Search results for: pulse oximetry
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 548

Search results for: pulse oximetry

278 Radical Scavenging Activity of Protein Extracts from Pulse and Oleaginous Seeds

Authors: Silvia Gastaldello, Maria Grillo, Luca Tassoni, Claudio Maran, Stefano Balbo

Abstract:

Antioxidants are nowadays attractive not only for the countless benefits to the human and animal health, but also for the perspective of use as food preservative instead of synthetic chemical molecules. In this study, the radical scavenging activity of six protein extracts from pulse and oleaginous seeds was evaluated. The selected matrices are Pisum sativum (yellow pea from two different origins), Carthamus tinctorius (safflower), Helianthus annuus (sunflower), Lupinus luteus cv Mister (lupin) and Glycine max (soybean), since they are economically interesting for both human and animal nutrition. The seeds were grinded and proteins extracted from 20mg powder with a specific vegetal-extraction kit. Proteins have been quantified through Bradford protocol and scavenging activity was revealed using DPPH assay, based on radical DPPH (2,2-diphenyl-1-picrylhydrazyl) absorbance decrease in the presence of antioxidants molecules. Different concentrations of the protein extract (1, 5, 10, 50, 100, 500 µg/ml) were mixed with DPPH solution (DPPH 0,004% in ethanol 70% v/v). Ascorbic acid was used as a scavenging activity standard reference, at the same six concentrations of protein extracts, while DPPH solution was used as control. Samples and standard were prepared in triplicate and incubated for 30 minutes in dark at room temperature, the absorbance was read at 517nm (ABS30). Average and standard deviation of absorbance values were calculated for each concentration of samples and standard. Statistical analysis using t-students and p-value were performed to assess the statistical significance of the scavenging activity difference between the samples (or standard) and control (ABSctrl). The percentage of antioxidant activity has been calculated using the formula [(ABSctrl-ABS30)/ABSctrl]*100. The obtained results demonstrate that all matrices showed antioxidant activity. Ascorbic acid, used as standard, exhibits a 96% scavenging activity at the concentration of 500 µg/ml. At the same conditions, sunflower, safflower and yellow peas revealed the highest antioxidant performance among the matrices analyzed, with an activity of 74%, 68% and 70% respectively (p < 0.005). Although lupin and soybean exhibit a lower antioxidant activity compared to the other matrices, they showed a percentage of 46 and 36 respectively. All these data suggest the possibility to use undervalued edible matrices as antioxidants source. However, further studies are necessary to investigate a possible synergic effect of several matrices as well as the impact of industrial processes for a large-scale approach.

Keywords: antioxidants, DPPH assay, natural matrices, vegetal proteins

Procedia PDF Downloads 392
277 The Catalytic Properties of PtSn/Al2O3 for Acetic Acid Hydrogenation

Authors: Mingchuan Zhou, Haitao Zhang, Hongfang Ma, Weiyong Ying

Abstract:

Alumina supported platinum and tin catalysts with different loadings of Pt and Sn were prepared and characterized by low temperature N2 adsorption/desorption, H2-temperature programed reduction and CO pulse chemisorption. Pt and Sn below 1% loading were suitable for acetic acid hydrogenation. The best performance over 0.75Pt1Sn/Al2O3 can reach 87.55% conversion of acetic acid and 47.39% selectivity of ethanol. The operating conditions of acetic acid hydrogenation over 1Pt1Sn/Al2O3 were investigated. High reaction temperature can enhance the conversion of acetic acid, but it decreased total selectivity of ethanol and acetyl acetate. High pressure and low weight hourly space velocity were beneficial to both conversion of acetic acid and selectivity to ethanol.

Keywords: acetic acid, hydrogenation, operating condition, PtSn

Procedia PDF Downloads 324
276 Experimental Verification of the Relationship between Physiological Indexes and the Presence or Absence of an Operation during E-learning

Authors: Masaki Omata, Shumma Hosokawa

Abstract:

An experiment to verify the relationships between physiological indexes of an e-learner and the presence or absence of an operation during e-learning is described. Electroencephalogram (EEG), hemoencephalography (HEG), skin conductance (SC), and blood volume pulse (BVP) values were measured while participants performed experimental learning tasks. The results show that there are significant differences between the SC values when reading with clicking on learning materials and the SC values when reading without clicking, and between the HEG ratio when reading (with and without clicking) and the HEG ratio when resting for four of five participants. We conclude that the SC signals can be used to estimate whether or not a learner is performing an active task and that the HEG ratios can be used to estimate whether a learner is learning.

Keywords: e-learning, physiological index, physiological signal, state of learning

Procedia PDF Downloads 355
275 Interaction of Tungsten Tips with Laguerre-Gaussian Beams

Authors: Abhisek Sinha, Debobrata Rajak, Shilpa Rani, Ram Gopal, Vandana Sharma

Abstract:

The interaction of femtosecond laser pulses with metallic tips has been studied extensively, and they have proved to be a very good source of ultrashort electron pulses. A study of the interaction of femtosecond Laguerre-Gaussian (LG) laser modes with Tungsten tips is presented here. Laser pulses of 35 fs pulse durations were incident on Tungsten tips, and their electron emission rates were studied for LG (l=1, p=0) and Gaussian modes. A change in the order of the interaction for LG beams is reported, and the difference in the order of interaction is attributed to ponderomotive shifts in the energy levels corresponding to the enhanced near-field intensity supported by numerical simulations.

Keywords: femtosecond, Laguerre-Gaussian, OAM, tip

Procedia PDF Downloads 222
274 Three-Dimensional Generalized Thermoelasticity with Variable Thermal Conductivity

Authors: Hamdy M. Youssef, Mowffaq Oreijah, Hunaydi S. Alsharif

Abstract:

In this paper, a three-dimensional model of the generalized thermoelasticity with one relaxation time and variable thermal conductivity has been constructed. The resulting non-dimensional governing equations together with the Laplace and double Fourier transforms techniques have been applied to a three-dimensional half-space subjected to thermal loading with rectangular pulse and traction free in the directions of the principle co-ordinates. The inverses of double Fourier transforms, and Laplace transforms have been obtained numerically. Numerical results for the temperature increment, the invariant stress, the invariant strain, and the displacement are represented graphically. The variability of the thermal conductivity has significant effects on the thermal and the mechanical waves.

Keywords: thermoelasticity, thermal conductivity, Laplace transforms, Fourier transforms

Procedia PDF Downloads 197
273 The Principle Probabilities of Space-Distance Resolution for a Monostatic Radar and Realization in Cylindrical Array

Authors: Anatoly D. Pluzhnikov, Elena N. Pribludova, Alexander G. Ryndyk

Abstract:

In conjunction with the problem of the target selection on a clutter background, the analysis of the scanning rate influence on the spatial-temporal signal structure, the generalized multivariate correlation function and the quality of the resolution with the increase pulse repetition frequency is made. The possibility of the object space-distance resolution, which is conditioned by the range-to-angle conversion with an increased scanning rate, is substantiated. The calculations for the real cylindrical array at high scanning rate are presented. The high scanning rate let to get the signal to noise improvement of the order of 10 dB for the space-time signal processing.

Keywords: antenna pattern, array, signal processing, spatial resolution

Procedia PDF Downloads 154
272 Investigation of the Effects of Sampling Frequency on the THD of 3-Phase Inverters Using Space Vector Modulation

Authors: Khattab Al Qaisi, Nicholas Bowring

Abstract:

This paper presents the simulation results of the effects of sampling frequency on the total harmonic distortion (THD) of three-phase inverters using the space vector pulse width modulation (SVPWM) and space vector control (SVC) algorithms. The relationship between the variables was studied using curve fitting techniques, and it has been shown that, for 50 Hz inverters, there is an exponential relation between the sampling frequency and THD up to around 8500 Hz, beyond which the performance of the model becomes irregular, and there is an negative exponential relation between the sampling frequency and the marginal improvement to the THD. It has also been found that the performance of SVPWM is better than that of SVC with the same sampling frequency in most frequency range, including the range where the performance of the former is irregular.

Keywords: DSI, SVPWM, THD, DC-AC converter, sampling frequency, performance

Procedia PDF Downloads 451
271 Ultrasonic Measurement of Elastic Properties of Fiber Reinforced Composite Materials

Authors: Hatice Guzel, Imran Oral, Huseyin Isler

Abstract:

In this study, elastic constants, Young’s modulus, Poisson’s ratios, and shear moduli of orthotropic composite materials, consisting of E-glass/epoxy and carbon/epoxy, were calculated by ultrasonic velocities which were measured using ultrasonic pulse-echo method. 35 MHz computer controlled analyzer, 60 MHz digital oscilloscope, 5 MHz longitudinal probe, and 2,25 MHz transverse probe were used for the measurements of ultrasound velocities, the measurements were performed at ambient temperature. It was understood from the data obtained in this study that, measured ultrasound velocities and the calculated elasticity coefficients were depending on the fiber orientations.

Keywords: composite materials, elastic constants, orthotropic materials, ultrasound

Procedia PDF Downloads 261
270 Cooperative Communication of Energy Harvesting Synchronized-OOK IR-UWB Based Tags

Authors: M. A. Mulatu, L. C. Chang, Y. S. Han

Abstract:

Energy harvesting tags with cooperative communication capabilities are emerging as possible infrastructure for internet of things (IoT) applications. This paper studies about the \ cooperative transmission strategy for a network of energy harvesting active networked tags (EnHANTs), that is adapted to the available energy resource and identification request. We consider a network of EnHANT-equipped objects to communicate with the destination either directly or by cooperating with neighboring objects. We formulate the the problem as a Markov decision process (MDP) under synchronised On/Off keying (S-OOK) pulse modulation format. The simulation results are provided to show the the performance of the cooperative transmission policy and compared against the greedy and conservative policies of single-link transmission.

Keywords: cooperative communication, transmission strategy, energy harvesting, Markov decision process, value iteration

Procedia PDF Downloads 464
269 AC Voltage Regulators Using Single Phase Matrix Converter

Authors: Nagaraju Jarugu, B. R. Narendra

Abstract:

This paper focused on boost rectification by Single Phase Matrix Converter with fewer numbers of switches. The conventional matrix converter consists of 4 bidirectional switches, i.e. 8 set of IGBT/MOSFET with anti-parallel diodes. In this proposed matrix converter, only six switches are used. The switch commutation arrangements are also carried out in this work. The SPMC topology has many advantages as a minimal passive device use. It is very flexible and it can be used as a lot of converters. The gate pulses to the switches are provided by the PWM techniques. The duty ratio of the switches based on Pulse Width Modulation (PWM) technique was used to produce the output waveform of the circuit, simply by turning ON and OFF the switches. The simulation results using MATLAB/Simulink were provided to validate the feasibility of this proposed method.

Keywords: single phase matrix converter, reduced switches, AC voltage regulators, boost rectifier operation

Procedia PDF Downloads 1158
268 A Double PWM Source Inverter Technique with Reduced Leakage Current for Application on Standalone Systems

Authors: Md.Noman Habib Khan, M. S. Tajul Islam, T. S. Gunawan, M. Hasanuzzaman

Abstract:

The photovoltaic (PV) panel with no galvanic isolation system is well-known technique in the world which is effective and deliver power with enhanced efficiency. The PV generation presented here is for stand-alone system installed in remote areas when as the resulting power gets connected to electronic load installation instead of being tied to the grid. Though very small, even then transformer-less topology is shown to be with leakage in pico-ampere range. By using PWM technique PWM, leakage current in different situations is shown. The results that are demonstrated in this paper show how the pico-ampere current is reduced to femto-ampere through use of inductors and capacitors of suitable values of inductor and capacitors with the load.

Keywords: photovoltaic (PV) panel, duty cycle, pulse duration modulation (PDM), leakage current

Procedia PDF Downloads 510
267 Propagation of W Shaped of Solitons in Fiber Bragg Gratings

Authors: Mezghiche Kamel

Abstract:

We present solitary wave solutions for the perturbed nonlinear Schrodinger (PNLS) equation describing propagation of femtosecond light pulses through the fiber Bragg grating structure where the pulse dynamics is governed by the nonlinear-coupled mode (NLCM) equations. Using the multiple scale analysis, we reduce the NLCM equations into the perturbed nonlinear Schrodinger (PNLS) type equation. Unlike the reported solitary wave solutions of the PNLS equation, the novel ones can describe W shaped of solitons and their properties.

Keywords: fiber bragg grating, nonlinear-coupled mode equations, w shaped of solitons, PNLS

Procedia PDF Downloads 741
266 Fault Diagnosis in Induction Motor

Authors: Kirti Gosavi, Anita Bhole

Abstract:

The paper demonstrates simulation and steady-state performance of three phase squirrel cage induction motor and detection of rotor broken bar fault using MATLAB. This simulation model is successfully used in the fault detection of rotor broken bar for the induction machines. A dynamic model using PWM inverter and mathematical modelling of the motor is developed. The dynamic simulation of the small power induction motor is one of the key steps in the validation of the design process of the motor drive system and it is needed for eliminating advertent design errors and the resulting error in the prototype construction and testing. The simulation model will be helpful in detecting the faults in three phase induction motor using Motor current signature analysis.

Keywords: squirrel cage induction motor, pulse width modulation (PWM), fault diagnosis, induction motor

Procedia PDF Downloads 600
265 Video Heart Rate Measurement for the Detection of Trauma-Related Stress States

Authors: Jarek Krajewski, David Daxberger, Luzi Beyer

Abstract:

Finding objective and non-intrusive measurements of emotional and psychopathological states (e.g., post-traumatic stress disorder, PTSD) is an important challenge. Thus, the proposed approach here uses Photoplethysmographic imaging (PPGI) applying facial RGB Cam videos to estimate heart rate levels. A pipeline for the signal processing of the raw image has been proposed containing different preprocessing approaches, e.g., Independent Component Analysis, Non-negative Matrix factorization, and various other artefact correction approaches. Under resting and constant light conditions, we reached a sensitivity of 84% for pulse peak detection. The results indicate that PPGI can be a suitable solution for providing heart rate data derived from these indirectly post-traumatic stress states.

Keywords: heart rate, PTSD, PPGI, stress, preprocessing

Procedia PDF Downloads 101
264 Using Waste Marbles in Self Compacting Lightweight Concrete

Authors: Z. Funda Türkmenoğlu, Mehmet Türkmenoglu, Demet Yavuz,

Abstract:

In this study, the effects of waste marbles as aggregate material on workability and hardened concrete characteristics of self compacting lightweight concrete are investigated. For this purpose, self compacting light weight concrete are produced by waste marble aggregates are replaced with fine aggregate at 5%, 7.5%, and 10% ratios. Fresh concrete properties, slump flow, T50 time, V funnel, compressive strength and ultrasonic pulse velocity of self compacting lightweight concrete are determined. It is concluded from the test results that using waste marbles as aggregate material by replacement with fine aggregate slightly affects fresh and hardened concrete characteristics of self compacting lightweight concretes.

Keywords: hardened concrete characteristics, self compacting lightweight concrete, waste marble, workability

Procedia PDF Downloads 310
263 Study of Temperature Difference and Current Distribution in Parallel-Connected Cells at Low Temperature

Authors: Sara Kamalisiahroudi, Jun Huang, Zhe Li, Jianbo Zhang

Abstract:

Two types of commercial cylindrical lithium ion batteries (Panasonic 3.4 Ah NCR-18650B and Samsung 2.9 Ah INR-18650), were investigated experimentally. The capacities of these samples were individually measured using constant current-constant voltage (CC-CV) method at different ambient temperatures (-10 ℃, 0 ℃, 25 ℃). Their internal resistance was determined by electrochemical impedance spectroscopy (EIS) and pulse discharge methods. The cells with different configurations of parallel connection NCR-NCR, INR-INR and NCR-INR were charged/discharged at the aforementioned ambient temperatures. The results showed that the difference of internal resistance between cells much more evident at low temperatures. Furthermore, the parallel connection of NCR-NCR exhibits the most uniform temperature distribution in cells at -10 ℃, this feature is quite favorable for the safety of the battery pack.

Keywords: batteries in parallel connection, internal resistance, low temperature, temperature difference, current distribution

Procedia PDF Downloads 447
262 Elimination of Low Order Harmonics in Multilevel Inverter Using Nature-Inspired Metaheuristic Algorithm

Authors: N. Ould Cherchali, A. Tlemçani, M. S. Boucherit, A. Morsli

Abstract:

Nature-inspired metaheuristic algorithms, particularly those founded on swarm intelligence, have attracted much attention over the past decade. Firefly algorithm has appeared in approximately seven years ago, its literature has enlarged considerably with different applications. It is inspired by the behavior of fireflies. The aim of this paper is the application of firefly algorithm for solving a nonlinear algebraic system. This resolution is needed to study the Selective Harmonic Eliminated Pulse Width Modulation strategy (SHEPWM) to eliminate the low order harmonics; results have been applied on multilevel inverters. The final results from simulations indicate the elimination of the low order harmonics as desired. Finally, experimental results are presented to confirm the simulation results and validate the efficaciousness of the proposed approach.

Keywords: firefly algorithm, metaheuristic algorithm, multilevel inverter, SHEPWM

Procedia PDF Downloads 120
261 Required SNR for PPM in Downlink Gamma-Gamma Turbulence Channel

Authors: Selami Şahin

Abstract:

In this paper, in order to achieve sufficient bit error rate (BER) according to zenith angle of the satellite to ground station, SNR requirement is investigated utilizing pulse position modulation (PPM). To realize explicit results, all parameters such as link distance, Rytov variance, scintillation index, wavelength, aperture diameter of the receiver, Fried's parameter and zenith angle have been taken into account. Results indicate that after some parameters are determined since the constraints of the system, to achieve desired BER, required SNR values are in wide range while zenith angle changes from small to large values. Therefore, in order not to utilize high link margin, either SNR should adjust according to zenith angle or link should establish with predetermined intervals of the zenith angle.

Keywords: Free-space optical communication, optical downlink channel, atmospheric turbulence, wireless optical communication

Procedia PDF Downloads 370
260 Analysis of Evolution of Higher Order Solitons by Numerical Simulation

Authors: K. Khadidja

Abstract:

Solitons are stable solution of nonlinear Schrodinger equation. Their stability is due to the exact combination between nonlinearity and dispersion which causes pulse broadening. Higher order solitons are born when nonlinear length is N multiple of dispersive length. Soliton order is determined by the number N itself. In this paper, evolution of higher order solitons is illustrated by simulation using Matlab. Results show that higher order solitons change their shape periodically, the reason why they are bad for transmission comparing to fundamental solitons which are constant. Partial analysis of a soliton of higher order explains that the periodic shape is due to the interplay between nonlinearity and dispersion which are not equal during a period. This class of solitons has many applications such as generation of supercontinuum and the impulse compression on the Femtosecond scale. As a conclusion, the periodicity which is harmful to transmission can be beneficial in other applications.

Keywords: dispersion, nonlinearity, optical fiber, soliton

Procedia PDF Downloads 141
259 Photoplethysmography-Based Device Designing for Cardiovascular System Diagnostics

Authors: S. Botman, D. Borchevkin, V. Petrov, E. Bogdanov, M. Patrushev, N. Shusharina

Abstract:

In this paper, we report the development of the device for diagnostics of cardiovascular system state and associated automated workstation for large-scale medical measurement data collection and analysis. It was shown that optimal design for the monitoring device is wristband as it represents engineering trade-off between accuracy and usability. The monitoring device is based on the infrared reflective photoplethysmographic sensor, which allows collecting multiple physiological parameters, such as heart rate and pulsing wave characteristics. Developed device use BLE interface for medical and supplementary data transmission to the coupled mobile phone, which process it and send it to the doctor's automated workstation. Results of this experimental model approbation confirmed the applicability of the proposed approach.

Keywords: cardiovascular diseases, health monitoring systems, photoplethysmography, pulse wave, remote diagnostics

Procedia PDF Downloads 473
258 Embedded Electrochemistry with Miniaturized, Drone-Based, Potentiostat System for Remote Detection Chemical Warfare Agents

Authors: Amer Dawoud, Jesy Motchaalangaram, Arati Biswakarma, Wujan Mio, Karl Wallace

Abstract:

The development of an embedded miniaturized drone-based system for remote detection of Chemical Warfare Agents (CWA) is proposed. The paper focuses on the software/hardware system design of the electrochemical Cyclic Voltammetry (CV) and Differential Pulse Voltammetry (DPV) signal processing for future deployment on drones. The paper summarizes the progress made towards hardware and electrochemical signal processing for signature detection of CWA. Also, the miniature potentiostat signal is validated by comparing it with the high-end lab potentiostat signal.

Keywords: drone-based, remote detection chemical warfare agents, miniaturized, potentiostat

Procedia PDF Downloads 104
257 Eye Diagram for a System of Highly Mode Coupled PMD/PDL Fiber

Authors: Suad M. Abuzariba, Liang Chen, Saeed Hadjifaradji

Abstract:

To evaluate the optical eye diagram due to polarization-mode dispersion (PMD), polarization-dependent loss (PDL), and chromatic dispersion (CD) for a system of highly mode coupled fiber with lumped section at any given optical pulse sequence we present an analytical modle. We found that with considering PDL and the polarization direction correlation between PMD and PDL, a system with highly mode coupled fiber with lumped section can have either higher or lower Q-factor than a highly mode coupled system with same root mean square PDL/PMD values. Also we noticed that a system of two highly mode coupled fibers connected together is not equivalent to a system of highly mode coupled fiber when fluctuation is considered

Keywords: polarization mode dispersion, polarization dependent loss, chromatic dispersion, optical eye diagram

Procedia PDF Downloads 834
256 Effect of Pre-Plasma Potential on Laser Ion Acceleration

Authors: Djemai Bara, Mohamed Faouzi Mahboub, Djamila Bennaceur-Doumaz

Abstract:

In this work, the role of the preformed plasma created on the front face of a target, irradiated by a high intensity short pulse laser, in the framework of ion acceleration process, modeled by Target Normal Sheath Acceleration (TNSA) mechanism, is studied. This plasma is composed of cold ions governed by fluid equations and non-thermal & trapped with densities represented by a "Cairns-Gurevich" equation. The self-similar solution of the equations shows that electronic trapping and the presence of non-thermal electrons in the pre-plasma are both responsible in ion acceleration as long as the proportion of energetic electrons is not too high. In the case where the majority of electrons are energetic, the electrons are accelerated directly by the ponderomotive force of the laser without the intermediate of an accelerating plasma wave.

Keywords: Cairns-Gurevich Equation, ion acceleration, plasma expansion, pre-plasma

Procedia PDF Downloads 100
255 High Efficiency ZPS-PWM Dual-Output Converters with EMI Reduction Method

Authors: Yasunori Kobori, Nobukazu Tsukiji, Nobukazu Takai, Haruo Kobayashi

Abstract:

In this paper, we study a Pulse-WidthModulation (PWM) controlled Zero-Voltage-Switching (ZVS) for single-inductor dual-output (SIDO) converters. This method can meet the industry demands for high efficiency due to ZVS and small size and low cost, thanks to single-inductor per multiple voltages. We show the single inductor single-output (SISO) ZVS buck converter with its operation and simulation and then the experimental results. Next proposed ZVS-PWM controlled SIDO converters are explained in the simulation. Finally we have proposed EMI reduction method with spread spectrum.

Keywords: DC-DC switching converter, zero-oltage switching control, single-inductor dual-output converter, EMI reduction, spread spectrum

Procedia PDF Downloads 469
254 Spectral Broadening in an InGaAsP Optical Waveguide with χ(3) Nonlinearity Including Two Photon Absorption

Authors: Keigo Matsuura, Isao Tomita

Abstract:

We have studied a method to widen the spectrum of optical pulses that pass through an InGaAsP waveguide for application to broadband optical communication. In particular, we have investigated the competitive effect between spectral broadening arising from nonlinear refraction (optical Kerr effect) and shrinking due to two photon absorption in the InGaAsP waveguide with chi^(3) nonlinearity. The shrunk spectrum recovers broadening by the enhancement effect of the nonlinear refractive index near the bandgap of InGaAsP with a bandgap wavelength of 1490 nm. The broadened spectral width at around 1525 nm (196.7 THz) becomes 10.7 times wider than that at around 1560 nm (192.3 THz) without the enhancement effect, where amplified optical pulses with a pulse width of 2 ps and a peak power of 10 W propagate through a 1-cm-long InGaAsP waveguide with a cross-section of 4 um^2.

Keywords: InGaAsP waveguide, Chi^(3) nonlinearity, spectral broadening, photon absorption

Procedia PDF Downloads 615
253 An Absolute Femtosecond Rangefinder for Metrological Support in Coordinate Measurements

Authors: Denis A. Sokolov, Andrey V. Mazurkevich

Abstract:

In the modern world, there is an increasing demand for highly precise measurements in various fields, such as aircraft, shipbuilding, and rocket engineering. This has resulted in the development of appropriate measuring instruments that are capable of measuring the coordinates of objects within a range of up to 100 meters, with an accuracy of up to one micron. The calibration process for such optoelectronic measuring devices (trackers and total stations) involves comparing the measurement results from these devices to a reference measurement based on a linear or spatial basis. The reference used in such measurements could be a reference base or a reference range finder with the capability to measure angle increments (EDM). The base would serve as a set of reference points for this purpose. The concept of the EDM for replicating the unit of measurement has been implemented on a mobile platform, which allows for angular changes in the direction of laser radiation in two planes. To determine the distance to an object, a high-precision interferometer with its own design is employed. The laser radiation travels to the corner reflectors, which form a spatial reference with precisely known positions. When the femtosecond pulses from the reference arm and the measuring arm coincide, an interference signal is created, repeating at the frequency of the laser pulses. The distance between reference points determined by interference signals is calculated in accordance with recommendations from the International Bureau of Weights and Measures for the indirect measurement of time of light passage according to the definition of a meter. This distance is D/2 = c/2nF, approximately 2.5 meters, where c is the speed of light in a vacuum, n is the refractive index of a medium, and F is the frequency of femtosecond pulse repetition. The achieved uncertainty of type A measurement of the distance to reflectors 64 m (N•D/2, where N is an integer) away and spaced apart relative to each other at a distance of 1 m does not exceed 5 microns. The angular uncertainty is calculated theoretically since standard high-precision ring encoders will be used and are not a focus of research in this study. The Type B uncertainty components are not taken into account either, as the components that contribute most do not depend on the selected coordinate measuring method. This technology is being explored in the context of laboratory applications under controlled environmental conditions, where it is possible to achieve an advantage in terms of accuracy. In general, the EDM tests showed high accuracy, and theoretical calculations and experimental studies on an EDM prototype have shown that the uncertainty type A of distance measurements to reflectors can be less than 1 micrometer. The results of this research will be utilized to develop a highly accurate mobile absolute range finder designed for the calibration of high-precision laser trackers and laser rangefinders, as well as other equipment, using a 64 meter laboratory comparator as a reference.

Keywords: femtosecond laser, pulse correlation, interferometer, laser absolute range finder, coordinate measurement

Procedia PDF Downloads 22
252 The Effect of Aerobics and Yogic Exercise on Selected Physiological and Psychological Variables of Middle-Aged Women

Authors: A. Pallavi, N. Vijay Mohan

Abstract:

A nation can be economically progressive only when the citizens have sufficient capacity to work efficiently to increase the productivity. So, good health must be regarded as a primary need of the community. This helps the growth and development of the body and the mind, which in turn leads to progress and prosperity of the nation. An optimum growth is a necessity for an efficient existence in a biologically adverse and economically competitive world. It is also necessary for the execution of daily routine work. Yoga is a method or a system for the complete development of the personality in a human being. It can be further elaborated as an all-around and complete development of the body, mind, morality, intellect and soul of a being. Sri Aurobindo defines yoga as 'a methodical effort towards self-perfection by the development of the potentialities in the individual.' Aerobic exercise as any activity that uses large muscle groups, can be maintained continuously, and is rhythmic I nature. It is a type of exercise that overloads the heart and lungs and causes them to work harder than at rest. The important idea behind aerobic exercise today, is to get up and get moving. There are more activities that ever to choose from, whether it is a new activity or an old one. Find something you enjoy doing that keeps our heart rate elevated for a continuous time period and get moving to a healthier life. Middle aged selected and served as the subjects for the purpose of this study. The selected subjects were in the age group of 30 to 40 years. By going through the literature and after consulting the experts in yoga and aerobic training, the investigator had chosen the variables which are specifically related to the middle-aged men. The selected physiological variables are pulse rate, diastolic blood pressure, systolic blood pressure; percent body fat and vital capacity. The selected psychological variables are job anxiety, occupational stress. The study was formulated as a random group design consisting of aerobic exercise and yogic exercises groups. The subjects (N=60) were at random divided into three equal groups of twenty middle-aged men each. The groups were assigned the names as follows: 1. Experimental group I- aerobic exercises group, 2. Experimental group II- yogic exercises, 3. Control group. All the groups were subjected to pre-test prior to the experimental treatment. The experimental groups participated in their respective duration of twenty-four weeks, six days in a week throughout the study. The various tests administered were: prior to training (pre-test), after twelfth week (second test) and twenty-fourth weeks (post-test) of the training schedule.

Keywords: pulse rate, diastolic blood pressure, systolic blood pressure; percent body fat and vital capacity, psychological variables, job anxiety, occupational stress, aerobic exercise, yogic exercise

Procedia PDF Downloads 422
251 Simulation for the Magnetized Plasma Compression Study

Authors: Victor V. Kuzenov, Sergei V. Ryzhkov

Abstract:

Ongoing experimental and theoretical studies on magneto-inertial confinement fusion (Angara, C-2, CJS-100, General Fusion, MagLIF, MAGPIE, MC-1, YG-1, Omega) and new constructing facilities (Baikal, C-2W, Z300 and Z800) require adequate modeling and description of the physical processes occurring in high-temperature dense plasma in a strong magnetic field. This paper presents a mathematical model, numerical method, and results of the computer analysis of the compression process and the energy transfer in the target plasma, used in magneto-inertial fusion (MIF). The computer simulation of the compression process of the magnetized target by the high-power laser pulse and the high-speed plasma jets is presented. The characteristic patterns of the two methods of the target compression are being analysed.

Keywords: magnetized target, magneto-inertial fusion, mathematical model, plasma and laser beams

Procedia PDF Downloads 266
250 On Stochastic Models for Fine-Scale Rainfall Based on Doubly Stochastic Poisson Processes

Authors: Nadarajah I. Ramesh

Abstract:

Much of the research on stochastic point process models for rainfall has focused on Poisson cluster models constructed from either the Neyman-Scott or Bartlett-Lewis processes. The doubly stochastic Poisson process provides a rich class of point process models, especially for fine-scale rainfall modelling. This paper provides an account of recent development on this topic and presents the results based on some of the fine-scale rainfall models constructed from this class of stochastic point processes. Amongst the literature on stochastic models for rainfall, greater emphasis has been placed on modelling rainfall data recorded at hourly or daily aggregation levels. Stochastic models for sub-hourly rainfall are equally important, as there is a need to reproduce rainfall time series at fine temporal resolutions in some hydrological applications. For example, the study of climate change impacts on hydrology and water management initiatives requires the availability of data at fine temporal resolutions. One approach to generating such rainfall data relies on the combination of an hourly stochastic rainfall simulator, together with a disaggregator making use of downscaling techniques. Recent work on this topic adopted a different approach by developing specialist stochastic point process models for fine-scale rainfall aimed at generating synthetic precipitation time series directly from the proposed stochastic model. One strand of this approach focused on developing a class of doubly stochastic Poisson process (DSPP) models for fine-scale rainfall to analyse data collected in the form of rainfall bucket tip time series. In this context, the arrival pattern of rain gauge bucket tip times N(t) is viewed as a DSPP whose rate of occurrence varies according to an unobserved finite state irreducible Markov process X(t). Since the likelihood function of this process can be obtained, by conditioning on the underlying Markov process X(t), the models were fitted with maximum likelihood methods. The proposed models were applied directly to the raw data collected by tipping-bucket rain gauges, thus avoiding the need to convert tip-times to rainfall depths prior to fitting the models. One advantage of this approach was that the use of maximum likelihood methods enables a more straightforward estimation of parameter uncertainty and comparison of sub-models of interest. Another strand of this approach employed the DSPP model for the arrivals of rain cells and attached a pulse or a cluster of pulses to each rain cell. Different mechanisms for the pattern of the pulse process were used to construct variants of this model. We present the results of these models when they were fitted to hourly and sub-hourly rainfall data. The results of our analysis suggest that the proposed class of stochastic models is capable of reproducing the fine-scale structure of the rainfall process, and hence provides a useful tool in hydrological modelling.

Keywords: fine-scale rainfall, maximum likelihood, point process, stochastic model

Procedia PDF Downloads 252
249 Mapping Tunnelling Parameters for Global Optimization in Big Data via Dye Laser Simulation

Authors: Sahil Imtiyaz

Abstract:

One of the biggest challenges has emerged from the ever-expanding, dynamic, and instantaneously changing space-Big Data; and to find a data point and inherit wisdom to this space is a hard task. In this paper, we reduce the space of big data in Hamiltonian formalism that is in concordance with Ising Model. For this formulation, we simulate the system using dye laser in FORTRAN and analyse the dynamics of the data point in energy well of rhodium atom. After mapping the photon intensity and pulse width with energy and potential we concluded that as we increase the energy there is also increase in probability of tunnelling up to some point and then it starts decreasing and then shows a randomizing behaviour. It is due to decoherence with the environment and hence there is a loss of ‘quantumness’. This interprets the efficiency parameter and the extent of quantum evolution. The results are strongly encouraging in favour of the use of ‘Topological Property’ as a source of information instead of the qubit.

Keywords: big data, optimization, quantum evolution, hamiltonian, dye laser, fermionic computations

Procedia PDF Downloads 172