Search results for: radiation dose
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2478

Search results for: radiation dose

438 Deep Learning Prediction of Residential Radon Health Risk in Canada and Sweden to Prevent Lung Cancer Among Non-Smokers

Authors: Selim M. Khan, Aaron A. Goodarzi, Joshua M. Taron, Tryggve Rönnqvist

Abstract:

Indoor air quality, a prime determinant of health, is strongly influenced by the presence of hazardous radon gas within the built environment. As a health issue, dangerously high indoor radon arose within the 20th century to become the 2nd leading cause of lung cancer. While the 21st century building metrics and human behaviors have captured, contained, and concentrated radon to yet higher and more hazardous levels, the issue is rapidly worsening in Canada. It is established that Canadians in the Prairies are the 2nd highest radon-exposed population in the world, with 1 in 6 residences experiencing 0.2-6.5 millisieverts (mSv) radiation per week, whereas the Canadian Nuclear Safety Commission sets maximum 5-year occupational limits for atomic workplace exposure at only 20 mSv. This situation is also deteriorating over time within newer housing stocks containing higher levels of radon. Deep machine learning (LSTM) algorithms were applied to analyze multiple quantitative and qualitative features, determine the most important contributory factors, and predicted radon levels in the known past (1990-2020) and projected future (2021-2050). The findings showed gradual downwards patterns in Sweden, whereas it would continue to go from high to higher levels in Canada over time. The contributory factors found to be the basement porosity, roof insulation depthness, R-factor, and air dynamics of the indoor environment related to human window opening behaviour. Building codes must consider including these factors to ensure adequate indoor ventilation and healthy living that can prevent lung cancer in non-smokers.

Keywords: radon, building metrics, deep learning, LSTM prediction model, lung cancer, canada, sweden

Procedia PDF Downloads 86
437 Research on Hangzhou Commercial Center System Based on Point of Interest Data

Authors: Chen Wang, Qiuxiao Chen

Abstract:

With the advent of the information age and the era of big data, urban planning research is no longer satisfied with the analysis and application of traditional data. Because of the limitations of traditional urban commercial center system research, big data provides new opportunities for urban research. Therefore, based on the quantitative evaluation method of big data, the commercial center system of the main city of Hangzhou is analyzed and evaluated, and the scale and hierarchical structure characteristics of the urban commercial center system are studied. In order to make up for the shortcomings of the existing POI extraction method, it proposes a POI extraction method based on adaptive adjustment of search window, which can accurately and efficiently extract the POI data of commercial business in the main city of Hangzhou. Through the visualization and nuclear density analysis of the extracted Point of Interest (POI) data, the current situation of the commercial center system in the main city of Hangzhou is evaluated. Then it compares with the commercial center system structure of 'Hangzhou City Master Plan (2001-2020)', analyzes the problems existing in the planned urban commercial center system, and provides corresponding suggestions and optimization strategy for the optimization of the planning of Hangzhou commercial center system. Then get the following conclusions: The status quo of the commercial center system in the main city of Hangzhou presents a first-level main center, a two-level main center, three third-level sub-centers, and multiple community-level business centers. Generally speaking, the construction of the main center in the commercial center system is basically up to standard, and there is still a big gap in the construction of the sub-center and the regional-level commercial center, further construction is needed. Therefore, it proposes an optimized hierarchical functional system, organizes commercial centers in an orderly manner; strengthens the central radiation to drive surrounding areas; implements the construction guidance of the center, effectively promotes the development of group formation and further improves the commercial center system structure of the main city of Hangzhou.

Keywords: business center system, business format, main city of Hangzhou, POI extraction method

Procedia PDF Downloads 106
436 Synthesis and Characterization of PH Sensitive Hydrogel and Its Application in Controlled Drug Release of Tramadol

Authors: Naima Bouslah, Leila Bounabi, Farid Ouazib, Nabila Haddadine

Abstract:

Conventional release dosage forms are known to provide an immediate release of the drug. Controlling the rate of drug release from polymeric matrices is very important for a number of applications, particularly in the pharmaceutical area. Hydrogels are polymers in three-dimensional network arrangement, which can absorb and retain large amounts of water without dissolution. They have been frequently used to develop controlled released formulations for oral administration because they can extend the duration of drug release and thus reduce dose to be administrated improving patient compliance. Tramadol is an opioid pain medication used to treat moderate to moderately severe pain. When taken as an immediate-release oral formulation, the onset of pain relief usually occurs within about an hour. In the present work, we synthesized pH-responsive hydrogels of (hydroxyl ethyl methacrylate-co-acrylic acid), (HEMA-AA) for control drug delivery of tramadol in the gastro-intestinal tractus. The hydrogels with different acrylic acid content, were synthesized by free radical polymerization and characterized by FTIR spectroscopy, X ray diffraction analysis (XRD), differential scanning calorimetry (DSC) and thermo gravimetric analysis (TGA). FTIR spectroscopy has shown specific hydrogen bonding interactions between the carbonyl groups of the hydrogels and hydroxyl groups of tramadol. Both the XRD and DSC studies revealed that the introduction of tramadol in the hydrogel network induced the amorphization of the drug. The swelling behaviour, absorptive kinetics and the release kinetics of tramadol in simulated gastric fluid (pH 1.2) and in simulated intestinal fluid (pH 7.4) were also investigated. The hydrogels exhibited pH-responsive behavior in the swelling study. The (HEMA-AA) hydrogel swelling was much higher in pH =7.4 medium. The tramadol release was significantly increased when pH of the medium was changed from simulated gastric fluid (pH 1.2) to simulated intestinal fluid (pH 7.4). Using suitable mathematical models, the apparent diffusional coefficients and the corresponding kinetic parameters have been calculated.

Keywords: biopolymres, drug delivery, hydrogels, tramadol

Procedia PDF Downloads 332
435 Optimizing Detection Methods for THz Bio-imaging Applications

Authors: C. Bolakis, I. S. Karanasiou, D. Grbovic, G. Karunasiri, N. Uzunoglu

Abstract:

A new approach for efficient detection of THz radiation in biomedical imaging applications is proposed. A double-layered absorber consisting of a 32 nm thick aluminum (Al) metallic layer, located on a glass medium (SiO2) of 1 mm thickness, was fabricated and used to design a fine-tuned absorber through a theoretical and finite element modeling process. The results indicate that the proposed low-cost, double-layered absorber can be tuned based on the metal layer sheet resistance and the thickness of various glass media taking advantage of the diversity of the absorption of the metal films in the desired THz domain (6 to 10 THz). It was found that the composite absorber could absorb up to 86% (a percentage exceeding the 50%, previously shown to be the highest achievable when using single thin metal layer) and reflect less than 1% of the incident THz power. This approach will enable monitoring of the transmission coefficient (THz transmission ‘’fingerprint’’) of the biosample with high accuracy, while also making the proposed double-layered absorber a good candidate for a microbolometer pixel’s active element. Based on the aforementioned promising results, a more sophisticated and effective double-layered absorber is under development. The glass medium has been substituted by diluted poly-si and the results were twofold: An absorption factor of 96% was reached and high TCR properties acquired. In addition, a generalization of these results and properties over the active frequency spectrum was achieved. Specifically, through the development of a theoretical equation having as input any arbitrary frequency in the IR spectrum (0.3 to 405.4 THz) and as output the appropriate thickness of the poly-si medium, the double-layered absorber retains the ability to absorb the 96% and reflects less than 1% of the incident power. As a result, through that post-optimization process and the spread spectrum frequency adjustment, the microbolometer detector efficiency could be further improved.

Keywords: bio-imaging, fine-tuned absorber, fingerprint, microbolometer

Procedia PDF Downloads 320
434 The Importance of Introducing New Academic Programs in ‎Egyptian National Cancer ‎Institute

Authors: Mohammed S. Mohammed, Asmaa M. S. Mohammed

Abstract:

Background: To achieve the quality of cancer care, the oncologic academic programs should be continuously developed with establishing new ones. We highlighted three disciplines, Clinical nutrition, medical biophysics and radiobiology and Psycho-oncology programs; without a doubt, the Egyptian National Cancer Institute, in ‎the accreditation era, will be establishing them ‎ due to their importance in improving the skills of cancer practitioners. Methods: The first suggested program in Clinical Nutrition that is dealing with the assessment of the patient's well-being before, during and after treatment to avoid the defects in the metabolism resulting from the cancer disease and its treatment by giving the supplements in the patient's diet. The second program is Medical Biophysics and Radiobiology, which there's no denying that it ‎is ‎provided ‎in Cairo University as a good program in the faculty of science but lacks the clinical ‎practice. Hence, it is probably better to establish this program in our institute to ‎improve the ‎practitioner skills and introduce a tailored radiation therapy regimen for every patient according to ‎their characteristic profile.‎ While patients are receiving their treatment, the risk of post-traumatic stress disorder arises, so the importance of the third program, Psycho-Oncology, is clearly obtained. This program is concerned with the psychological, social, behavioral, and ethical aspects of cancer. The area of multi-disciplinary interest has boundaries with the major specialties in oncology: the clinical disciplines (surgery, medicine, pediatrics, and radiotherapy), epidemiology, immunology, endocrinology, biology, pathology, bioethics, palliative care, rehabilitation medicine, clinical trials research and decision making, as well as psychiatry and psychology. Results: It is a prospective academic plan which is compatible with the institutional vision and its strategic plan. Conclusion: In this context, evaluating and understanding the suggested academic programs has become a mandatory part of cancer care. And it is essential to be provided by the NCI.

Keywords: clinical nutrition, psycho-oncology, medical biophysics and radiobiology, medical education

Procedia PDF Downloads 195
433 Photocapacitor Integrating Solar Energy Conversion and Energy Storage

Authors: Jihuai Wu, Zeyu Song, Zhang Lan, Liuxue Sun

Abstract:

Solar energy is clean, open, and infinite, but solar radiation on the earth is fluctuating, intermittent, and unstable. So, the sustainable utilization of solar energy requires a combination of high-efficient energy conversion and low-loss energy storage technologies. Hence, a photo capacitor integrated with photo-electrical conversion and electric-chemical storage functions in single device is a cost-effective, volume-effective and functional-effective optimal choice. However, owing to the multiple components, multi-dimensional structure and multiple functions in one device, especially the mismatch of the functional modules, the overall conversion and storage efficiency of the photocapacitors is less than 13%, which seriously limits the development of the integrated system of solar conversion and energy storage. To this end, two typical photocapacitors were studied. A three-terminal photocapacitor was integrated by using perovskite solar cell as solar conversion module and symmetrical supercapacitor as energy storage module. A function portfolio management concept was proposed the relationship among various efficiencies during photovoltaic conversion and energy storage process were clarified. By harmonizing the energy matching between conversion and storage modules and seeking the maximum power points coincide and the maximum efficiency points synchronize, the overall efficiency of the photocapacitor surpassed 18 %, and Joule efficiency was closed to 90%. A voltage adjustable hybrid supercapacitor (VAHSC) was designed as energy storage module, and two Si wafers in series as solar conversion module, a three-terminal photocapacitor was fabricated. The VAHSC effectively harmonizes the energy harvest and storage modules, resulting in the current, voltage, power, and energy match between both modules. The optimal photocapacitor achieved an overall efficiency of 15.49% and Joule efficiency of 86.01%, along with excellent charge/discharge cycle stability. In addition, the Joule efficiency (ηJoule) was defined as the energy ratio of discharge/charge of the devices for the first time.

Keywords: joule efficiency, perovskite solar cell, photocapacitor, silicon solar cell, supercapacitor

Procedia PDF Downloads 50
432 Adsorptive Removal of Methylene Blue Dye from Aqueous Solutions by Leaf and Stem Biochar Derived from Lantana camara: Adsorption Kinetics, Equilibrium, Thermodynamics and Possible Mechanism

Authors: Deepa Kundu, Prabhakar Sharma, Sayan Bhattacharya, Jianying Shang

Abstract:

The discharge of dye-containing effluents in the water bodies has raised concern due to the potential hazards related to their toxicity in the environment. There are various treatment technologies available for the removal of dyes from wastewaters. The use of biosorbent to remove dyes from wastewater is one of the effective and inexpensive techniques. In the study, the adsorption of phenothiazine dye methylene blue onto biosorbent prepared from Lantana camara L. has been studied in aqueous solutions. The batch adsorption experiments were conducted and the effects of various parameters such as pH (3-12), contact time, adsorbent dose (100-400 mg/L), initial dye concentration (5-20 mg/L), and temperature (303, 313 and 323 K) were investigated. The prepared leaf (BCL600) and shoot (BCS600) biochar of Lantana were characterized using FTIR, SEM, elemental analysis, and zeta potential (pH~7). A comparison between the adsorption potential of both the biosorbent was also evaluated. The results indicated that the amount of methylene blue dye (mg/g) adsorbed onto the surface of biochar was highly dependent on the pH of the dye solutions as it increased with an increase in pH from 3 to 12. It was observed that the dye treated with BCS600 and BCL600 attained an equilibrium within 60 and 100 minutes, respectively. The rate of the adsorption process was determined by performing the Lagergren pseudo-first-order and pseudo-second-order kinetics. It was found that dye treated with both BCS600 and BCL600 followed pseudo-second-order kinetics implying the multi-step nature of the adsorption process involving external adsorption and diffusion of dye molecules into the interior of the adsorbents. The data obtained from batch experiments were fitted well with Langmuir and Freundlich isotherms (R² > 0.98) to indicate the multilayer adsorption of dye over the biochar surfaces. The thermodynamic studies revealed that the adsorption process is favourable, spontaneous, and endothermic in nature. Based on the results, the inexpensive and easily available Lantana camara biomass can be used to remove methylene blue dye from wastewater. It can also help in managing the growth of the notorious weed in the environment.

Keywords: adsorption kinetics, biochar, Lantana camara, methylene blue dye, possible mechanism, thermodynamics

Procedia PDF Downloads 106
431 Fluoride Immobilization in Plaster Board Waste: A Safety Measure to Prevent Soil and Water Pollution

Authors: Venkataraman Sivasankar, Kiyoshi Omine, Hideaki Sano

Abstract:

The leaching of fluoride from Plaster Board Waste (PBW) is quite feasible in soil and water environments. The Ministry of Environment, Japan recommended the standard limit of 0.8 mgL⁻¹ or less for fluoride. Although the utilization of PBW as a substitute for cement is rather meritorious, its fluoride leaching behavior deteriorates the quality of soil and water and therefore envisaged as a demerit. In view of this fluoride leaching problem, the present research is focused on immobilizing fluoride in PBW. The immobilization experiments were conducted with four chemical systems operated by DAHP (diammonium hydrogen phosphate) and phosphoric acid carbonization of bamboo mass coupled with certain inorganic reactions using reagents such as calcium hydroxide, sodium hydroxide, and aqueous ammonia. The fluoride immobilization was determined after shaking the reactor contents including the plaster board waste for 24 h at 25˚C. In the DAHP system, the immobilization of fluoride was evident from the leaching of fluoride in the range 0.071-0.12 mgL⁻¹, 0.026-0.14 mgL⁻¹ and 0.068-0.12 mgL⁻¹ for the reaction temperatures at 30˚C, 50˚C, and 90˚C, respectively, with final pH of 6.8. The other chemical systems designated as PACCa, PACAm, and PACNa could immobilize fluoride in PBW, and the resulting solution was analyzed with the fluoride less than the Japanese environmental standard of 0.8 mgL⁻¹. In the case of PACAm and PACCa systems, the calcium concentration was found undetectable and witnessed the formation of phosphate compounds. The immobilization of fluoride was found inversely proportional to the increase in the volume of leaching solvent and dose of PBW. Characterization studies of PBW and the solid after fluoride immobilization was done using FTIR (Fourier transform infrared spectroscopy), Raman spectroscopy, FE-SEM ( Field Emission Scanning Electron Microscopy) with EDAX (Energy Dispersive Spectroscopy), XRD (X-ray diffraction), and XPS (X-ray photoelectron spectroscopy). The results revealed the formation of new calcium phosphate compounds such as apatite, monetite, and hydroxylapatite. The participation of such new compounds in fluoride immobilization seems indispensable through the exchange mechanism of hydroxyl and fluoride groups. Acknowledgment: First author thanks to Japanese Society for the Promotion of Science (JSPS) for the award of the fellowship (ID No. 16544).

Keywords: characterization, fluoride, immobilization, plaster board waste

Procedia PDF Downloads 133
430 Therapeutic Drug Monitoring by Dried Blood Spot and LC-MS/MS: Novel Application to Carbamazepine and Its Metabolite in Paediatric Population

Authors: Giancarlo La Marca, Engy Shokry, Fabio Villanelli

Abstract:

Epilepsy is one of the most common neurological disorders, with an estimated prevalence of 50 million people worldwide. Twenty five percent of the epilepsy population is represented in children under the age of 15 years. For antiepileptic drugs (AED), there is a poor correlation between plasma concentration and dose especially in children. This was attributed to greater pharmacokinetic variability than adults. Hence, therapeutic drug monitoring (TDM) is recommended in controlling toxicity while drug exposure is maintained. Carbamazepine (CBZ) is a first-line AED and the drug of first choice in trigeminal neuralgia. CBZ is metabolised in the liver into carbamazepine-10,11-epoxide (CBZE), its major metabolite which is equipotent. This develops the need for an assay able to monitor the levels of both CBZ and CBZE. The aim of the present study was to develop and validate a LC-MS/MS method for simultaneous quantification of CBZ and CBZE in dried blood spots (DBS). DBS technique overcomes many logistical problems, ethical issues and technical challenges faced by classical plasma sampling. LC-MS/MS has been regarded as superior technique over immunoassays and HPLC/UV methods owing to its better specificity and sensitivity, lack of interference or matrix effects. Our method combines advantages of DBS technique and LC-MS/MS in clinical practice. The extraction process was done using methanol-water-formic acid (80:20:0.1, v/v/v). The chromatographic elution was achieved by using a linear gradient with a mobile phase consisting of acetonitrile-water-0.1% formic acid at a flow rate of 0.50 mL/min. The method was linear over the range 1-40 mg/L and 0.25-20 mg/L for CBZ and CBZE respectively. The limit of quantification was 1.00 mg/L and 0.25 mg/L for CBZ and CBZE, respectively. Intra-day and inter-day assay precisions were found to be less than 6.5% and 11.8%. An evaluation of DBS technique was performed, including effect of extraction solvent, spot homogeneity and stability in DBS. Results from a comparison with the plasma assay are also presented. The novelty of the present work lies in being the first to quantify CBZ and its metabolite from only one 3.2 mm DBS disc finger-prick sample (3.3-3.4 µl blood) by LC-MS/MS in a 10 min. chromatographic run.

Keywords: carbamazepine, carbamazepine-10, 11-epoxide, dried blood spots, LC-MS/MS, therapeutic drug monitoring

Procedia PDF Downloads 384
429 Preventive Effect of Stem Back Extracts of Coula edulis Baill. against High-Fat / High Sucrose Diet-Induced Insulin Resistance and Oxidative Stress in Rats

Authors: Eric Beyegue, Boris Azantza, Judith Laure Ngondi, Julius E. Oben

Abstract:

Background: Insulin resistance (IR) and oxidative stress are associated with obesity, diabetes mellitus, and other cardio metabolic disorders. The aim of this study was to investigate the effect of Coula edulis extracts (CEE) on insulin resistance and oxidative stress markers in high-fat/high sucrose diet-induced insulin resistance in rats. Materials and Methods: Thirty male rats were divided into 6 groups of 5 rats each fed, received daily oral administration of CE extracts for 8 weeks as follows: Group 1 or negative control group, fed with standard diet (SD); Group 2 fed with high-fat/high sucrose diet (HFHS) only; Group3 fed with HFHS + CEAq 200; Group 4 fed with HFHS + CEAq 400; Group 5 fed with HFHS + CEEt 200; Group 6 fed with HFHS + CEEt 400. At the end of the experiment (8 weeks), animals were sacrificed plasma lipid profile, glucose, insulin, oxidative marker and digestive enzyme activities were measured. The homeostasis model assessment for insulin resistance (HOMA-IR) was determined. Results: Feedings with HFHS significantly (p < 0.01) induced plasma hyperglycaemia, hyperinsulinaemia, increased triglyceride, total cholesterol, and low-density lipoprotein levels, decreased high-density lipoprotein levels, alterations of α amylase, and glucose-6-phosphatase activities, and oxidative stress. Daily oral administration with CEE for eight weeks after insulin resistance induction had a hypolipidaemic action, antioxidative activities and modulated metabolic markers. Ethanolic extract at the higher dose had the best effect on body weight gain and insulin resistance, whereas aqueous extract showed the better activity on hyperlipidemia. Conclusion: These results suggest that CEAq and CEEt at 400mg/kg are promising complementary supplements that can be used to protect better from metabolic disorders associated with HFHS.

Keywords: Coula edulis Baill, high-fat / high sucrose diet, insulin resistance, oxidative stress

Procedia PDF Downloads 272
428 Effect of Aquatic Seed Extract of (Cichorium intybus L.) and Metformin on Nitric Oxide in Type 2 Diabetic Rats

Authors: Lotfollah Rezagholizadeh

Abstract:

Background and Aim: Diabetes mellitus is related to high mortality and morbidity caused by the early development of atherosclerosis correlated to diabetic macroangiopathy. The endothelium-derived vasodilator, nitric oxide (NO) has been implicated in the development of vascular complications via the regulation of blood flow, and various antiatherosclerotic actions. Patients with type 2 diabetes (T2D) have a decreased level of endothelial nitric oxide release. In this study we aimed to examine the effect of aquatic seed extract of Cichorium intybus L. (chicory) and metformin (a known prescription drug for diabetes) on NO levels in T2D rats. Methods: Five groups of adult male Wistar rats were used (n=6): Non-diabetic controls without extract treatment (Control), Non-diabetic controls with extract treatment (Chicory-control), T2D rats without extract treatment (NIA/STZ), T2D rats treated with the extract (Chicory-NIA/STZ), and T2D groups that received metformin (100 mg/kg) but no extract (Metformin-NIA/STZ). T2D was induced with intraperitoneal (i.p) injection of niacinamide (NIA, 200 mg/kg), 15 min after an i.p administration of streptozotocin (STZ, 55 mg/kg). Lyophilized chicory extract (125 mg/kg) was dissolved in 0.2 ml normal saline and administered one dose a day. The experiments lasted for 3 weeks after the diabetes induction. NO analysis was performed by assay based on the Griess reaction. Data were reported as the mean ± SD and statistical analysis was performed by ANOVA. Results: Serum nitric oxide levels decreased significantly in NIA/STZ group compared with Control and Chicory-control. Treatment with chicory extract caused a significant increase in serum levels of NO in Chicory-NIA/STZ group compare to NIA/STZ group (p<05). Metformin-NIA/STZ group did not show considerable difference when compared with NIA/STZ, with respect to NO levels. In a group of rats made diabetic by STZ alone (type 1 diabetic rats, T1D), chicory did not have a significant ameliorating effect. Conclusion: In this study, we clearly showed a relationship between low serum nitric oxide levels and diabetes mellitus in rats. The increase in serum nitric oxide by chicory extract is an indication of antiatherogenic effect of this plant. Chicory seed extract was more efficient than metformin in improving the NO levels in NO-deficient T2D diabetic rats.

Keywords: type 2 diabetes mellitus, nitric oxide, chicory, metformin

Procedia PDF Downloads 303
427 Comparative Performance of Standing Whole Body Monitor and Shielded Chair Counter for In-vivo Measurements

Authors: M. Manohari, S. Priyadharshini, K. Bajeer Sulthan, R. Santhanam, S. Chandrasekaran, B. Venkatraman

Abstract:

In-vivo monitoring facility at Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, caters to the monitoring of internal exposure of occupational radiation workers from various radioactive facilities of IGCAR. Internal exposure measurement is done using Na(Tl) based Scintillation detectors. Two types of whole-body counters, namely Shielded Chair Counter (SC) and Standing Whole-Body Monitor (SWBM), are being used. The shielded Chair is based on a NaI detector of 20.3 cm diameter and 10.15 cm thick. The chair of the system is shielded using lead shots of 10 cm lead equivalent and the detector with 8 cm lead bricks. Counting geometry is sitting geometry. Calibration is done using 95 percentile BOMAB phantom. The minimum Detectable Activity (MDA) for 137Cs for the 60s is 1150 Bq. Standing Wholebody monitor (SWBM) has two NaI(Tl) detectors of size 10.16 x 10.16 x 40.64 cm3 positioned serially, one over the other. It has a shielding thickness of 5cm lead equivalent. Counting is done in standup geometry. Calibration is done with the help of Ortec Phantom, having a uniform distribution of mixed radionuclides for the thyroid, thorax and pelvis. The efficiency of SWBM is 2.4 to 3.5 times higher than that of the shielded chair in the energy range of 279 to 1332 keV. MDA of 250 Bq for 137Cs can be achieved with a counting time of 60s. MDA for 131I in the thyroid was estimated as 100 Bq from the MDA of whole-body for one-day post intake. Standing whole body monitor is better in terms of efficiency, MDA and ease of positioning. In case of emergency situations, the optimal MDAs for in-vivo monitoring service are 1000 Bq for 137Cs and 100 Bq for 131I. Hence, SWBM is more suitable for the rapid screening of workers as well as the public in the case of an emergency. While a person reports for counting, there is a potential for external contamination. In SWBM, there is a feasibility to discriminate them as the subject can be counted in anterior or posterior geometry which is not possible in SC.

Keywords: minimum detectable activity, shielded chair, shielding thickness, standing whole body monitor

Procedia PDF Downloads 13
426 Day-Case Ketamine Infusions in Patients with Chronic Pancreatitis

Authors: S. M. C. Kelly, M. Goulden

Abstract:

Introduction: Chronic Pancreatitis is an increasing problem worldwide. Pain is the main symptom and the main reason for hospital readmission following diagnosis, despite the use of strong analgesics including opioids. Ketamine infusions reduce pain in complex regional pain syndrome and other neuropathic pain conditions. Our centre has trialed the use of ketamine infusions in patients with chronic pancreatitis. We have evaluated this service to assess whether ketamine reduces emergency department admissions and analgesia requirements. Methods: This study collected retrospective data from 2010 in all patients who received a ketamine infusion for chronic pain secondary to a diagnosis of chronic pancreatitis. The day-case ketamine infusions were initiated in theatre by an anaesthetist, with standard monitoring and the assistance of an anaesthetic practitioner. A bolus dose of 0.5milligrams/kilogram was given in theatre. The infusion of 0.5 milligrams/kilogram per hour was then administered over a 6 hour period in the theatre recovery area. A study proforma detailed the medical history, analgesic use and admissions to hospital. Patients received a telephone follow up consultation. Results: Over the last eight years, a total of 30 patients have received intravenous ketamine infusions, with a total of 92 ketamine infusions being administered. 53% of the patients were male with the average age of 47. A total of 27 patients participated with the telephone consultation. A third of patients reported a reduction in hospital admissions with pain following the ketamine infusion. Analgesia requirements were reduced by an average of 48.3% (range 0-100%) for an average duration of 69.6 days (range 0-180 days.) Discussion: This service evaluation illustrates that ketamine infusions can reduce analgesic requirements and the number of hospital admissions in patients with chronic pancreatitis. In the light of increasing pressures on Emergency departments and the increasing evidence of the dangers of long-term opioid use, this is clearly a useful finding. We are now performing a prospective study to assess the long-term effectiveness of ketamine infusions in reducing analgesia requirements and improving patient’s quality of life.

Keywords: acute-on-chronic pain, intravenous analgesia infusion, ketamine, pancreatitis

Procedia PDF Downloads 112
425 Quantification and Evaluation of Tumors Heterogeneity Utilizing Multimodality Imaging

Authors: Ramin Ghasemi Shayan, Morteza Janebifam

Abstract:

Tumors are regularly inhomogeneous. Provincial varieties in death, metabolic action, multiplication and body part are watched. There’s expanding proof that strong tumors may contain subpopulations of cells with various genotypes and phenotypes. These unmistakable populaces of malignancy cells can connect during a serious way and may contrast in affectability to medications. Most tumors show organic heterogeneity1–3 remembering heterogeneity for genomic subtypes, varieties inside the statement of development variables and genius, and hostile to angiogenic factors4–9 and varieties inside the tumoural microenvironment. These can present as contrasts between tumors in a few people. for instance, O6-methylguanine-DNA methyltransferase, a DNA fix compound, is hushed by methylation of the quality advertiser in half of glioblastoma (GBM), adding to chemosensitivity, and improved endurance. From the outset, there includes been specific enthusiasm inside the usage of dissemination weighted imaging (DWI) and dynamic complexity upgraded MRI (DCE-MRI). DWI sharpens MRI to water dispersion inside the extravascular extracellular space (EES) and is wiped out with the size and setup of the cell populace. Additionally, DCE-MRI utilizes dynamic obtaining of pictures during and after the infusion of intravenous complexity operator. Signal changes are additionally changed to outright grouping of differentiation permitting examination utilizing pharmacokinetic models. PET scan modality gives one of a kind natural particularity, permitting dynamic or static imaging of organic atoms marked with positron emanating isotopes (for example, 15O, 18F, 11C). The strategy is explained to a colossal radiation portion, which points of confinement rehashed estimations, particularly when utilized together with PC tomography (CT). At long last, it's of incredible enthusiasm to quantify territorial hemoglobin state, which could be joined with DCE-CT vascular physiology estimation to create significant experiences for understanding tumor hypoxia.

Keywords: heterogeneity, computerized tomography scan, magnetic resonance imaging, PET

Procedia PDF Downloads 104
424 Investigation of Fumaric Acid Radiolysis Using Gamma Irradiation

Authors: Wafa Jahouach-Rabai, Khouloud Ouerghi, Zohra Azzouz-Berriche, Faouzi Hosni

Abstract:

Widely used organic products in the pharmaceutical industry have been detected in environmental systems, essentially carboxylic acids. In this purpose, the degradation efficiency of these contaminants was evaluated using an advanced oxidation process (AOP), namely ionization process as an alternative to conventional water treatment technologies. This process permitted the generation of radical reactions to directly degrade organic pollutants in wastewater. In fact, gamma irradiation of aqueous solutions produces several reactive radicals, essentially hydroxyl radical (OH), to destroy recalcitrant pollutants. Different concentrations of aqueous solutions of Fumaric acid (FA) were considered in this study (0.1-1 mmol/L), which were treated by irradiation doses from 1 to 15 kGy with 6.1 kGy/h rate by ionizing system in pilot scale (⁶⁰Co irradiator). Variations of main parameters influencing degradation efficiency versus absorbed doses were released in the aim to optimize total mineralization of considered pollutants. Preliminary degradation pathway until complete mineralization into CO₂ has been suggested based on detection of residual degradation derivatives using different techniques, namely high performance liquid chromatography (HPLC) and electron paramagnetic resonance spectroscopy (EPR). Results revealed total destruction of treated compound, which improve the efficiency of this process in water remediation. We investigated the reactivity of hydroxyl radicals generated by irradiation on dicarboxylic acid (FA) in aqueous solutions, leading to its degradation into other smaller molecules. In fact, gamma irradiation of FA leads to the formation of hydroxylated intermediates such as hydroxycarbonyl radical which were identified by EPR spectroscopy. Finally, pilot plant irradiation facilities improved the applicability of radiation technology on large scale.

Keywords: AOP, radiolysis, fumaric acid, gamma irradiation, hydroxyl radical, EPR, HPLC

Procedia PDF Downloads 142
423 Impact of PV Distributed Generation on Loop Distribution Network at Saudi Electricity Company Substation in Riyadh City

Authors: Mohammed Alruwaili‬

Abstract:

Nowadays, renewable energy resources are playing an important role in replacing traditional energy resources such as fossil fuels by integrating solar energy with conventional energy. Concerns about the environment led to an intensive search for a renewable energy source. The Rapid growth of distributed energy resources will have prompted increasing interest in the integrated distributing network in the Kingdom of Saudi Arabia next few years, especially after the adoption of new laws and regulations in this regard. Photovoltaic energy is one of the promising renewable energy sources that has grown rapidly worldwide in the past few years and can be used to produce electrical energy through the photovoltaic process. The main objective of the research is to study the impact of PV in distribution networks based on real data and details. In this research, site survey and computer simulation will be dealt with using the well-known computer program software ETAB to simulate the input of electrical distribution lines with other variable inputs such as the levels of solar radiation and the field study that represent the prevailing conditions and conditions in Diriah, Riyadh region, Saudi Arabia. In addition, the impact of adding distributed generation units (DGs) to the distribution network, including solar photovoltaic (PV), will be studied and assessed for the impact of adding different power capacities. The result has been achieved with less power loss in the loop distribution network from the current condition by more than 69% increase in network power loss. However, the studied network contains 78 buses. It is hoped from this research that the efficiency, performance, quality and reliability by having an enhancement in power loss and voltage profile of the distribution networks in Riyadh City. Simulation results prove that the applied method can illustrate the positive impact of PV in loop distribution generation.

Keywords: renewable energy, smart grid, efficiency, distribution network

Procedia PDF Downloads 107
422 Isolation Enhancement of Compact Dual-Band Printed Multiple Input Multiple Output Antenna for WLAN Applications

Authors: Adham M. Salah, Tariq A. Nagem, Raed A. Abd-Alhameed, James M. Noras

Abstract:

Recently, the demand for wireless communications systems to cover more than one frequency band (multi-band) with high data rate has been increased for both fixed and mobile services. Multiple Input Multiple Output (MIMO) technology is one of the significant solutions for attaining these requirements and to achieve the maximum channel capacity of the wireless communications systems. The main issue associated with MIMO antennas especially in portable devices is the compact space between the radiating elements which leads to limit the physical separation between them. This issue exacerbates the performance of the MIMO antennas by increasing the mutual coupling between the radiating elements. In other words, the mutual coupling will be stronger if the radiating elements of the MIMO antenna are closer. This paper presents a low–profile dual-band (2×1) MIMO antenna that works at 2.4GHz, 5.3GHz and 5.8GHz for wireless local area networks (WLAN) applications. A neutralization line (NL) technique for enhancing the isolation has been used by introducing a strip line with a length of λg/4 at the isolation frequency (2.4GHz) between the radiating elements. The overall dimensions of the antenna are 33.5 x 36 x 1.6 mm³. The fabricated prototype shows a good agreement between the simulated and measured results. The antenna impedance bandwidths are 2.38–2.75 GHz and 4.4–6 GHz for the lower and upper band respectively; the reflection coefficient and mutual coupling are better than -25 dB in both lower and higher bands. The MIMO antenna performance characteristics are reported in terms of the scattering parameters, envelope correlation coefficient (ECC), total active reflection coefficient, capacity loss, antenna gain, and radiation patterns. Analysis of these characteristics indicates that the design is appropriate for the WLAN terminal applications.

Keywords: ECC, neutralization line, MIMO antenna, multi-band, mutual coupling, WLAN

Procedia PDF Downloads 110
421 Omalizumab Therapy Experience for Asthma, at Zayed Military Hospital (ZMH) in United Arab Emirates

Authors: Shanza Akram, Samir Salah, Imran Saleem, Ashraf Alzaabi, Jassim Abdou

Abstract:

Introduction: 300 million people worldwide are affected by asthma .In UAE, prevalence is around 10% (900,000 people).Patients with persistent symptoms despite using high dose ICS plus a second controller +/- OCS are considered to have severe asthma. Omalizumab (Xolaire) an IgE monoclonal antibody is approved as add on therapy for severe allergic asthma. Objective: To determine the efficacy of omalizumab based on clinical outcomes in our cohort of patient pre and post 52 weeks of treatment to assess safety and tolerability of treatment. Methods: Medical records of patients receiving omalizumab therapy for asthma at ZMH ,Abu Dhabi were retrospectively analyzed.Patients fulfilling the criteria of severe allergic asthma as per GINA guidelines were included. Asthma control over 12 months prior to and 12 months after commencement of omalizumab therapy was analysed by taking into account the number of exacerbations and hospitalizations in addition to maintenance of medication dosages, need for rescue reliever therapy and pulmonary function testing. Results: Total cohort of 21 patient (5 females), average age 41 years and av length of therapy 22 months were included. Seven patients (total 11/52%) managed to stop steroids on treatment while four were able to decrease the dosage. Mean exacerbation rate decreased from five/ year pre treatment to 1.36 while on treatment. Number of hospitalizations decreased from mean of two per year to 0.9 per year. Rescue reliever inhaler usage decreased from mean of 40 puffs to 15 puffs per week. 2 patients discontinued therapy, 1 due to lack of benefit (2 doses) and 2nd due to severe persistent side effects including local irritation, severe limb and joint pains after 6 months. Conclusion: Treatment with omalizumab showed effect in terms of reduced number of exacerbations, maintenance therapy and reliever medications. However, no improvement was seen in PFTs.There is room for improved documentation in terms of symptom recording and use of rescue medicationas as well as for better patient education and counselling in order to improve compliance.

Keywords: asthma, omalizumab, severe allergic asthma, UAE

Procedia PDF Downloads 270
420 Vegetable Oil-Based Anticorrosive Coatings for Metals Protection

Authors: Brindusa Balanuca, Raluca Stan, Cristina Ott, Matei Raicopol

Abstract:

The current study aims to develop anti corrosive coatings using vegetable oil (VO)-based polymers. Due to their chemical versatility, reduced costs and more important, higher hydrophobicity, VO’s are great candidates in the field of anti-corrosive materials. Lignin (Ln) derivatives were also used in this research study in order to achieve performant hydrophobic anti-corrosion layers. Methods Through a rational functionalization pathway, the selected VO (linseed oil) is converted to more reactive monomer – methacrylate linseed oil (noted MLO). The synthesized MLO cover the metals surface in a thin layer and through different polymerization techniques (using visible radiation or temperature, respectively) and well-established reaction conditions, is converted to a hydrophobic coating capable to protect the metals against corrosive factors. In order to increase the anti-corrosion protection, lignin (Ln) was selected to be used together with MLO macromonomer. Thus, super hydrophobic protective coatings will be formulated. Results The selected synthetic strategy to convert the VO in more reactive compounds – MLO – has led to a functionalization degree of greater than 80%. The obtained monomers were characterized through NMR and FT-IR by monitoring the characteristic signals after each synthesis step. Using H-NMR data, the functionalization degrees were established. VO-based and also VO-Ln anti corrosion formulations were both photochemical and thermal polymerized in specific reaction conditions (initiators, temperature range, reaction time) and were tested as anticorrosive coatings. Complete and advances characterization of the synthesized materials will be presented in terms of thermal, mechanical and morphological properties. The anticorrosive properties were also evaluated and will be presented. Conclusions Through the design strategy briefly presented, new composite materials for metal corrosion protection were successfully developed, using natural derivatives: vegetable oils and lignin, respectively.

Keywords: anticorrosion protection, hydrophobe layers, lignin, methacrylates, vegetable oil

Procedia PDF Downloads 148
419 Experimental Study of Reflective Roof as a Passive Cooling Method in Homes Under the Paradigm of Appropriate Technology

Authors: Javier Ascanio Villabona, Brayan Eduardo Tarazona Romero, Camilo Leonardo Sandoval Rodriguez, Arly Dario Rincon, Omar Lengerke Perez

Abstract:

Efficient energy consumption in the housing sector in relation to refrigeration is a concern in the construction and rehabilitation of houses in tropical areas. Thermal comfort is aggravated by heat gain on the roof surface by heat gains. Thus, in the group of passive cooling techniques, one of the practices and technologies in solar control that provide improvements in comfortable conditions are thermal insulation or geometric changes of the roofs. On the other hand, methods with reflection and radiation are the methods used to decrease heat gain by facilitating the removal of excess heat inside a building to maintain a comfortable environment. Since the potential of these techniques varies in different climatic zones, their application in different zones should be examined. This research is based on the experimental study of a prototype of a roof radiator as a method of passive cooling in homes, which was developed through an experimental research methodology making measurements in a prototype built by means of the paradigm of appropriate technology, with the aim of establishing an initial behavior of the internal temperature resulting from the climate of the external environment. As a starting point, a selection matrix was made to identify the typologies of passive cooling systems to model the system and its subsequent implementation, establishing its constructive characteristics. Step followed by the measurement of the climatic variables (outside the prototype) and microclimatic variables (inside the prototype) to obtain a database to be analyzed. As a final result, the decrease in temperature that occurs inside the chamber with respect to the outside temperature was evidenced. likewise, a linearity in its behavior in relation to the variations of the climatic variables.

Keywords: appropriate technology, enveloping, energy efficiency, passive cooling

Procedia PDF Downloads 69
418 Metal-Organic Frameworks for Innovative Functional Textiles

Authors: Hossam E. Emam

Abstract:

Metal–organic frameworks (MOFs) are new hybrid materials investigated from 15 years ago; they synthesized from metals as inorganic center joined with multidentate organic linkers to form a 1D, 2D or 3D network structure. MOFs have unique properties such as pore crystalline structure, large surface area, chemical tenability and luminescent characters. These significant properties enable MOFs to be applied in many fields such like gas storage, adsorption/separation, drug delivery/biomedicine, catalysis, polymerization, magnetism and luminescence applications. Recently, many of published reports interested in superiority of MOFs for functionalization of textiles to exploit the unique properties of MOFs. Incorporation of MOFs is found to acquire the textiles some additional formidable functions to be used in considerable fields such like water treatment and fuel purification. Modification of textiles with MOFs could be easily performed by two main techniques; Ex-situ (preparation of MOFs then applied onto textiles) and in-situ (ingrowth of MOFs within textiles networks). Uniqueness of MOFs could be assimilated in acquirement of decorative color, antimicrobial character, anti-mosquitos character, ultraviolet radiation protective, self-clean, photo-luminescent and sensor character. Additionally, textiles treatment with MOFs make it applicable as filter in the adsorption of toxic gases, hazardous materials (such as pesticides, dyes and aromatics molecules) and fuel purification (such as removal of oxygenated, nitrogenated and sulfur compounds). Also, the porous structure of MOFs make it mostly utilized in control release of insecticides from the surface of the textile. Moreover, MOF@textiles as recyclable materials lead it applicable as photo-catalyst composites for photo-degradation of different dyes in the day light. Therefore, MOFs is extensively considered for imparting textiles with formidable properties as ingeniousness way for textile functionalization.

Keywords: MOF, functional textiles, water treatment, fuel purification, environmental applications

Procedia PDF Downloads 113
417 Results of an Educative Procedure by Nursing on Patients Subjected to a Transplant from Hematopoietic Parents

Authors: C. Catalina Zapata, Z. Claudia Montoya

Abstract:

Transplant from hematopoietic parents (THP) or medulla (MT) is a procedure used to replace the medulla that does not work as part of a disease or when it is destroyed either by a treatment of high medication doses against cancer or by radiation. The transplant process has three stages, a stage prior to transplant, during and after the transplant. It is held with the help of an interdisciplinary team, including nursing, carrying out mainly educative procedures to warrant the adhesion and the changes in lifestyles needed to whom will undergo this procedure. The aim of the study was to assess the results of an educative procedure by nursing, on adult patients subjected to a transplant from hematopoietic parents at a high complexity institution of Medellin city, Colombia. This study had an observational longitudinal design. According to the rules of protocol, the educative activity must be held on all patients joining the procedure. Four instruments were designed in order to collect all the information. One of them to measure the sociodemographic variables, another one to measure self-care practices, another one to measure transplant knowledge and its cares and the other one to measure the 30-day post-transplant complications. The last three instruments were applied before and after the educative procedure. A univaried analysis was carried out but the bivaried analysis was not carried out since there were not statistically meaningful differences before and after. Within the results, ten patients were evaluated. The average age was 38.2 (13.38 SD – standard deviation), 8/10 were men. Some self-care practices such us having pets and plants and consuming some specific food as well as little use of UV protection are all present in this type of patients and are not modified after the procedure. In measuring the knowledge, something stands out among the answers. It is the fact that some patients do not know what the medulla is, the nature of separating wastes at home and the need to consult about vomit and nausea. The most frequent complications during the first thirty days were: nausea, vomit, fever, and rash. They are considered to be expected within this period. Patients do not exhibit differences in their level of knowledge before and after the educative procedure by nursing. The patients’ self-care practices do not involve all the necessary ones to avoid complications. During the first 30 days, most of the complications are typical of the transplant process from hematopoietic parents.

Keywords: bone marrow transplant, education, family, nursing, patients, Transplantation of hematopoietic progenitors

Procedia PDF Downloads 101
416 Reduction of Chemical Fertilizer in Rice-Rice Cropping Pattern Using Different Vermicompost

Authors: Azizul Haque, Kamrun Nahar

Abstract:

Field experiments were conducted to reduce the chemical fertilizers with the integrated use of straight and phospho- vermicompost with chemical fertilizers in T. aman-Boro rice cropping pattern at the BINA farm, Mymensingh during 2019-20. Six treatments were used in the experiment for both the crops. The treatments used for T. aman rice (Binadhan 17) with straight vermicompost were as follows: T1: Native soil fertility, T2: 100% N from Chemical Fertilizer (CF), T3:70%N from CF, T4: 30% N from vermicompost-3 + 70% N from CF and T5:30% N from vermicompost-4 + 70% N from CF and T6: 100% PKS only. The treatments of Boro rice (var. Binadhan -10) with phospho-vermicompost were: T1: Native soil fertility, T2: 100% NPKS from chemical fertilizer (CF), T3:75% NKS from CF (Non IPNS) with 1 t ha-1 Phospho-vermicompost (P-Vermicom), T4: 100% NKS (IPNS) with 2 t ha-1 P-Vermicom, T5: 100% NKS from CF (Non IPNS) with 2 t ha-1 P-Vermicom and T6: 100% NKS. The experiments were conducted in a Randomized Complete Block Design with three replications. The treatment T5 (5.5 t ha-1) gave maximum grain yield of T.aman rice followed by the treatment T4 (5.4 t ha-1). But the treatmentsT5, T4, and T2 gave identical grain yields of T. aman rice. Similar results were observed in case of straw yields of T. Aman rice. The result indicated that 70% N from CF with 30% N from either straight vermicompost-3 or straight vermicompost-4 gave comparable yield to the sole application of 100% N from CF alone. Therefore, 30% chemical fertilizers (N, P, K and S) could be saved with the integrated (IPNS) use of vermicompost-3 or vermicompost-4 in the cultivation of T. aman rice. Application of Phospho-vermicompost significantly influenced the yield and yield contributing characters of Boro rice (Binadhan-10). The treatment T4 (7.23.0 t ha-1) gave maximum grain yield of Boro rice followed by the treatments T2 and T5. But the treatments T2 and T5 produced statistically similar grain yields. The results from the treatment T4 (100% NKS (IPNS) with 2.0 t ha-1P-Vermicom) indicated that full demand of P could be met up from 2 t ha-1 Phospho-vermicompost with IPNS chemical fertilizers (NKS) which was sufficient for attaining the highest grain yield of Boro rice than that of the treatment T2 (100% NPKS from CF) and the treatmentT5 (100% NKS from CF (Non IPNS) + 2 t ha-1 Phospho-vermicompost). The results revealed that 100% P and substantial amount of N (21%), K (44.6%) and S (53.7%) fertilizers could be saved with the integrated use of Phospho-vermicompost in the cultivation of Boro rice. In case of Boro rice partial cost benefit analysis showed that the application of Phospho-vermicompost (@2 tha--1) with IPNS chemical fertilizes (NKS) gave higher return of Tk. 18,213 / - than that of only 100% chemical fertilizer. Therefore, use of Phospho-vermicompost was beneficial for the cultivation of Boro rice in combination with suitable dose of chemical fertilizers.

Keywords: phosphovermicompost, cropping pattern, rice yield, chemical fertilizer

Procedia PDF Downloads 77
415 Effect of Nigella sativa on Blood Pressure, Vascular Reactivity, Inflammatory Biomarkers and Nitric Oxide in L-Name-Induced Hypertensive Rats

Authors: Kamsiah Jaarin, Yusof Kamisah, Faizah Othman Nurul Akmal Muhammad, Zakiah Jubri, Qodriyah Mohd Saad, Srijit Das

Abstract:

Forty (40) normotensive adult male Sprague-Dawley rats aged three months weighing 180-200 g were divided into 4 groups with 10 rats per group: (1) normotensive control; (2) hypertensive rats; (3) hypertensive rats treated with Nigella sativa (2.5 ml/kg/day); and (4) hypertensive rats treated with nicardipine (5 mg/kg/day). After acclimatization, the hypertensive rats of the group 2, 3 and 4 were induced to be hypertensive by giving NW–nitro-L-arginine methyl ester (L-NAME; 30 mg/kg/day) in their drinking water for consecutive 7 days. After one week, rats in the group 3 were given a daily oral dose of 2.5 ml/kg/day of Nigella sativa (NS) by oral gavage. Rats in the group 4 were given nicardipine (5 mg/kg/day) via oral gavages. All rats in this study received L-NAME continuously throughout the treatment duration. The blood pressure will be measured pre-treatment and weekly for 8 weeks using power lab. Blood was taken before and at the end of study for measurement of nitric oxide. At the end of 8 weeks, the rats are sacrificed and descending thoracic aorta was disserted for measurement of vascular reactivity, and intracellular adhesion molecules (ICAM-1) and vascular cell adhesion molecules (VCAM-1). Nigella sativa reduced both systolic and diastolic BP compared to control and L-name group. The BP lowering effect of NS was comparable to nicardipine a calcium antagonist. The blood pressure lowering effect of NS was accompanied with an increasing relaxation response to nitroprusside and acetylcholine and reducing vasoconstriction response to epinephrine. L-NAME and nicardipine on the other hand, reduced plasma nitric oxide concentration. In contrast, NS increased NO concentration. However, Nigella sativa had no significant effect on aortic VCAM- 1 and ICAM-1 expression. In conclusion; Nigella sativa oil reduces both systolic and diastolic blood pressure in L-NAME treated rats. The antihypertensive effect of NS was comparable to nicardipine. The BP lowering effect may be mediated via stimulating nitric oxide release from vascular endothelium.

Keywords: Nigella sativa, ICAM, VCAM, blood pressure, vascular reactivity

Procedia PDF Downloads 394
414 Investigation of Correlation Between Radon Concentration and Metals in Produced Water from Oilfield Activities

Authors: Nacer Hamza

Abstract:

Naturally radiation exposure that present due to the cosmic ray or the naturel occurring radioactives materials(NORMs) that originated in the earth's crust and are present everywhere in the environment(1) , a significant concentration of NORMs reported in the produced water which comes out during the oil extraction process, so that the management of this produced water is a challenge for oil and gas companies which include either minimization of produced water which considered as the best way in the term of environment based in the fact that ,the lower water produced the lower cost in treating this water , recycling and reuse by reinjected produced water that fulfills some requirements to enhance oil recovery or disposal in the case that the produced water cannot be minimize or reuse. In the purpose of produced water management, the investigation of NORMs activity concentration present in it considered as the main step for more understanding of the radionuclide’s distribution. Many studies reported the present of NORMs in produced water and investigated the correlation between 〖Ra〗^226and the different metals present in produced water(2) including Cations and anions〖Na〗^+,〖Cl〗^-, 〖Fe〗^(2+), 〖Ca〗^(2+) . and lead, nickel, zinc, cadmium, and copper commonly exist as heavy metal in oil and gas field produced water(3). However, there are no real interesting to investigate the correlation between 〖Rn〗^222and the different metals exist in produced water. methods using, in first to measure the radon concentration activity in produced water samples is a RAD7 .RAD7 is a radiometer instrument based on the solid state detectors(4) which is a type of semi-conductor detector for alpha particles emitting from Rn and their progenies, in second the concentration of different metals presents in produced water measure using an atomic absorption spectrometry AAS. Then to investigate the correlation between the 〖Rn〗^222concentration activity and the metals concentration in produced water a statistical method is Pearson correlation analysis which based in the correlation coefficient obtained between the 〖Rn〗^222 and metals. Such investigation is important to more understanding how the radionuclides act in produced water based on this correlation with metals , in first due to the fact that 〖Rn〗^222decays through the sequence 〖Po〗^218, 〖Pb〗^214, 〖Bi〗^214, 〖Po〗^214, and〖Pb〗^210, those daughters are metals thus they will precipitate with metals present in produced water, secondly the short half-life of 〖Rn〗^222 (3.82 days) lead to faster precipitation of its progenies with metals in produced water.

Keywords: norms, radon concentration, produced water, heavy metals

Procedia PDF Downloads 122
413 Experimental and Numerical Studies on Hydrogen Behavior in a Small-Scale Container with Passive Autocatalytic Recombiner

Authors: Kazuyuki Takase, Yoshihisa Hiraki, Gaku Takase, Isamu Kudo

Abstract:

One of the most important issue is to ensure the safety of long-term waste storage containers in which fuel debris and radioactive materials are accumulated. In this case, hydrogen generated by water decomposition by radiation is accumulated in the container for a long period of time, so it is necessary to reduce the concentration of hydrogen in the container. In addition, a condition that any power supplies from the outside of the container are unnecessary is requested. Then, radioactive waste storage containers with the passive autocatalytic recombiner (PAR) would be effective. The radioactive waste storage container with PAR was used for moving the fuel debris of the Three Mile Island Unit 2 to the storage location. However, the effect of PAR is not described in detail. Moreover, the reduction of hydrogen concentration during the long-term storage period was performed by the venting system, which was installed on the top of the container. Therefore, development of a long-term storage container with PAR was started with the aim of safely storing fuel debris picked up at the Fukushima Daiichi Nuclear Power Plant for a long period of time. A fundamental experiment for reducing the concentration of hydrogen which generates in a nuclear waste long-term storage container was carried out using a small-scale container with PAR. Moreover, the circulation flow behavior of hydrogen in the small-scale container resulting from the natural convection by the decay heat was clarified. In addition, preliminary numerical analyses were performed to predict the experimental results regarding the circulation flow behavior and the reduction of hydrogen concentration in the small-scale container. From the results of the present study, the validity of the container with PAR was experimentally confirmed on the reduction of hydrogen concentration. In addition, it was predicted numerically that the circulation flow behavior of hydrogen in the small-scale container is blocked by steam which generates by chemical reaction of hydrogen and oxygen.

Keywords: hydrogen behavior, reduction of concentration, long-term storage container, small-scale, PAR, experiment, analysis

Procedia PDF Downloads 140
412 Transcriptomic Analysis of Fragrant Rice Reveals the Involvement of Post-transcriptional Regulation in Response to Zn Foliar Application

Authors: Muhammad Imran, Sarfraz Shafiq, Xiangru Tang

Abstract:

Alternative splicing (AS) is an important post-transcriptional regulatory mechanism to generate transcripts variability and proteome diversity in plants. Fragrant rice (Oryza sativa L.) has a high economic and nutritional value, and the application of micronutrients regulate 2-acetyl-1-pyrroline (2-AP) production, which is responsible for aroma in fragrant rice. However, no systematic investigation of AS events in response to micronutrients (Zn) has been performed in fragrant rice. Furthermore, the post-transcriptional regulation of genes involved in 2-AP biosynthesis is also not known. In this study, a comprehensive analysis of AS events under two gradients of Zn treatment in two different fragrant rice cultivars (Meixiangzhan-2 and Xiangyaxiangzhan) was performed. A total of 386 and 598 significant AS events were found in Meixiangzhan-2 treated with low and high doses of Zn, respectively. In Xiangyaxiangzhan, a total of 449 and 598 significant AS events were found in low and high doses of Zn, respectively. Go analysis indicated that these genes were highly enriched in physiological processes, metabolism, and cellular process in both cultivars. However, genotype and dose-dependent AS events were also detected in both cultivars. By comparing differential AS (DAS) events with differentially expressed genes (DEGs), we found a weak overlap among DAS and DEGs in both fragrant rice cultivars, indicating that only a few genes are post-transcriptionally regulated in response to Zn treatment. We further report that Zn differentially regulates the expression of 2-AP biosynthesis-related genes in both cultivars, and Zn treatment altered the editing frequency of SNPs in the genes involved in 2-AP biosynthesis. Finally, we showed that epigenetic modifications associated with active gene transcription are generally enriched over 2-AP biosynthesis-related genes. Taken together, our results provide evidence of the post-transcriptional gene regulation in fragrant rice in response to Zn treatment and highlight that the 2-AP biosynthesis pathway may also be post-transcriptionally regulated through epigenetic modifications. These findings will serve as a cornerstone for further investigation to understand the molecular mechanisms of 2-AP biosynthesis in fragrant rice.

Keywords: fragrant rice, 2-acetyl-1-pyrroline, gene expression, zinc, alternative splicing, SNPs

Procedia PDF Downloads 83
411 Effects of Kolavironon Liver Oxidative Stress and Beta-Cell Damage in Streptozotocin-Induced Diabetic Rats

Authors: Omolola R. Ayepola, Nicole L. Brooks, Oluwafemi O. Oguntibeju

Abstract:

The liver plays an important role in the regulation of blood glucose and is a target organ of hyperglycaemia. Hyperglycemia plays a crucial role in the onset of various liver diseases and may culminate into hepatopathy if untreated. Alteration in antioxidant defense and increase in oxidative stress that results in tissue injury is characteristic of diabetes. We evaluated the protective effects of kolaviron-a biflavonoid complex, on hepatic antioxidants, lipid peroxidation and apoptosis in the liver of diabetic rats. To induce type I diabetes, rats were injected with streptozotocin intraperitoneally at a single dose of 50 mg/kg. Oral treatment of diabetic rats with kolaviron (100 mg/kg) started on the 6th day after diabetes induction and continued for 6 weeks (5 times weekly). Diabetic rats exhibited a significant increase in the peroxidation of hepatic lipids as observed from the elevated level of malondialdehyde (MDA) estimated by High-Performance Liquid Chromatography. In addition, Oxygen Radical Absorbance Capacity (ORAC), ratio of reduced to oxidized glutathione (GSH/GSSG) and catalase (CAT) activity was decreased in the liver of diabetic rats. TUNEL assay revealed increased apoptotic cell death in the liver of diabetic rats. Examination of Pancreatic beta-cells by immunohistochemical methods revealed beta cell degeneration and reduction in beta cell/ islet area in the diabetic controls. Kolaviron-treatment increased the area of insulin immunoreactive beta-cells significantly. Kolaviron attenuated lipid peroxidation and apoptosis in the liver of diabetic rats, increased CAT activity GSH levels and the resultant GSH: GSSG. The ORAC of kolaviron-treated diabetic liver was restored to near-normal values. Kolaviron protects the liver against oxidative and apoptotic damage induced by hyperglycemia. The antidiabetic effect of kolaviron may also be related to its beneficial effects on beta-cell function.

Keywords: diabetes mellitus, kolaviron, oxidative stress, liver, apoptosis

Procedia PDF Downloads 368
410 The h3r Antagonist E159 Alleviates Neuroinflammation and Autistic-Like Phenotypes in BTBR T+ tf/J Mouse Model of Autism

Authors: Shilu Deepa Thomas, P. Jayaprakash, Dorota Łazewska, Katarzyna Kieć-Kononowicz, B. Sadek

Abstract:

A large body of evidence suggests the involvement of cognitive impairment, increased levels of inflammation and oxidative stress in the pathogenesis of autism spectrum disorder (ASD). ASD commonly coexists with psychiatric conditions like anxiety and cognitive challenges, and individuals with ASD exhibit significant levels of inflammation and immune system dysregulation. Previous Studies have identified elevated levels of pro-inflammatory markers such as IL-1β, IL-6, IL-2 and TNF-α, particularly in young children with ASD. The current therapeutic options for ASD show limited effectiveness, signifying the importance of exploring an efficient drugs to address the core symptoms. The role of histamine H3 receptors (H3Rs) in memory and the prospective role of H3R antagonists in pharmacological control of neurodegenerative disorders, e.g., ASD, is well-accepted. Hence, the effects of chronic systemic administration of H3R antagonist E159 on autistic-like repetitive behaviors, social deficits, memory and anxiety parameters, as well as neuroinflammation in Black and Tan BRachyury (BTBR) mice, were evaluated using Y maze, Barnes maze, self-grooming, open field and three chamber social test. E159 (2.5, 5 and 10 mg/kg, i.p.) dose-dependently ameliorated repetitive and compulsive behaviors by reducing the increased time spent in self-grooming and improved reduced spontaneous alternation in BTBR mice. Moreover, treatment with E159 attenuated disturbed anxiety levels and social deficits in tested male BTBR mice. Furthermore, E159 attenuated oxidative stress by significantly increasing GSH, CAT, and SOD and decreasing the increased levels of MDA in the cerebellum as well as the hippocampus. In addition, E159 decreased the elevated levels of proinflammatory cytokines (tumor necrosis factor (TNF-α), interleukin-1β (IL-1β), and IL-6). The observed results show that H3R antagonists like E159 may represent a promising novel pharmacological strategy for the future treatment of ASD.

Keywords: histamine H3 receptors, antagonist E159, autism, behaviors, mice

Procedia PDF Downloads 16
409 Defining New Limits in Hybrid Perovskites: Single-Crystal Solar Cells with Exceptional Electron Diffusion Length Reaching Half Millimeters

Authors: Bekir Turedi

Abstract:

Exploiting the potential of perovskite single-crystal solar cells in optoelectronic applications necessitates overcoming a significant challenge: the low charge collection efficiency at increased thickness, which has restricted their deployment in radiation detectors and nuclear batteries. Our research details a promising approach to this problem, wherein we have successfully fabricated single-crystal MAPbI3 solar cells employing a space-limited inverse temperature crystallization (ITC) methodology. Remarkably, these cells, up to 400-fold thicker than current-generation perovskite polycrystalline films, maintain a high charge collection efficiency even without external bias. The crux of this achievement lies in the long electron diffusion length within these cells, estimated to be around 0.45 mm. This extended diffusion length ensures the conservation of high charge collection and power conversion efficiencies, even as the thickness of the cells increases. Fabricated cells at 110, 214, and 290 µm thickness manifested power conversion efficiencies (PCEs) of 20.0, 18.4, and 14.7% respectively. The single crystals demonstrated nearly optimal charge collection, even when their thickness exceeded 200 µm. Devices of thickness 108, 214, and 290 µm maintained 98.6, 94.3, and 80.4% of charge collection efficiency relative to their maximum theoretical short-circuit current value, respectively. Additionally, we have proposed an innovative, self-consistent technique for ascertaining the electron-diffusion length in perovskite single crystals under operational conditions. The computed electron-diffusion length approximated 446 µm, significantly surpassing previously reported values for this material. In conclusion, our findings underscore the feasibility of fabricating halide perovskite single-crystal solar cells of hundreds of micrometers in thickness while preserving high charge extraction efficiency and PCE. This advancement paves the way for developing perovskite-based optoelectronics necessitating thicker active layers, such as X-ray detectors and nuclear batteries.

Keywords: perovskite, solar cell, single crystal, diffusion length

Procedia PDF Downloads 23