faulty gear) and three-class (healthy gear, faulty gear, and imbalanced) scenarios in the training and validation datasets. In contrast, the other methods exhibited varying levels of accuracy. The Wiener-MLP method attained 100% accuracy for the two-class training dataset and 100% for the validation dataset. For the three-class scenario, the Wiener-MLP method demonstrated 100% accuracy in the training dataset and 95.3% accuracy in the validation dataset. The Wiener-KNN method yielded 96.3% accuracy for the two-class training dataset and 94.5% for the validation dataset. In the three-class scenario, it achieved 85.3% accuracy in the training dataset and 77.2% in the validation dataset. The Wiener-Random Forest method achieved 100% accuracy for the two-class training dataset and 85% for the validation dataset, while in the three-class training dataset, it attained 100% accuracy and 90.8% accuracy for the validation dataset. The exceptional accuracy demonstrated by the Wiener-CNN method underscores its effectiveness in accurately identifying and classifying fault conditions in rotating machinery. The proposed fault detection system utilizes vibration data analysis and advanced machine learning techniques to improve operational reliability and productivity. By adopting the Wiener-CNN method, industrial systems can benefit from enhanced fault detection capabilities, facilitating proactive maintenance and reducing equipment downtime.

Keywords: fault detection, gearbox, machine learning, wiener method

Procedia PDF Downloads 49
396 A Study on Manufacturing of Head-Part of Pipes Using a Rotating Manufacturing Process

Authors: J. H. Park, S. K. Lee, Y. W. Kim, D. C. Ko

Abstract:

A large variety of pipe flange is required in marine and construction industry.Pipe flanges are usually welded or screwed to the pipe end and are connected with bolts.This approach is very simple and widely used for a long time, however, it results in high development cost and low productivity, and the productions made by this approach usually have safety problem at the welding area.In this research, a new approach of forming pipe flange based on cold forging and floating die concept is presented.This innovative approach increases the effectiveness of the material usage and save the time cost compared with conventional welding method. To ensure the dimensional accuracy of the final product, the finite element analysis (FEA) was carried out to simulate the process of cold forging, and the orthogonal experiment methods were used to investigate the influence of four manufacturing factors (pin die angle, pipe flange angle, rpm, pin die distance from clamp jig) and predicted the best combination of them. The manufacturing factors were obtained by numerical and experimental studies and it shows that the approach is very useful and effective for the forming of pipe flange, and can be widely used later.

Keywords: cold forging, FEA (finite element analysis), forge-3D, rotating forming, tubes

Procedia PDF Downloads 352
395 Heat and Mass Transfer of Triple Diffusive Convection in a Rotating Couple Stress Liquid Using Ginzburg-Landau Model

Authors: Sameena Tarannum, S. Pranesh

Abstract:

A nonlinear study of triple diffusive convection in a rotating couple stress liquid has been analysed. It is performed to study the effect of heat and mass transfer by deriving Ginzburg-Landau equation. Heat and mass transfer are quantified in terms of Nusselt number and Sherwood numbers, which are obtained as a function of thermal and solute Rayleigh numbers. The obtained Ginzburg-Landau equation is Bernoulli equation, and it has been elucidated numerically by using Mathematica. The effects of couple stress parameter, solute Rayleigh numbers, and Taylor number on the onset of convection and heat and mass transfer have been examined. It is found that the effects of couple stress parameter and Taylor number are to stabilize the system and to increase the heat and mass transfer.

Keywords: couple stress liquid, Ginzburg-Landau model, rotation, triple diffusive convection

Procedia PDF Downloads 300
394 A New Computational Tool for Noise Prediction of Rotating Surfaces (FACT)

Authors: Ana Vieira, Fernando Lau, João Pedro Mortágua, Luís Cruz, Rui Santos

Abstract:

The air transport impact on environment is more than ever a limitative obstacle to the aeronautical industry continuous growth. Over the last decades, considerable effort has been carried out in order to obtain quieter aircraft solutions, whether by changing the original design or investigating more silent maneuvers. The noise propagated by rotating surfaces is one of the most important sources of annoyance, being present in most aerial vehicles. Bearing this is mind, CEIIA developed a new computational chain for noise prediction with in-house software tools to obtain solutions in relatively short time without using excessive computer resources. This work is based on the new acoustic tool, which aims to predict the rotor noise generated during steady and maneuvering flight, making use of the flexibility of the C language and the advantages of GPU programming in terms of velocity. The acoustic tool is based in the Formulation 1A of Farassat, capable of predicting two important types of noise: the loading and thickness noise. The present work describes the most important features of the acoustic tool, presenting its most relevant results and framework analyses for helicopters and UAV quadrotors.

Keywords: rotor noise, acoustic tool, GPU Programming, UAV noise

Procedia PDF Downloads 372
393 Axisymmetric Rotating Flow over a Permeable Surface with Heat and Mass Transfer Effects

Authors: Muhammad Faraz, Talat Rafique, Jang Min Park

Abstract:

In this article, rotational flow above a permeable surface with a variable free stream angular velocity is considered. Main interest is to solve the associated heat/mass transport equations under different situations. Firstly, heat transport phenomena occurring in generalized vortex flow are analyzed under two altered heating processes, namely, the (i) prescribed surface temperature and (ii) prescribed heat flux. The vortex motion imposed at infinity is assumed to follow a power-law form 〖(r/r_0)〗^((2n-1)) where r denotes the radial coordinate, r_0 the disk radius, and n is a power-law parameter. Assuming a similar solution, the governing Navier-Stokes equations transform into a set of coupled ODEs which are treated numerically for the aforementioned thermal conditions. Secondly, mass transport phenomena accompanied by activation energy are incorporated into the generalized vortex flow situation. After finding self-similar equations, a numerical solution is furnished by using MATLAB's built-in function bvp4c.

Keywords: bödewadt flow, vortex flow, rotating flows, prescribed heat flux, permeable surface, activation energy

Procedia PDF Downloads 76
392 The Next Generation of Mucoadhesive Polymer

Authors: Flavia Laffleur, Andreas Bernkop-Schnürch

Abstract:

Purpose: This study was aimed to investigate preactivated thiomers for their mucoadhesive potential. Methods: Accordingly, chitosan-thioglycolic-mercaptonicotinamide conjugates (chitosan-TGA-MNA) were synthesized by the oxidative S-S coupling of chitosan-thioglycolic acid (chitosan-TGA) with 6-mercaptonicotin amide (MNA). Unmodified chitosan, chitosan-TGA (thiomers) and chitosan-TGA-MNA conjugates were compressed into test discs to investigate cohesive properties, cytotoxicity assays and mucoadhesion studies. Results: Due to the immobilization of MNA, the chitosan-TGA-MNA conjugates exhibit comparatively higher swelling properties and cohesive properties corresponding unmodified chitosan. On the rotating cylinder, discs based on chitosan-TGA-MNA conjugates displayed 3.1-fold improved mucoadhesion time compared to thiolated polymers. Tensile study results were found in good agreement with rotating cylinder results. Moreover, preactivated thiomers showed higher stability. All polymers were found non-toxic over Caco-2 cells. Conclusion: On the basis of achieved results the pre activated thiomeric therapeutic agent seems to represent a promising generation of mucoadhesive polymers which are safe to use for a prolonged residence time to target the mucosa.

Keywords: biomedical application, drug delivery, polymer, thiomer

Procedia PDF Downloads 412
391 Experimental Investigation of Boundary Layer Transition on Rotating Cones in Axial Flow in 0 and 35 Degrees Angle of Attack

Authors: Ali Kargar, Kamyar Mansour

Abstract:

In this paper, experimental results of using hot wire anemometer and smoke visualization are presented. The results obtained on the hot wire anemometer for critical Reynolds number and transitional Reynolds number are compared by previous results. Excellent agreement is found for the transitional Reynolds number. The results for the transitional Reynolds number are also compared by previous linear stability results. The results of the smoke visualization clearly show the cross flow vortices which arise in the transition process from a laminar to a turbulent flow. A non-zero angle of attack is also considered. We compare our results by linear stability theory which was done by Garret et. Al (2007). We just emphasis, Also the visualization and hot wire anemometer results have been compared graphically. The goal in this paper is to check reliability of using hot wire anemometer and smoke visualization in transition problems and check reliability of linear stability theory for this case and compare our results with some trusty experimental works.

Keywords: transitional reynolds number, wind tunnel, rotating cone, smoke visualization

Procedia PDF Downloads 274
390 Determination of Heavy Metals in Canned Dry-Milk and Fish from Supermarkets in Addis Ababa

Authors: Kefyalew Muleta, Tetemke Mehari

Abstract:

Background: Human being require metallic elements such as copper and zinc up to certain limits that could cause problems if found in excess. Other metallic elements like cadmium and lead can be harmful to health if foodstuffs containing them are consumed regularly. Canned dry-milk and fish contain these metals in the journey from farm to fork. Objective: This study was designed to determine the concentration of Cd, Cu, Pb, and Zn in four brands of canned dry-milk and fish from supermarkets in Addis Ababa. Methods: Laboratory based cross-sectional study design was used to determine the concentration of the heavy metals in four different brands of canned dry-milk and fish imported from different country from February to March 2013. The foods brands were sampled by simple random sampling method from eight supermarkets in Addis Ababa and coded. Wet oxidation using HNO3 and H2O2 was used to extract the heavy metals from the foods samples and analyzed by Flame Atomic Absorption Spectroscopy. Conclusions: From this study, it can be concluded that the level of Cadmium and Copper residues in canned dry-milk significantly vary among brands; and the levels of copper residue significantly vary among brands of canned fish at 95 % level. The AM milk brand from Ethiopia was safe in cadmium level. The cadmium and lead level in the NF fish brands from Indonesia packed in vegetables oil, and the lead level in DF brand packed in brine are safe.

Keywords: AAS, canned dry milk, canned fish, Cd, Cu, Pb, Zn

Procedia PDF Downloads 391
389 Deformation and Crystallization in a 7075-T651 Friction Stir Weld

Authors: C. S. Paglia

Abstract:

The deformation and the crystallization in a 7075-T651 friction stir weld, in particular for regions directly in contact with the mechanical action of the rotating probe, have been investigated by means of optical microscopy. The investigation enabled to identify regions of the weld differently affected by the deformation caused by the welding process. The highly deformed grains in the horizontal direction close to the plate margin were indicative of shear movements along the horizontal plane, while highly deformed grains along the plate margin in the vertical direction were indicative of vertical shear movements of opposite directions, which superimposed the shear movement along the horizontal plane. The vertical shear movements were not homogeneous through the plate thickness. The microstructure indicated that after the probe passes, the grain growth may take place under static conditions. The small grains microstructure of the nugget region, formed after the main dynamic recrystallization process, develops to an equiaxed microstructure. A material transport influenced by the rotating shoulder was also observed from the trailing to the advancing side of the weld.

Keywords: AA7075-T651, friction stir welding, deformation, crystallization

Procedia PDF Downloads 94
388 Pressure-Robust Approximation for the Rotational Fluid Flow Problems

Authors: Medine Demir, Volker John

Abstract:

Fluid equations in a rotating frame of reference have a broad class of important applications in meteorology and oceanography, especially in the large-scale flows considered in ocean and atmosphere, as well as many physical and industrial applications. The Coriolis and the centripetal forces, resulting from the rotation of the earth, play a crucial role in such systems. For such applications it may be required to solve the system in complex three-dimensional geometries. In recent years, the Navier--Stokes equations in a rotating frame have been investigated in a number of papers using the classical inf-sup stable mixed methods, like Taylor-Hood pairs, to contribute to the analysis and the accurate and efficient numerical simulation. Numerical analysis reveals that these classical methods introduce a pressure-dependent contribution in the velocity error bounds that is proportional to some inverse power of the viscosity. Hence, these methods are optimally convergent but small velocity errors might not be achieved for complicated pressures and small viscosity coefficients. Several approaches have been proposed for improving the pressure-robustness of pairs of finite element spaces. In this contribution, a pressure-robust space discretization of the incompressible Navier--Stokes equations in a rotating frame of reference is considered. The discretization employs divergence-free, $H^1$-conforming mixed finite element methods like Scott--Vogelius pairs. However, this approach might come with a modification of the meshes, like the use of barycentric-refined grids in case of Scott--Vogelius pairs. However, this strategy requires the finite element code to have control on the mesh generator which is not realistic in many engineering applications and might also be in conflict with the solver for the linear system. An error estimate for the velocity is derived that tracks the dependency of the error bound on the coefficients of the problem, in particular on the angular velocity. Numerical examples illustrate the theoretical results. The idea of pressure-robust method could be cast on different types of flow problems which would be considered as future studies. As another future research direction, to avoid a modification of the mesh, one may use a very simple parameter-dependent modification of the Scott-Vogelius element, the pressure-wired Stokes element, such that the inf-sup constant is independent of nearly-singular vertices.

Keywords: navier-stokes equations in a rotating frame of refence, coriolis force, pressure-robust error estimate, scott-vogelius pairs of finite element spaces

Procedia PDF Downloads 27
387 Computer Network Applications, Practical Implementations and Structural Control System Representations

Authors: El Miloudi Djelloul

Abstract:

The computer network play an important position for practical implementations of the differently system. To implement a system into network above all is needed to know all the configurations, which is responsible to be a part of the system, and to give adequate information and solution in realtime. So if want to implement this system for example in the school or relevant institutions, the first step is to analyze the types of model which is needed to be configured and another important step is to organize the works in the context of devices, as a part of the general system. Often before configuration, as important point is descriptions and documentations from all the works into the respective process, and then to organize in the aspect of problem-solving. The computer network as critic infrastructure is very specific so the paper present the effectiveness solutions in the structured aspect viewed from one side, and another side is, than the paper reflect the positive aspect in the context of modeling and block schema presentations as an better alternative to solve the specific problem because of continually distortions of the system from the line of devices, programs and signals or packed collisions, which are in movement from one computer node to another nodes.

Keywords: local area networks, LANs, block schema presentations, computer network system, computer node, critical infrastructure packed collisions, structural control system representations, computer network, implementations, modeling structural representations, companies, computers, context, control systems, internet, software

Procedia PDF Downloads 329
386 The Effect of Total Mixture Concentrate Based on Tofu Waste Silage as Feed on Performance of Lambs

Authors: Yafri Hazbi, Zaenal Bachruddin, Nafiatul Umami, Lies Mira Yusiati

Abstract:

The objective of this study was to identify the benefits of total mixture concentrate based on tofu waste silage (TMC-TWS) as ration containing lactic acid bacteria on performance of lambs. Fifteen weaning lambs (2-3 months old) were randomly divided into two treatment groups, treatment group I (TI) was fed with TMC-TWS as ration and treatment group II (TII) was fed with TMC-TWS fresh (without silage fermentation). The performance of lambs was evaluated on day 0, 15, and 30 to have data of body weight per day. Meanwhile, blood sampling and feces were made on the 30th day to get an analysis on the blood profile (erythrocytes (mill/ml), hemoglobin (g/dL), packed cell volume (%), and leukocytes (mill/ml)) and the number of worm eggs in feces. The results of this study showed no significant difference between the effect of different feed on the blood profile (erythrocytes (mill/ml), hemoglobin (g/dL), packed cell volume (%), as well as the number of worm eggs in the feces. However the results showed significant differences if it is low (P<0.05) due to the treatment group based on sex on body weight gain per day, feed conversion rate and the number of erythrocytes.

Keywords: lambs, total mixture concentrate, silage, acid lactid bacteria, blood profile, eggs worm in feces

Procedia PDF Downloads 149
385 Hydrodynamic and Sediment Transport Analysis of Computational Fluid Dynamics Designed Flow Regulating Liner (Smart Ditch)

Authors: Saman Mostafazadeh-Fard, Zohrab Samani, Kenneth Suazo

Abstract:

Agricultural ditch liners are used to prevent soil erosion and reduce seepage losses. This paper introduced an approach to validate a computational fluid dynamics (CFD) platform FLOW-3D code and its use to design a flow-regulating corrugated agricultural ditch liner system (Smart Ditch (SM)). Hydrodynamic and sediment transport analyses were performed on the proposed liner flow using the CFD platform FLOW-3D code. The code's hydrodynamic and scour and sediment transport models were calibrated and validated using lab data with an accuracy of 94 % and 95%, respectively. The code was then used to measure hydrodynamic parameters of sublayer turbulent intensity, kinetic energy, dissipation, and packed sediment mass normalized with respect to sublayer flow velocity. Sublayer turbulent intensity, kinetic energy, and dissipation in the SM flow were significantly higher than CR flow. An alternative corrugated liner was also designed, and sediment transport was measured and compared to SM and CR flows. Normalized packed sediment mass with respect to average sublayer flow velocity was 27.8 % lower in alternative flow compared to SM flow. CFD platform FLOW-3D code could effectively be used to design corrugated ditch liner systems and perform hydrodynamic and sediment transport analysis under various corrugation designs.

Keywords: CFD, hydrodynamic, sediment transport, ditch, liner design

Procedia PDF Downloads 94
384 Physiological Indicators and Stress Index of Scavenging Chickens at Lafarge and Dangote Cement Factory Areas of Ogun State

Authors: Oluwadele Joshua Femi, Akinlabi Ebenezer Yemi, Onaopemipo Adeitan, Kazeem Bello, Anthony Ekeocha, Miraim Tawose

Abstract:

This study was carried out to determine the physiological and stress index of scavenging chickens in LAFARGE (Ewekoro) and Dangote (Ibese) Cement Factories Area of Ogun State. One hundred adult scavenging chickens comprising of 25 chickens from LAFARGE, Dangote and respective adjourning communities (Imasayi and Wasimi) were used. Experimental birds were caught at night on their perch and kept in cages till the next morning. Data were collected on rectal temperature, pulse rate, and respiratory rate of the birds. Also, 5ml blood was collected through the wing vein of the chickens in each location using a sterilized needle and syringe and transported to laboratory for analysis. Significant (P<0.05) highest pulse rate (215.64 beat/minute) and respiratory rate (19.90 breaths/minute) were recorded among scavenging chickens at LAFARGE (Ewekoro) Area and the least (198.61 beat/minute and 16.93 breaths/minute, respectively) at Imasayi. There was no significant (P>0.05) difference in the rectal temperature of the birds in the study area. Significant (P<0.05) differences were also recorded in the Packed Cell Volume (PCV), Hemoglobin (Hb), White Blood Cell (WBC), Monocyte, and Glucose level of the chickens in study area with the highest (P<0.05) Packed Cell Volume (28.06%) and Haemoglobin (4.01g/dl) recorded in Ibese and the least Packed Cell Volume (22.00%) and Haemoglobin (288g/dl) in Imasayi. Highest (P<0.05) Monocyte (4.28%) and glucose (256.53g/dl) were recorded among scavenging chickens at Dangote (Ibese) while the least Monocyte (0.00%) and Glucose (194.53g/dl) was recorded among chickens at Wasimi. Highest (P<0.05) White Blood Cell (6488.89×103µl) was recorded among chickens at Ewekoro and the lowest value in Ibese (4388.44×103µl). There was no significant (P>0.05) difference in the Heterophyl, Lymphocyte, Basophyl and Heterophyl/Lymphocyte ratio of the chickens in the study Area. The study concluded that chickens reared at LAFARGE (Ewekoro) were stressed and had comprised welfare and health status compared to Dangote (Ibese) cement area and other agrarian communities. Effective environmental mitigation programme should be put in place to enhance the welfare of the scavenging chickens in LAFARGE Cement Factory Area.

Keywords: blood, chicken, poisonous substances, pack cell volume, communities

Procedia PDF Downloads 62
383 Prevalence of Anaemia Amongst Antenatal Clinic Attendees at Booking: A Nigerian Study

Authors: S Eli, DGB Kalio, BOA Altraide, P Kua, DA MacPepple, FE Okonofua

Abstract:

Background: Anaemia in pregnancy is worrisome morbidity encountered by obstetricians and gynaecologist in the developing countries of the world. It is an indirect cause of maternal mortality and also a cause of perinatal mortality. Aim: The study aimed to ascertain the prevalence of anaemia amongst antenatal clinic (ANC) attendees at booking at The Rivers State University Teaching Hospital (RSUTH), Port Harcourt, Rivers State, Nigeria. Method: The method was a cross-sectional study of ANC attendees at booking at RSUTH. The cut-off for anaemia by the WHO used for this study was packed cell volume (PCV) less than 33%. Simple randomized sampling method was used. Information was analyzed using SPSS version 25. Result: A total of 500 questionnaires were distributed, and 488 questionnaires retrieved. The mean age was of the ANC attendees was 31.44 years, and the modal parity was 0. Three hundred and fifty-seven (73.2%) of the respondents had a tertiary level of education, 126(25.8%) had a secondary level of education while 5 (1%) of the respondents had a primary level of education. Five (1%) of the respondents did not volunteer their educational status. The modal packed cell volume was 32%. Three hundred and eighty-two (78.3%) of the ANC attendees had PCV level less than 33% compared to 106 (21.7%) who had PCV equal or greater than 33%. Conclusion: The study revealed that the prevalence of anaemia in pregnancy amongst ANC attendees at the RSUTH was high, representing 73.3% of the subjects. Anaemia was common amongst multiparas (38.5%). Malaria prophylaxis, as well as encouraging pregnant women to be compliant with their routine antenatal drugs as well as counseling on the right diet, cannot be overemphasized during pregnancy. In addition, women should use family planning for child spacing for them to recover from previous pregnancies.

Keywords: anaemia, ANC attendees, Nigeria, prevalence

Procedia PDF Downloads 95
382 Instability by Weak Precession of the Flow in a Rapidly Rotating Sphere

Authors: S. Kida

Abstract:

We consider the flow of an incompressible viscous fluid in a precessing sphere whose spin and precession axes are orthogonal to each other. The flow is characterized by two non-dimensional parameters, the Reynolds number Re and the Poincare number Po. For which values of (Re, Po) will the flow approach a steady state from an arbitrary initial condition? To answer it we are searching the instability boundary of the steady states in the whole (Re, Po) plane. Here, we focus the rapidly rotating and weakly precessing limit, i.e., Re >> 1 and Po << 1. The steady flow was obtained by the asymptotic expansion for small ε=Po Re¹/² << 1. The flow exhibits nearly a solid-body rotation in the whole sphere except for a thin boundary layer which develops over the sphere surface. The thickness of this boundary layer is of O(δ), where δ=Re⁻¹/², except where two circular critical bands of thickness of O(δ⁴/⁵) and of width of O(δ²/⁵) which are located away from the spin axis by about 60°. We perform the linear stability analysis of the steady flow. We assume that the disturbances are localized in the critical bands and make an expansion analysis in terms of ε to derive the eigenvalue problem for the growth rate of the disturbance, which is solved numerically. As the solution, we obtain an asymptote of the stability boundary as Po=28.36Re⁻⁰.⁸. This agrees excellently with the corresponding laboratory experiments and numerical simulations. One of the most popular instability mechanisms so far is the parametric instability, which turns out, however, not to give the correct stability boundary. The present instability is different from the parametric instability.

Keywords: boundary layer, critical band, instability, precessing sphere

Procedia PDF Downloads 129
381 Effect of Capillary Forces on Wet Granular Avalanches

Authors: Ahmed Jarray, Vanessa Magnanimo, Stefan Luding

Abstract:

Granular avalanches are ubiquitous in nature and occur in numerous industrial processes associated with particulate systems. When a small amount of liquid is added to a pile of particles, pendular bridges form and the particles are attracted by capillary forces, creating complex structure and flow behavior. We have performed an extensive series of experiments to investigate the effect of capillary force and particle size on wet granular avalanches, and we established a methodology that ensures the control of the granular flow in a rotating drum. The velocity of the free surface and the angle of repose of the particles in the rotating drum are determined using particle tracking method. The capillary force between the particles is significantly reduced by making the glass beads hydrophobic via chemical silanization. We show that the strength of the capillary forces between two adjacent particles can be deliberately manipulated through surface modification of the glass beads, thus, under the right conditions; we demonstrate that the avalanche dynamics can be controlled. The results show that the avalanche amplitude decreases when increasing the capillary force. We also find that liquid-induced cohesion increases the width of the gliding layer and the dynamic angle of repose, however, it decreases the velocity of the free surface.

Keywords: avalanche dynamics, capillary force, granular material, granular flow

Procedia PDF Downloads 239
380 Bifurcations of the Rotations in the Thermocapillary Flows

Authors: V. Batishchev, V. Getman

Abstract:

We study the self-similar fluid flows in the Marangoni layers with the axial symmetry. Such flows are induced by the radial gradients of the temperatures whose distributions along the free boundary obey some power law. The self-similar solutions describe thermo-capillar flows both in the thin layers and in the case of infinite thickness. We consider both positive and negative temperature gradients. In the former case the cooling of free boundary nearby the axis of symmetry gives rise to the rotation of fluid. The rotating flow concentrates itself inside the Marangoni layer while outside of it the fluid does not revolve. In the latter case we observe no rotating flows at all. In the layers of infinite thickness the separation of the rotating flow creates two zones where the flows are directed oppositely. Both the longitudinal velocity and the temperature have exactly one critical point inside the boundary layer. It is worth to note that the profiles are monotonic in the case of non-swirling flows. We describe the flow outside the boundary layer with the use of self-similar solution of the Euler equations. This flow is slow and non-swirling. The introducing of an outer flow gives rise to the branching of swirling flows from the non-swirling ones. There is such the critical velocity of the outer flow that a non-swirling flow exists for supercritical velocities and cannot be extended to the sub-critical velocities. For the positive temperature gradients there are two non-swirling flows. For the negative temperature gradients the non-swirling flow is unique. We determine the critical velocity of the outer flow for which the branching of the swirling flows happens. In the case of a thin layer confined within free boundaries we show that the cooling of the free boundaries near the axis of symmetry leads to the separating of the layer and creates two sub-layers with opposite rotations inside. This makes sharp contrast with the case of infinite thickness. We show that such rotation arises provided the thickness of the layer exceed some critical value. In the case of a thin layer confined within free and rigid boundaries we construct the branching equation and the asymptotic approximation for the secondary swirling flows near the bifurcation point. It turns out that the bifurcation gives rise to one pair of the secondary swirling flows with different directions of swirl.

Keywords: free surface, rotation, fluid flow, bifurcation, boundary layer, Marangoni layer

Procedia PDF Downloads 319
379 Analysis of Secondary Stage Creep in Thick-Walled Composite Cylinders Subjected to Rotary Inertia

Authors: Tejeet Singh, Virat Khanna

Abstract:

Composite materials have drawn considerable attention of engineers due to their light weight and application at high thermo-mechanical loads. With regard to the prediction of the life of high temperature structural components like rotating cylinders and the evaluation of their deterioration with time, it is essential to have a full knowledge of creep characteristics of these materials. Therefore, in the present study the secondary stage creep stresses and strain rates are estimated in thick-walled composite cylinders subjected to rotary inertia at different angular speeds. The composite cylinder is composed of aluminum matrix (Al) and reinforced with silicon carbide (SiC) particles which are uniformly mixed. The creep response of the material of the cylinder is described by threshold stress based creep law. The study indicates that with the increase in angular speed, the radial, tangential, axial and effective stress increases to a significant value. However, the radial stress remains zero at inner radius and outer radius due to imposed boundary conditions of zero pressure. Further, the stresses are tensile in nature throughout the entire radius of composite cylinder. The strain rates are also influenced in the same manner as that of creep stresses. The creep rates will increase significantly with the increase of centrifugal force on account of rotation.

Keywords: composite, creep, rotating cylinder, angular speed

Procedia PDF Downloads 413