Search results for: rotating fluid
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2377

Search results for: rotating fluid

97 In vitro Regeneration of Neural Cells Using Human Umbilical Cord Derived Mesenchymal Stem Cells

Authors: Urvi Panwar, Kanchan Mishra, Kanjaksha Ghosh, ShankerLal Kothari

Abstract:

Background: Day-by-day the increasing prevalence of neurodegenerative diseases have become a global issue to manage them by medical sciences. The adult neural stem cells are rare and require an invasive and painful procedure to obtain it from central nervous system. Mesenchymal stem cell (MSCs) therapies have shown remarkable application in treatment of various cell injuries and cell loss. MSCs can be derived from various sources like adult tissues, human bone marrow, umbilical cord blood and cord tissue. MSCs have similar proliferation and differentiation capability, but the human umbilical cord-derived mesenchymal stem cells (hUCMSCs) are proved to be more beneficial with respect to cell procurement, differentiation to other cells, preservation, and transplantation. Material and method: Human umbilical cord is easily obtainable and non-controversial comparative to bone marrow and other adult tissues. The umbilical cord can be collected after delivery of baby, and its tissue can be cultured using explant culture method. Cell culture medium such as DMEMF12+10% FBS and DMEMF12+Neural growth factors (bFGF, human noggin, B27) with antibiotics (Streptomycin/Gentamycin) were used to culture and differentiate mesenchymal stem cells into neural cells, respectively. The characterisations of MSCs were done with Flow Cytometer for surface markers CD90, CD73 and CD105 and colony forming unit assay. The differentiated various neural cells will be characterised by fluorescence markers for neurons, astrocytes, and oligodendrocytes; quantitative PCR for genes Nestin and NeuroD1 and Western blotting technique for gap43 protein. Result and discussion: The high quality and number of MSCs were isolated from human umbilical cord via explant culture method. The obtained MSCs were differentiated into neural cells like neurons, astrocytes and oligodendrocytes. The differentiated neural cells can be used to treat neural injuries and neural cell loss by delivering cells by non-invasive administration via cerebrospinal fluid (CSF) or blood. Moreover, the MSCs can also be directly delivered to different injured sites where they differentiate into neural cells. Therefore, human umbilical cord is demonstrated to be an inexpensive and easily available source for MSCs. Moreover, the hUCMSCs can be a potential source for neural cell therapies and neural cell regeneration for neural cell injuries and neural cell loss. This new way of research will be helpful to treat and manage neural cell damages and neurodegenerative diseases like Alzheimer and Parkinson. Still the study has a long way to go but it is a promising approach for many neural disorders for which at present no satisfactory management is available.

Keywords: bone marrow, cell therapy, explant culture method, flow cytometer, human umbilical cord, mesenchymal stem cells, neurodegenerative diseases, neuroprotective, regeneration

Procedia PDF Downloads 177
96 Stimulation of Nerve Tissue Differentiation and Development Using Scaffold-Based Cell Culture in Bioreactors

Authors: Simon Grossemy, Peggy P. Y. Chan, Pauline M. Doran

Abstract:

Nerve tissue engineering is the main field of research aimed at finding an alternative to autografts as a treatment for nerve injuries. Scaffolds are used as a support to enhance nerve regeneration. In order to successfully design novel scaffolds and in vitro cell culture systems, a deep understanding of the factors affecting nerve regeneration processes is needed. Physical and biological parameters associated with the culture environment have been identified as potentially influential in nerve cell differentiation, including electrical stimulation, exposure to extracellular-matrix (ECM) proteins, dynamic medium conditions and co-culture with glial cells. The mechanisms involved in driving the cell to differentiation in the presence of these factors are poorly understood; the complexity of each of them raises the possibility that they may strongly influence each other. Some questions that arise in investigating nerve regeneration include: What are the best protein coatings to promote neural cell attachment? Is the scaffold design suitable for providing all the required factors combined? What is the influence of dynamic stimulation on cell viability and differentiation? In order to study these effects, scaffolds adaptable to bioreactor culture conditions were designed to allow electrical stimulation of cells exposed to ECM proteins, all within a dynamic medium environment. Gold coatings were used to make the surface of viscose rayon microfiber scaffolds (VRMS) conductive, and poly-L-lysine (PLL) and laminin (LN) surface coatings were used to mimic the ECM environment and allow the attachment of rat PC12 neural cells. The robustness of the coatings was analyzed by surface resistivity measurements, scanning electron microscope (SEM) observation and immunocytochemistry. Cell attachment to protein coatings of PLL, LN and PLL+LN was studied using DNA quantification with Hoechst. The double coating of PLL+LN was selected based on high levels of PC12 cell attachment and the reported advantages of laminin for neural differentiation. The underlying gold coatings were shown to be biocompatible using cell proliferation and live/dead staining assays. Coatings exhibiting stable properties over time under dynamic fluid conditions were developed; indeed, cell attachment and the conductive power of the scaffolds were maintained over 2 weeks of bioreactor operation. These scaffolds are promising research tools for understanding complex neural cell behavior. They have been used to investigate major factors in the physical culture environment that affect nerve cell viability and differentiation, including electrical stimulation, bioreactor hydrodynamic conditions, and combinations of these parameters. The cell and tissue differentiation response was evaluated using DNA quantification, immunocytochemistry, RT-qPCR and functional analyses.

Keywords: bioreactor, electrical stimulation, nerve differentiation, PC12 cells, scaffold

Procedia PDF Downloads 214
95 The Effect of Nanocomposite on the Release of Imipenem on Bacteria Causing Infections with Implants

Authors: Mohammad Hossein Pazandeh, Monir Doudi, Sona Rostampour Yasouri

Abstract:

—Results The prudent administration of antibiotics aims to avoid the side effects and the microbes' resistance to antibiotics. An approach developing methods of local administration of antibiotics is especially required for localized infections caused by bacterial colonization of medical devices or implant materials. Among the wide variety of materials used as drug delivery systems, bioactive glasses (BG) have large utilization in regenerative medicine . firstly, the production of bioactive glass/nickel oxide/tin dioxide nanocomposite using sol-gel method, and then, the controlled release of imipenem from the double metal oxide/bioactive glass nanocomposite, and finally, the investigation of the antibacterial property of the nanocomposite. against a number of implant-related infectious agents. In this study, BG/SnO2 and BG/NiO single systema with different metal oxide present and BG/NiO/SnO2 nanocomposites were synthesized by sol-gel as drug carriers for tetracycline and imepinem. These two antibiotics were widely used for osteomyelitis because of its favorable penetration and bactericidal effect on all the probable osteomyelitis pathogens. The antibacterial activity of synthesized samples were evaluated against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa as bacteria model using disk diffusion method. The BG modification using metal oxides results to antibacterial property of samples containing metal oxide with highest efficiency for nancomposite. bioactivity of all samples was assessed by determining the surface morphology, structural and composition changes using scanning electron microscopy (SEM), FTIR and X-ray diffraction (XRD) spectroscopy, respectively, after soaking in simulated body fluid (SBF) for 28 days. The hydroxyapatite formation was clearly observed as a bioactivity measurement. Then, BG nanocomposite sample was loaded using two antibiotics, separately and their release profiles were studied. The BG nancomposite sample was shown the slow and continuous drug releasing for a period of 72 hours which is desirable for a drug delivery system. The loaded antibiotic nanocomposite sample retaining antibacterial property and showing inactivation effect against bacteria under test. The modified bioactive glass forming hydroxyapatite with controlled release drug and effective against bacterial infections can be introduced as scaffolds for bone implants after clinical trials for biomedical applications . Considering the formation of biofilm by infectious bacteria after sticking on the surfaces of implants, medical devices, etc. Also, considering the complications of traditional methods, solving the problems caused by the above-mentioned microorganisms in technical and biomedical industries was one of the necessities of this research.

Keywords: antibacterial, bioglass, drug delivery system, sol- gel

Procedia PDF Downloads 19
94 Bioflavonoids Derived from Mandarin Processing Wastes: Functional Hydrogels as a Sustainable Food Systems

Authors: Niharika Kaushal, Minni Singh

Abstract:

Fruit crops are widely cultivated throughout the World, with citrus being one of the most common. Mandarins, oranges, grapefruits, lemons, and limes are among the most frequently grown varieties. Citrus cultivars are industrially processed into juice, resulting in approx. 25-40% by wt. of biomass in the form of peels and seeds, generally considered as waste. In consequence, a significant amount of this nutraceutical-enriched biomass goes to waste, which, if utilized wisely, could revolutionize the functional food industry, as this biomass possesses a wide range of bioactive compounds, mainly within the class of polyphenols and terpenoids, making them an abundant source of functional bioactive. Mandarin is a potential source of bioflavonoids with putative antioxidative properties, and its potential application for developing value-added products is obvious. In this study, ‘kinnow’ mandarin (Citrus nobilis X Citrus deliciosa) biomass was studied for its flavonoid profile. For this, dried and pulverized peels were subjected to green and sustainable extraction techniques, namely, supercritical fluid extraction carried out under conditions pressure: 330 bar, temperature: 40 ̊ C and co-solvent: 10% ethanol. The obtained extract was observed to contain 47.3±1.06 mg/ml rutin equivalents as total flavonoids. Mass spectral analysis revealed the prevalence of polymethoxyflavones (PMFs), chiefly tangeretin and nobiletin. Furthermore, the antioxidant potential was analyzed by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method, which was estimated to be at an IC₅₀ of 0.55μg/ml. The pre-systemic metabolism of flavonoids limits their functionality, as was observed in this study through in vitro gastrointestinal studies where nearly 50.0% of the flavonoids were degraded within 2 hours of gastric exposure. We proposed nanoencapsulation as a means to overcome this problem, and flavonoids-laden polylactic-co-glycolic acid (PLGA) nano encapsulates were bioengineered using solvent evaporation method, and these were furnished to a particle size between 200-250nm, which exhibited protection of flavonoids in the gastric environment, allowing only 20% to be released in 2h. A further step involved impregnating the nano encapsulates within alginate hydrogels which were fabricated by ionic cross-linking, which would act as delivery vehicles within the gastrointestinal (GI) tract. As a result, 100% protection was achieved from the pre-systemic release of bioflavonoids. These alginate hydrogels had key significant features, i.e., less porosity of nearly 20.0%, and Cryo-SEM (Cryo-scanning electron microscopy) images of the composite corroborate the packing ability of the alginate hydrogel. As a result of this work, it is concluded that the waste can be used to develop functional biomaterials while retaining the functionality of the bioactive itself.

Keywords: bioflavonoids, gastrointestinal, hydrogels, mandarins

Procedia PDF Downloads 47
93 Optimum Drilling States in Down-the-Hole Percussive Drilling: An Experimental Investigation

Authors: Joao Victor Borges Dos Santos, Thomas Richard, Yevhen Kovalyshen

Abstract:

Down-the-hole (DTH) percussive drilling is an excavation method that is widely used in the mining industry due to its high efficiency in fragmenting hard rock formations. A DTH hammer system consists of a fluid driven (air or water) piston and a drill bit; the reciprocating movement of the piston transmits its kinetic energy to the drill bit by means of stress waves that propagate through the drill bit towards the rock formation. In the literature of percussive drilling, the existence of an optimum drilling state (Sweet Spot) is reported in some laboratory and field experimental studies. An optimum rate of penetration is achieved for a specific range of axial thrust (or weight-on-bit) beyond which the rate of penetration decreases. Several authors advance different explanations as possible root causes to the occurrence of the Sweet Spot, but a universal explanation or consensus does not exist yet. The experimental investigation in this work was initiated with drilling experiments conducted at a mining site. A full-scale drilling rig (equipped with a DTH hammer system) was instrumented with high precision sensors sampled at a very high sampling rate (kHz). Data was collected while two boreholes were being excavated, an in depth analysis of the recorded data confirmed that an optimum performance can be achieved for specific ranges of input thrust (weight-on-bit). The high sampling rate allowed to identify the bit penetration at each single impact (of the piston on the drill bit) as well as the impact frequency. These measurements provide a direct method to identify when the hammer does not fire, and drilling occurs without percussion, and the bit propagate the borehole by shearing the rock. The second stage of the experimental investigation was conducted in a laboratory environment with a custom-built equipment dubbed Woody. Woody allows the drilling of shallow holes few centimetres deep by successive discrete impacts from a piston. After each individual impact, the bit angular position is incremented by a fixed amount, the piston is moved back to its initial position at the top of the barrel, and the air pressure and thrust are set back to their pre-set values. The goal is to explore whether the observed optimum drilling state stems from the interaction between the drill bit and the rock (during impact) or governed by the overall system dynamics (between impacts). The experiments were conducted on samples of Calca Red, with a drill bit of 74 millimetres (outside diameter) and with weight-on-bit ranging from 0.3 kN to 3.7 kN. Results show that under the same piston impact energy and constant angular displacement of 15 degrees between impact, the average drill bit rate of penetration is independent of the weight-on-bit, which suggests that the sweet spot is not caused by intrinsic properties of the bit-rock interface.

Keywords: optimum drilling state, experimental investigation, field experiments, laboratory experiments, down-the-hole percussive drilling

Procedia PDF Downloads 54
92 Belonging without Believing: Life Narratives of Six Social Generations of Members of the Apostolic Society

Authors: Frederique A. Demeijer

Abstract:

This article addresses the religious beliefs of members of the Apostolic Society –a Dutch religious community wherein the oldest living members were raised with very different beliefs than those upheld today. Currently, the Apostolic Society is the largest liberal religious community of the Netherlands, consisting of roughly 15,000 members. It is characterized by its close-knit community life and the importance of its apostle: the spiritual leader who writes a weekly letter around which the Sunday morning service is centered. The society sees itself as ‘religious-humanistic’, inspired by its Judeo-Christian roots without being dogmatic. Only a century earlier, the beliefs of the religious community revolved more strongly around the Bible, the apostle is a link to Christ. Also, the community believed in the return of the Lord, resonating with the millenarian roots of community in 1830. Thus, the oldest living members have experienced fundamental changes in beliefs and rituals, yet remained members. This article reveals how members experience(d) their religious beliefs and feelings of belonging to the community, how these may or may not have changed over time, and what role the Apostolic Society played in their lives. The article presents a qualitative research approach based on two main pillars. First, life narrative interviews were conducted, to work inductively and allow different interview topics to emerge. Second, it uses generational theory, in three ways: 1) to select respondents; 2) to guide the interview methodology –by being sensitive to differences in socio-historical context and events experienced during formative years of interviewees of different social generations, and 3) to analyze and contextualize the qualitative interview data. The data were gathered from 27 respondents, belonging to six social generations. All interviews were recorded, transcribed, coded, and analyzed, using the Atlas.ti software program. First, the elder generations talk about growing up with the Apostolic Society being absolutely central in their daily and spiritual lives. They spent most of their time with fellow members and dedicated their free time to Apostolic activities. The central beliefs of the Apostolic Society were clear and strongly upheld, and they experienced strong belonging. Although they now see the set of central beliefs to be more individually interpretable and are relieved to not have to spend all that time to Apostolic activities anymore, they still regularly attend services and speak longingly of the past with its strong belief and belonging. Second, the younger generations speak of growing up in a non-dogmatic, religious-humanist set of beliefs, but still with a very strong belonging to the religious community. They now go irregularly to services, and talk about belonging, but not as strong as the elderly generations do. Third, across the generations, members spend more time outside of the Apostolic Society than within. The way they speak about their religious beliefs is fluid and differs as much within generations as between: for example, there is no central view on what God is. It seems the experience of members of the Apostolic Society across different generations can now be characterized as belonging without believing.

Keywords: generational theory, individual religious experiences, life narrative history interviews, qualitative research design

Procedia PDF Downloads 90
91 Women’s Experience of Managing Pre-Existing Lymphoedema during Pregnancy and the Early Postnatal Period

Authors: Kim Toyer, Belinda Thompson, Louise Koelmeyer

Abstract:

Lymphoedema is a chronic condition caused by dysfunction of the lymphatic system, which limits the drainage of fluid and tissue waste from the interstitial space of the affected body part. The normal physiological changes in pregnancy cause an increased load on a normal lymphatic system which can result in a transient lymphatic overload (oedema). The interaction between lymphoedema and pregnancy oedema is unclear. Women with pre-existing lymphoedema require accurate information and additional strategies to manage their lymphoedema during pregnancy. Currently, no resources are available to guide women or their healthcare providers with accurate advice and additional management strategies for coping with lymphoedema during pregnancy until they have recovered postnatally. This study explored the experiences of Australian women with pre-existing lymphoedema during recent pregnancy and the early postnatal period to determine how their usual lymphoedema management strategies were adapted and what were their additional or unmet needs. Interactions with their obstetric care providers, the hospital maternity services, and usual lymphoedema therapy services were detailed. Participants were sourced from several Australian lymphoedema community groups, including therapist networks. Opportunistic sampling is appropriate to explore this topic in a small target population as lymphoedema in women of childbearing age is uncommon, with prevalence data unavailable. Inclusion criteria were aged over 18 years, diagnosed with primary or secondary lymphoedema of the arm or leg, pregnant within the preceding ten years (since 2012), and had their pregnancy and postnatal care in Australia. Exclusion criteria were a diagnosis of lipedema and if unable to read or understand a reasonable level of English. A mixed-method qualitative design was used in two phases. This involved an online survey (REDCap platform) of the participants followed by online semi-structured interviews or focus groups to provide the transcript data for inductive thematic analysis to gain an in-depth understanding of issues raised. Women with well-managed pre-existing lymphoedema coped well with the additional oedema load of pregnancy; however, those with limited access to quality conservative care prior to pregnancy were found to be significantly impacted by pregnancy, including many reporting deterioration of their chronic lymphoedema. Misinformation and a lack of support increased fear and apprehension in planning and enjoying their pregnancy experience. Collaboration between maternity and lymphoedema therapy services did not happen despite study participants suggesting it. Helpful resources and unmet needs were identified in the recent Australian context to inform further research and the development of resources to assist women with lymphoedema who are considering or are pregnant and their supporters, including health care providers.

Keywords: lymphoedema, management strategies, pregnancy, qualitative

Procedia PDF Downloads 48
90 Development a Forecasting System and Reliable Sensors for River Bed Degradation and Bridge Pier Scouring

Authors: Fong-Zuo Lee, Jihn-Sung Lai, Yung-Bin Lin, Xiaoqin Liu, Kuo-Chun Chang, Zhi-Xian Yang, Wen-Dar Guo, Jian-Hao Hong

Abstract:

In recent years, climate change is a major factor to increase rainfall intensity and extreme rainfall frequency. The increased rainfall intensity and extreme rainfall frequency will increase the probability of flash flood with abundant sediment transport in a river basin. The floods caused by heavy rainfall may cause damages to the bridge, embankment, hydraulic works, and the other disasters. Therefore, the foundation scouring of bridge pier, embankment and spur dike caused by floods has been a severe problem in the worldwide. This severe problem has happened in many East Asian countries such as Taiwan and Japan because of these areas are suffered in typhoons, earthquakes, and flood events every year. Results from the complex interaction between fluid flow patterns caused by hydraulic works and the sediment transportation leading to the formation of river morphology, it is extremely difficult to develop a reliable and durable sensor to measure river bed degradation and bridge pier scouring. Therefore, an innovative scour monitoring sensor using vibration-based Micro-Electro Mechanical Systems (MEMS) was developed. This vibration-based MEMS sensor was packaged inside a stainless sphere with the proper protection of the full-filled resin, which can measure free vibration signals to detect scouring/deposition processes at the bridge pier. In addition, a friendly operational system includes rainfall runoff model, one-dimensional and two-dimensional numerical model, and the applicability of sediment transport equation and local scour formulas of bridge pier are included in this research. The friendly operational system carries out the simulation results of flood events that includes the elevation changes of river bed erosion near the specified bridge pier and the erosion depth around bridge piers. In addition, the system is developed with easy operation and integrated interface, the system can supplies users to calibrate and verify numerical model and display simulation results through the interface comparing to the scour monitoring sensors. To achieve the forecast of the erosion depth of river bed and main bridge pier in the study area, the system also connects the rainfall forecast data from Taiwan Typhoon and Flood Research Institute. The results can be provided available information for the management unit of river and bridge engineering in advance.

Keywords: flash flood, river bed degradation, bridge pier scouring, a friendly operational system

Procedia PDF Downloads 166
89 Thermal Imaging of Aircraft Piston Engine in Laboratory Conditions

Authors: Lukasz Grabowski, Marcin Szlachetka, Tytus Tulwin

Abstract:

The main task of the engine cooling system is to maintain its average operating temperatures within strictly defined limits. Too high or too low average temperatures result in accelerated wear or even damage to the engine or its individual components. In order to avoid local overheating or significant temperature gradients, leading to high stresses in the component, the aim is to ensure an even flow of air. In the case of analyses related to heat exchange, one of the main problems is the comparison of temperature fields because standard measuring instruments such as thermocouples or thermistors only provide information about the course of temperature at a given point. Thermal imaging tests can be helpful in this case. With appropriate camera settings and taking into account environmental conditions, we are able to obtain accurate temperature fields in the form of thermograms. Emission of heat from the engine to the engine compartment is an important issue when designing a cooling system. Also, in the case of liquid cooling, the main sources of heat in the form of emissions from the engine block, cylinders, etc. should be identified. It is important to redesign the engine compartment ventilation system. Ensuring proper cooling of aircraft reciprocating engine is difficult not only because of variable operating range but mainly because of different cooling conditions related to the change of speed or altitude of flight. Engine temperature also has a direct and significant impact on the properties of engine oil, which under the influence of this parameter changes, in particular, its viscosity. Too low or too high, its value can be a result of fast wear of engine parts. One of the ways to determine the temperatures occurring on individual parts of the engine is the use of thermal imaging measurements. The article presents the results of preliminary thermal imaging tests of aircraft piston diesel engine with a maximum power of about 100 HP. In order to perform the heat emission tests of the tested engine, the ThermaCAM S65 thermovision monitoring system from FLIR (Forward-Looking Infrared) together with the ThermaCAM Researcher Professional software was used. The measurements were carried out after the engine warm up. The engine speed was 5300 rpm The measurements were taken for the following environmental parameters: air temperature: 17 °C, ambient pressure: 1004 hPa, relative humidity: 38%. The temperatures distribution on the engine cylinder and on the exhaust manifold were analysed. Thermal imaging tests made it possible to relate the results of simulation tests to the real object by measuring the rib temperature of the cylinders. The results obtained are necessary to develop a CFD (Computational Fluid Dynamics) model of heat emission from the engine bay. The project/research was financed in the framework of the project Lublin University of Technology-Regional Excellence Initiative, funded by the Polish Ministry of Science and Higher Education (contract no. 030/RID/2018/19).

Keywords: aircraft, piston engine, heat, emission

Procedia PDF Downloads 96
88 Treatment of Onshore Petroleum Drill Cuttings via Soil Washing Process: Characterization and Optimal Conditions

Authors: T. Poyai, P. Painmanakul, N. Chawaloesphonsiya, P. Dhanasin, C. Getwech, P. Wattana

Abstract:

Drilling is a key activity in oil and gas exploration and production. Drilling always requires the use of drilling mud for lubricating the drill bit and controlling the subsurface pressure. As drilling proceeds, a considerable amount of cuttings or rock fragments is generated. In general, water or Water Based Mud (WBM) serves as drilling fluid for the top hole section. The cuttings generated from this section is non-hazardous and normally applied as fill materials. On the other hand, drilling the bottom hole to reservoir section uses Synthetic Based Mud (SBM) of which synthetic oils are composed. The bottom-hole cuttings, SBM cuttings, is regarded as a hazardous waste, in accordance with the government regulations, due to the presence of hydrocarbons. Currently, the SBM cuttings are disposed of as an alternative fuel and raw material in cement kiln. Instead of burning, this work aims to propose an alternative for drill cuttings management under two ultimate goals: (1) reduction of hazardous waste volume; and (2) making use of the cleaned cuttings. Soil washing was selected as the major treatment process. The physiochemical properties of drill cuttings were analyzed, such as size fraction, pH, moisture content, and hydrocarbons. The particle size of cuttings was analyzed via light scattering method. Oil present in cuttings was quantified in terms of total petroleum hydrocarbon (TPH) through gas chromatography equipped with flame ionization detector (GC-FID). Other components were measured by the standard methods for soil analysis. Effects of different washing agents, liquid-to-solid (L/S) ratio, washing time, mixing speed, rinse-to-solid (R/S) ratio, and rinsing time were also evaluated. It was found that drill cuttings held the electrical conductivity of 3.84 dS/m, pH of 9.1, and moisture content of 7.5%. The TPH in cuttings existed in the diesel range with the concentration ranging from 20,000 to 30,000 mg/kg dry cuttings. A majority of cuttings particles held a mean diameter of 50 µm, which represented silt fraction. The results also suggested that a green solvent was considered most promising for cuttings treatment regarding occupational health, safety, and environmental benefits. The optimal washing conditions were obtained at L/S of 5, washing time of 15 min, mixing speed of 60 rpm, R/S of 10, and rinsing time of 1 min. After washing process, three fractions including clean cuttings, spent solvent, and wastewater were considered and provided with recommendations. The residual TPH less than 5,000 mg/kg was detected in clean cuttings. The treated cuttings can be then used for various purposes. The spent solvent held the calorific value of higher than 3,000 cal/g, which can be used as an alternative fuel. Otherwise, the recovery of the used solvent can be conducted using distillation or chromatography techniques. Finally, the generated wastewater can be combined with the produced water and simultaneously managed by re-injection into the reservoir.

Keywords: drill cuttings, green solvent, soil washing, total petroleum hydrocarbon (TPH)

Procedia PDF Downloads 131
87 Temporal Profile of Exercise-Induced Changes in Plasma Brain-Derived Neurotrophic Factor Levels of Schizophrenic Individuals

Authors: Caroline Lavratti, Pedro Dal Lago, Gustavo Reinaldo, Gilson Dorneles, Andreia Bard, Laira Fuhr, Daniela Pochmann, Alessandra Peres, Luciane Wagner, Viviane Elsner

Abstract:

Approximately 1% of the world's population is affected by schizophrenia (SZ), a chronic and debilitating neurodevelopmental disorder. Among possible factors, reduced levels of Brain-derived neurotrophic factor (BDNF) has been recognized in physiopathogenesis and course of SZ. In this context, peripheral BDNF levels have been used as a biomarker in several clinical studies, since this neurotrophin is able to cross the blood-brain barrier in a bi-directional manner and seems to present a strong correlation with the central nervous system fluid levels. The patients with SZ usually adopts a sedentary lifestyle, which has been partly associated with the increase in obesity incidence rates, metabolic syndrome, type 2 diabetes and coronary heart disease. On the other hand, exercise, a non-invasive and low cost intervention, has been considered an important additional therapeutic option for this population, promoting benefits to physical and mental health. To our knowledge, few studies have been pointed out that the positive effects of exercise in SZ patients are mediated, at least in part, to enhanced levels of BDNF after training. However, these studies are focused on evaluating the effect of single bouts of exercise of chronic interventions, data concerning the short- and long-term exercise outcomes on BDNF are scarce. Therefore, this study aimed to evaluate the effect of a concurrent exercise protocol (CEP) on plasma BDNF levels of SZ patients in different time-points. Material and Methods: This study was approved by the Research Ethics Committee of the Centro Universitário Metodista do IPA (no 1.243.680/2015). The participants (n=15) were subbmited to the CEP during 90 days, 3 times a week for 60 minutes each session. In order to evaluate the short and long-term effects of exercise, blood samples were collected pre, 30, 60 and 90 days after the intervention began. Plasma BDNF levels were determined with the ELISA method, from Sigma-Aldrich commercial kit (catalog number RAB0026) according to manufacturer's instructions. Results: A remarkable increase on plasma BDNF levels at 90 days after training compared to baseline (p=0.006) and 30 days (p=0.007) values were observed. Conclusion: Our data are in agreement with several studies that show significant enhancement on BDNF levels in response to different exercise protocols in SZ individuals. We might suggest that BDNF upregulation after training in SZ patients acts in a dose-dependent manner, being more pronounced in response to chronic exposure. Acknowledgments: This work was supported by Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS)/Brazil.

Keywords: exercise, BDNF, schizophrenia, time-points

Procedia PDF Downloads 230
86 Reducing the Computational Cost of a Two-way Coupling CFD-FEA Model via a Multi-scale Approach for Fire Determination

Authors: Daniel Martin Fellows, Sean P. Walton, Jennifer Thompson, Oubay Hassan, Kevin Tinkham, Ella Quigley

Abstract:

Structural integrity for cladding products is a key performance parameter, especially concerning fire performance. Cladding products such as PIR-based sandwich panels are tested rigorously, in line with industrial standards. Physical fire tests are necessary to ensure the customer's safety but can give little information about critical behaviours that can help develop new materials. Numerical modelling is a tool that can help investigate a fire's behaviour further by replicating the fire test. However, fire is an interdisciplinary problem as it is a chemical reaction that behaves fluidly and impacts structural integrity. An analysis using Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) is needed to capture all aspects of a fire performance test. One method is a two-way coupling analysis that imports the updated changes in thermal data, due to the fire's behaviour, to the FEA solver in a series of iterations. In light of our recent work with Tata Steel U.K using a two-way coupling methodology to determine the fire performance, it has been shown that a program called FDS-2-Abaqus can make predictions of a BS 476 -22 furnace test with a degree of accuracy. The test demonstrated the fire performance of Tata Steel U.K Trisomet product, a Polyisocyanurate (PIR) based sandwich panel used for cladding. Previous works demonstrated the limitations of the current version of the program, the main limitation being the computational cost of modelling three Trisomet panels, totalling an area of 9 . The computational cost increases substantially, with the intention to scale up to an LPS 1181-1 test, which includes a total panel surface area of 200 .The FDS-2-Abaqus program is developed further within this paper to overcome this obstacle and better accommodate Tata Steel U.K PIR sandwich panels. The new developments aim to reduce the computational cost and error margin compared to experimental data. One avenue explored is a multi-scale approach in the form of Reduced Order Modeling (ROM). The approach allows the user to include refined details of the sandwich panels, such as the overlapping joints, without a computationally costly mesh size.Comparative studies will be made between the new implementations and the previous study completed using the original FDS-2-ABAQUS program. Validation of the study will come from physical experiments in line with governing body standards such as BS 476 -22 and LPS 1181-1. The physical experimental data includes the panels' gas and surface temperatures and mechanical deformation. Conclusions are drawn, noting the new implementations' impact factors and discussing the reasonability for scaling up further to a whole warehouse.

Keywords: fire testing, numerical coupling, sandwich panels, thermo fluids

Procedia PDF Downloads 41
85 Life Cycle Assessment Applied to Supermarket Refrigeration System: Effects of Location and Choice of Architecture

Authors: Yasmine Salehy, Yann Leroy, Francois Cluzel, Hong-Minh Hoang, Laurence Fournaison, Anthony Delahaye, Bernard Yannou

Abstract:

Taking into consideration all the life cycle of a product is now an important step in the eco-design of a product or a technology. Life cycle assessment (LCA) is a standard tool to evaluate the environmental impacts of a system or a process. Despite the improvement in refrigerant regulation through protocols, the environmental damage of refrigeration systems remains important and needs to be improved. In this paper, the environmental impacts of refrigeration systems in a typical supermarket are compared using the LCA methodology under different conditions. The system is used to provide cold at two levels of temperature: medium and low temperature during a life period of 15 years. The most commonly used architectures of supermarket cold production systems are investigated: centralized direct expansion systems and indirect systems using a secondary loop to transport the cold. The variation of power needed during seasonal changes and during the daily opening/closure periods of the supermarket are considered. R134a as the primary refrigerant fluid and two types of secondary fluids are considered. The composition of each system and the leakage rate of the refrigerant through its life cycle are taken from the literature and industrial data. Twelve scenarios are examined. They are based on the variation of three parameters, 1. location: France (Paris), Spain (Toledo) and Sweden (Stockholm), 2. different sources of electric consumption: photovoltaic panels and low voltage electric network and 3. architecture: direct and indirect refrigeration systems. OpenLCA, SimaPro softwares, and different impact assessment methods were compared; CML method is used to evaluate the midpoint environmental indicators. This study highlights the significant contribution of electric consumption in environmental damages compared to the impacts of refrigerant leakage. The secondary loop allows lowering the refrigerant amount in the primary loop which results in a decrease in the climate change indicators compared to the centralized direct systems. However, an exhaustive cost evaluation (CAPEX and OPEX) of both systems shows more important costs related to the indirect systems. A significant difference between the countries has been noticed, mostly due to the difference in electric production. In Spain, using photovoltaic panels helps to reduce efficiently the environmental impacts and the related costs. This scenario is the best alternative compared to the other scenarios. Sweden is a country with less environmental impacts. For both France and Sweden, the use of photovoltaic panels does not bring a significant difference, due to a less sunlight exposition than in Spain. Alternative solutions exist to reduce the impact of refrigerating systems, and a brief introduction is presented.

Keywords: eco-design, industrial engineering, LCA, refrigeration system

Procedia PDF Downloads 142
84 Hydroxyapatite Nanorods as Novel Fillers for Improving the Properties of PBSu

Authors: M. Nerantzaki, I. Koliakou, D. Bikiaris

Abstract:

This study evaluates the hypothesis that the incorporation of fibrous hydroxyapatite nanoparticles (nHA) with high crystallinity and high aspect ratio, synthesized by hydrothermal method, into Poly(butylene succinate) (PBSu), improves the bioactivity of the aliphatic polyester and affects new bone growth inhibiting resorption and enhancing bone formation. Hydroxyapatite nanorods were synthesized using a simple hydrothermal procedure. First, the HPO42- -containing solution was added drop-wise into the Ca2+-containing solution, while the molar ratio of Ca/P was adjusted at 1.67. The HA precursor was then treated hydrothermally at 200°C for 72 h. The resulting powder was characterized using XRD, FT-IR, TEM, and EDXA. Afterwards, PBSu nanocomposites containing 2.5wt% (nHA) were prepared by in situ polymerization technique for the first time and were examined as potential scaffolds for bone engineering applications. For comparison purposes composites containing either 2.5wt% micro-Bioglass (mBG) or 2.5wt% mBG-nHA were prepared and studied, too. The composite scaffolds were characterized using SEM, FTIR, and XRD. Mechanical testing (Instron 3344) and Contact Angle measurements were also carried out. Enzymatic degradation was studied in an aqueous solution containing a mixture of R. Oryzae and P. Cepacia lipases at 37°C and pH=7.2. In vitro biomineralization test was performed by immersing all samples in simulated body fluid (SBF) for 21 days. Biocompatibility was assessed using rat Adipose Stem Cells (rASCs), genetically modified by nucleofection with DNA encoding SB100x transposase and pT2-Venus-neo transposon expression plasmids in order to attain fluorescence images. Cell proliferation and viability of cells on the scaffolds were evaluated using fluoresce microscopy and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide) assay. Finally, osteogenic differentiation was assessed by staining rASCs with alizarine red using cetylpyridinium chloride (CPC) method. TEM image of the fibrous HAp nanoparticles, synthesized in the present study clearly showed the fibrous morphology of the synthesized powder. The addition of nHA decreased significantly the contact angle of the samples, indicating that the materials become more hydrophilic and hence they absorb more water and subsequently degrade more rapidly. In vitro biomineralization test confirmed that all samples were bioactive as mineral deposits were detected by X-ray diffractometry after incubation in SBF. Metabolic activity of rASCs on all PBSu composites was high and increased from day 1 of culture to day 14. On day 28 metabolic activity of rASCs cultured on samples enriched with bioceramics was significantly decreased due to possible differentiation of rASCs to osteoblasts. Staining rASCs with alizarin red after 28 days in culture confirmed our initial hypothesis as the presence of calcium was detected, suggesting osteogenic differentiation of rACS on PBSu/nHAp/mBG 2.5% and PBSu/mBG 2.5% composite scaffolds.

Keywords: biomaterials, hydroxyapatite nanorods, poly(butylene succinate), scaffolds

Procedia PDF Downloads 282
83 Reinforcement of Calcium Phosphate Cement with E-Glass Fibre

Authors: Kanchan Maji, Debasmita Pani, Sudip Dasgupta

Abstract:

Calcium phosphate cement (CPC) due to its high bioactivity and optimum bioresorbability shows excellent bone regeneration capability. Despite it has limited applications as bone implant due to its macro-porous microstructure causing its poor mechanical strength. The reinforcement of apatitic CPCs with biocompatible fibre glass phase is an attractive area of research to improve its mechanical strength. Here we study the setting behaviour of Si-doped and un-doped alpha tri-calcium phosphate (α-TCP) based CPC and its reinforcement with the addition of E-glass fibre. Alpha tri-calcium phosphate powders were prepared by solid state sintering of CaCO3, CaHPO4 and tetra ethyl ortho silicate (TEOS) was used as silicon source to synthesise Si doped α-TCP powders. Alpha tri-calcium phosphate based CPC hydrolyzes to form hydroxyapatite (HA) crystals having excellent osteoconductivity and bone-replacement capability thus self-hardens through the entanglement of HA crystals. Setting time, phase composition, hydrolysis conversion rate, microstructure, and diametral tensile strength (DTS) of un-doped CPC and Si-doped CPC were studied and compared. Both initial and final setting time of the developed cement was delayed because of Si addition. Crystalline phases of HA (JCPDS 9-432), α-TCP (JCPDS 29-359) and β-TCP (JCPDS 9-169) were detected in the X-ray diffraction (XRD) pattern after immersion of CPC in simulated body fluid (SBF) for 0 hours to 10 days. The intensities of the α-TCP peaks of (201) and (161) at 2θ of 22.2°and 24.1° decreased when the time of immersion of CPC in SBF increased from 0 hours to 10 days, due to its transformation into HA. As Si incorporation in the crystal lattice stabilised the TCP phase, Si doped CPC showed a little slower rate of conversion into HA phase as compared to un-doped CPC. The SEM image of the microstructure of hardened CPC showed lower grain size of HA in un-doped CPC because of premature setting and faster hydrolysis of un-doped CPC in SBF as compared that in Si-doped CPC. Premature setting caused generation of micro and macro porosity in un-doped CPC structure which resulted in its lower mechanical strength as compared to that in Si-doped CPC. This lower porosity and greater compactness in the microstructure attributes to greater DTS values observed in Si-doped CPC. E-glass fibres of the average diameter of 12 μm were cut into approximately 1 mm in length and immersed in SBF to deposit carbonated apatite on its surface. This was performed to promote HA crystal growth and entanglement along the fibre surface to promote stronger interface between dispersed E-glass fibre and CPC matrix. It was found that addition of 10 wt% of E-glass fibre into Si-doped α-TCP increased the average DTS of CPC from 8 MPa to 15 MPa as the fibres could resist the propagation of crack by deflecting the crack tip. Our study shows that biocompatible E-glass fibre in optimum proportion in CPC matrix can enhance the mechanical strength of CPC without affecting its bioactivity.

Keywords: Calcium phosphate cement, biocompatibility, e-glass fibre, diametral tensile strength

Procedia PDF Downloads 322
82 Combined Pneumomediastinum and Pneumothorax Due to Hyperemesis Gravidarum

Authors: Fayez Hanna, Viet Tran

Abstract:

A 20 years old lady- primigravida 6 weeks pregnant with unremarkable past history, presented to the emergency department at the Royal Hobart Hospital, Tasmania, Australia, with hyperemesis gravidarum associated with, dehydration and complicated with hematemesis and chest pain resistant. Accordingly, we conducted laboratory investigations which revealed: FBC: WBC 23.9, unremarkable U&E, LFT, lipase and her VBG showed a pH 7.4, pCo2 36.7, cK+ 3.2, cNa+ 142. The decision was made to do a chest X-ray (CXR) after explaining the risks/benefit of performing radiographic investigations during pregnancy and considering the patient's plan for the termination of the pregnancy as she was not ready for motherhood for shared decision-making and consent to look for pneumoperitoneum to suggest perforated viscus that might cause the hematemesis. However, the CXR showed pneumomediastinum but no evidence of pneumoperitoneum or pneumothorax. Consequently, a decision was made to proceed with CT oesophagography with imaging pre and post oral contrast administration to identify a potential oesophageal tear since it could not be excluded using a plain film of the CXR. The CT oesophagography could not find a leak for the administered oral contrast and thus, no oesophageal tear could be confirmed but could not exclude the Mallory-Weiss tear (lower oesophageal tear). Further, the CT oesophagography showed an extensive pneumomediastinum that could not be confirmed to be pulmonary in origin noting the presence of bilateral pulmonary interstitial emphysema and pneumothorax in the apex of the right lung that was small. The patient was admitted to the Emergency Department Inpatient Unit for monitoring, supportive therapy, and symptomatic management. Her hyperemesis was well controlled with ondansetron 8mg IV, metoclopramide 10mg IV, doxylamine 25mg PO, pyridoxine 25mg PO, esomeprazole 40mg IV and oxycodone 5mg PO was given for pain control and 2 litter of IV fluid. The patient was stabilized after 24 hours and discharged home on ondansetron 8mg every 8 hours whereas the patient had a plan for medical termination of pregnancy. Three weeks later, the patient represented with nausea and vomiting complicated by a frank hematemesis. Her observation chart showed HR 117- other vital signs were normal. Pathology showed WBC 14.3 with normal U&E and Hb. The patient was managed in the Emergency Department with the same previous regimen and was discharged home on same previous regimes. Five days later, she presented again with nausea, vomiting and hematemesis and was admitted under obstetrics and gynaecology for stabilization then discharged home with a plan for surgical termination of pregnancy after 3-days rather than the previously planned medical termination of pregnancy to avoid extension of potential oesophageal tear. The surgical termination and follow up period were uneventful. The case is considered rare as pneumomediastinum is a very rare complication of hyperemesis gravidarum where vomiting-induced barotrauma leads to a ruptured oesophagus and air leak into the mediastinum. However no rupture oesophagus in our case. Although the combination of pneumothorax and pneumomediastinum without oesophageal tear was reported only 8 times in the literature, but none of them was due to hyperemesis gravidarum.

Keywords: Pneumothorax, pneumomediastinum, hyperemesis gravidarum, pneumopericardium

Procedia PDF Downloads 66
81 Improvement of Electric Aircraft Endurance through an Optimal Propeller Design Using Combined BEM, Vortex and CFD Methods

Authors: Jose Daniel Hoyos Giraldo, Jesus Hernan Jimenez Giraldo, Juan Pablo Alvarado Perilla

Abstract:

Range and endurance are the main limitations of electric aircraft due to the nature of its source of power. The improvement of efficiency on this kind of systems is extremely meaningful to encourage the aircraft operation with less environmental impact. The propeller efficiency highly affects the overall efficiency of the propulsion system; hence its optimization can have an outstanding effect on the aircraft performance. An optimization method is applied to an aircraft propeller in order to maximize its range and endurance by estimating the best combination of geometrical parameters such as diameter and airfoil, chord and pitch distribution for a specific aircraft design at a certain cruise speed, then the rotational speed at which the propeller operates at minimum current consumption is estimated. The optimization is based on the Blade Element Momentum (BEM) method, additionally corrected to account for tip and hub losses, Mach number and rotational effects; furthermore an airfoil lift and drag coefficients approximation is implemented from Computational Fluid Dynamics (CFD) simulations supported by preliminary studies of grid independence and suitability of different turbulence models, to feed the BEM method, with the aim of achieve more reliable results. Additionally, Vortex Theory is employed to find the optimum pitch and chord distribution to achieve a minimum induced loss propeller design. Moreover, the optimization takes into account the well-known brushless motor model, thrust constraints for take-off runway limitations, maximum allowable propeller diameter due to aircraft height and maximum motor power. The BEM-CFD method is validated by comparing its predictions for a known APC propeller with both available experimental tests and APC reported performance curves which are based on Vortex Theory fed with the NASA Transonic Airfoil code, showing a adequate fitting with experimental data even more than reported APC data. Optimal propeller predictions are validated by wind tunnel tests, CFD propeller simulations and a study of how the propeller will perform if it replaces the one of on known aircraft. Some tendency charts relating a wide range of parameters such as diameter, voltage, pitch, rotational speed, current, propeller and electric efficiencies are obtained and discussed. The implementation of CFD tools shows an improvement in the accuracy of BEM predictions. Results also showed how a propeller has higher efficiency peaks when it operates at high rotational speed due to the higher Reynolds at which airfoils present lower drag. On the other hand, the behavior of the current consumption related to the propulsive efficiency shows counterintuitive results, the best range and endurance is not necessary achieved in an efficiency peak.

Keywords: BEM, blade design, CFD, electric aircraft, endurance, optimization, range

Procedia PDF Downloads 84
80 Assessing the Outcomes of Collaboration with Students on Curriculum Development and Design on an Undergraduate Art History Module

Authors: Helen Potkin

Abstract:

This paper presents a practice-based case study of a project in which the student group designed and planned the curriculum content, classroom activities and assessment briefs in collaboration with the tutor. It focuses on the co-creation of the curriculum within a history and theory module, Researching the Contemporary, which runs for BA (Hons) Fine Art and Art History and for BA (Hons) Art Design History Practice at Kingston University, London. The paper analyses the potential of collaborative approaches to engender students’ investment in their own learning and to encourage reflective and self-conscious understandings of themselves as learners. It also addresses some of the challenges of working in this way, attending to the risks involved and feelings of uncertainty produced in experimental, fluid and open situations of learning. Alongside this, it acknowledges the tensions inherent in adopting such practices within the framework of the institution and within the wider of context of the commodification of higher education in the United Kingdom. The concept underpinning the initiative was to test out co-creation as a creative process and to explore the possibilities of altering the traditional hierarchical relationship between teacher and student in a more active, participatory environment. In other words, the project asked about: what kind of learning could be imagined if we were all in it together? It considered co-creation as producing different ways of being, or becoming, as learners, involving us reconfiguring multiple relationships: to learning, to each other, to research, to the institution and to our emotions. The project provided the opportunity for students to bring their own research and wider interests into the classroom, take ownership of sessions, collaborate with each other and to define the criteria against which they would be assessed. Drawing on students’ reflections on their experience of co-creation alongside theoretical considerations engaging with the processual nature of learning, concepts of equality and the generative qualities of the interrelationships in the classroom, the paper suggests that the dynamic nature of collaborative and participatory modes of engagement have the potential to foster relevant and significant learning experiences. The findings as a result of the project could be quantified in terms of the high level of student engagement in the project, specifically investment in the assessment, alongside the ambition and high quality of the student work produced. However, reflection on the outcomes of the experiment prompts a further set of questions about the nature of positionality in connection to learning, the ways our identities as learners are formed in and through our relationships in the classroom and the potential and productive nature of creative practice in education. Overall, the paper interrogates questions of what it means to work with students to invent and assemble the curriculum and it assesses the benefits and challenges of co-creation. Underpinning it is the argument that, particularly in the current climate of higher education, it is increasingly important to ask what it means to teach and to envisage what kinds of learning can be possible.

Keywords: co-creation, collaboration, learning, participation, risk

Procedia PDF Downloads 99
79 Effects of Radiation on Mixed Convection in Power Law Fluids along Vertical Wedge Embedded in a Saturated Porous Medium under Prescribed Surface Heat Flux Condition

Authors: Qaisar Ali, Waqar A. Khan, Shafiq R. Qureshi

Abstract:

Heat transfer in Power Law Fluids across cylindrical surfaces has copious engineering applications. These applications comprises of areas such as underwater pollution, bio medical engineering, filtration systems, chemical, petroleum, polymer, food processing, recovery of geothermal energy, crude oil extraction, pharmaceutical and thermal energy storage. The quantum of research work with diversified conditions to study the effects of combined heat transfer and fluid flow across porous media has increased considerably over last few decades. The most non-Newtonian fluids of practical interest are highly viscous and therefore are often processed in the laminar flow regime. Several studies have been performed to investigate the effects of free and mixed convection in Newtonian fluids along vertical and horizontal cylinder embedded in a saturated porous medium, whereas very few analysis have been performed on Power law fluids along wedge. In this study, boundary layer analysis under the effects of radiation-mixed convection in power law fluids along vertical wedge in porous medium have been investigated using an implicit finite difference method (Keller box method). Steady, 2-D laminar flow has been considered under prescribed surface heat flux condition. Darcy, Boussinesq and Roseland approximations are assumed to be valid. Neglecting viscous dissipation effects and the radiate heat flux in the flow direction, the boundary layer equations governing mixed convection flow over a vertical wedge are transformed into dimensionless form. The single mathematical model represents the case for vertical wedge, cone and plate by introducing the geometry parameter. Both similar and Non- similar solutions have been obtained and results for Non similar case have been presented/ plotted. Effects of radiation parameter, variable heat flux parameter, wedge angle parameter ‘m’ and mixed convection parameter have been studied for both Newtonian and Non-Newtonian fluids. The results are also compared with the available data for the analysis of heat transfer in the prescribed range of parameters and found in good agreement. Results for the details of dimensionless local Nusselt number, temperature and velocity fields have also been presented for both Newtonian and Non-Newtonian fluids. Analysis of data revealed that as the radiation parameter or wedge angle is increased, the Nusselt number decreases whereas it increases with increase in the value of heat flux parameter at a given value of mixed convection parameter. Also, it is observed that as viscosity increases, the skin friction co-efficient increases which tends to reduce the velocity. Moreover, pseudo plastic fluids are more heat conductive than Newtonian and dilatant fluids respectively. All fluids behave identically in pure forced convection domain.

Keywords: porous medium, power law fluids, surface heat flux, vertical wedge

Procedia PDF Downloads 280
78 Influence of Mandrel’s Surface on the Properties of Joints Produced by Magnetic Pulse Welding

Authors: Ines Oliveira, Ana Reis

Abstract:

Magnetic Pulse Welding (MPW) is a cold solid-state welding process, accomplished by the electromagnetically driven, high-speed and low-angle impact between two metallic surfaces. It has the same working principle of Explosive Welding (EXW), i.e. is based on the collision of two parts at high impact speed, in this case, propelled by electromagnetic force. Under proper conditions, i.e., flyer velocity and collision point angle, a permanent metallurgical bond can be achieved between widely dissimilar metals. MPW has been considered a promising alternative to the conventional welding processes and advantageous when compared to other impact processes. Nevertheless, MPW current applications are mostly academic. Despite the existing knowledge, the lack of consensus regarding several aspects of the process calls for further investigation. As a result, the mechanical resistance, morphology and structure of the weld interface in MPW of Al/Cu dissimilar pair were investigated. The effect of process parameters, namely gap, standoff distance and energy, were studied. It was shown that welding only takes place if the process parameters are within an optimal range. Additionally, the formation of intermetallic phases cannot be completely avoided in the weld of Al/Cu dissimilar pair by MPW. Depending on the process parameters, the intermetallic compounds can appear as continuous layer or small pockets. The thickness and the composition of the intermetallic layer depend on the processing parameters. Different intermetallic phases can be identified, meaning that different temperature-time regimes can occur during the process. It is also found that lower pulse energies are preferred. The relationship between energy increase and melting is possibly related to multiple sources of heating. Higher values of pulse energy are associated with higher induced currents in the part, meaning that more Joule heating will be generated. In addition, more energy means higher flyer velocity, the air existing in the gap between the parts to be welded is expelled, and this aerodynamic drag (fluid friction) is proportional to the square of the velocity, further contributing to the generation of heat. As the kinetic energy also increases with the square of velocity, the dissipation of this energy through plastic work and jet generation will also contribute to an increase in temperature. To reduce intermetallic phases, porosity, and melt pockets, pulse energy should be minimized. The bond formation is affected not only by the gap, standoff distance, and energy but also by the mandrel’s surface conditions. No correlation was clearly identified between surface roughness/scratch orientation and joint strength. Nevertheless, the aspect of the interface (thickness of the intermetallic layer, porosity, presence of macro/microcracks) is clearly affected by the surface topology. Welding was not established on oil contaminated surfaces, meaning that the jet action is not enough to completely clean the surface.

Keywords: bonding mechanisms, impact welding, intermetallic compounds, magnetic pulse welding, wave formation

Procedia PDF Downloads 186
77 Identification and Understanding of Colloidal Destabilization Mechanisms in Geothermal Processes

Authors: Ines Raies, Eric Kohler, Marc Fleury, Béatrice Ledésert

Abstract:

In this work, the impact of clay minerals on the formation damage of sandstone reservoirs is studied to provide a better understanding of the problem of deep geothermal reservoir permeability reduction due to fine particle dispersion and migration. In some situations, despite the presence of filters in the geothermal loop at the surface, particles smaller than the filter size (<1 µm) may surprisingly generate significant permeability reduction affecting in the long term the overall performance of the geothermal system. Our study is carried out on cores from a Triassic reservoir in the Paris Basin (Feigneux, 60 km Northeast of Paris). Our goal is to first identify the clays responsible for clogging, a mineralogical characterization of these natural samples was carried out by coupling X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS). The results show that the studied stratigraphic interval contains mostly illite and chlorite particles. Moreover, the spatial arrangement of the clays in the rocks as well as the morphology and size of the particles, suggest that illite is more easily mobilized than chlorite by the flow in the pore network. Thus, based on these results, illite particles were prepared and used in core flooding in order to better understand the factors leading to the aggregation and deposition of this type of clay particles in geothermal reservoirs under various physicochemical and hydrodynamic conditions. First, the stability of illite suspensions under geothermal conditions has been investigated using different characterization techniques, including Dynamic Light Scattering (DLS) and Scanning Transmission Electron Microscopy (STEM). Various parameters such as the hydrodynamic radius (around 100 nm), the morphology and surface area of aggregates were measured. Then, core-flooding experiments were carried out using sand columns to mimic the permeability decline due to the injection of illite-containing fluids in sandstone reservoirs. In particular, the effects of ionic strength, temperature, particle concentration and flow rate of the injected fluid were investigated. When the ionic strength increases, a permeability decline of more than a factor of 2 could be observed for pore velocities representative of in-situ conditions. Further details of the retention of particles in the columns were obtained from Magnetic Resonance Imaging and X-ray Tomography techniques, showing that the particle deposition is nonuniform along the column. It is clearly shown that very fine particles as small as 100 nm can generate significant permeability reduction under specific conditions in high permeability porous media representative of the Triassic reservoirs of the Paris basin. These retention mechanisms are explained in the general framework of the DLVO theory

Keywords: geothermal energy, reinjection, clays, colloids, retention, porosity, permeability decline, clogging, characterization, XRD, SEM-EDS, STEM, DLS, NMR, core flooding experiments

Procedia PDF Downloads 144
76 Geometric Optimisation of Piezoelectric Fan Arrays for Low Energy Cooling

Authors: Alastair Hales, Xi Jiang

Abstract:

Numerical methods are used to evaluate the operation of confined face-to-face piezoelectric fan arrays as pitch, P, between the blades is varied. Both in-phase and counter-phase oscillation are considered. A piezoelectric fan consists of a fan blade, which is clamped at one end, and an extremely low powered actuator. This drives the blade tip’s oscillation at its first natural frequency. Sufficient blade tip speed, created by the high oscillation frequency and amplitude, is required to induce vortices and downstream volume flow in the surrounding air. A single piezoelectric fan may provide the ideal solution for low powered hot spot cooling in an electronic device, but is unable to induce sufficient downstream airflow to replace a conventional air mover, such as a convection fan, in power electronics. Piezoelectric fan arrays, which are assemblies including multiple fan blades usually in face-to-face orientation, must be developed to widen the field of feasible applications for the technology. The potential energy saving is significant, with a 50% power demand reduction compared to convection fans even in an unoptimised state. A numerical model of a typical piezoelectric fan blade is derived and validated against experimental data. Numerical error is found to be 5.4% and 9.8% using two data comparison methods. The model is used to explore the variation of pitch as a function of amplitude, A, for a confined two-blade piezoelectric fan array in face-to-face orientation, with the blades oscillating both in-phase and counter-phase. It has been reported that in-phase oscillation is optimal for generating maximum downstream velocity and flow rate in unconfined conditions, due at least in part to the beneficial coupling between the adjacent blades that leads to an increased oscillation amplitude. The present model demonstrates that confinement has a significant detrimental effect on in-phase oscillation. Even at low pitch, counter-phase oscillation produces enhanced downstream air velocities and flow rates. Downstream air velocity from counter-phase oscillation can be maximally enhanced, relative to that generated from a single blade, by 17.7% at P = 8A. Flow rate enhancement at the same pitch is found to be 18.6%. By comparison, in-phase oscillation at the same pitch outputs 23.9% and 24.8% reductions in peak downstream air velocity and flow rate, relative to that generated from a single blade. This optimal pitch, equivalent to those reported in the literature, suggests that counter-phase oscillation is less affected by confinement. The optimal pitch for generating bulk airflow from counter-phase oscillation is large, P > 16A, due to the small but significant downstream velocity across the span between adjacent blades. However, by considering design in a confined space, counterphase pitch should be minimised to maximise the bulk airflow generated from a certain cross-sectional area within a channel flow application. Quantitative values are found to deviate to a small degree as other geometric and operational parameters are varied, but the established relationships are maintained.

Keywords: piezoelectric fans, low energy cooling, power electronics, computational fluid dynamics

Procedia PDF Downloads 195
75 Particle Swarm Optimization for Modified Spencer Model Under Different Excitations

Authors: Fatemeh Behbahani, Mehdi Behbahani

Abstract:

The new materials have exposed the technological advancement that has been used to facilitate the presentation of buildings to effectively suppress vibration. Recently researchers have increased their advantages, including decreased power requirements, mechanical simplicity, and a high power capability, because of the regulated Fluids and their applications. The fluids used in magneto-rheological dampers also improved their mechanical characteristics. The damper force caused by the current excitement adjustment was applied within the damper to the electromagnet. A supreme model is needed to be able to accurately estimate damping force according to the superior present hysteresis damper behavior to use the advantage of this remarkable method. Due to the supreme coverage of the nonlinear field of the hysteresis loop among the parametric model, the Spencer model has been commonly used for MR damper to describe hysteresis behavior. Despite this, there are still essential differences in the simulation and experimental outcomes. A novelty model according to the Spencer model is being used here to simulate the damper's nonlinear hysteretic behavior by taking the excitations of frequency, current, and amplitude as displacement and velocity as input variables. This suggested model has a greater benefit than the historically uncertain parameters of the Spencer model, where it can be re-evaluated if a new grouping of excitation parameters is preferred. Experimental experiments in the damping force measuring machine were carried out for validation of the simulations using MATLAB software, as shown in the previous paper which will be mentioned in the content. This paper aims to explain the optimal value of the parameters for the proposed model using a biological-inspired algorithm called Particle Swarm Optimization. The working principles of the classical Particle Swarm Optimisation (PSO) algorithm for a better understanding of the basic framework of a PSO algorithm will be discussed and also, learn to demonstrate the functionality of a PSO algorithm in MATLAB. A PSO algorithm's design is similar to that of bird flocking and starts with a randomly generated population group. They have fitness values to determine the population. They update the population check for optimal parameters with random strategies and update the simulation resets as well. However, not all algorithms guarantee F. B. with the Department of artificial intelligence and robotics (CAIRO), Malaysia-Japan International Institute of Technology (MJIIT), UTM, 54100, Kuala Lumpur, Malaysia (corresponding author, phone: +60-1136463246; e-mail: [email protected]). success. In displacement, velocity, and time curves, a great deal was found between the prediction and experimental works with an appropriate error as a result of the confirmation that the model can correctly measure the hysteresis damping force and the error has decreased relative to the Spencer model.

Keywords: modeling and simulation, semi-active control, MR damper RD-8040-1, particle swarm optimization, magnetorheological fluid, based spencer model

Procedia PDF Downloads 13
74 Functionalization of Sanitary Pads with Probiotic Paste

Authors: O. Sauperl, L. Fras Zemljic

Abstract:

The textile industry is gaining increasing importance in the field of medical materials. Therefore, presented research is focused on textile materials for external (out-of-body) use. Such materials could be various hygienic textile products (diapers, tampons, sanitary napkins, incontinence products, etc.), protective textiles and various hospital linens (surgical covers, masks, gowns, cloths, bed linens, etc.) wound pillows, bandages, orthopedic socks, etc. Function of tampons and sanitary napkins is not only to provide protection during the menstrual cycle, but their function can be also to take care of physiological or pathological vaginal discharge. In general, women's intimate areas are against infection protected by a low pH value of the vaginal flora. High pH inhibits the development of harmful microorganisms, as it is difficult to be reproduced in an acidic environment. The normal vaginal flora in healthy women is highly colonized by lactobacilli. The lactic acid produced by these organisms maintains the constant acidity of the vagina. If the balance of natural protection breaks, infections can occur. In the market, there exist probiotic tampons as a medical product supplying the vagina with beneficial probiotic lactobacilli. But, many users have concerns about the use of tampons due to the possible dry-out of the vagina as well as the possible toxic shock syndrome, which is the reason that they use mainly sanitary napkins during the menstrual cycle. Functionalization of sanitary napkins with probiotics is, therefore, interesting in regard to maintain a healthy vaginal flora and to offer to users added value of the sanitary napkins in the sense of health- and environmentally-friendly products. For this reason, the presented research is oriented in functionalization of the sanitary napkins with the probiotic paste in order to activate the lactic acid bacteria presented in the core of the functionalized sanitary napkin at the time of the contact with the menstrual fluid. In this way, lactobacilli could penetrate into vagina and by maintaining healthy vaginal flora to reduce the risk of vaginal disorders. In regard to the targeted research problem, the influence of probiotic paste applied onto cotton hygienic napkins on selected properties was studied. The aim of the research was to determine whether the sanitary napkins with the applied probiotic paste may assure suitable vaginal pH to maintain a healthy vaginal flora during the use of this product. Together with this, sorption properties of probiotic functionalized sanitary napkins were evaluated and compared to the untreated one. The research itself was carried out on the basis of tracking and controlling the input parameters, currently defined by Slovenian producer (Tosama d.o.o.) as the most important. Successful functionalization of sanitary pads with the probiotic paste was confirmed by ATR-FTIR spectroscopy. Results of the methods used within the presented research show that the absorption of the pads treated with probiotic paste deteriorates compared to non-treated ones. The coating shows a 6-month stability. Functionalization of sanitary pads with probiotic paste is believed to have a commercial potential for lowering the probability of infection during the menstrual cycle.

Keywords: functionalization, probiotic paste, sanitary pads, textile materials

Procedia PDF Downloads 163
73 Developing Creative and Critically Reflective Digital Learning Communities

Authors: W. S. Barber, S. L. King

Abstract:

This paper is a qualitative case study analysis of the development of a fully online learning community of graduate students through arts-based community building activities. With increasing numbers and types of online learning spaces, it is incumbent upon educators to continue to push the edge of what best practices look like in digital learning environments. In digital learning spaces, instructors can no longer be seen as purveyors of content knowledge to be examined at the end of a set course by a final test or exam. The rapid and fluid dissemination of information via Web 3.0 demands that we reshape our approach to teaching and learning, from one that is content-focused to one that is process-driven. Rather than having instructors as formal leaders, today’s digital learning environments require us to share expertise, as it is the collective experiences and knowledge of all students together with the instructors that help to create a very different kind of learning community. This paper focuses on innovations pursued in a 36 hour 12 week graduate course in higher education entitled “Critical and Reflective Practice”. The authors chronicle their journey to developing a fully online learning community (FOLC) by emphasizing the elements of social, cognitive, emotional and digital spaces that form a moving interplay through the community. In this way, students embrace anywhere anytime learning and often take the learning, as well as the relationships they build and skills they acquire, beyond the digital class into real world situations. We argue that in order to increase student online engagement, pedagogical approaches need to stem from two primary elements, both creativity and critical reflection, that are essential pillars upon which instructors can co-design learning environments with students. The theoretical framework for the paper is based on the interaction and interdependence of Creativity, Intuition, Critical Reflection, Social Constructivism and FOLCs. By leveraging students’ embedded familiarity with a wide variety of technologies, this case study of a graduate level course on critical reflection in education, examines how relationships, quality of work produced, and student engagement can improve by using creative and imaginative pedagogical strategies. The authors examine their professional pedagogical strategies through the lens that the teacher acts as facilitator, guide and co-designer. In a world where students can easily search for and organize information as self-directed processes, creativity and connection can at times be lost in the digitized course environment. The paper concludes by posing further questions as to how institutions of higher education may be challenged to restructure their credit granting courses into more flexible modules, and how students need to be considered an important part of assessment and evaluation strategies. By introducing creativity and critical reflection as central features of the digital learning spaces, notions of best practices in digital teaching and learning emerge.

Keywords: online, pedagogy, learning, communities

Procedia PDF Downloads 375
72 Partially Aminated Polyacrylamide Hydrogel: A Novel Approach for Temporary Oil and Gas Well Abandonment

Authors: Hamed Movahedi, Nicolas Bovet, Henning Friis Poulsen

Abstract:

Following the advent of the Industrial Revolution, there has been a significant increase in the extraction and utilization of hydrocarbon and fossil fuel resources. However, a new era has emerged, characterized by a shift towards sustainable practices, namely the reduction of carbon emissions and the promotion of renewable energy generation. Given the substantial number of mature oil and gas wells that have been developed inside the petroleum reservoir domain, it is imperative to establish an environmental strategy and adopt appropriate measures to effectively seal and decommission these wells. In general, the cement plug serves as a material for plugging purposes. Nevertheless, there exist some scenarios in which the durability of such a plug is compromised, leading to the potential escape of hydrocarbons via fissures and fractures within cement plugs. Furthermore, cement is often not considered a practical solution for temporary plugging, particularly in the case of well sites that have the potential for future gas storage or CO2 injection. The Danish oil and gas industry has promising potential as a prospective candidate for future carbon dioxide (CO2) injection, hence contributing to the implementation of carbon capture strategies within Europe. The primary reservoir component consists of chalk, a rock characterized by limited permeability. This work focuses on the development and characterization of a novel hydrogel variant. The hydrogel is designed to be injected via a low-permeability reservoir and afterward undergoes a transformation into a high-viscosity gel. The primary objective of this research is to explore the potential of this hydrogel as a new solution for effectively plugging well flow. Initially, the synthesis of polyacrylamide was carried out using radical polymerization inside the confines of the reaction flask. Subsequently, with the application of the Hoffman rearrangement, the polymer chain undergoes partial amination, facilitating its subsequent reaction with the crosslinker and enabling the formation of a hydrogel in the subsequent stage. The organic crosslinker, glutaraldehyde, was employed in the experiment to facilitate the formation of a gel. This gel formation occurred when the polymeric solution was subjected to heat within a specified range of reservoir temperatures. Additionally, a rheological survey and gel time measurements were conducted on several polymeric solutions to determine the optimal concentration. The findings indicate that the gel duration is contingent upon the starting concentration and exhibits a range of 4 to 20 hours, hence allowing for manipulation to accommodate diverse injection strategies. Moreover, the findings indicate that the gel may be generated in environments characterized by acidity and high salinity. This property ensures the suitability of this substance for application in challenging reservoir conditions. The rheological investigation indicates that the polymeric solution exhibits the characteristics of a Herschel-Bulkley fluid with somewhat elevated yield stress prior to solidification.

Keywords: polyacrylamide, hofmann rearrangement, rheology, gel time

Procedia PDF Downloads 52
71 Diasporic Literature

Authors: Shamsher Singh

Abstract:

The Diaspora Literature involves a concept of native land, from where the displacement occurs and a record of harsh journeys undertaken on account of economic compulsions. Basically, Diaspora is a splintered community living in eviction. The scattering (initially) signifies the location of a fluid human autonomous space involving a complex set of negotiations and exchange between the nostalgia and desire for the native land and the making of a new home, adapting to the relationships between the minority and majority, being spokes persons for minority rights and their people back native place and significantly transacting the Contact Zone - a space changed with the possibility of multiple challenges. They write in the background of the sublime qualities of their homeland and, at the same time, try to fit themselves into the traditions and cultural values of other strange communities or land. It also serves as an interconnection of the various cultures involved, and it is used to understand the customs of different cultures and countries; it is also a source of inspiration globally. Although diasporic literature originated back in the 20th century, it spread to other countries like Britain, Canada, America, Denmark, Netherland, Australia, Kenya, Sweden, Kuwait and different parts of Europe. Meaning of Diaspora is the combination of two words which means the movement of people away from their own country or motherland. From a historical point of view, the ‘Diaspora’ is often associated with Jewish bigotry. At the moment, the Diaspora is used for the dispersal of social or cultural groups. This group will be living in two different streams of cultures at the same time. One who left behind his culture and the other has to adapt himself to new cultural situations. The diasporic mind hangs between his birth land and place of work at the same time. A person’s mental state, living in dual existence, gives birth to Dysphoria sensation. Litterateurs had different experiences in this type of sensation e.g., social, universal, political, economic and experiences from the strange land. The struggle of these experiences is seen in diasporic literature. When a person moves to different land or country to fulfill his dreams, the discrimination of language, work and other difficulties with strangers make his relationship more emotional and deeper into his past. These past memories and relations create more difficulties in settling in a foreign land. He lives there physically, but his mental state is in his past constantly, and he ends up his life in those background memories. A person living in Diaspora is actually a dual visionary man. Although this double vision expands his global consciousness, due to this vision, he gains judgemental qualities to understand others. At the same time, he weighs his respect for his native land and the situations of foreign land he experiences, and he finds it difficult to survive in those conditions. It can be said that diaspora literature indicates a person or social organization who lives dual life inquisition structure which becomes the cause of diasporic literature.

Keywords: homeland sickness, language problem, quest for identity, materialistic desire

Procedia PDF Downloads 39
70 The Budget Impact of the DISCERN™ Diagnostic Test for Alzheimer’s Disease in the United States

Authors: Frederick Huie, Lauren Fusfeld, William Burchenal, Scott Howell, Alyssa McVey, Thomas F. Goss

Abstract:

Alzheimer’s Disease (AD) is a degenerative brain disease characterized by memory loss and cognitive decline that presents a substantial economic burden for patients and health insurers in the US. This study evaluates the payer budget impact of the DISCERN™ test in the diagnosis and management of patients with symptoms of dementia evaluated for AD. DISCERN™ comprises three assays that assess critical factors related to AD that regulate memory, formation of synaptic connections among neurons, and levels of amyloid plaques and neurofibrillary tangles in the brain and can provide a quicker, more accurate diagnosis than tests in the current diagnostic pathway (CDP). An Excel-based model with a three-year horizon was developed to assess the budget impact of DISCERN™ compared with CDP in a Medicare Advantage plan with 1M beneficiaries. Model parameters were identified through a literature review and were verified through consultation with clinicians experienced in diagnosis and management of AD. The model assesses direct medical costs/savings for patients based on the following categories: •Diagnosis: costs of diagnosis using DISCERN™ and CDP. •False Negative (FN) diagnosis: incremental cost of care avoidable with a correct AD diagnosis and appropriately directed medication. •True Positive (TP) diagnosis: AD medication costs; cost from a later TP diagnosis with the CDP versus DISCERN™ in the year of diagnosis, and savings from the delay in AD progression due to appropriate AD medication in patients who are correctly diagnosed after a FN diagnosis.•False Positive (FP) diagnosis: cost of AD medication for patients who do not have AD. A one-way sensitivity analysis was conducted to assess the effect of varying key clinical and cost parameters ±10%. An additional scenario analysis was developed to evaluate the impact of individual inputs. In the base scenario, DISCERN™ is estimated to decrease costs by $4.75M over three years, equating to approximately $63.11 saved per test per year for a cohort followed over three years. While the diagnosis cost is higher with DISCERN™ than with CDP modalities, this cost is offset by the higher overall costs associated with CDP due to the longer time needed to receive a TP diagnosis and the larger number of patients who receive a FN diagnosis and progress more rapidly than if they had received appropriate AD medication. The sensitivity analysis shows that the three parameters with the greatest impact on savings are: reduced sensitivity of DISCERN™, improved sensitivity of the CDP, and a reduction in the percentage of disease progression that is avoided with appropriate AD medication. A scenario analysis in which DISCERN™ reduces the utilization for patients of computed tomography from 21% in the base case to 16%, magnetic resonance imaging from 37% to 27% and cerebrospinal fluid biomarker testing, positive emission tomography, electroencephalograms, and polysomnography testing from 4%, 5%, 10%, and 8%, respectively, in the base case to 0%, results in an overall three-year net savings of $14.5M. DISCERN™ improves the rate of accurate, definitive diagnosis of AD earlier in the disease and may generate savings for Medicare Advantage plans.

Keywords: Alzheimer’s disease, budget, dementia, diagnosis.

Procedia PDF Downloads 117
69 Performance of the Abbott RealTime High Risk HPV Assay with SurePath Liquid Based Cytology Specimens from Women with Low Grade Cytological Abnormalities

Authors: Alexandra Sargent, Sarah Ferris, Ioannis Theofanous

Abstract:

The Abbott RealTime High Risk HPV test (RealTime HPV) is one of five assays clinically validated and approved by the English NHS Cervical Screening Programme (CSP) for HPV triage of low grade dyskaryosis and test-of-cure of treated Cervical Intraepithelial Neoplasia. The assay is a highly automated multiplex real-time PCR test for detecting 14 high risk (hr) HPV types, with simultaneous differentiation of HPV 16 and HPV 18 versus non-HPV 16/18 hrHPV. An endogenous internal control ensures sample cellularity, controls extraction efficiency and PCR inhibition. The original cervical specimen collected in SurePath (SP) liquid-based cytology (LBC) medium (BD Diagnostics) and the SP post-gradient cell pellets (SPG) after cytological processing are both CE marked for testing with the RealTime HPV test. During the 2011 NHSCSP validation of new tests only the original aliquot of SP LBC medium was investigated. Residual sample volume left after cytology slide preparation is low and may not always have sufficient volume for repeat HPV testing or for testing of other biomarkers that may be implemented in testing algorithms in the future. The SPG samples, however, have sufficient volumes to carry out additional testing and necessary laboratory validation procedures. This study investigates the correlation of RealTime HPV results of cervical specimens collected in SP LBC medium from women with low grade cytological abnormalities observed with matched pairs of original SP LBC medium and SP post-gradient cell pellets (SPG) after cytology processing. Matched pairs of SP and SPG samples from 750 women with borderline (N = 392) and mild (N = 351) cytology were available for this study. Both specimen types were processed and parallel tested for the presence of hrHPV with RealTime HPV according to the manufacturer´s instructions. HrHPV detection rates and concordance between test results from matched SP and SPGCP pairs were calculated. A total of 743 matched pairs with valid test results on both sample types were available for analysis. An overall-agreement of hrHPV test results of 97.5% (k: 0.95) was found with matched SP/SPG pairs and slightly lower concordance (96.9%; k: 0.94) was observed on 392 pairs from women with borderline cytology compared to 351 pairs from women with mild cytology (98.0%; k: 0.95). Partial typing results were highly concordant in matched SP/SPG pairs for HPV 16 (99.1%), HPV 18 (99.7%) and non-HPV16/18 hrHPV (97.0%), respectively. 19 matched pairs were found with discrepant results: 9 from women with borderline cytology and 4 from women with mild cytology were negative on SPG and positive on SP; 3 from women with borderline cytology and 3 from women with mild cytology were negative on SP and positive on SPG. Excellent correlation of hrHPV DNA test results was found between matched pairs of SP original fluid and post-gradient cell pellets from women with low grade cytological abnormalities tested with the Abbott RealTime High-Risk HPV assay, demonstrating robust performance of the test with both specimen types and reassuring the utility of the assay for cytology triage with both specimen types.

Keywords: Abbott realtime test, HPV, SurePath liquid based cytology, surepath post-gradient cell pellet

Procedia PDF Downloads 225
68 Raman Spectroscopic Detection of the Diminishing Toxic Effect of Renal Waste Creatinine by Its in vitro Reaction with Drugs N-Acetylcysteine and Taurine

Authors: Debraj Gangopadhyay, Moumita Das, Ranjan K. Singh, Poonam Tandon

Abstract:

Creatinine is a toxic chemical waste generated from muscle metabolism. Abnormally high levels of creatinine in the body fluid indicate possible malfunction or failure of the kidneys. This leads to a condition termed as creatinine induced nephrotoxicity. N-acetylcysteine is an antioxidant drug which is capable of preventing creatinine induced nephrotoxicity and is helpful to treat renal failure in its early stages. Taurine is another antioxidant drug which serves similar purpose. The kidneys have a natural power that whenever reactive oxygen species radicals increase in the human body, the kidneys make an antioxidant shell so that these radicals cannot harm the kidney function. Taurine plays a vital role in increasing the power of that shell such that the glomerular filtration rate can remain in its normal level. Thus taurine protects the kidneys against several diseases. However, taurine also has some negative effects on the body as its chloramine derivative is a weak oxidant by nature. N-acetylcysteine is capable of inhibiting the residual oxidative property of taurine chloramine. Therefore, N-acetylcysteine is given to a patient along with taurine and this combination is capable of suppressing the negative effect of taurine. Both N-acetylcysteine and taurine being affordable, safe, and widely available medicines, knowledge of the mechanism of their combined effect on creatinine, the favored route of administration, and the proper dose may be highly useful in their use for treating renal patients. Raman spectroscopy is a precise technique to observe minor structural changes taking place when two or more molecules interact. The possibility of formation of a complex between a drug molecule and an analyte molecule in solution can be explored by analyzing the changes in the Raman spectra. The formation of a stable complex of creatinine with N-acetylcysteinein vitroin aqueous solution has been observed with the help of Raman spectroscopic technique. From the Raman spectra of the mixtures of aqueous solutions of creatinine and N-acetylcysteinein different molar ratios, it is observed that the most stable complex is formed at 1:1 ratio of creatinine andN-acetylcysteine. Upon drying, the complex obtained is gel-like in appearance and reddish yellow in color. The complex is hygroscopic and has much better water solubility compared to creatinine. This highlights that N-acetylcysteineplays an effective role in reducing the toxic effect of creatinine by forming this water soluble complex which can be removed through urine. Since the drug taurine is also known to be useful in reducing nephrotoxicity caused by creatinine, the aqueous solution of taurine with those of creatinine and N-acetylcysteinewere mixed in different molar ratios and were investigated by Raman spectroscopic technique. It is understood that taurine itself does not undergo complexation with creatinine as no additional changes are observed in the Raman spectra of creatinine when it is mixed with taurine. However, when creatinine, N-acetylcysteine and taurine are mixed in aqueous solution in molar ratio 1:1:3, several changes occurring in the Raman spectra of creatinine suggest the diminishing toxic effect of creatinine in the presence ofantioxidant drugs N-acetylcysteine and taurine.

Keywords: creatinine, creatinine induced nephrotoxicity, N-acetylcysteine, taurine

Procedia PDF Downloads 121