Search results for: recycling of plastic waste
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3643

Search results for: recycling of plastic waste

3553 Metal Contamination in an E-Waste Recycling Community in Northeastern Thailand

Authors: Aubrey Langeland, Richard Neitzel, Kowit Nambunmee

Abstract:

Electronic waste, ‘e-waste’, refers generally to discarded electronics and electrical equipment, including products from cell phones and laptops to wires, batteries and appliances. While e-waste represents a transformative source of income in low- and middle-income countries, informal e-waste workers use rudimentary methods to recover materials, simultaneously releasing harmful chemicals into the environment and creating a health hazard for themselves and surrounding communities. Valuable materials such as precious metals, copper, aluminum, ferrous metals, plastic and components are recycled from e-waste. However, persistent organic pollutants such as polychlorinated biphenyls (PCBs) and some polybrominated diphenyl ethers (PBDEs), and heavy metals are toxicants contained within e-waste and are of great concern to human and environmental health. The current study seeks to evaluate the environmental contamination resulting from informal e-waste recycling in a predominantly agricultural community in northeastern Thailand. To accomplish this objective, five types of environmental samples were collected and analyzed for concentrations of eight metals commonly associated with e-waste recycling during the period of July 2016 through July 2017. Rice samples from the community were collected after harvest and analyzed using inductively coupled plasma mass spectrometry (ICP-MS) and gas furnace atomic spectroscopy (GF-AS). Soil samples were collected and analyzed using methods similar to those used in analyzing the rice samples. Surface water samples were collected and analyzed using absorption colorimetry for three heavy metals. Environmental air samples were collected using a sampling pump and matched-weight PVC filters, then analyzed using Inductively Coupled Argon Plasma-Atomic Emission Spectroscopy (ICAP-AES). Finally, surface wipe samples were collected from surfaces in homes where e-waste recycling activities occur and were analyzed using ICAP-AES. Preliminary1 results indicate that some rice samples have concentrations of lead and cadmium significantly higher than limits set by the United States Department of Agriculture (USDA) and the World Health Organization (WHO). Similarly, some soil samples show levels of copper, lead and cadmium more than twice the maximum permissible level set by the USDA and WHO, and significantly higher than other areas of Thailand. Surface water samples indicate that areas near e-waste recycling activities, particularly the burning of e-waste products, result in increased levels of cadmium, lead and copper in surface waters. This is of particular concern given that many of the surface waters tested are used in irrigation of crops. Surface wipe samples measured concentrations of metals commonly associated with e-waste, suggesting a danger of ingestion of metals during cooking and other activities. Of particular concern is the relevance of surface contamination of metals to child health. Finally, air sampling showed that the burning of e-waste presents a serious health hazard to workers and the environment through inhalation and deposition2. Our research suggests a need for improved methods of e-waste recycling that allows workers to continue this valuable revenue stream in a sustainable fashion that protects both human and environmental health. 1Statistical analysis to be finished in October 2017 due to follow-up field studies occurring in July and August 2017. 2Still awaiting complete analytic results.

Keywords: e-waste, environmental contamination, informal recycling, metals

Procedia PDF Downloads 339
3552 Sustainable Recycling Practices to Reduce Health Hazards of Municipal Solid Waste in Patna, India

Authors: Anupama Singh, Papia Raj

Abstract:

Though Municipal Solid Waste (MSW) is a worldwide problem, yet its implications are enormous in developing countries, as they are unable to provide proper Municipal Solid Waste Management (MSWM) for the large volume of MSW. As a result, the collected wastes are dumped in open dumping at landfilling sites while the uncollected wastes remain strewn on the roadside, many-a-time clogging drainage. Such unsafe and inadequate management of MSW causes various public health hazards. For example, MSW directly on contact or by leachate contaminate the soil, surface water, and ground water; open burning causes air pollution; anaerobic digestion between the piles of MSW enhance the greenhouse gases i.e., carbon dioxide and methane (CO2 and CH4) into the atmosphere. Moreover, open dumping can cause spread of vector borne disease like cholera, typhoid, dysentery, and so on. Patna, the capital city of Bihar, one of the most underdeveloped provinces in India, is a unique representation of this situation. Patna has been identified as the ‘garbage city’. Over the last decade there has been an exponential increase in the quantity of MSW generation in Patna. Though a large proportion of such MSW is recyclable in nature, only a negligible portion is recycled. Plastic constitutes the major chunk of the recyclable waste. The chemical composition of plastic is versatile consisting of toxic compounds, such as, plasticizers, like adipates and phthalates. Pigmented plastic is highly toxic and it contains harmful metals such as copper, lead, chromium, cobalt, selenium, and cadmium. Human population becomes vulnerable to an array of health problems as they are exposed to these toxic chemicals multiple times a day through air, water, dust, and food. Based on analysis of health data it can be emphasized that in Patna there has been an increase in the incidence of specific diseases, such as, diarrhoea, dysentry, acute respiratory infection (ARI), asthma, and other chronic respiratory diseases (CRD). This trend can be attributed to improper MSWM. The results were reiterated through a survey (N=127) conducted during 2014-15 in selected areas of Patna. Random sampling method of data collection was used to better understand the relationship between different variables affecting public health due to exposure to MSW and lack of MSWM. The results derived through bivariate and logistic regression analysis of the survey data indicate that segregation of wastes at source, segregation behavior, collection bins in the area, distance of collection bins from residential area, and transportation of MSW are the major determinants of public health issues. Sustainable recycling is a robust method for MSWM with its pioneer concerns being environment, society, and economy. It thus ensures minimal threat to environment and ecology consequently improving public health conditions. Hence, this paper concludes that sustainable recycling would be the most viable approach to manage MSW in Patna and would eventually reduce public health hazards.

Keywords: municipal solid waste, Patna, public health, sustainable recycling

Procedia PDF Downloads 292
3551 Production of Friendly Environmental Material as Building Element from Plastic Waste

Authors: Dheyaa Wajid Abbood, Mohanad Salih Farhan, Awadh E. Ajeel

Abstract:

The basic goal of this study is the production of cheap building elements from plastic waste. environmentally friendly and of good thermal insulation. The study depends on the addition of plastic waste as aggregates to the mixes of concrete at different percentages by weight (12 percentages) to produce lightweight aggregate concrete the density (1095 - 1892) kg/m3.The experimental work includes 120 specimens of concrete 72 cubes (150*150*150)mm, 48 cylinder (150*300) mm. The results obtained for concrete were for local raw materials without any additional materials or treatment. The mechanical and thermal properties determined were (compressive strength, static modulus of elasticity, density, thermal conductivity (k), specific heat capacity (Cp), thermal expansion (α) after (7) days of curing at 20 0C. The increase in amount of plastic waste decreases the density of concrete which leads to decrease in the mechanical and to improvement in thermal properties. The average measured static modulus of elasticity are found less than the predicted static modulus of elasticity and splitting tensile strength (ACI 318-2008 and ACI 213R-2003). All cubes specimens when exposed to heat at (200, 400, 600 0C), the compressive strength of all mixes decreases gradually at 600 0C, the strength of lightweight aggregate concrete were disintegrated. Lightweight aggregate concrete is about 25% lighter than normal concrete in dead load, and to the improve the properties of thermal insulation of building blocks.

Keywords: LWAC, plastic waste, thermal property, thermal insulation

Procedia PDF Downloads 395
3550 Concrete Recycling in Egypt for Construction Applications: A Technical and Financial Feasibility Model

Authors: Omar Farahat Hassanein, A. Samer Ezeldin

Abstract:

The construction industry is a very dynamic field. Every day new technologies and methods are developing to fasten the process and increase its efficiency. Hence, if a project uses fewer resources, it will be more efficient. This paper examines the recycling of concrete construction and demolition (C&D) waste to reuse it as aggregates in on-site applications for construction projects in Egypt and possibly in the Middle East. The study focuses on a stationary plant setting. The machinery set-up used in the plant is analyzed technically and financially. The findings are gathered and grouped to obtain a comprehensive cost-benefit financial model to demonstrate the feasibility of establishing and operating a concrete recycling plant. Furthermore, a detailed business plan including the time and hierarchy is proposed.

Keywords: construction wastes, recycling, sustainability, financial model, concrete recycling, concrete life cycle

Procedia PDF Downloads 384
3549 Detoxification and Recycling of the Harvested Microalgae using Eco-friendly Food Waste Recycling Technology with Salt-tolerant Mushroom Strains

Authors: J. M. Kim, Y. W. Jung, E. Lee, Y. K. Kwack, , S. K. Sim*

Abstract:

Cyanobacterial blooms in lakes, reservoirs, and rivers have been environmental and social issues due to its toxicity, odor, etc. Among the cyanotoxins, microcystins exist mostly within the cyanobacterial cells, and they are released from the cells. Therefore, an innovative technology is needed to detoxify the harvested microalgae for environment-friendly utilization of the harvested microalgae. This study develops detoxification method of microcystins in the harvested microalgae and recycling harvested microalgae with food waste using salt-tolerant mushroom strains and natural ecosystem decomposer. During this eco-friendly organic waste recycling process, diverse bacteria or various enzymes of the salt-tolerant mushroom strains decompose the microystins and cyclic peptides. Using PHLC/Mass analysis, it was verified that 99.8% of the microcystins of the harvested microalgae was detoxified in the harvested mushroom as well as in the recycled organic biomass. Further study is planned to verify the decomposition mechanisms of the microcystins by the bacteria or enzymes. In this study, the harvested microalgae is mixed with the food waste, and then the mixed toxic organic waste is used as mushroom compost by adjusting the water content of about 70% using cellulose such as sawdust cocopeats and cottonseeds. The mushroom compost is bottled, sterilized, and salt-tolerant mushroom spawn is inoculated. The mushroom is then cultured and growing in the temperature, humidity, and CO2 controlled environment. During the cultivation and growing process of the mushroom, microcystins are decomposed into non-toxic organic or inorganic compounds by diverse bacteria or various enzymes of the mushroom strains. Various enzymes of the mushroom strains decompose organics of the mixed organic waste and produce nutritious and antibiotic mushrooms. Cultured biomass compost after mushroom harvest can be used for organic fertilizer, functional bio-feed, and RE-100 biomass renewable energy source. In this eco-friendly organic waste recycling process, no toxic material, wastewater, nor sludge is generated; thus, sustainable with the circular economy.

Keywords: microalgae, microcystin, food waste, salt-tolerant mushroom strains, sustainability, circular economy

Procedia PDF Downloads 109
3548 Gypsum Composites with CDW as Raw Material

Authors: R. Santos Jiménez, A. San-Antonio-González, M. del Río Merino, M. González Cortina, C. Viñas Arrebola

Abstract:

On average, Europe generates around 890 million tons of construction and demolition waste (CDW) per year and only 50% of these CDW are recycled. This is far from the objectives determined in the European Directive for 2020 and aware of this situation, the European Countries are implementing national policies to prevent the waste that can be avoidable and to promote measures to increase recycling and recovering. In Spain, one of these measures has been the development of a CDW recycling guide for the manufacture of mortar, concrete, bricks and lightweight aggregates. However, there is still not enough information on the possibility of incorporating CDW materials in the manufacture of gypsum products. In view of the foregoing, the Universidad Politécnica de Madrid is creating a database with information on the possibility of incorporating CDW materials in the manufacture of gypsum products. The objective of this study is to improve this database by analysing the feasibility of incorporating two different CDW in a gypsum matrix: ceramic waste bricks (perforated brick and double hollow brick), and extruded polystyrene (XPS) waste. Results show that it is possible to incorporate up to 25% of ceramic waste and 4% of XPS waste over the weight of gypsum in a gypsum matrix. Furhtermore, with the addition of ceramic waste an 8% of surface hardness increase and a 25% of capillary water absorption reduction can be obtained. On the other hand, with the addition of XPS, a 26% reduction of density and a 37% improvement of thermal conductivity can be obtained.

Keywords: CDW, waste materials, ceramic waste, XPS, construction materials, gypsum

Procedia PDF Downloads 479
3547 From Waste Recycling to Waste Prevention by Households : Could Eco-Feedback Strategies Fill the Gap?

Authors: I. Dangeard, S. Meineri, M. Dupré

Abstract:

large body of research on energy consumption reveals that regular information on energy consumption produces a positive effect on behavior. The present research aims to test this feedback paradigm on waste management. A small-scale experiment on residual household waste was performed in a large french urban area, in partnership with local authorities, as part of the development of larger-scale project. A two-step door-to-door recruitment scheme led to 85 households answering a questionnaire. Among them, 54 accepted to participate in a study on waste (second step). Participants were then randomly assigned to one of the 3 experimental conditions : self-reported feedback on curbside waste, external feedback on waste weight based on information technologies, and no feedback for the control group. An additional control group was added, including households who were not requested to answer the questionnaire. Household residual waste was collected every week, and tags on curbside bins fed a database with waste weight of households. The feedback period lasted 14 weeks (february-may 2014). Quantitative data on waste weight were analysed, including these 14 weeks and the 7 previous weeks. Households were then contacted by phone in order to confirm the quantitative results. Regarding the recruitment questionnaire, results revealed high pro-environmental attitude on the NEP scale, high recycling behavior level and moderate level of source reduction behavior on the adapted 3R scale, but no statistical difference between the 3 experimental groups. Regarding the feedback manipulation paradigm, waste weight reveals important differences between households, but doesn't prove any statistical difference between the experimental conditions. Qualitative phone interviews confirm that recycling is a current practice among participants, whereas source reduction of waste is not, and mainly appears as a producer problem of packaging limitation. We conclude that triggering waste prevention behaviors among recycling households involves long-term feedback and should promote benchmarking, in order to clearly set waste reduction as an objective to be managed through feedback figures.

Keywords: eco-feedback, household waste, waste reduction, experimental research

Procedia PDF Downloads 367
3546 Research on Eco-Sustainable Recycling of Industrial Wastes

Authors: Liliana Crăc, Nicolae Giorgi, Gheorghe Fometescu

Abstract:

In Romania, billions of tonnes of wastes are generated yearly, an important amount being stored within industrial dumps that covers high soil areas and affects the environment quality, especially of ground and surface waters. Landfill represents in Romania the most important way for wastes removal, over 75% being generated every year, the costs with the dumps construction being considerable. In most of the cases, the wastes generated mainly by the energy industry, oil exploitation and metallurgy, are still considered wastes with NO-use, and their removal and neutralization represent for transport, handling and storing, high non-productive expenses which raise the cost of the useful products obtained. The paper presents a recycling idea of three types of wastes in order to use them for building materials manufacturing, by promoting ECOWASTES LIFE+ project, whose aim is to demonstrate that the recycling of waste from energy industry (coal combustion waste), petroleum extraction (drilling mud) and metallurgy (steelmaking slag) is technically feasible.

Keywords: fly ash, drilled solid wastes, metallurgical slag, recycling, building materials

Procedia PDF Downloads 282
3545 Minimalism in Product Packaging: Alternatives to Bubble Wrap

Authors: Anusha Chanda, Reenu Singh

Abstract:

Packaging is one of the major contributors to global waste. While efforts are being made to switch to more sustainable types of packaging, such as switching from single use plastics to paper, not all polluting materials, have been rethought in terms of recycling. Minimalism in packaging design can help reduce the amount of waste produced greatly. While online companies have shifted to using cardboard boxes for packages, a large amount of waste in still generated from other materials affiliated with cardboard packaging, such as tape, bubble wrap, plastic wrap, among others. Minimalism also works by reducing extra packaging and increasing the reusability of the material. This paper looks at research related to minimalism in packaging design, minimalism, and sustainability. A survey was conducted in order to find out the different ways in which minimalism can be implemented in packaging design. Information gathered from the research and responses from the survey was used to ideate product design alternatives for sustainable substitutes for bubble wrap in packaging. This would help greatly reduce the amount of packaging waste and improve environmental quality.

Keywords: environment, minimalism, packaging, product design, sustainable

Procedia PDF Downloads 213
3544 Optimizing Recycling and Reuse Strategies for Circular Construction Materials with Life Cycle Assessment

Authors: Zhongnan Ye, Xiaoyi Liu, Shu-Chien Hsu

Abstract:

Rapid urbanization has led to a significant increase in construction and demolition waste (C&D waste), underscoring the need for sustainable waste management strategies in the construction industry. Aiming to enhance the sustainability of urban construction practices, this study develops an optimization model to effectively suggest the optimal recycling and reuse strategies for C&D waste, including concrete and steel. By employing Life Cycle Assessment (LCA), the model evaluates the environmental impacts of adopted construction materials throughout their lifecycle. The model optimizes the quantity of materials to recycle or reuse, the selection of specific recycling and reuse processes, and logistics decisions related to the transportation and storage of recycled materials with the objective of minimizing the overall environmental impact, quantified in terms of carbon emissions, energy consumption, and associated costs, while adhering to a range of constraints. These constraints include capacity limitations, quality standards for recycled materials, compliance with environmental regulations, budgetary limits, and temporal considerations such as project deadlines and material availability. The strategies are expected to be both cost-effective and environmentally beneficial, promoting a circular economy within the construction sector, aligning with global sustainability goals, and providing a scalable framework for managing construction waste in densely populated urban environments. The model is helpful in reducing the carbon footprint of construction projects, conserving valuable resources, and supporting the industry’s transition towards a more sustainable future.

Keywords: circular construction, construction and demolition waste, material recycling, optimization modeling

Procedia PDF Downloads 30
3543 Optimizing Recycling and Reuse Strategies for Circular Construction Materials with Life Cycle Assessment

Authors: Zhongnan Ye, Xiaoyi Liu, Shu-Chien Hsu

Abstract:

Rapid urbanization has led to a significant increase in construction and demolition waste (C&D waste), underscoring the need for sustainable waste management strategies in the construction industry. Aiming to enhance the sustainability of urban construction practices, this study develops an optimization model to effectively suggest the optimal recycling and reuse strategies for C&D waste, including concrete and steel. By employing Life Cycle Assessment (LCA), the model evaluates the environmental impacts of adopted construction materials throughout their lifecycle. The model optimizes the quantity of materials to recycle or reuse, the selection of specific recycling and reuse processes, and logistics decisions related to the transportation and storage of recycled materials with the objective of minimizing the overall environmental impact, quantified in terms of carbon emissions, energy consumption, and associated costs, while adhering to a range of constraints. These constraints include capacity limitations, quality standards for recycled materials, compliance with environmental regulations, budgetary limits, and temporal considerations such as project deadlines and material availability. The strategies are expected to be both cost-effective and environmentally beneficial, promoting a circular economy within the construction sector, aligning with global sustainability goals, and providing a scalable framework for managing construction waste in densely populated urban environments. The model is helpful in reducing the carbon footprint of construction projects, conserving valuable resources, and supporting the industry’s transition towards a more sustainable future.

Keywords: circular construction, construction and demolition waste, life cycle assessment, material recycling

Procedia PDF Downloads 32
3542 Circular Bio-economy of Copper and Gold from Electronic Wastes

Authors: Sadia Ilyas, Hyunjung Kim, Rajiv R. Srivastava

Abstract:

Current work has attempted to establish the linkages between circular bio-economy and recycling of copper and gold from urban mine by applying microbial activities instead of the smelter and chemical technologies. Thereafter, based on the potential of microbial approaches and research hypothesis, the structural model has been tested for a significance level of 99%, which is supported by the corresponding standardization co-efficient values. A prediction model applied to determine the recycling impact on circular bio-economy indicates to re-circulate 51,833 tons of copper and 58 tons of gold by 2030 for the production of virgin metals/raw-materials, while recycling rate of the accumulated e-waste remains to be 20%. This restoration volume of copper and gold through the microbial activities corresponds to mitigate 174 million kg CO₂ emissions and 24 million m³ water consumption if compared with the primary production activities. The study potentially opens a new window for environmentally-friendly biotechnological recycling of e-waste urban mine under the umbrella concept of circular bio-economy.

Keywords: urban mining, biobleaching, circular bio-economy, environmental impact

Procedia PDF Downloads 125
3541 The Effects of the Waste Plastic Modification of the Asphalt Mixture on the Permanent Deformation

Authors: Soheil Heydari, Ailar Hajimohammadi, Nasser Khalili

Abstract:

The application of plastic waste for asphalt modification is a sustainable strategy to deal with the enormous plastic waste generated each year and enhance the properties of asphalt. The modification is either practiced by the dry process or the wet process. In the dry process, plastics are added straight into the asphalt mixture, and in the wet process, they are mixed and digested into bitumen. In this article, the effects of plastic inclusion in asphalt mixture, through the dry process, on the permanent deformation of the asphalt are investigated. The main waste plastics that are usually used in asphalt modification are taken into account, which is linear, low-density polyethylene, low-density polyethylene, high-density polyethylene, and polypropylene. Also, to simulate a plastic waste stream, different grades of each virgin plastic are mixed and used. For instance, four different grades of polypropylene are mixed and used as representative of polypropylene. A precisely designed mixing condition is considered to dry-mix the plastics into the mixture such that the polymer was melted and modified by the later introduced binder. In this mixing process, plastics are first added to the hot aggregates and mixed three times in different time intervals, then bitumen is introduced, and the whole mixture is mixed three times in fifteen minutes intervals. Marshall specimens were manufactured, and dynamic creep tests were conducted to evaluate the effects of modification on the permanent deformation of the asphalt mixture. Dynamic creep is a common repeated loading test conducted at different stress levels and temperatures. Loading cycles are applied to the AC specimen until failure occurs; with the amount of deformation constantly recorded, the cumulative, permanent strain is determined and reported as a function of the number of cycles. The results of this study showed that the dry inclusion of the waste plastics is very effective in enhancing the resistance against permanent deformation of the mixture. However, the mixing process must be precisely engineered to melt the plastics, and a homogenous mixture is achieved.

Keywords: permanent deformation, waste plastics, low-density polyethene, high-density polyethene, polypropylene, linear low-density polyethene, dry process

Procedia PDF Downloads 59
3540 Mechanical, Physical and Durability Properties of Cement Mortars Added with Recycled PP/PE-Based Food Packaging Waste Material

Authors: Livia Guerini, Christian Paglia

Abstract:

In Switzerland, only a fraction of plastic waste from food packaging is collected and recycled for further use in the food industry. Therefore, reusing these waste plastics for building applications can be an attractive alternative to disposal in order to reduce the problem of waste management and to make up for the depletion of raw materials needed for construction. In this study, experiments were conducted on the mechanical properties (compressive and flexural strength, elastic modulus), physical properties (density, workability, porosity, and water permeability) and durability (freeze/thaw resistance) of cementitious mortars with additions of recycled low-/high-density polyethylene (LDPE/HDPE)/ polypropylene (PP) regrind (addition of 5% and 10% by weight) and LDPE sheets (addition of 0.5% and 1.5% by weight) coming from food packaging. The results show that as the addition of plastic material increases, the density and mechanical properties of the mortars decrease compared to conventional ones. Porosity is similar in all the mixtures made, while the workability and the permeability are affected not only by the amount added but also by the shape of the plastic aggregate. Freeze/thaw resistance, on the other hand, is significantly higher in mortars with plastic aggregates than in traditional mortar. This feature may be interesting for the realization of outdoor mortars in cold environments.

Keywords: food packaging waste, durability properties, mechanical properties, mortar, recycled PE, recycled PP

Procedia PDF Downloads 111
3539 Sustainable Integrated Waste Management System

Authors: Lidia Lombardi

Abstract:

Waste management in Europe and North America is evolving towards sustainable materials management, intended as a systemic approach to using and reusing materials more productively over their entire life cycles. Various waste management strategies are prioritized and ranked from the most to the least environmentally preferred, placing emphasis on reducing, reusing, and recycling as key to sustainable materials management. However, non-recyclable materials must also be appropriately addressed, and waste-to-energy (WtE) offers a solution to manage them, especially when a WtE plant is integrated within a complex system of waste and wastewater treatment plants and potential users of the output flows. To evaluate the environmental effects of such system integration, Life Cycle Assessment (LCA) is a helpful and powerful tool. LCA has been largely applied to the waste management sector, dating back to the late 1990s, producing a large number of theoretical studies and applications to the real world as support to waste management planning. However, LCA still has a fundamental role in helping the development of waste management systems supporting decisions. Thus, LCA was applied to evaluate the environmental performances of a Municipal Solid Waste (MSW) management system, with improved separate material collection and recycling and an integrated network of treatment plants including WtE, anaerobic digestion (AD) and also wastewater treatment plant (WWTP), for a reference study case area. The proposed system was compared to the actual situation, characterized by poor recycling, large landfilling and absence of WtE. The LCA results showed that the increased recycling significantly increases the environmental performances, but there is still room for improvement through the introduction of energy recovery (especially by WtE) and through its use within the system, for instance, by feeding the heat to the AD, to sludge recovery processes and supporting the water reuse practice. WtE offers a solution to manage non-recyclable MSW and allows saving important resources (such as landfill volumes and non-renewable energy), reducing the contribution to global warming, and providing an essential contribution to fulfill the goals of really sustainable waste management.

Keywords: anaerobic digestion, life cycle assessment, waste-to-energy, municipal solid waste

Procedia PDF Downloads 18
3538 Possible Number of Dwelling Units Using Waste Plastic Bottle for Construction

Authors: Dibya Jivan Pati, Kazuhisa Iki, Riken Homma

Abstract:

Unlike other metro cities of India, Bhubaneswar–the capital city of Odisha, is expected to reach 1-million-mark population by now. The demands of dwelling unit requirement mostly among urban poor belonging to Economically Weaker section (EWS) and Low Income groups (LIG) is becoming a challenge due to high housing cost and rents. As a matter of fact, it’s also noted that, with increase in population, the solid waste generation also increases subsequently affecting the environment due to inefficiency in collection of waste by local government bodies. Methods of utilizing Solid Waste - especially in form of Plastic bottles, Glass bottles and Metal cans (PGM) are now widely used as an alternative material for construction of low-cost building by Non-Government Organizations (NGOs) in developing countries like India to help the urban poor afford a shelter. The application of disposed plastic bottle used in construction of single dwelling significantly reduces the overall cost of construction to as much as 14% compared to traditional construction material. Therefore, considering its cost-benefit result, it’s possible to provide housing to EWS and LIGs at an affordable price. In this paper, we estimated the quantity of plastic bottles generated in Bhubaneswar which further helped to estimate the possible number of single dwelling unit that can be constructed on yearly basis so as to refrain from further housing shortage. The estimation results will be practically used for planning and managing low-cost housing business by local government and NGOs.

Keywords: construction, dwelling unit, plastic bottle, solid waste generation, groups

Procedia PDF Downloads 447
3537 Act Local, Think Global: Superior Institute of Engineering of Porto Campaign for a Sustainable Campus

Authors: R. F. Mesquita Brandão

Abstract:

Act Local, Think Global is the name of a campaign implemented at Superior Institute of Engineering of Porto (ISEP), one of schools of Polytechnic of Porto, with the main objective of increase the sustainability of the campus. ISEP has a campus with 52.000 m2 and more than 7.000 students. The campaign started in 2019 and the results are very clear. In 2019 only 16% of the waste created in the campus was correctly separate for recycling and now almost 50% of waste goes to the correct waste container. Actions to reduce the energy consumption were implemented with significantly results. One of the major problems in the campus are the water leaks. To solve this problem was implemented a methodology for water monitoring during the night, a period of time where consumptions are normally low. If water consumption in the period is higher than a determinate value it may mean a water leak and an alarm is created to the maintenance teams. In terms of energy savings, some measurements were implemented to create savings in energy consumption and in equivalent CO₂ produced. In order to reduce the use of plastics in the campus, was implemented the prohibition of selling 33 cl plastic water bottles and in collaboration with the students association all meals served in the restaurants changed the water plastic bottle for a glass that can be refilled with water in the water dispensers. This measures created a reduction of use of more than 75.000 plastic bottles per year. In parallel was implemented the ISEP water glass bottle to be used in all scientific meetings and events. Has a way of involving all community in sustainability issues was developed and implemented a vertical garden in aquaponic system. In 2019, the first vertical garden without soil was installed inside a large campus building. The system occupies the entire exterior façade (3 floors) of the entrance to ISEP's G building. On each of these floors there is a planter with 42 positions available for plants. Lettuces, strawberries, peppers are examples of some vegetable produced that can be collected by the entire community. Associated to the vertical garden was developed a monitoring system were some parameters of the system are monitored. This project is under development because it will work in a stand-alone energy feeding, with the use of photovoltaic panels for production of energy necessities. All the system was, and still is, developed by students and teachers and is used in class projects of some ISEP courses. These and others measures implemented in the campus, will be more developed in the full paper, as well as all the results obtained, allowed ISEP to be the first Portuguese high school to obtain the certification “Coração Verde” (Green Heart), awarded by LIPOR, a Portuguese company with the mission of transform waste into new resources through the implementation of innovative and circular practices, generating and sharing value.

Keywords: aquaponics, energy efficiency, recycling, sustainability, waste separation

Procedia PDF Downloads 68
3536 Polymer in Electronic Waste: An Analysis

Authors: Anis A. Ansari, Aftab A. Ansari

Abstract:

Electronic waste is inundating the traditional solid-waste-disposal facilities, which are inadequately designed to handle and manage such type of new wastes. Since electronic waste contains mostly hazardous and even toxic materials, the seriousness of its effects on human health and the environment cannot be ignored in present scenario. Waste from the electronic industry is increasing exponentially day by day. From the last 20 years, we are continuously generating huge quantities of e-waste such as obsolete computers and other discarded electronic components, mainly due to evolution of newer technologies as a result of constant efforts in research and development in this sector. Polymers, one of the major constituents in almost every electronic waste, such as computers, printers, electronic equipment, entertainment devices, mobile phones, television sets etc., are if properly recycled can create a new business opportunity. This would not only create potential market for polymers to improve economy but also the priceless land used as dumping sites of electronic waste, can be utilized for other productive purposes.

Keywords: polymer recycling, electronic waste, hazardous materials, electronic components

Procedia PDF Downloads 442
3535 A Study of Farming Earthworms Commercial with Organic Waste

Authors: Phrutsaya Piyanusorn

Abstract:

This study aimed to study the artificial barriers and potential restrictions. Aspects of farming, marketing and cost oriented commercial farming earthworms with organic waste. To promote the use of waste recycling and reduce the amount of organic waste that must be disposed. And to create added value this research focuses on qualitative and quantitative research. By earthworm farms surveyed collected insights to analyse the strengths, weaknesses, including problems, conditions and limitations. To get more updates, which covers the cost of marketing and farm management.

Keywords: farmin earthworms, commercial, organic waste, marketing management

Procedia PDF Downloads 296
3534 A Criterion for Evaluating Plastic Loads: Plastic Work-Tangent Criterion

Authors: Ying Zhang

Abstract:

In ASME Boiler and Pressure Vessel Code, the plastic load is defined by applying the twice elastic slope (TES) criterion of plastic collapse to a characteristic load-deformation curve for the vessel. Several other plastic criterion such as tangent intersection (TI) criterion, plastic work (PW) criterion have been proposed in the literature, but all exhibit a practical limitation: difficult to define the load parameter for vessels subject to several combined loads. An alternative criterion: plastic work-tangent (PWT) criterion for evaluating plastic load in pressure vessel design by analysis is presented in this paper. According to the plastic work-load curve, when the tangent variation is less than a given value in the plastic phase, the corresponding load is the plastic load. Application of the proposed criterion is illustrated by considering the elastic-plastic response of the lower head of reactor pressure vessel (RPV) and nozzle intersection of (RPV). It is proposed that this is because the PWT criterion more fully represents the constraining effect of material strain hardening on the spread of plastic deformation and more efficiently ton evaluating the plastic load.

Keywords: plastic load, plastic work, strain hardening, plastic work-tangent criterion

Procedia PDF Downloads 328
3533 Ecological Risk Assessment of Informal E-Waste Processing in Alaba International Market, Lagos, Nigeria

Authors: A. A. Adebayo, O. Osibanjo

Abstract:

Informal electronic waste (e-waste) processing is a crude method of recycling, which is on the increase in Nigeria. The release of hazardous substances such as heavy metals (HMs) into the environment during informal e-waste processing has been a major concern. However, there is insufficient information on environmental contamination from e-waste recycling, associated ecological risk in Alaba International Market, a major electronic market in Lagos, Nigeria. The aims of this study were to determine the levels of HMs in soil, resulting from the e-waste recycling; and also assess associated ecological risks in Alaba international market. Samples of soils (334) were randomly collected seasonally for three years from fourteen selected e-waste activity points and two control sites. The samples were digested using standard methods and HMs analysed by inductive coupled plasma optical emission. Ecological risk was estimated using Ecological Risk index (ER), Potential Ecological Risk index (RI), Index of geoaccumulation (Igeo), Contamination factor (Cf) and degree of contamination factor (Cdeg). The concentrations range of HMs (mg/kg) in soil were: 16.7-11200.0 (Pb); 14.3-22600.0 (Cu); 1.90-6280.0 (Ni), 39.5-4570.0 (Zn); 0.79-12300.0 (Sn); 0.02-138.0 (Cd); 12.7-1710.0 (Ba); 0.18-131.0 (Cr); 0.07-28.0 (V), while As was below detection limit. Concentrations range in control soils were 1.36-9.70 (Pb), 2.06-7.60 (Cu), 1.25-5.11 (Ni), 3.62-15.9 (Zn), BDL-0.56 (Sn), BDL-0.01 (Cd), 14.6-47.6 (Ba), 0.21–12.2 (Cr) and 0.22-22.2 (V). The trend in ecological risk index was in the order Cu > Pb > Ni > Zn > Cr > Cd > Ba > V. The potential ecological risk index with respect to informal e-waste activities were: burning > dismantling > disposal > stockpiling. The index of geo accumulation indices revealed that soils were extremely polluted with Cd, Cu, Pb, Zn and Ni. The contamination factor indicated that 93% of the studied areas have very high contamination status for Pb, Cu, Ba, Sn and Co while Cr and Cd were in the moderately contaminated status. The degree of contamination decreased in the order of Sn > Cu > Pb >> Zn > Ba > Co > Ni > V > Cr > Cd. Heavy metal contamination of Alaba international market environment resulting from informal e-waste processing was established. Proper management of e-waste and remediation of the market environment are recommended to minimize the ecological risks.

Keywords: Alaba international market, ecological risk, electronic waste, heavy metal contamination

Procedia PDF Downloads 171
3532 XRD and Image Analysis of Low Carbon Type Recycled Cement Using Waste Cementitious Powder

Authors: Hyeonuk Shin, Hun Song, Yongsik Chu, Jongkyu Lee, Dongcheon Park

Abstract:

Although much current research has been devoted to reusing concrete in the form of recycled aggregate, insufficient attention has been given to researching the utilization of waste concrete powder, which constitutes 20 % or more of waste concrete and therefore the majority of waste cementitious powder is currently being discarded or buried in landfills. This study consists of foundational research for the purpose of reusing waste cementitious powder in the form of recycled cement that can answer the need for low carbon green growth. Progressing beyond the conventional practice of using the waste cementitious powder as inert filler material, this study contributes to the aim of manufacturing high value added materials that exploits the chemical properties of the waste cementitious powder, by presenting a pre-treatment method for the material and an optimal method of proportioning the mix of materials to develop a low carbon type of recycled cement.

Keywords: Low carbon type cement, Waste cementitious powder, Waste recycling

Procedia PDF Downloads 426
3531 The Effect of Treated Waste-Water on Compaction and Compression of Fine Soil

Authors: M. Attom, F. Abed, M. Elemam, M. Nazal, N. ElMessalami

Abstract:

—The main objective of this paper is to study the effect of treated waste-water (TWW) on the compaction and compressibility properties of fine soil. Two types of fine soils (clayey soils) were selected for this study and classified as CH soil and Cl type of soil. Compaction and compressibility properties such as optimum water content, maximum dry unit weight, consolidation index and swell index, maximum past pressure and volume change were evaluated using both tap and treated waste water. It was found that the use of treated waste water affects all of these properties. The maximum dry unit weight increased for both soils and the optimum water content decreased as much as 13.6% for highly plastic soil. The significant effect was observed in swell index and swelling pressure of the soils. The swell indexed decreased by as much as 42% and 33% for highly plastic and low plastic soils, respectively, when TWW is used. Additionally, the swelling pressure decreased by as much as 16% for both soil types. The result of this research pointed out that the use of treated waste water has a positive effect on compaction and compression properties of clay soil and promise for potential use of this water in engineering applications. Keywords—Consolidation, proctor compaction, swell index, treated waste-water, volume change.

Keywords: consolidation, proctor compaction, swell index, treated waste-water, volume change

Procedia PDF Downloads 237
3530 Stabilization of Fly Ash Slope Using Plastic Recycled Polymer and Finite Element Analysis Using Plaxis 3D

Authors: Tushar Vasant Salunkhe, Sariput M. Nawghare, Maheboobsab B. Nadaf, Sushovan Dutta, J. N. Mandal

Abstract:

The model tests were conducted in the laboratory without and with plastic recycled polymer in fly ash steep slopes overlaying soft foundation soils like fly ash and power soil in order to check the stability of steep slope. In this experiment, fly ash is used as a filling material, and Plastic Recycled Polymers of diameter = 3mm and length = 4mm were made from the waste plastic product (lower grade plastic product). The properties of fly ash and plastic recycled polymers are determined. From the experiments, load and settlement have measured. From these data, load–settlement curves have been reported. It has been observed from test results that the load carrying capacity of mixture fly ash with Plastic Recycled Polymers slope is more than that of fly ash slope. The deformation of Plastic Recycled Polymers slope is slightly more than that of fly ash slope. A Finite Element Method (F.E.M.) was also evaluated using PLAXIS 3D version. The failure pattern, deformations and factor of safety are reported based on analytical programme. The results from experimental data and analytical programme are compared and reported.

Keywords: factor of safety, finite element method (FEM), fly ash, plastic recycled polymer

Procedia PDF Downloads 394
3529 Valorization of the Waste Generated in Building Energy-Efficiency Rehabilitation Works as Raw Materials for Gypsum Composites

Authors: Paola Villoria Saez, Mercedes Del Rio Merino, Jaime Santacruz Astorqui, Cesar Porras Amores

Abstract:

In construction the Circular Economy covers the whole cycle of the building construction: from production and consumption to waste management and the market for secondary raw materials. The circular economy will definitely contribute to 'closing the loop' of construction product lifecycles through greater recycling and re-use, helping to build a market for reused construction materials salvaged from demolition sites, boosting global competitiveness and fostering sustainable economic growth. In this context, this paper presents the latest research of 'Waste to resources (W2R)' project funded by the Spanish Government, which seeks new solutions to improve energy efficiency in buildings by developing new building materials and products that are less expensive, more durable, with higher quality and more environmentally friendly. This project differs from others as its main objective is to reduce to almost zero the Construction and Demolition Waste (CDW) generated in building rehabilitation works. In order to achieve this objective, the group is looking for new ways of CDW recycling as raw materials for new conglomerate materials. With these new materials, construction elements reducing building energy consumption will be proposed. In this paper, the results obtained in the project are presented. Several tests were performed to gypsum samples containing different percentages of CDW waste generated in Spanish building retroffiting works. Results were further analyzed and one of the gypsum composites was highlighted and discussed. Acknowledgements: This research was supported by the Spanish State Secretariat for Research, Development and Innovation of the Ministry of Economy and Competitiveness under 'Waste 2 Resources' Project (BIA2013-43061-R).

Keywords: building waste, CDW, gypsum, recycling, resources

Procedia PDF Downloads 302
3528 The Integrated Urban Regeneration Implemented through the Reuse, Enhancement and Transformation of Disused Industrial Areas

Authors: Sara Piccirillo

Abstract:

The integrated urban regeneration represents a great opportunity to deliver correct management of the territory if implemented through the reuse, enhancement, and transformation of abandoned industrial areas, according to sustainability strategies. In environmental terms, recycling abandoned sites by demolishing buildings and regenerating the urban areas means promoting adaptation to climate change and a new sensitivity towards city living. The strategic vision of 'metabolism' can be implemented through diverse actions made on urban settlements, and planning certainly plays a primary role. Planning an urban transformation in a sustainable way is more than auspicable. It is necessary to introduce innovative urban soil management actions to mitigate the environmental costs associated with current land use and to promote projects for the recovery/renaturalization of urban or non-agricultural soils. However, by freeing up these through systematic demolition of the disused heritage, new questions open up in terms of environmental costs deriving from the inevitable impacts caused by the disposal of waste. The mitigation of these impacts involves serious reflection on the recycling supply chains aimed at the production and reuse of secondary raw materials in the construction industry. The recent developments in R&D of recycling materials are gradually becoming more and more pivotal in consideration of environmental issues such as increasing difficulties in exploiting natural quarries or strict regulations for the management and disposal of waste sites. Therefore, this contribution, set as a critical essay, presents the reconstruction outputs of the regulatory background on the material recycling chain up to the 'end of waste' stage, both at a national and regional scale. This extended approach to this urban design practice goes beyond the cultural dimension that has relegated urban regeneration to pure design only. It redefines its processes through an interdisciplinary system that affects human, environmental and financial resources.

Keywords: waste management, C&D waste, recycling, urban trasformation

Procedia PDF Downloads 176
3527 Fermentation of Wood Waste by Treating with H₃PO₄-Acetone for Bioethanol Production

Authors: Deokyeong Choe, Keonwook Nam, Young Hoon Roh

Abstract:

Wood waste is a potentially significant resource for economic and environment-friendly recycling. Wood waste represents a key sustainable source of biomass for transformation into bioethanol. Unfortunately, wood waste is highly recalcitrant for biotransformation, which limits its use and prevents economically viable conversion into bioethanol. As a result, an effective pretreatment is necessary to degrade cellulose of the wood waste, which improves the accessibility of cellulase. In this work, a H₃PO₄-acetone pretreatment was selected among the various pretreatment methods and used to dissolve cellulose and lignin. When the H₃PO₄ and acetone were used, 5–6% of the wood waste was found to be very appropriate for saccharification. Also, when the enzymatic saccharification was conducted in the mixture of the wood waste and 0.05 M citrate buffer solution, glucose and xylose were measured to be 80.2 g/L and 9.2 g/L respectively. Furthermore, ethanol obtained after 70 h of fermentation by S. cerevisiae was 30.4 g/L. As a result, the conversion yield from wood waste to bioethanol was calculated to be 57.4%. These results show that the pretreated wood waste can be used as good feedstocks for bioethanol production and that the H₃PO₄-acetone pretreatment can effectively increase the yield of ethanol production.

Keywords: wood waste, H₃PO₄-acetone, bioethanol, fermentation

Procedia PDF Downloads 544
3526 Investigating Sustainable Construction and Demolition Waste Management Practices in South Africa

Authors: Ademilade J. Aboginije, Clinton O. Aigbavboa

Abstract:

South Africa is among the emerging economy, which has a policy and suitable environment that dynamically stimulates waste management practices of diverting waste away from landfill through prevention, reuse, recycling, and recovery known as the 4R-approaches. The focus of this paper is to investigate the existing structures and processes that are environmentally responsible, then determine the resource-efficiency of the waste management practices in the South Africa construction industry. This paper indicates the results of an investigation carried out by using a systematic review of several related literatures to assess the sustainability of waste management scenarios with secondary material recovery to pinpoint all influential criteria and consequently, highlights a step by step approach to adequately analyze the process by using the indicators that can clearly and fully value the waste management practices in South Africa. Furthermore, a life cycle Analytical tool is used to support the development of a framework which can be applied in measuring the sustainability of existing waste management practices in South Africa. Finding shows that sustainable C&D waste management practices stance a great prospect far more noticeable in terms of job creation and opportunities, saving cost and conserving natural resources when incorporated, especially in the process of recycling and reusing of C&D waste materials in several construction projects in South Africa. However, there are problems such as; inadequacy of waste to energy plants, low compliances to policies and sustainable principles, lack of enough technical capacities confronting the effectiveness of the current waste management practices. Thus, with the increase in the pursuit of sustainable development in most developing countries, this paper determines how sustainability can be measured and used in top-level decision-making policy within construction and demolition waste management for a sustainable built environment.

Keywords: construction industry, green-star rating, life-cycle analysis, sustainability, zero-waste hierarchy

Procedia PDF Downloads 102
3525 The Role of Home Composting in Waste Management Cost Reduction

Authors: Nahid Hassanshahi, Ayoub Karimi-Jashni, Nasser Talebbeydokhti

Abstract:

Due to the economic and environmental benefits of producing less waste, the US Environmental Protection Agency (EPA) introduces source reduction as one of the most important means to deal with the problems caused by increased landfills and pollution. Waste reduction involves all waste management methods, including source reduction, recycling, and composting, which reduce waste flow to landfills or other disposal facilities. Source reduction of waste can be studied from two perspectives: avoiding waste production, or reducing per capita waste production, and waste deviation that indicates the reduction of waste transfer to landfills. The present paper has investigated home composting as a managerial solution for reduction of waste transfer to landfills. Home composting has many benefits. The use of household waste for the production of compost will result in a much smaller amount of waste being sent to landfills, which in turn will reduce the costs of waste collection, transportation and burial. Reducing the volume of waste for disposal and using them for the production of compost and plant fertilizer might help to recycle the material in a shorter time and to use them effectively in order to preserve the environment and reduce contamination. Producing compost in a home-based manner requires very small piece of land for preparation and recycling compared with other methods. The final product of home-made compost is valuable and helps to grow crops and garden plants. It is also used for modifying the soil structure and maintaining its moisture. The food that is transferred to landfills will spoil and produce leachate after a while. It will also release methane and greenhouse gases. But, composting these materials at home is the best way to manage degradable materials, use them efficiently and reduce environmental pollution. Studies have shown that the benefits of the sale of produced compost and the reduced costs of collecting, transporting, and burying waste can well be responsive to the costs of purchasing home compost machine and the cost of related trainings. Moreover, the process of producing home compost may be profitable within 4 to 5 years and as a result, it will have a major role in reducing waste management.

Keywords: compost, home compost, reducing waste, waste management

Procedia PDF Downloads 394
3524 Towards Sustainable Construction: An Exploratory Study of the Factors Affecting the Investment on Construction and Demolition Waste in Saudi Arabia (KSA)

Authors: Mohammed Alnuwairan, Mahmoud Abdelrahman

Abstract:

Based on the sustainability concept, this paper explores the current situation of construction and demolition waste (C&D) in the Kingdom of Saudi Arabia (KSA) from the source of production to final destinations. The issues that hindered the investment of recycling C&D in the context will be studied in order to identify the challenges and opportunities to improve this sector and put forward a strategic framework to reduce, reuse, recycle and minimize the disposal of this type of waste. The research, which is exploratory in nature, identified four types of organizations that were appropriate case studies. These organizations were drawn from the municipalities, city council, recyclers and manufacturers. Secondary data collection, direct observation, and elite interviewing methods were used in the case studies to facilitate comparisons with existing literature to explore opportunities to improve sustainability practices in the buildings sector. Implementation of C&D waste management and recycling in KSA is in the early stages. Resistance of virgin building material manufacturers, free usage of landfill, culture, surpluses of natural raw material, availability of land and the cost of recycling this material compared with virgin material hinders the adoption of recycled buildings martial. Although the metal material is collected and recycled but it has the lowest percentage of C&D waste in Saudi. The findings indicate that government and industry need to collaborate more closely in order to successfully implement best practices. Economic and environmental benefits can be achieved, particularly through improvements to infrastructure and legislation. Feasible solution framework and recommendations for managing C&D waste under current situation are provided. The findings can be used to extend this framework and to enable it to be applicable in other context with emerging economies similar to that found in KSA. No study of this type has been previously carried out in KSA. The findings should prove useful in creating a future research agenda for C&D waste in KSA and, possibly, other emerging countries within a similar context.

Keywords: construction and demolition waste, recycling, reuse, sustainability

Procedia PDF Downloads 324