Search results for: plastic injection molding
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1923

Search results for: plastic injection molding

1893 Experimental Study on Hardness and Impact Strength of Polyethylene/Carbon Composites

Authors: Armin Najipour, A. M. Fattahi

Abstract:

The aim of this research was to investigate the effect of the addition of multi walled carbon nanotubes on the mechanical properties of polyethylene/carbon nanotube nanocomposites. To do so, polyethylene and carbon nanotube were mixed in different weight percentages containing 0, 0.5, 1, and 1.5% carbon nanotube in two screw extruder apparatus by fusion. Then the nanocomposite samples were molded in injection apparatus according to ASTM: D6110 standard. The effects of carbon nanotube addition in 4 different levels and injection pressure in 2 levels on the hardness and impact strength of the nanocomposite samples were investigated. The results showed that the addition of carbon nanotube had a significant effect on improving hardness and impact strength of the nanocomposite samples such that by adding 1% w/w carbon nanotube, the impact strength and hardness of the samples improved to 74% and 46.7% respectively. Also, according to the results, the effect of injection pressure on the results was much less than that of carbon nanotube weight percentage.

Keywords: carbon nanotube, injection molding, mechanical properties, nanocomposite, polyethylene

Procedia PDF Downloads 285
1892 Study of Effective Parameters on Mechanical Properties of Toughened PP Compounds in Presence of Biofillers and Blowing Agents

Authors: Koosha Rezaei, Mehdi Moghri bidgoli, Mazyar Khakpour

Abstract:

Wood-plastic composites foam is one of the most used products were the industry today. In this study, composite foam polypropylene in the presence of different biofilers such as Spruce wood, wheat and rice husk as well as 3 different types toughening agents such as polyolefin elastomer, styrene butadiene styrene and styrene-ethylene butadiene styrene, and two types of cause blowing agents azodicarbonamide and sodium bicarbonate was prepared. For improving dispersion of biofilers, in the mixing process we used polypropylene coupling agent grafted with maleic anhydride. Due to the large number of variables, the statistical analysis of response surface to analyze the results of the impact test, tensile modulus and tensile strength and modeling were used. Co-rotating twine extruder was made composite melt mixing method and then to perform mechanical tests using injection molding, respectively.Images from electron microscopy showed cell sandwich structure in composite amply demonstrates.

Keywords: polypropylene, wood plastic composite foam, response surface analysis, morphology, mechanical properties

Procedia PDF Downloads 339
1891 Ultrasonic Micro Injection Molding: Manufacturing of Micro Plates of Biomaterials

Authors: Ariadna Manresa, Ines Ferrer

Abstract:

Introduction: Ultrasonic moulding process (USM) is a recent injection technology used to manufacture micro components. It is able to melt small amounts of material so the waste of material is certainly reduced comparing to microinjection molding. This is an important advantage when the materials are expensive like medical biopolymers. Micro-scaled components are involved in a variety of uses, such as biomedical applications. It is required replication fidelity so it is important to stabilize the process and minimize the variability of the responses. The aim of this research is to investigate the influence of the main process parameters on the filling behaviour, the dimensional accuracy and the cavity pressure when a micro-plate is manufactured by biomaterials such as PLA and PCL. Methodology or Experimental Procedure: The specimens are manufactured using a Sonorus 1G Ultrasound Micro Molding Machine. The used geometry is a rectangular micro-plate of 15x5mm and 1mm of thickness. The materials used for the investigation are PLA and PCL due to biocompatible and degradation properties. The experimentation is divided into two phases. Firstly, the influence of process parameters (vibration amplitude, sonotrodo velocity, ultrasound time and compaction force) on filling behavior is analysed, in Phase 1. Next, when filling cavity is assured, the influence of both cooling time and force compaction on the cavity pressure, part temperature and dimensional accuracy is instigated, which is done in Phase. Results and Discussion: Filling behavior depends on sonotrodo velocity and vibration amplitude. When the ultrasonic time is higher, more ultrasonic energy is applied and the polymer temperature increases. Depending on the cooling time, it is possible that when mold is opened, the micro-plate temperature is too warm. Consequently, the polymer relieve its stored internal energy (ultrasonic and thermal) expanding through the easier direction. This fact is reflected on dimensional accuracy, causing micro-plates thicker than the mold. It has also been observed the most important fact that affects cavity pressure is the compaction configuration during the manufacturing cycle. Conclusions: This research demonstrated the influence of process parameters on the final micro-plated manufactured. Future works will be focused in manufacturing other geometries and analysing the mechanical properties of the specimens.

Keywords: biomaterial, biopolymer, micro injection molding, ultrasound

Procedia PDF Downloads 258
1890 Fabrication Methodologies for Anti-Microbial Polypropylene Surfaces with Leachable and Non-leachable Anti-Microbial Agents

Authors: Saleh Alkarri, Dimple Sharma, Teresa M. Bergholz, Muhammad Rabnawaz

Abstract:

Aims: Develop a methodology for the fabrication of anti-microbial polypropylene (PP) surfaces with (i) leachable copper, (II) chloride dihydrate (CuCl₂·₂H₂O) and (ii) non-leachable magnesium hydroxide (Mg(OH)₂) biocides. Methods and Results: Two methodologies are used to develop anti-microbial PP surfaces. One method involves melt-blending and subsequent injection molding, where the biocide additives were compounded with PP and subsequently injection-molded. The other method involves the thermal embossing of anti-microbial agents on the surface of a PP substrate. The obtained biocide-bearing PP surfaces were evaluated against E. coli K-12 MG1655 for 0, 4, and 24 h to evaluate their anti-microbial properties. The injection-molded PP bearing 5% CuCl2·₂H₂O showed a 6-log reduction of E. coli K-12 MG1655 after 24 h, while only 1 log reduction was observed for PP bearing 5% Mg(OH)2. The thermally embossed PP surfaces bearing CuCl2·2H2O and Mg(OH)₂ particles (at a concentration of 10 mg/mL) showed 3 log and 4 log reduction, respectively, against E.coli K-12 MG1655 after 24 h. Conclusion: The results clearly demonstrate that CuCl₂·2H₂O conferred anti-microbial properties to PP surfaces that were prepared by both injection molding as well as thermal embossing approaches owing to the presence of leachable copper ions. In contrast, the non-leachable Mg(OH)₂ imparted anti-microbial properties only to the surface prepared via the thermal embossing technique. Significance and Impact of The Study: Plastics with leachable biocides are effective anti-microbial surfaces, but their toxicity is a major concern. This study provides a fabrication methodology for non-leachable PP-based anti-microbial surfaces that are potentially safer. In addition, this strategy can be extended to many other plastics substrates.

Keywords: anti-microbial activity, E. coli K-12 MG1655, copper (II) chloride dihydrate, magnesium hydroxide, leachable, non-leachable, compounding, thermal embossing

Procedia PDF Downloads 52
1889 Fabrication Methodologies for Anti-microbial Polypropylene Surfaces with Leachable and Non-leachable Anti-microbial Agents

Authors: Saleh Alkarri, Dimple Sharma, Teresa M. Bergholz, Muhammad Rabnawa

Abstract:

Aims: Develop a methodology for the fabrication of anti-microbial polypropylene (PP) surfaces with (i) leachable copper (II) chloride dihydrate (CuCl2·2H2O) and (ii) non-leachable magnesium hydroxide (Mg(OH)2) biocides. Methods and Results: Two methodologies are used to develop anti-microbial PP surfaces. One method involves melt-blending and subsequent injection molding, where the biocide additives were compounded with PP and subsequently injection-molded. The other method involves the thermal embossing of anti-microbial agents on the surface of a PP substrate. The obtained biocide-bearing PP surfaces were evaluated against E. coli K-12 MG1655 for 0, 4, and 24 h to evaluate their anti-microbial properties. The injection-molded PP bearing 5% CuCl2·2H2O showed a 6-log reduction of E. coli K-12 MG1655 after 24 h, while only 1 log reduction was observed for PP bearing 5% Mg(OH)2. The thermally embossed PP surfaces bearing CuCl2·2H2O and Mg(OH)2 particles (at a concentration of 10 mg/mL) showed 3 log and 4 log reduction, respectively, against E.coli K-12 MG1655 after 24 h. Conclusion: The results clearly demonstrate that CuCl2·2H2O conferred anti-microbial properties to PP surfaces that were prepared by both injection molding as well as thermal embossing approaches owing to the presence of leachable copper ions. In contrast, the non-leachable Mg(OH)2 imparted anti-microbial properties only to the surface prepared via the thermal embossing technique. Significance and Impact of The Study: Plastics with leachable biocides are effective anti-microbial surfaces, but their toxicity is a major concern. This study provides a fabrication methodology for non-leachable PP-based anti-microbial surfaces that are potentially safer. In addition, this strategy can be extended to many other plastics substrates.

Keywords: anti-microbial activity, E. coli K-12 MG1655, copper (II) chloride dihydrate, magnesium hydroxide, leachable, non-leachable, compounding, thermal embossing

Procedia PDF Downloads 52
1888 A Rapid and Cost-Effective Approach to Manufacturing Modeling Platform for Fused Deposition Modeling

Authors: Chil-Chyuan Kuo, Chen-Hsuan Tsai

Abstract:

This study presents a cost-effective approach for rapid fabricating modeling platforms utilized in fused deposition modeling system. A small-batch production of modeling platforms about 20 pieces can be obtained economically through silicone rubber mold using vacuum casting without applying the plastic injection molding. The air venting systems is crucial for fabricating modeling platform using vacuum casting. Modeling platforms fabricated can be used for building rapid prototyping model after sandblasting. This study offers industrial value because it has both time-effectiveness and cost-effectiveness.

Keywords: vacuum casting, fused deposition modeling, modeling platform, sandblasting, surface roughness

Procedia PDF Downloads 353
1887 Inverse Dynamics of the Mould Base of Blow Molding Machines

Authors: Vigen Arakelian

Abstract:

This paper deals with the study of devices for displacement of the mould base of blow-molding machines. The displacement of the mould in the studied case is carried out by a linear actuator, which ensures the descent of the mould base and by extension springs, which return the letter in the initial position. The aim of this paper is to study the inverse dynamics of the device for displacement of the mould base of blow-molding machines and to determine its optimum parameters for higher rate of production. In the other words, it is necessary to solve the inverse dynamic problem to find the equation of motion linking applied forces with displacements. This makes it possible to determine the stiffness coefficient of the spring to turn the mold base back to the initial position for a given time. The obtained results are illustrated by a numerical example. It is shown that applying a spring with stiffness returns the mould base of the blow molding machine into the initial position in 0.1 sec.

Keywords: design, mechanisms, dynamics, blow-molding machines

Procedia PDF Downloads 127
1886 A Criterion for Evaluating Plastic Loads: Plastic Work-Tangent Criterion

Authors: Ying Zhang

Abstract:

In ASME Boiler and Pressure Vessel Code, the plastic load is defined by applying the twice elastic slope (TES) criterion of plastic collapse to a characteristic load-deformation curve for the vessel. Several other plastic criterion such as tangent intersection (TI) criterion, plastic work (PW) criterion have been proposed in the literature, but all exhibit a practical limitation: difficult to define the load parameter for vessels subject to several combined loads. An alternative criterion: plastic work-tangent (PWT) criterion for evaluating plastic load in pressure vessel design by analysis is presented in this paper. According to the plastic work-load curve, when the tangent variation is less than a given value in the plastic phase, the corresponding load is the plastic load. Application of the proposed criterion is illustrated by considering the elastic-plastic response of the lower head of reactor pressure vessel (RPV) and nozzle intersection of (RPV). It is proposed that this is because the PWT criterion more fully represents the constraining effect of material strain hardening on the spread of plastic deformation and more efficiently ton evaluating the plastic load.

Keywords: plastic load, plastic work, strain hardening, plastic work-tangent criterion

Procedia PDF Downloads 328
1885 Part Variation Simulations: An Industrial Case Study with an Experimental Validation

Authors: Narendra Akhadkar, Silvestre Cano, Christophe Gourru

Abstract:

Injection-molded parts are widely used in power system protection products. One of the biggest challenges in an injection molding process is shrinkage and warpage of the molded parts. All these geometrical variations may have an adverse effect on the quality of the product, functionality, cost, and time-to-market. The situation becomes more challenging in the case of intricate shapes and in mass production using multi-cavity tools. To control the effects of shrinkage and warpage, it is very important to correctly find out the input parameters that could affect the product performance. With the advances in the computer-aided engineering (CAE), different tools are available to simulate the injection molding process. For our case study, we used the MoldFlow insight tool. Our aim is to predict the spread of the functional dimensions and geometrical variations on the part due to variations in the input parameters such as material viscosity, packing pressure, mold temperature, melt temperature, and injection speed. The input parameters may vary during batch production or due to variations in the machine process settings. To perform the accurate product assembly variation simulation, the first step is to perform an individual part variation simulation to render realistic tolerance ranges. In this article, we present a method to simulate part variations coming from the input parameters variation during batch production. The method is based on computer simulations and experimental validation using the full factorial design of experiments (DoE). The robustness of the simulation model is verified through input parameter wise sensitivity analysis study performed using simulations and experiments; all the results show a very good correlation in the material flow direction. There exists a non-linear interaction between material and the input process variables. It is observed that the parameters such as packing pressure, material, and mold temperature play an important role in spread on functional dimensions and geometrical variations. This method will allow us in the future to develop accurate/realistic virtual prototypes based on trusted simulated process variation and, therefore, increase the product quality and potentially decrease the time to market.

Keywords: correlation, molding process, tolerance, sensitivity analysis, variation simulation

Procedia PDF Downloads 152
1884 Algorithms of ABS-Plastic Extrusion

Authors: Dmitrii Starikov, Evgeny Rybakov, Denis Zhuravlev

Abstract:

Plastic for 3D printing is very necessary material part for printers. But plastic production is technological process, which implies application of different control algorithms. Possible algorithms of providing set diameter of plastic fiber are proposed and described in the article. Results of research were proved by existing unit of filament production.

Keywords: ABS-plastic, automation, control system, extruder, filament, PID-algorithm

Procedia PDF Downloads 377
1883 Effect of Starch and Plasticizer Types and Fiber Content on Properties of Polylactic Acid/Thermoplastic Starch Blend

Authors: Rangrong Yoksan, Amporn Sane, Nattaporn Khanoonkon, Chanakorn Yokesahachart, Narumol Noivoil, Khanh Minh Dang

Abstract:

Polylactic acid (PLA) is the most commercially available bio-based and biodegradable plastic at present. PLA has been used in plastic related industries including single-used containers, disposable and environmentally friendly packaging owing to its renewability, compostability, biodegradability, and safety. Although PLA demonstrates reasonably good optical, physical, mechanical, and barrier properties comparable to the existing petroleum-based plastics, its brittleness and mold shrinkage as well as its price are the points to be concerned for the production of rigid and semi-rigid packaging. Blending PLA with other bio-based polymers including thermoplastic starch (TPS) is an alternative not only to achieve a complete bio-based plastic, but also to reduce the brittleness, shrinkage during molding and production cost of the PLA-based products. TPS is a material produced mainly from starch which is cheap, renewable, biodegradable, compostable, and non-toxic. It is commonly prepared by a plasticization of starch under applying heat and shear force. Although glycerol has been reported as one of the most plasticizers used for preparing TPS, its migration caused the surface stickiness of the TPS products. In some cases, mixed plasticizers or natural fibers have been applied to impede the retrogradation of starch or reduce the migration of glycerol. The introduction of fibers into TPS-based materials could reinforce the polymer matrix as well. Therefore, the objective of the present research is to study the effect of starch type (i.e. native starch and phosphate starch), plasticizer type (i.e. glycerol and xylitol with a weight ratio of glycerol to xylitol of 100:0, 75:25, 50:50, 25:75, and 0:100), and fiber content (i.e. in the range of 1-25 % wt) on properties of PLA/TPS blend and composite. PLA/TPS blends and composites were prepared using a twin-screw extruder and then converted into dumbbell-shaped specimens using an injection molding machine. The PLA/TPS blends prepared by using phosphate starch showed higher tensile strength and stiffness than the blends prepared by using the native one. In contrast, the blends from native starch exhibited higher extensibility and heat distortion temperature (HDT) than those from the modified starch. Increasing xylitol content resulted in enhanced tensile strength, stiffness, and water resistance, but decreased extensibility and HDT of the PLA/TPS blend. Tensile properties and hydrophobicity of the blend could be improved by incorporating silane treated-jute fibers.

Keywords: polylactic acid, thermoplastic starch, Jute fiber, composite, blend

Procedia PDF Downloads 394
1882 Development and Characterization of Expandable TPEs Compounds for Footwear Applications

Authors: Ana Elisa Ribeiro Costa, Sónia Daniela Ferreira Miranda, João Pedro De Carvalho Pereira, João Carlos Simões Bernardo

Abstract:

Elastomeric thermoplastics (TPEs) have been widely used in the footwear industry over the years. Recently this industry has been requesting materials that can combine lightweight and high abrasion resistance. Although there are blowing agents on the market to improve the lightweight, when these are incorporated into molten polymers during the extrusion or injection molding, it is necessary to have some specific processing conditions (e.g. effect of temperature and hydrodynamic stresses) to obtain good properties and acceptable surface appearance on the final products. Therefore, it is a great advantage for the compounder industry to acquire compounds that already include the blowing agents. In this way, they can be handled and processed under the same conditions as a conventional raw material. In this work, the expandable TPEs compounds, namely a TPU and a SEBS, with the incorporation of blowing agents, have been developed through a co-rotating modular twin-screw parallel extruder. Different blowing agents such as thermo-expandable microspheres and an azodicarbonamide were selected and different screw configurations and temperature profiles were evaluated since these parameters have a particular influence on the expansion inhibition of the blowing agents. Furthermore, percentages of incorporation were varied in order to investigate their influence on the final product properties. After the extrusion of these compounds, expansion was tested by the injection process. The mechanical and physical properties were characterized by different analytical methods like tensile, flexural and abrasive tests, determination of hardness and density measurement. Also, scanning electron microscopy (SEM) was performed. It was observed that it is possible to incorporate the blowing agents on the TPEs without their expansion on the extrusion process. Only with reprocessing (injection molding) did the expansion of the agents occur. These results are corroborated by SEM micrographs, which show a good distribution of blowing agents in the polymeric matrices. The other experimental results showed a good mechanical performance and its density decrease (30% for SEBS and 35% for TPU). This study suggested that it is possible to develop optimized compounds for footwear applications (e.g., sole shoes), which only will be able to expand during the injection process.

Keywords: blowing agents, expandable thermoplastic elastomeric compounds, low density, footwear applications

Procedia PDF Downloads 164
1881 Field Scale Simulation Study of Miscible Water Alternating CO2 Injection Process in Fractured Reservoirs

Authors: Hooman Fallah

Abstract:

Vast amounts of world oil reservoirs are in natural fractured reservoirs. There are different methods for increasing recovery from fractured reservoirs. Miscible injection of water alternating CO2 is a good choice among this methods. In this method, water and CO2 slugs are injected alternatively in reservoir as miscible agent into reservoir. This paper studies water injection scenario and miscible injection of water and CO2 in a two dimensional, inhomogeneous fractured reservoir. The results show that miscible water alternating CO2¬ gas injection leads to 3.95% increase in final oil recovery and total water production decrease of 3.89% comparing to water injection scenario.

Keywords: simulation study, CO2, water alternating gas injection, fractured reservoirs

Procedia PDF Downloads 261
1880 Experimental Investigation of Bituminous Roads with Waste Plastic

Authors: Arjita Biswas, Sandeep Potnis

Abstract:

Plastic roads (bituminous roads using waste plastic in the wearing course ) have now become familiar in the Road Construction Sector in India. With the Indian Road Congress Code (IRC SP: 98 -2013), many agencies are coming forward to implement Plastic Roads in India. This paper discuss and compare about the various properties of bituminous mix with 8% waste plastic and normal bituminous mix. This paper also signifies the performance of both the types of roads after 4 months of age under loading conditions. Experiments were carried out to evaluate its performance. The result shows improved performance of plastic roads.

Keywords: bituminous roads, experiments, performance, plastic roads

Procedia PDF Downloads 181
1879 Evaluating the effects of Gas Injection on Enhanced Gas-Condensate Recovery and Reservoir Pressure Maintenance

Authors: F. S. Alavi, D. Mowla, F. Esmaeilzadeh

Abstract:

In this paper, the Eclipse 300 simulator was used to perform compositional modeling of gas injection process for enhanced condensate recovery of a real gas condensate well in south of Iran here referred to as SA4. Some experimental data were used to tune the Peng-Robinson equation of state for this case. Different scenarios of gas injection at current reservoir pressure and at abandonment reservoir pressure had been considered with different gas compositions. Methane, carbon dioxide, nitrogen and two other gases with specified compositions were considered as potential gases for injection. According to the obtained results, nitrogen leads to highest pressure maintenance in the reservoir but methane results in highest condensate recovery among the selected injection gases. At low injection rates, condensate recovery percent is strongly affected by gas injection rate but this dependency shifts to zero at high injection rates. Condensate recovery is higher in all cases of injection at current reservoir pressure than injection at abandonment pressure. Using a constant injection rate, increasing the production well bottom hole pressure results in increasing the condensate recovery percent and time of gas breakthrough.

Keywords: gas-condensate reservoir, case-study, compositional modelling, enhanced condensate recovery, gas injection

Procedia PDF Downloads 166
1878 Complex Rigid-Plastic Deformation Model of Tow Degree of Freedom Mechanical System under Impulsive Force

Authors: Abdelouaheb Rouabhi

Abstract:

In order to study the plastic resource of structures, the elastic-plastic single degree of freedom model described by Prandtl diagram is widely used. The generalization of this model to tow degree of freedom beyond the scope of a simple rigid-plastic system allows investigating the plastic resource of structures under complex disproportionate by individual components of deformation (earthquake). This macro-model greatly increases the accuracy of the calculations carried out. At the same time, the implementation of the proposed macro-model calculations easier than the detailed dynamic elastic-plastic calculations existing software systems such as ANSYS.

Keywords: elastic-plastic, single degree of freedom model, rigid-plastic system, plastic resource, complex plastic deformation, macro-model

Procedia PDF Downloads 350
1877 Multi-Scale Damage and Mechanical Behavior of Sheet Molding Compound Composites Subjected to Fatigue, Dynamic, and Post-Fatigue Dynamic Loadings

Authors: M. Shirinbayan, J. Fitoussi, N. Abbasnezhad, A. Lucas, A. Tcharkhtchi

Abstract:

Sheet Molding Compounds (SMCs) with special microstructures are very attractive to use in automobile structures especially when they are accidentally subjected to collision type accidents because of their high energy absorption capacity. These are materials designated as standard SMC, Advanced Sheet Molding Compounds (A-SMC), Low-Density SMC (LD-SMC) and etc. In this study, testing methods have been performed to compare the mechanical responses and damage phenomena of SMC, LD-SMC, and A-SMC under quasi-static and high strain rate tensile tests. The paper also aims at investigating the effect of an initial pre-damage induced by fatigue on the tensile dynamic behavior of A-SMC. In the case of SMCs and A-SMCs, whatever the fibers orientation and applied strain rate are, the first observed phenomenon of damage corresponds to decohesion of the fiber-matrix interface which is followed by coalescence and multiplication of these micro-cracks and their propagations. For LD-SMCs, damage mechanisms depend on the presence of Hollow Glass Microspheres (HGM) and fibers orientation.

Keywords: SMC, Sheet Molding Compound, LD-SMC, Low-Density SMC, A-SMC, Advanced Sheet Molding Compounds, HGM, Hollow Glass Microspheres, damage

Procedia PDF Downloads 185
1876 Laboratory Investigation of Alkali-Surfactant-Alternate Gas (ASAG) Injection – a Novel EOR Process for a Light Oil Sandstone Reservoir

Authors: Vidit Mohan, Ashwin P. Ramesh, Anirudh Toshniwal

Abstract:

Alkali-Surfactant-Alternate-Gas(ASAG) injection, a novel EOR process has the potential to improve displacement efficiency over Surfactant-Alternate-Gas(SAG) by addressing the problem of surfactant adsorption by clay minerals in rock matrix. A detailed laboratory investigation on ASAG injection process was carried out with encouraging results. To further enhance recovery over WAG injection process, SAG injection was investigated at laboratory scale. SAG injection yielded marginal incremental displacement efficiency over WAG process. On investigation, it was found that, clay minerals in rock matrix adsorbed the surfactants and were detrimental for SAG process. Hence, ASAG injection was conceptualized using alkali as a clay stabilizer. The experiment of ASAG injection with surfactant concentration of 5000 ppm and alkali concentration of 0.5 weight% yields incremental displacement efficiency of 5.42% over WAG process. The ASAG injection is a new process and has potential to enhance efficiency of WAG/SAG injection process.

Keywords: alkali surfactant alternate gas (ASAG), surfactant alternate gas (SAG), laboratory investigation, EOR process

Procedia PDF Downloads 444
1875 Visco - Plastic Transition and Transfer of Plastic Material with SGF in case of Linear Dry Friction Contact on Steel Surfaces

Authors: Lucian Capitanu, Virgil Florescu

Abstract:

Often for the laboratory studies, modeling of specific tribological processes raises special problems. One such problem is the modeling of some temperatures and extremely high contact pressures, allowing modeling of temperatures and pressures at which the injection or extrusion processing of thermoplastic materials takes place. Tribological problems occur mainly in thermoplastics materials reinforced with glass fibers. They produce an advanced wear to the barrels and screws of processing machines, in short time. Obtaining temperatures around 210 °C and higher, as well as pressures around 100 MPa is very difficult in the laboratory. This paper reports a simple and convenient solution to get these conditions, using friction sliding couples with linear contact, cylindrical liner plastic filled with glass fibers on plate steel samples, polished and super-finished. C120 steel, which is a steel for moulds and Rp3 steel, high speed steel for tools, were used. Obtaining the pressure was achieved by continuous request of the liner in rotational movement up to its elasticity limits, when the dry friction coefficient reaches or exceeds the hardness value of 0.5 HB. By dissipation of the power lost by friction on flat steel sample, are reached contact temperatures at the metal surface that reach and exceed 230 °C, being placed in the range temperature values of the injection. Contact pressures (in load and materials conditions used) ranging from 16.3-36.4 MPa were obtained depending on the plastic material used and the glass fibers content.

Keywords: plastics with glass fibers, dry friction, linear contact, contact temperature, contact pressure, experimental simulation

Procedia PDF Downloads 276
1874 Smart and Active Package Integrating Printed Electronics

Authors: Joana Pimenta, Lorena Coelho, José Silva, Vanessa Miranda, Jorge Laranjeira, Rui Soares

Abstract:

In this paper, the results of R&D on an innovative food package for increased shelf-life are presented. SAP4MA aims at the development of a printed active device that enables smart packaging solutions for food preservation, targeting the extension of the shelf-life of the packed food through the controlled release of active natural antioxidant agents at the onset of the food degradation process. To do so, SAP4MA focuses on the development of active devices such as printed heaters and batteries/supercapacitors in a label format to be integrated on packaging lids during its injection molding process, promoting the passive release of natural antioxidants after the product is packed, during transportation and in the shelves, and actively when the end-user activates the package, just prior to consuming the product at home. When the active device present on the lid is activated, the release of the natural antioxidants embedded in the inner layer of the packaging lid in direct contact with the headspace atmosphere of the food package starts. This approach is based on the use of active functional coatings composed of nano encapsulated active agents (natural antioxidants species) in the prevention of the oxidation of lipid compounds in food by agents such as oxygen. Thus keeping the product quality during the shelf-life, not only when the user opens the packaging, but also during the period from food packaging up until the purchase by the consumer. The active systems that make up the printed smart label, heating circuit, and battery were developed using screen-printing technology. These systems must operate under the working conditions associated with this application. The printed heating circuit was studied using three different substrates and two different conductive inks. Inks were selected, taking into consideration that the printed circuits will be subjected to high pressures and temperatures during the injection molding process. The circuit must reach a homogeneous temperature of 40ºC in the entire area of the lid of the food tub, promoting a gradual and controlled release of the antioxidant agents. In addition, the circuit design involves a high level of study in order to guarantee maximum performance after the injection process and meet the specifications required by the control electronics component. Furthermore, to characterize the different heating circuits, the electrical resistance promoted by the conductive ink and the circuit design, as well as the thermal behavior of printed circuits on different substrates, were evaluated. In the injection molding process, the serpentine-shaped design developed for the heating circuit was able to resolve the issues connected to the injection point; in addition, the materials used in the support and printing had high mechanical resistance against the pressure and temperature inherent to the injection process. Acknowledgment: This research has been carried out within the Project “Smart and Active Packing for Margarine Product” (SAP4MA) running under the EURIPIDES Program being co-financed by COMPETE 2020 – the Operational Programme for Competitiveness and Internationalization and under Portugal 2020 through the European Regional Development Fund (ERDF).

Keywords: smart package, printed heat circuits, printed batteries, flexible and printed electronic

Procedia PDF Downloads 79
1873 Levels of Plastic Waste and Fish Landed By Beach Seine Fishers in Coastal Ghana

Authors: Francis Gbogbo, Angelica Ama Essandoh, Wendy Teresa Baffoe, Henry Groos, Charles Mario Boateng, Emmanuel Robert Blankson

Abstract:

Baseline data on plastic landing by fishers and monitoring of this is important in evaluating the success of plastic waste management efforts. This study investigated plastic and fish landed by beach seine fishers in Ghana, together with the rate of plastic deposition on an adjoining beach. Plastic constituted 31.6% of the total catch, and 41.7% of the fish landed by weight. There were significant differences between the average weight of fish (139.58±53.6kg) and plastic (65.73±14.6kg) landed per fishing session and the catch per unit effort of fish (183.4±76.7 kg/day) and plastic (88.4±35.2 kg/day). The mean weight of plastic landed per fishing session was higher than the mean weight of each of the 26 species of fisheries. The rate of plastic deposition on the beach was 8.1±2.5 plastic items per m2 per tidal cycle or 0.35±0.11kg plastic per m2 per tidal cycle, with food packs and tableware dominating the deposited plastic. The results suggested that ongoing water sachets and plastic bottle recycling in Ghana are yielding results and calls for targeted efforts in plastic food packs and tableware management.

Keywords: fishig, landing, plastic waste, intertidal area, fishing effort

Procedia PDF Downloads 40
1872 Different Processing Methods to Obtain a Carbon Composite Element for Cycling

Authors: Maria Fonseca, Ana Branco, Joao Graca, Rui Mendes, Pedro Mimoso

Abstract:

The present work is focused on the production of a carbon composite element for cycling through different techniques, namely, blow-molding and high-pressure resin transfer injection (HP-RTM). The main objective of this work is to compare both processes to produce carbon composite elements for the cycling industry. It is well known that the carbon composite components for cycling are produced mainly through blow-molding; however, this technique depends strongly on manual labour, resulting in a time-consuming production process. Comparatively, HP-RTM offers a more automated process which should lead to higher production rates. Nevertheless, a comparison of the elements produced through both techniques must be done, in order to assess if the final products comply with the required standards of the industry. The main difference between said techniques lies in the used material. Blow-moulding uses carbon prepreg (carbon fibres pre-impregnated with a resin system), and the material is laid up by hand, piece by piece, on a mould or on a hard male. After that, the material is cured at a high temperature. On the other hand, in the HP-RTM technique, dry carbon fibres are placed on a mould, and then resin is injected at high pressure. After some research regarding the best material systems (prepregs and braids) and suppliers, an element was designed (similar to a handlebar) to be constructed. The next step was to perform FEM simulations in order to determine what the best layup of the composite material was. The simulations were done for the prepreg material, and the obtained layup was transposed to the braids. The selected material was a prepreg with T700 carbon fibre (24K) and an epoxy resin system, for the blow-molding technique. For HP-RTM, carbon fibre elastic UD tubes and ± 45º braids were used, with both 3K and 6K filaments per tow, and the resin system was an epoxy as well. After the simulations for the prepreg material, the optimized layup was: [45°, -45°,45°, -45°,0°,0°]. For HP-RTM, the transposed layup was [ ± 45° (6k); 0° (6k); partial ± 45° (6k); partial ± 45° (6k); ± 45° (3k); ± 45° (3k)]. The mechanical tests showed that both elements can withstand the maximum load (in this case, 1000 N); however, the one produced through blow-molding can support higher loads (≈1300N against 1100N from HP-RTM). In what concerns to the fibre volume fraction (FVF), the HP-RTM element has a slightly higher value ( > 61% compared to 59% of the blow-molding technique). The optical microscopy has shown that both elements have a low void content. In conclusion, the elements produced using HP-RTM can compare to the ones produced through blow-molding, both in mechanical testing and in the visual aspect. Nevertheless, there is still space for improvement in the HP-RTM elements since the layup of the braids, and UD tubes could be optimized.

Keywords: HP-RTM, carbon composites, cycling, FEM

Procedia PDF Downloads 102
1871 Fiber Orientation Measurements in Reinforced Thermoplastics

Authors: Ihsane Modhaffar

Abstract:

Fiber orientation is essential for the physical properties of composite materials. The theoretical parameters of a given reinforcement are usually known and widely used to predict the behavior of the material. In this work, we propose an image processing approach to estimate true principal directions and fiber orientation during injection molding processes of short fiber reinforced thermoplastics. Generally, a group of fibers are described in terms of probability distribution function or orientation tensor. Numerical techniques for the prediction of fiber orientation are also considered for concentrated situations. The flow was considered to be incompressible, and behave as Newtonian fluid containing suspensions of short-fibers. The governing equations, of this problem are: the continuity, the momentum and the energy. The obtained results were compared to available experimental findings. A good agreement between the numerical results and the experimental data was achieved.

Keywords: injection, composites, short-fiber reinforced thermoplastics, fiber orientation, incompressible fluid, numerical simulation

Procedia PDF Downloads 501
1870 Valorization of Plastic and Cork Wastes in Design of Composite Materials

Authors: Svetlana Petlitckaia, Toussaint Barboni, Paul-Antoine Santoni

Abstract:

Plastic is a revolutionary material. However, the pollution caused by plastics damages the environment, human health and the economy of different countries. It is important to find new ways to recycle and reuse plastic material. The use of waste materials as filler and as a matrix for composite materials is receiving increasing attention as an approach to increasing the economic value of streams. In this study, a new composite material based on high-density polyethylene (HDPE) and polypropylene (PP) wastes from bottle caps and cork powder from unused cork (virgin cork), which has a high capacity for thermal insulation, was developed. The composites were prepared with virgin and modified cork. The composite materials were obtained through twin-screw extrusion and injection molding. The composites were produced with proportions of 0 %, 5 %, 10 %, 15 %, and 20 % of cork powder in a polymer matrix with and without coupling agent and flame retardant. These composites were investigated in terms of mechanical, structural and thermal properties. The effect of cork fraction, particle size and the use of flame retardant on the properties of composites were investigated. The properties of samples elaborated with the polymer and the cork were compared to them with the coupling agent and commercial flame retardant. It was observed that the morphology of HDPE/cork and PP/cork composites revealed good distribution and dispersion of cork particles without agglomeration. The results showed that the addition of cork powder in the polymer matrix reduced the density of the composites. However, the incorporation of natural additives doesn’t have a significant effect on water adsorption. Regarding the mechanical properties, the value of tensile strength decreases with the addition of cork powder, ranging from 30 MPa to 19 MPa for PP composites and from 19 MPa to 17 MPa for HDPE composites. The value of thermal conductivity of composites HDPE/cork and PP/ cork is about 0.230 W/mK and 0.170 W/mK, respectively. Evaluation of the flammability of the composites was performed using a cone calorimeter. The results of thermal analysis and fire tests show that it is important to add flame retardants to improve fire resistance. The samples elaborated with the coupling agent and flame retardant have better mechanical properties and fire resistance. The feasibility of the composites based on cork and PP and HDPE wastes opens new ways of valorizing plastic waste and virgin cork. The formulation of composite materials must be optimized.

Keywords: composite materials, cork and polymer wastes, flammability, modificated cork

Procedia PDF Downloads 44
1869 Effect of Intraperitoneal Administration of Ghrelin on Serum Glucose and Insulin Levels in Turkey

Authors: Habib Aghdam Shahryar

Abstract:

The aim of the present study was investigation on the effect of intraperipheral (IP) injection of ghrelin on serum insulin and glucose levels in native turkey. Seventy-two 28 day (d)-old native turkey were assigned into three treatments and four replicate for 40 days experimental rearing period: group 1, intact without any injection, group 2, injected 50 ng ghrelin/kg body weight (BW), and group 3, injected 100 ng ghrelin/kg BW. Intraperitoneal injection of rat ghrelin was conducted on d 28 and before the onset of the experimental rearing period. Blood samples were taken 12 hr after injection and 40 days after injection. The result showed glucose concentrations have been affected by administered ghrelin and significant between groups (P<0.01). Injection of ghrelin at G 100 increased glucose level of serum in 12 hr after injection and 40 days after injection (276.6 and 260.0 mg/dl, respectively). Also, by increasing the dose of injected ghrelin, insulin levels than the control group showed an increase (P < 0.001). This study suggests roles of ghrelin in serum biochemical regulation may show a different effect of ghrelin on blood parameters in avian species.

Keywords: ghrelin injection, insulin, glucose, turkey

Procedia PDF Downloads 454
1868 Xiaflex (Collagenase) Impact on the Management of Dupuytren's Disease: Making the Case for Treatment in a Public Healthcare System

Authors: Anthony Barker, Roland Jiang

Abstract:

Dupuytren’s contractures are a debilitating condition affecting the palmar fascia of the hand reducing its function. This case series looks at the minimally-invasive technique of Xiaflex injections and the outcome in a public health setting. 15 patients undertook collagenase injection (Xiaflex, C. histolyticum) injection over the period from September 2015 to May 2017 at Fairfield Hospital, NSW. Their reported outcome post injection and in follow-up was recorded as well as their satisfaction and likelihood to request the procedure in the future. Other treatment modalities include percutaneous needle aponeurotomy, limited palmar fasciotomy, and palmar fasciectomy. A literature review of cost-effectiveness was performed to compare Xiaflex suitability for waitlist reduction in a public setting given average waiting times in the public setting extend past 365 days.

Keywords: Dupuytrens Disease, xiaflex, collagenase, plastic surgery

Procedia PDF Downloads 149
1867 Water Injection in One of the Southern Iranian Oil Field, a Case Study

Authors: Hooman Fallah

Abstract:

Seawater injection and produced water re-injection are presently the most commonly used approach to enhanced recovery. The dominant factors for total oil recovery are the reservoir temperature, reservoir pressure, crude oil and water composition. In this study, the production under water injection in Soroosh, one of the southern Iranian heavy oil field has been simulated (the fluid properties are focused). In order to reveal the dominant factors in this production process, the sensitivity analysis has been done for the following effective factors, fluid viscosity, initial water saturation, gravity force and injection well strategy. It is crystal clear that the study of the dominant factors in production processes will help the engineers to design the best production mechanisms in our numerous hydrocarbon reservoirs.

Keywords: water injection, initial water saturation, oil viscosity, gravity force, injection well strategy

Procedia PDF Downloads 382
1866 Investigation of Film and Mechanical Properties of Poly(Lactic Acid)

Authors: Reyhan Özdoğan, Özgür Ceylan, Mehmet Arif Kaya, Mithat Çelebi

Abstract:

Food packaging is important for the food industry. Bioplastics have been used as food packaging materials. According to the European Bioplastics organization, bioplastics can be defined as plastics based on renewable resources (bio-based) or as plastics which are biodegradable and/or compostable. Poly(lactic acid) (PLA) has an industrially importance of bioplastic polymers. PLA is a family of biodegradable thermoplastic polyester made from renewable resources. It is produced by conversion of corn, or other carbohydrate sources, into dextrose, followed by fermentation into lactic acid through direct polycondensation of lactic acid monomers or through ring-opening polymerization of lactide. The processing possibilities of this transparent material are very wide, ranging from injection molding and extrusion over cast film extrusion to blow molding and thermoforming. In this study, PLA films were prepared by solution casting method. PLAs which are different molecular weights were plasticized with glycerol and the morphology of films was monitored by optical microscopy. Properties of mechanical and film of PLA were researched with the mechanical testing machine.

Keywords: biodegradable, bioplastics, morphology, solution casting, poly(lactic acid)

Procedia PDF Downloads 345
1865 Novel Framework for MIMO-Enhanced Robust Selection of Critical Control Factors in Auto Plastic Injection Moulding Quality Optimization

Authors: Seyed Esmail Seyedi Bariran, Khairul Salleh Mohamed Sahari

Abstract:

Apparent quality defects such as warpage, shrinkage, weld line, etc. are such an irresistible phenomenon in mass production of auto plastic appearance parts. These frequently occurred manufacturing defects should be satisfied concurrently so as to achieve a final product with acceptable quality standards. Determining the significant control factors that simultaneously affect multiple quality characteristics can significantly improve the optimization results by eliminating the deviating effect of the so-called ineffective outliers. Hence, a robust quantitative approach needs to be developed upon which major control factors and their level can be effectively determined to help improve the reliability of the optimal processing parameter design. Hence, the primary objective of current study was to develop a systematic methodology for selection of significant control factors (SCF) relevant to multiple quality optimization of auto plastic appearance part. Auto bumper was used as a specimen with the most identical quality and production characteristics to APAP group. A preliminary failure modes and effect analysis (FMEA) was conducted to nominate a database of pseudo significant significant control factors prior to the optimization phase. Later, CAE simulation Moldflow analysis was implemented to manipulate four rampant plastic injection quality defects concerned with APAP group including warpage deflection, volumetric shrinkage, sink mark and weld line. Furthermore, a step-backward elimination searching method (SESME) has been developed for systematic pre-optimization selection of SCF based on hierarchical orthogonal array design and priority-based one-way analysis of variance (ANOVA). The development of robust parameter design in the second phase was based on DOE module powered by Minitab v.16 statistical software. Based on the F-test (F 0.05, 2, 14) one-way ANOVA results, it was concluded that for warpage deflection, material mixture percentage was the most significant control factor yielding a 58.34% of contribution while for the other three quality defects, melt temperature was the most significant control factor with a 25.32%, 84.25%, and 34.57% contribution for sin mark, shrinkage and weld line strength control. Also, the results on the he least significant control factors meaningfully revealed injection fill time as the least significant factor for both warpage and sink mark with respective 1.69% and 6.12% contribution. On the other hand, for shrinkage and weld line defects, the least significant control factors were holding pressure and mold temperature with a 0.23% and 4.05% overall contribution accordingly.

Keywords: plastic injection moulding, quality optimization, FMEA, ANOVA, SESME, APAP

Procedia PDF Downloads 322
1864 Effects of Injector Nozzle Geometry on Spray Atomization Characteristics

Authors: Arya Pirooz

Abstract:

Air and fuel must be mixed correctly so that there is perfect combustion, which calls for fuel atomization by injection. In this study, the effects of different parameters such as number of orifices, length and diameter of orifices, diameter of nozzle sac and the angle of needle seat in injectors were investigated with the use of rate of injection and sac pressure. The unit pump of the OM-457 diesel engine was modelled on Avl-Hydsim. The results illustrate that the sac pressure decreased by 46% when the number of holes were doubled, although the rate of injection had an immense change. Also, the sac pressure increased up to 60% when the diameter of orifices decreased by 40% in spite of the semi-constant injection rate.

Keywords: injection, OM-457 engine, nozzle geometry, atomization

Procedia PDF Downloads 472