Search results for: piezoelectric semi-spherical shell
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 690

Search results for: piezoelectric semi-spherical shell

510 Characterization of an Almond Shell Composite Based on PHBH

Authors: J. Ivorra-Martinez, L. Quiles-Carrillo, J. Gomez-Caturla, T. Boronat, R. Balart

Abstract:

The utilization of almond crop by-products to obtain PHBH-based composites was carried out by using an extrusion process followed by an injection to obtain test samples. To improve the properties of the resulting composite, the incorporation of OLA 8 as a coupling agent and plasticizer was additionally considered. A characterization process was carried out by the measurement of mechanical properties, thermal properties, surface morphology, and water absorption ability. The use of the almond residue allows obtaining composites based on PHBH with a higher environmental interest and lower cost.

Keywords: almond shell, PHBH, composites, compatibilization

Procedia PDF Downloads 67
509 The Adsorption of Perfluorooctanoic Acid on Coconut Shell Activated Carbons

Authors: Premrudee Kanchanapiya, Supachai Songngam, Thanapol Tantisattayakul

Abstract:

Perfluorooctanoic acid (PFOA) is one of per- and polyfluoroalkyl substances (PFAS) that have increasingly attracted concerns due to their global distribution in environment, persistence, high bioaccumulation, and toxicity. It is important to study the effective treatment to remove PFOA from contaminated water. The feasibility of using commercial coconut shell activated carbon produced in Thailand to remove PFOA from water was investigated with regard to their adsorption kinetics and isotherms of powder activated carbon (PAC-325) and granular activated carbon (GAC-20x50). Adsorption kinetic results show that the adsorbent size significantly affected the adsorption rate of PFOA, and GAC-20x50 required at least 100 h to achieve the equilibrium, much longer than 3 h for PAC-325. Two kinetic models were fitted to the experimental data, and the pseudo-second-order model well described the adsorption of PFOA on both PAC-325 and GAC-20x50. PAC-325 trended to adsorb PFOA faster than GAC-20x50, and testing with the shortest adsorption times (5 min) still yielded substantial PFOA removal (~80% for PAC-325). The adsorption isotherms show that the adsorption capacity of PAC-325 was 0.80 mmol/g, which is 83 % higher than that for GAC-20x50 (0.13 mmol/g), according to the Langmuir fitting.

Keywords: perfluorooctanoic acid, PFOA, coconut shell activated carbons, adsorption, water treatment

Procedia PDF Downloads 120
508 Vibration Control of a Functionally Graded Carbon Nanotube-Reinforced Composites Beam Resting on Elastic Foundation

Authors: Gholamhosein Khosravi, Mohammad Azadi, Hamidreza Ghezavati

Abstract:

In this paper, vibration of a nonlinear composite beam is analyzed and then an active controller is used to control the vibrations of the system. The beam is resting on a Winkler-Pasternak elastic foundation. The composite beam is reinforced by single walled carbon nanotubes. Using the rule of mixture, the material properties of functionally graded carbon nanotube-reinforced composites (FG-CNTRCs) are determined. The beam is cantilever and the free end of the beam is under follower force. Piezoelectric layers are attached to the both sides of the beam to control vibrations as sensors and actuators. The governing equations of the FG-CNTRC beam are derived based on Euler-Bernoulli beam theory Lagrange- Rayleigh-Ritz method. The simulation results are presented and the effects of some parameters on stability of the beam are analyzed.

Keywords: carbon nanotubes, vibration control, piezoelectric layers, elastic foundation

Procedia PDF Downloads 239
507 Model-Based Control for Piezoelectric-Actuated Systems Using Inverse Prandtl-Ishlinskii Model and Particle Swarm Optimization

Authors: Jin-Wei Liang, Hung-Yi Chen, Lung Lin

Abstract:

In this paper feedforward controller is designed to eliminate nonlinear hysteresis behaviors of a piezoelectric stack actuator (PSA) driven system. The control design is based on inverse Prandtl-Ishlinskii (P-I) hysteresis model identified using particle swarm optimization (PSO) technique. Based on the identified P-I model, both the inverse P-I hysteresis model and feedforward controller can be determined. Experimental results obtained using the inverse P-I feedforward control are compared with their counterparts using hysteresis estimates obtained from the identified Bouc-Wen model. Effectiveness of the proposed feedforward control scheme is demonstrated. To improve control performance feedback compensation using traditional PID scheme is adopted to integrate with the feedforward controller.

Keywords: the Bouc-Wen hysteresis model, particle swarm optimization, Prandtl-Ishlinskii model, automation engineering

Procedia PDF Downloads 490
506 Potential Applications and Future Prospects of Zinc Oxide Thin Films

Authors: Temesgen Geremew

Abstract:

ZnO is currently receiving a lot of attention in the semiconductor industry due to its unique characteristics. ZnO is widely used in solar cells, heat-reflecting glasses, optoelectronic bias, and detectors. In this composition, we provide an overview of the ZnO thin flicks' packages, methods of characterization, and implicit operations. They consist of Transmission spectroscopy, Raman spectroscopy, Field emigration surveying electron microscopy, and X-ray diffraction. This review content also demonstrates how ZnO thin flicks function in electrical components for piezoelectric bias, optoelectronics, detectors, and renewable energy sources. Zinc oxide (ZnO) thin films offer a captivating tapestry of possibilities due to their unique blend of electrical, optical, and mechanical properties. This review delves into the realm of their potential applications and future prospects, highlighting the pivotal contributions of research endeavors aimed at tailoring their functionalities.

Keywords: Zinc oxide, raman spectroscopy, thin films, piezoelectric devices

Procedia PDF Downloads 58
505 Analysis of Bio-Oil Produced by Pyrolysis of Coconut Shell

Authors: D. S. Fardhyanti, A. Damayanti

Abstract:

The utilization of biomass as a source of new and renewable energy is being carried out. One of the technologies to convert biomass as an energy source is pyrolysis which is converting biomass into more valuable products, such as bio-oil. Bio-oil is a liquid which is produced by steam condensation process from the pyrolysis of coconut shells. The composition of a coconut shell e.g. hemicellulose, cellulose and lignin will be oxidized to phenolic compounds as the main component of the bio-oil. The phenolic compounds in bio-oil are corrosive; they cause various difficulties in the combustion system because of a high viscosity, low calorific value, corrosiveness, and instability. Phenolic compounds are very valuable components which phenol has used as the main component for the manufacture of antiseptic, disinfectant (known as Lysol) and deodorizer. The experiments typically occurred at the atmospheric pressure in a pyrolysis reactor at temperatures ranging from 300 oC to 350 oC with a heating rate of 10 oC/min and a holding time of 1 hour at the pyrolysis temperature. The Gas Chromatography-Mass Spectroscopy (GC-MS) was used to analyze the bio-oil components. The obtained bio-oil has the viscosity of 1.46 cP, the density of 1.50 g/cm3, the calorific value of 16.9 MJ/kg, and the molecular weight of 1996.64. By GC-MS, the analysis of bio-oil showed that it contained phenol (40.01%), ethyl ester (37.60%), 2-methoxy-phenol (7.02%), furfural (5.45%), formic acid (4.02%), 1-hydroxy-2-butanone (3.89%), and 3-methyl-1,2-cyclopentanedione (2.01%).

Keywords: bio-oil, pyrolysis, coconut shell, phenol, gas chromatography-mass spectroscopy

Procedia PDF Downloads 211
504 Photocatalytic Degradation of Nd₂O₃@SiO₂ Core-Shell Nanocomposites Under UV Irradiation Against Methylene Blue and Rhodamine B Dyes

Authors: S. Divya, M. Jose

Abstract:

Over the past years, industrial dyes have emerged as a significant threat to aquatic life, extensively detected in drinking water and groundwater, thus contributing to water pollution due to their improper and excessive use. To address this issue, the utilization of core-shell structures has been prioritized as it demonstrates remarkable efficiency in utilizing light energy for catalytic reactions and exhibiting excellent photocatalytic activity despite the availability of various photocatalysts. This work focuses on the photocatalytic degradation of Nd₂O₃@SiO₂ CSNs under UV light irradiation against MB and RhB dyes. Different characterization techniques, including XRD, FTIR, and TEM analyses, were employed to reveal the material's structure, functional groups, and morphological features. VSM and XPS analyses confirmed the soft, paramagnetic nature and chemical states with respective atomic percentages, respectively. Optical band gaps, determined using the Tauc plot model, indicated 4.24 eV and 4.13 eV for Nd₂O₃ NPs and Nd₂O₃@SiO₂ CSNs, respectively. The reduced bandgap energy of Nd₂O₃@SiO₂ CSNs enhances light absorption in the UV range, potentially leading to improved photocatalytic efficiency. The Nd₂O₃@SiO₂ CSNs exhibited greater degradation efficiency, reaching 95% and 96% against MB and RhB dyes, while Nd₂O₃ NPs showed 90% and 92%, respectively. The enhanced efficiency of Nd₂O₃@SiO₂ CSNs can be attributed to the larger specific surface area provided by the SiO₂ shell, as confirmed by surface area analysis using the BET surface area analyzer through N₂ adsorption-desorption.

Keywords: core shell nanocomposites, rare earth oxides, photocatalysis, advanced oxidation process

Procedia PDF Downloads 22
503 Conversion of Jatropha curcas Oil to Ester Biolubricant Using Solid Catalyst Derived from Saltwater Clam Shell Waste (SCSW)

Authors: Said Nurdin, Fatimah A. Misebah, Rosli M. Yunus, Mohd S. Mahmud, Ahmad Z. Sulaiman

Abstract:

The discarded clam shell waste, fossil and edible oil as biolubricant feedstocks create environmental impacts and food chain dilemma, thus this work aims to circumvent these issues by using activated saltwater clam shell waste (SCSW) as solid catalyst for conversion of Jatropha curcas oil as non-edible sources to ester biolubricant. The characterization of solid catalyst was done by Differential Thermal Analysis-Thermo Gravimetric Analysis (DTA-TGA), X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD), Brunauer-Emmett-Teller (BET), Field Emission Scanning Electron Microscopy (FESEM) and Fourier Transformed Infrared Spectroscopy (FTIR) analysis. The calcined catalyst was used in the transesterification of Jatropha oil to methyl ester as the first step, and the second stage was involved the reaction of Jatropha methyl ester (JME) with trimethylolpropane (TMP) based on the various process parameters. The formated biolubricant was analyzed using the capillary column (DB-5HT) equipped Gas Chromatography (GC). The conversion results of Jatropha oil to ester biolubricant can be found nearly 96.66%, and the maximum distribution composition mainly contains 72.3% of triester (TE).

Keywords: conversion, Jatropha curcas oil, ester biolubricant, solid catalyst

Procedia PDF Downloads 338
502 Enhancement of Mechanical Properties and Thermal Conductivity of Oil Palm Shell Lightweight Concrete Reinforced with High Performance Polypropylene Fibres

Authors: Leong Tatt Loh, Ming Kun Yew, Ming Chian Yew, Lip Huat Saw, Jing Han Beh, Siong Kang Lim, Foo Wei Lee

Abstract:

Oil palm shell (OPS) is the solid waste product from the palm oil sector of the agricultural industry and can be used as alternative coarse aggregates to substitute depleting conventional raw materials. This research aims to investigate the incorporation of various high-performance polypropylene (HPP) fibres with different geometry to enhance the mechanical properties and thermal conductivity of OPS lightweight concrete. The effect of different volume fractions (Vf) (0.05%, 0.10% and 0.15%) were studied for each fibre. The results reveal that the effectiveness of HPP fibres to increase the compressive strength at later ages was more pronounced than at early age. It is found that the use of HPP fibres reinforced OPS lightweight concrete (LWC) induced the advantageous of improving mechanical properties (compressive strength, flexural strength and splitting tensile strength) and thermal conductivity. Hence, this HPP fibres is a promising alternative solution to compensate lower mechanical properties as well as contribute to energy efficiency building material in the construction industry.

Keywords: oil palm shell, high performance polypropylene fibre, lightweight concrete, mechanical properties, thermal conductivity

Procedia PDF Downloads 179
501 Structural Optimization of Shell and Arched Structures

Authors: Mitchell Gohnert, Ryan Bradley

Abstract:

This paper reviews some fundamental concepts of structural optimization of shell structures, which is based on the type of materials used in construction and the shape of the structure. The first step of structural optimization is to break down all internal forces into fundamental principal stresses. The stress patterns direct our selection of structural shapes and the most appropriate type of construction material. In our selection of materials, it is essential to understand that all construction materials have flaws, or micro-cracks, which reduce the capacity of the material. Because of material defects, many construction materials perform significantly better when subjected to compressive forces. Structures are also more efficient if bending moments are eliminated; thus, it is essential to select natural structures, or structures where the natural flow of stress follows the axis of the shell. The shape of the structure, therefore, has a profound effect on stress levels. Stress may be reduced dramatically by simply changing the shape. Catenary, triangular and linear shapes are the fundamental structural forms to achieve optimal stress flow. If the natural flow of stress matches the shape of the structures, the most optimal shape is determined.

Keywords: arches, economy of stresses, material strength, optimization, shells

Procedia PDF Downloads 68
500 Detailed Investigation of Thermal Degradation Mechanism and Product Characterization of Co-Pyrolysis of Indian Oil Shale with Rubber Seed Shell

Authors: Bhargav Baruah, Ali Shemsedin Reshad, Pankaj Tiwari

Abstract:

This work presents a detailed study on the thermal degradation kinetics of co-pyrolysis of oil shale of Upper Assam, India with rubber seed shell, and lab-scale pyrolysis to investigate the influence of pyrolysis parameters on product yield and composition of products. The physicochemical characteristics of oil shale and rubber seed shell were studied by proximate analysis, elemental analysis, Fourier transform infrared spectroscopy and X-ray diffraction. The physicochemical study showed the mixture to be of low moisture, high ash, siliceous, sour with the presence of aliphatic, aromatic, and phenolic compounds. The thermal decomposition of the oil shale with rubber seed shell was studied using thermogravimetric analysis at heating rates of 5, 10, 20, 30, and 50 °C/min. The kinetic study of the oil shale pyrolysis process was performed on the thermogravimetric (TGA) data using three model-free isoconversional methods viz. Friedman, Flynn Wall Ozawa (FWO), and Kissinger Akahira Sunnose (KAS). The reaction mechanisms were determined using the Criado master plot. The understanding of the composition of Indian oil shale and rubber seed shell and pyrolysis process kinetics can help to establish the experimental parameters for the extraction of valuable products from the mixture. Response surface methodology (RSM) was employed usinf central composite design (CCD) model to setup the lab-scale experiment using TGA data, and optimization of process parameters viz. heating rate, temperature, and particle size. The samples were pre-dried at 115°C for 24 hours prior to pyrolysis. The pyrolysis temperatures were set from 450 to 650 °C, at heating rates of 2 to 20°C/min. The retention time was set between 2 to 8 hours. The optimum oil yield was observed at 5°C/min and 550°C with a retention time of 5 hours. The pyrolytic oil and gas obtained at optimum conditions were subjected to characterization using Fourier transform infrared spectroscopy (FT-IR) gas chromatography and mass spectrometry (GC-MS) and nuclear magnetic resonance spectroscopy (NMR).

Keywords: Indian oil shale, rubber seed shell, co-pyrolysis, isoconversional methods, gas chromatography, nuclear magnetic resonance, Fourier transform infrared spectroscopy

Procedia PDF Downloads 116
499 A Design of Active Elastic Metamaterial with Extreme Anisotropic Stiffness

Authors: Conner Side, Hunter Pearce

Abstract:

Traditional elastic metamaterials have difficulties in achieving independent tunable working frequency in two orthogonal directions. In this work, we proposed a pragmatic active elastic metamaterial to obtain extreme anisotropic stiffness with a tunable working frequency range. Piezoelectric patches shunted with variable conductance are properly proposed in the microstructure unit cell to manipulate the effective elastic stiffness along two principal directions at the subwavelength scale. Simulation of manipulation of wave propagation in such metamaterials is performed. An experimental study is also conducted to validate the design, and the results are in good agreement with mathematic analysis and numerical predictions. The proposed active elastic metamaterial will bring forth significant guidelines for ultrasonic imaging technique, and the results are expected to offer novel and general design methodology for elastic metamaterials.

Keywords: microstructure, active elastic metamaterials, piezoelectric patches, experimental study

Procedia PDF Downloads 64
498 Conservative and Surgical Treatment of Antiresorptive Drug-Related Osteonecrosis of the Jaw with Ultrasonic Piezoelectric Bone Surgery under Polyvinylpyrrolidone Iodine Irrigation: A Case Series of 13 Treated Sites

Authors: Esra Yuce, Isil D. S. Yamaner, Murude Yazan

Abstract:

Aims and objective: Antiresorptive agents including bisphosphonates and denosumab as strong suppressors of osteoclasts are the most commonly used antiresorptive medications for the treatment of osteoporosis which counteract the negative quantitative alteration of trabecular and cortical bone by inhibition of bone turnover. Oral bisphosphonate therapy for the treatment of osteopenia, osteoporosis or Paget's disease is associated with the low-grade risk of osteonecrosis of the jaw, while higher-grade risk is associated with receiving intravenous bisphosphonates therapy in the treatment of multiple myeloma and bone metastases. On the other hand, there has been a remarkable increase in incidences of antiresorptive related osteonecrosis of the jaw (ARONJ) in oral bisphosphonate users. This clinical presentation will evaluate the healing outcomes via piezoelectric bone surgery under the irrigation of PVP-I solution irrigation in patients received bisphosphonate therapy. Material-Method: The study involved 8 female and 5 male patients that have been treated for ARONJ. Among 13 necrotic sites, 9 were in the mandible and 4 were in the maxilla. All of these 13 patients treated with surgical debridement via piezoelectric bone surgery under irrigation by solution with 3% PVP-I concentration in combination with long-term antibiotic therapy and 5 also underwent removal of mobile segments of bony sequestrum. All removable prosthesis in 8 patients were relined with soft liners during the healing periods in order to eliminate chronic minor traumas. Results: All patients were on oral bisphosphonate therapy for at least 2 years and 5 of which had received intravenous bisphosphonates up to 1 year before therapy with oral bisphosphonates was started. According to the AAOMS staging system, four cases were stage II, eight cases were stage I, and one case was stage III. The majority of lesions were identified at sites of dental prostheses (38%) and dental extractions (62%). All patients diagnosed with ARONJ stage I had used unadjusted removable prostheses. No recurrence of the symptoms was observed during the present follow-up (9–37 months). Conclusion: Despite their confirmed effectiveness, the prevention and treatment of osteonecrosis of the jaw secondary to oral bisphosphonate therapy remain major medical challenges. Treatment with piezoelectric bone surgery with irrigation of povidone-iodine solution was effective for management of bisphosphonate-related osteonecrosis of the jaw. Taking precautions for patients treated with oral bisphosphonates, especially also denture users, may allow for a reduction in the rate of developing osteonecrosis of the maxillofacial region.

Keywords: antiresorptive drug related osteonecrosis, bisphosphonate therapy, piezoelectric bone surgery, povidone iodine

Procedia PDF Downloads 237
497 Morphometric Study of the Eggs of Pheasant Eggs Phasianus colchicus (Aves, Phasianidae)

Authors: S. Zenia, A. Menasseria, A. E. Kheidous, F. Larinouna, A. Smai, H. Saadi, F. Haddadj, A. Milla, F. Marniche

Abstract:

Pheasant, is a bird of great ornamental value through the beauty of its form and colors, it is among the most popular birds. The present study was conducted in an experimental breeding. The objective of this work is to know the quality of the eggs of this bird. A total of 938 eggs were collected. To deepen the knowledge about the characteristics of external shell quality, biometric parameters were studied, among them we find the weight with a mean value of 29.2± 2, 24 g. Egg length (mm) and egg width (mm) mean value are respectively 43.01 ± 1,84 cm and 34.05 ± 1,44cm. The volume and shape index of eggs obtained are respectively 25,63±2,88cm3 and 79.00 ± 3%, shell index which recorded an average of 68%. Water loss recorded is 13%. Note that all these parameters and others may influence hatching. The analysis of variance applied for the comparison of egg weight shows that there is no significant difference in the same form factor (P> 0.05). Otherwise, the comparison test used shows a significant difference with P <0.05 for length, width, volume, density, indices of shell and water loss of eggs between the different. Indeed, several factors may explain the difference as the absence of sorting eggs during incubation and other factors that will be exposing later.

Keywords: analysis of variance, egg, hatching, morphometry of eggs Phaisan (Phasianus colchicus.L.)

Procedia PDF Downloads 556
496 Hydrothermal Synthesis of Carbon Sphere/Nickel Cobalt Sulfide Core/Shell Microstructure and Its Electrochemical Performance

Authors: Charmaine Lamiel, Van Hoa Nguyen, Marjorie Baynosa, Jae-Jin Shim

Abstract:

Electrochemical supercapacitors have attracted considerable attention because of their high potential as an efficient energy storage system. The combination of carbon-based material and transition metal oxides/sulfides are studied because they have long and improved cycle life as well as high energy and power densities. In this study, a hierarchical mesoporous carbon sphere/nickel cobalt sulfide (CS/Ni-Co-S) core/shell structure was synthesized using a facile hydrothermal method without any further sulfurization or post-heat treatment. The CS/Ni-Co-S core/shell microstructures exhibited a high capacitance of 724 F g−1 at 2 A g−1 in a 6 M KOH electrolyte. After 2000 charge-discharge cycles, it retained 86.1% of its original capacitance, with high Coulombic efficiency of 97.9%. The electrode exhibited a high energy density of 58.0 Wh kg−1 at an energy density of 1440 W kg−1, and high power density of 7200 W kg−1 at an energy density of 34.2 Wh kg−1. The successful synthesis was considered to be simple and cost-effective which supports the viability of this composite as an alternative activated material for high performance supercapacitors.

Keywords: carbon sphere, electrochemical, hydrothermal, nickel cobalt sulfide, supercapacitor

Procedia PDF Downloads 275
495 Nonlinear Free Vibrations of Functionally Graded Cylindrical Shells

Authors: Alexandra Andrade Brandão Soares, Paulo Batista Gonçalves

Abstract:

Using a modal expansion that satisfies the boundary and continuity conditions and expresses the modal couplings characteristic of cylindrical shells in the nonlinear regime, the equations of motion are discretized using the Galerkin method. The resulting algebraic equations are solved by the Newton-Raphson method, thus obtaining the nonlinear frequency-amplitude relation. Finally, a parametric analysis is conducted to study the influence of the geometry of the shell, the gradient of the functional material and vibration modes on the degree and type of nonlinearity of the cylindrical shell, which is the main contribution of this research work.

Keywords: cylindrical shells, dynamics, functionally graded material, nonlinear vibrations

Procedia PDF Downloads 23
494 Analytical Solution for Multi-Segmented Toroidal Shells under Uniform Pressure

Authors: Nosakhare Enoma, Alphose Zingoni

Abstract:

The requirements for various toroidal shell forms are increasing due to new applications, available storage space and the consideration of appearance. Because of the complexity of some of these structural forms, the finite element method is nowadays mainly used for their analysis, even for simple static studies. This paper presents an easy-to-use analytical algorithm for pressurized multi-segmented toroidal shells of revolution. The membrane solution, which acts as a particular solution of the bending-theory equations, is developed based on membrane theory of shells, and a general approach is formulated for quantifying discontinuity effects at the shell junctions using the well-known Geckeler’s approximation. On superimposing these effects, and applying the ensuing solution to the problem of the pressurized toroid with four segments, closed-form stress results are obtained for the entire toroid. A numerical example is carried out using the developed method. The analytical results obtained show excellent agreement with those from the finite element method, indicating that the proposed method can be also used for complementing and verifying FEM results, and providing insights on other related problems.

Keywords: bending theory of shells, membrane hypothesis, pressurized toroid, segmented toroidal vessel, shell analysis

Procedia PDF Downloads 289
493 System for Mechanical Stimulation of the Mesenchymal Stem Cells Supporting Differentiation into Osteogenic Cells

Authors: Jana Stepanovska, Roman Matejka, Jozef Rosina, Marta Vandrovcova, Lucie Bacakova

Abstract:

The aim of this study was to develop a system for mechanical and also electrical stimulation controlling in vitro osteogenesis under conditions more similar to the in vivo bone microenvironment than traditional static cultivation, which would achieve good adhesion, growth and other specific behaviors of osteogenic cells in cultures. An engineered culture system for mechanical stimulation of the mesenchymal stem cells on the charged surface was designed. The bioreactor allows efficient mechanical loading inducing an electrical response and perfusion of the culture chamber with seeded cells. The mesenchymal stem cells were seeded to specific charged materials, like polarized hydroxyapatite (Hap) or other materials with piezoelectric and ferroelectric features, to create electrical potentials for stimulating of the cells. The material of the matrix was TiNb alloy designed for these purposes, and it was covered by BaTiO3 film, like a kind of piezoelectric material. The process of mechanical stimulation inducing electrical response is controlled by measuring electrical potential in the chamber. It was performed a series of experiments, where the cells were seeded, perfused and stimulated up to 48 hours under different conditions, especially pressure and perfusion. The analysis of the proteins expression was done, which demonstrated the effective mechanical and electrical stimulation. The experiments demonstrated effective stimulation of the cells in comparison with the static culture. This work was supported by the Ministry of Health, grant No. 15-29153A and the Grant Agency of the Czech Republic grant No. GA15-01558S.

Keywords: charged surface, dynamic cultivation, electrical stimulation, ferroelectric layers, mechanical stimulation, piezoelectric layers

Procedia PDF Downloads 273
492 Composite Coatings of Piezoelectric Quartz Sensors Based on Viscous Sorbents and Casein Micelles

Authors: Shuba Anastasiia, Kuchmenko Tatiana, Umarkhanov Ruslan

Abstract:

The development of new sensitive coatings for sensors is one of the key directions in the development of sensor technologies. Recently, there has been a trend towards the creation of multicomponent coatings for sensors, which make it possible to increase the sensitivity, and specificity, and improve the performance properties of sensors. When analyzing samples with a complex matrix of biological origin, the inclusion of micelles of bioactive substances (amino and nucleic acids, peptides, proteins) in the composition of the sensor coating can also increase useful analytical information. The purpose of this work is to evaluate the analytical characteristics of composite coatings of piezoelectric quartz sensors based on medium-molecular viscous sorbents with incorporated micellar casein concentrate during the sorption of vapors of volatile organic compounds. The sorption properties of the coatings were studied by piezoelectric quartz microbalance. Macromolecular compounds (dicyclohexyl-18-crown-6, triton X-100, lanolin, micellar casein concentrate) were used as sorbents. Highly volatile organic compounds of various classes (alcohols, acids, aldehydes, esters) and water were selected as test substances. It has been established that composite coatings of sensors with the inclusion of micellar casein are more stable and selective to vapors of highly volatile compounds than to water vapors. The method and technique of forming a composite coating using molecular viscous sorbents do not affect the kinetic features of VOC sorption. When casein micelles are used, the features of kinetic sorption depend on the matrix of the coating.

Keywords: piezoquartz sensor, viscous sorbents, micellar casein, coating, volatile compounds

Procedia PDF Downloads 72
491 VISMA: A Method for System Analysis in Early Lifecycle Phases

Authors: Walter Sebron, Hans Tschürtz, Peter Krebs

Abstract:

The choice of applicable analysis methods in safety or systems engineering depends on the depth of knowledge about a system, and on the respective lifecycle phase. However, the analysis method chain still shows gaps as it should support system analysis during the lifecycle of a system from a rough concept in pre-project phase until end-of-life. This paper’s goal is to discuss an analysis method, the VISSE Shell Model Analysis (VISMA) method, which aims at closing the gap in the early system lifecycle phases, like the conceptual or pre-project phase, or the project start phase. It was originally developed to aid in the definition of the system boundary of electronic system parts, like e.g. a control unit for a pump motor. Furthermore, it can be also applied to non-electronic system parts. The VISMA method is a graphical sketch-like method that stratifies a system and its parts in inner and outer shells, like the layers of an onion. It analyses a system in a two-step approach, from the innermost to the outermost components followed by the reverse direction. To ensure a complete view of a system and its environment, the VISMA should be performed by (multifunctional) development teams. To introduce the method, a set of rules and guidelines has been defined in order to enable a proper shell build-up. In the first step, the innermost system, named system under consideration (SUC), is selected, which is the focus of the subsequent analysis. Then, its directly adjacent components, responsible for providing input to and receiving output from the SUC, are identified. These components are the content of the first shell around the SUC. Next, the input and output components to the components in the first shell are identified and form the second shell around the first one. Continuing this way, shell by shell is added with its respective parts until the border of the complete system (external border) is reached. Last, two external shells are added to complete the system view, the environment and the use case shell. This system view is also stored for future use. In the second step, the shells are examined in the reverse direction (outside to inside) in order to remove superfluous components or subsystems. Input chains to the SUC, as well as output chains from the SUC are described graphically via arrows, to highlight functional chains through the system. As a result, this method offers a clear and graphical description and overview of a system, its main parts and environment; however, the focus still remains on a specific SUC. It helps to identify the interfaces and interfacing components of the SUC, as well as important external interfaces of the overall system. It supports the identification of the first internal and external hazard causes and causal chains. Additionally, the method promotes a holistic picture and cross-functional understanding of a system, its contributing parts, internal relationships and possible dangers within a multidisciplinary development team.

Keywords: analysis methods, functional safety, hazard identification, system and safety engineering, system boundary definition, system safety

Procedia PDF Downloads 204
490 Dry Reforming of Methane Using Metal Supported and Core Shell Based Catalyst

Authors: Vinu Viswanath, Lawrence Dsouza, Ugo Ravon

Abstract:

Syngas typically and intermediary gas product has a wide range of application of producing various chemical products, such as mixed alcohols, hydrogen, ammonia, Fischer-Tropsch products methanol, ethanol, aldehydes, alcohols, etc. There are several technologies available for the syngas production. An alternative to the conventional processes an attractive route of utilizing carbon dioxide and methane in equimolar ratio to generate syngas of ratio close to one has been developed which is also termed as Dry Reforming of Methane technology. It also gives the privilege to utilize the greenhouse gases like CO2 and CH4. The dry reforming process is highly endothermic, and indeed, ΔG becomes negative if the temperature is higher than 900K and practically, the reaction occurs at 1000-1100K. At this temperature, the sintering of the metal particle is happening that deactivate the catalyst. However, by using this strategy, the methane is just partially oxidized, and some cokes deposition occurs that causing the catalyst deactivation. The current research work was focused to mitigate the main challenges of dry reforming process such coke deposition, and metal sintering at high temperature.To achieve these objectives, we employed three different strategies of catalyst development. 1) Use of bulk catalysts such as olivine and pyrochlore type materials. 2) Use of metal doped support materials, like spinel and clay type material. 3) Use of core-shell model catalyst. In this approach, a thin layer (shell) of redox metal oxide is deposited over the MgAl2O4 /Al2O3 based support material (core). For the core-shell approach, an active metal is been deposited on the surface of the shell. The shell structure formed is a doped metal oxide that can undergo reduction and oxidation reactions (redox), and the core is an alkaline earth aluminate having a high affinity towards carbon dioxide. In the case of metal-doped support catalyst, the enhanced redox properties of doped CeO2 oxide and CO2 affinity property of alkaline earth aluminates collectively helps to overcome coke formation. For all of the mentioned three strategies, a systematic screening of the metals is carried out to optimize the efficiency of the catalyst. To evaluate the performance of them, the activity and stability test were carried out under reaction conditions of temperature ranging from 650 to 850 ̊C and an operating pressure ranging from 1 to 20 bar. The result generated infers that the core-shell model catalyst showed high activity and better stable DR catalysts under atmospheric as well as high-pressure conditions. In this presentation, we will show the results related to the strategy.

Keywords: carbon dioxide, dry reforming, supports, core shell catalyst

Procedia PDF Downloads 136
489 Piezoelectric Approach on Harvesting Acoustic Energy

Authors: Khin Fai Chen, Jee-Hou Ho, Eng Hwa Yap

Abstract:

An acoustic micro-energy harvester (AMEH) is developed to convert wasted acoustical energy into useful electrical energy. AMEH is mathematically modeled using lumped element modelling (LEM) and Euler-Bernoulli beam (EBB) modelling. An experiment is designed to validate the mathematical model and assess the feasibility of AMEH. Comparison of theoretical and experimental data on critical parameter value such as Mm, Cms, dm and Ceb showed the variances are within 1% to 6%, which is reasonably acceptable. Hence, AMEH mathematical model is validated. Then, AMEH undergoes bandwidth tuning for performance optimization for further experimental work. The AMEH successfully produces 0.9 V⁄(m⁄s^2) and 1.79 μW⁄(m^2⁄s^4) at 60Hz and 400kΩ resistive load which only show variances about 7% compared to theoretical data. By integrating a capacitive load of 200µF, the discharge cycle time of AMEH is 1.8s and the usable energy bandwidth is available as low as 0.25g. At 1g and 60Hz resonance frequency, the averaged power output is about 2.2mW which fulfilled a range of wireless sensors and communication peripherals power requirements. Finally, the design for AMEH is assessed, validated and deemed as a feasible design.

Keywords: piezoelectric, acoustic, energy harvester

Procedia PDF Downloads 258
488 Poly (N-Isopropyl Acrylamide-Co-Acrylic Acid)-Graft-Polyaspartate Coated Magnetic Nanoparticles for Molecular Imaging and Therapy

Authors: Van Tran Thi Thuy, Dukjoon Kim

Abstract:

A series of pH- and thermosensitive poly(N-isopropyl acrylamide-co-acrylic acid) were synthesized by radical polymerization and grafted on poly succinimide backbones. The poly succinimide derivatives synthesized were coated on iron oxide magnetic nanoparticles for potential applications in drug delivery systems with theranostic and molecular imaging. The structure of polymer shell was confirmed by FT-IR, H-NMR spectroscopies. Its thermal behavior was tested by UV-Vis spectroscopy. The particle size and its distribution are measured by dynamic light scattering (DLS) and transmission electron microscope (TEM). The mean diameter of the core-shell structure is from 20 to 80 nm.

Keywords: magnetic, nano, PNIPAM, polysuccinimide

Procedia PDF Downloads 381
487 Chitosan-Whey Protein Isolate Core-Shell Nanoparticles as Delivery Systems

Authors: Zahra Yadollahi, Marjan Motiei, Natalia Kazantseva, Petr Saha

Abstract:

Chitosan (CS)-whey protein isolate (WPI) core-shell nanoparticles were synthesized through self-assembly of whey protein isolated polyanions and chitosan polycations in the presence of tripolyphosphate (TPP) as a crosslinker. The formation of this type of nanostructures with narrow particle size distribution is crucial for developing delivery systems since the functional characteristics highly depend on their sizes. To achieve this goal, the nanostructure was optimized by varying the concentrations of WPI, CS, and TPP in the reaction mixture. The chemical characteristics, surface morphology, and particle size of the nanoparticles were evaluated.

Keywords: whey protein isolated, chitosan, nanoparticles, delivery system

Procedia PDF Downloads 63
486 Exchange Bias in Ceramics: From Polyol Made CoFe₂O₄-core@CoO-Shell NPs to Nanostructured Ceramics

Authors: N. Flores-Martinez, G. Franceschin, T. Gaudisson, J.-M. Greneche, R. Valenzuela-Monjaras, S. Ammar

Abstract:

Tailoring bulk materials keeping their nanoscale properties is the daydream of material scientists. But especially in magnetism, this single desire can revolutionize our everyday life. Now, thanks to the methods of synthesis, based on the combination of colloidal chemistry (CC) to flash sintering (FS), customizing magnets becomes each time more 'easy', 'cheap' and 'clean'. Although by CC we can obtain straightway nanopowders with good magnetic featuring, like exchange bias (EB) phenomenon, it does not result so attractive for applications. Since a solid material is simple to manipulate and integrate in a device, many consolidation methods have been tested aiming to keep the nanopowders characteristics after consolidation. Unfortunately, the lack of structural crystalline arrangement and the grain growth worsen the magnetic properties. In this work, we exhibit, for the first-time author’s best knowledge, the EB in sintered ceramics, starting from CoFe₂O₄-core@CoO-shell NPs obtained by CC. Despite the fact that EB field is about 28 mT in ceramics and it is not yet considered for applications, this work opens an alternative in the permanent magnets fabrication through a FS method, the spark plasma sintering, starting from CC synthesized nanopowders.

Keywords: core-shell nanoparticles, exchange bias, nanostructured ceramics, spark plasma sintering

Procedia PDF Downloads 125
485 Insertion Loss Improvement of a Two-Port Saw Resonator Based on AlN via Alloying with Transition Metals

Authors: Kanouni Fares

Abstract:

This paper describes application of X-doped AlN (X=Sc, Cr and Y) to wideband surface acoustic wave (SAW) resonators in 200–300 MHz range. First, it is shown theoretically that Cr doped AlN thin film has the highest piezoelectric strain constant, accompanied by a lowest mechanical softening compared to Sc doped AlScN and Y doped AlN thin films for transition metals concentrations ranging from 0 to 25%. Next, the impact of transition metals (Sc, Cr and Y) concentration have been carried out for the first time, in terms of surface wave velocity, electrode reflectivity, transduction coefficient and distributed finger capacitance. Finely, the insertion loss of two-port SAW resonator based on AlXN (X=Sc, Cr and Y) deposited on sapphire substrate is obtained using P-matrix model, and it is shown that AlCrN-SAW resonator exhibit lower insertion loss compared to those based on AlScN and AlYN for metal concentrations of 25%.This finding may position Cr doped AlN as a prime piezoelectric material for low loss SAW resonators whose performance can be tuned via Cr composition.

Keywords: P-Matrix, SAW-delay line, interdigital transducer, nitride aluminum, metals transition

Procedia PDF Downloads 90
484 Development of PCL/Chitosan Core-Shell Electrospun Structures

Authors: Hilal T. Sasmazel, Seda Surucu

Abstract:

Skin tissue engineering is a promising field for the treatment of skin defects using scaffolds. This approach involves the use of living cells and biomaterials to restore, maintain, or regenerate tissues and organs in the body by providing; (i) larger surface area for cell attachment, (ii) proper porosity for cell colonization and cell to cell interaction, and (iii) 3-dimensionality at macroscopic scale. Recent studies on this area mainly focus on fabrication of scaffolds that can closely mimic the natural extracellular matrix (ECM) for creation of tissue specific niche-like environment at the subcellular scale. Scaffolds designed as ECM-like architectures incorporating into the host with minimal scarring/pain and facilitate angiogenesis. This study is related to combining of synthetic PCL and natural chitosan polymers to form 3D PCL/Chitosan core-shell structures for skin tissue engineering applications. Amongst the polymers used in tissue engineering, natural polymer chitosan and synthetic polymer poly(ε-caprolactone) (PCL) are widely preferred in the literature. Chitosan has been among researchers for a very long time because of its superior biocompatibility and structural resemblance to the glycosaminoglycan of bone tissue. However, the low mechanical flexibility and limited biodegradability properties reveals the necessity of using this polymer in a composite structure. On the other hand, PCL is a versatile polymer due to its low melting point (60°C), ease of processability, degradability with non-enzymatic processes (hydrolysis) and good mechanical properties. Nevertheless, there are also several disadvantages of PCL such as its hydrophobic structure, limited bio-interaction and susceptibility to bacterial biodegradation. Therefore, it became crucial to use both of these polymers together as a hybrid material in order to overcome the disadvantages of both polymers and combine advantages of those. The scaffolds here were fabricated by using electrospinning technique and the characterizations of the samples were done by contact angle (CA) measurements, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-Ray Photoelectron spectroscopy (XPS). Additionally, gas permeability test, mechanical test, thickness measurement and PBS absorption and shrinkage tests were performed for all type of scaffolds (PCL, chitosan and PCL/chitosan core-shell). By using ImageJ launcher software program (USA) from SEM photographs the average inter-fiber diameter values were calculated as 0.717±0.198 µm for PCL, 0.660±0.070 µm for chitosan and 0.412±0.339 µm for PCL/chitosan core-shell structures. Additionally, the average inter-fiber pore size values exhibited decrease of 66.91% and 61.90% for the PCL and chitosan structures respectively, compare to PCL/chitosan core-shell structures. TEM images proved that homogenous and continuous bead free core-shell fibers were obtained. XPS analysis of the PCL/chitosan core-shell structures exhibited the characteristic peaks of PCL and chitosan polymers. Measured average gas permeability value of produced PCL/chitosan core-shell structure was determined 2315±3.4 g.m-2.day-1. In the future, cell-material interactions of those developed PCL/chitosan core-shell structures will be carried out with L929 ATCC CCL-1 mouse fibroblast cell line. Standard MTT assay and microscopic imaging methods will be used for the investigation of the cell attachment, proliferation and growth capacities of the developed materials.

Keywords: chitosan, coaxial electrospinning, core-shell, PCL, tissue scaffold

Procedia PDF Downloads 459
483 Optimisation of Energy Harvesting for a Composite Aircraft Wing Structure Bonded with Discrete Macro Fibre Composite Sensors

Authors: Ali H. Daraji, Ye Jianqiao

Abstract:

The micro electrical devices of the wireless sensor network are continuously developed and become very small and compact with low electric power requirements using limited period life conventional batteries. The low power requirement for these devices, cost of conventional batteries and its replacement have encouraged researcher to find alternative power supply represented by energy harvesting system to provide an electric power supply with infinite period life. In the last few years, the investigation of energy harvesting for structure health monitoring has increased to powering wireless sensor network by converting waste mechanical vibration into electricity using piezoelectric sensors. Optimisation of energy harvesting is an important research topic to ensure a flowing of efficient electric power from structural vibration. The harvesting power is mainly based on the properties of piezoelectric material, dimensions of piezoelectric sensor, its position on a structure and value of an external electric load connected between sensor electrodes. Larger surface area of sensor is not granted larger power harvesting when the sensor area is covered positive and negative mechanical strain at the same time. Thus lead to reduction or cancellation of piezoelectric output power. Optimisation of energy harvesting is achieved by locating these sensors precisely and efficiently on the structure. Limited published work has investigated the energy harvesting for aircraft wing. However, most of the published studies have simplified the aircraft wing structure by a cantilever flat plate or beam. In these studies, the optimisation of energy harvesting was investigated by determination optimal value of an external electric load connected between sensor electrode terminals or by an external electric circuit or by randomly splitting piezoelectric sensor to two segments. However, the aircraft wing structures are complex than beam or flat plate and mostly constructed from flat and curved skins stiffened by stringers and ribs with more complex mechanical strain induced on the wing surfaces. This aircraft wing structure bonded with discrete macro fibre composite sensors was modelled using multiphysics finite element to optimise the energy harvesting by determination of the optimal number of sensors, location and the output resistance load. The optimal number and location of macro fibre sensors were determined based on the maximization of the open and close loop sensor output voltage using frequency response analysis. It was found different optimal distribution, locations and number of sensors bounded on the top and the bottom surfaces of the aircraft wing.

Keywords: energy harvesting, optimisation, sensor, wing

Procedia PDF Downloads 279
482 Tailoring Piezoelectricity of PVDF Fibers with Voltage Polarity and Humidity in Electrospinning

Authors: Piotr K. Szewczyk, Arkadiusz Gradys, Sungkyun Kim, Luana Persano, Mateusz M. Marzec, Oleksander Kryshtal, Andrzej Bernasik, Sohini Kar-Narayan, Pawel Sajkiewicz, Urszula Stachewicz

Abstract:

Piezoelectric polymers have received great attention in smart textiles, wearables, and flexible electronics. Their potential applications range from devices that could operate without traditional power sources, through self-powering sensors, up to implantable biosensors. Semi-crystalline PVDF is often proposed as the main candidate for industrial-scale applications as it exhibits exceptional energy harvesting efficiency compared to other polymers combined with high mechanical strength and thermal stability. Plenty of approaches have been proposed for obtaining PVDF rich in the desired β-phase with electric polling, thermal annealing, and mechanical stretching being the most prevalent. Electrospinning is a highly tunable technique that provides a one-step process of obtaining highly piezoelectric PVDF fibers without the need for post-treatment. In this study, voltage polarity and relative humidity influence on electrospun PVDF, fibers were investigated with the main focus on piezoelectric β-phase contents and piezoelectric performance. Morphology and internal structure of fibers were investigated using scanning (SEM) and transmission electron microscopy techniques (TEM). Fourier Transform Infrared Spectroscopy (FITR), wide-angle X-ray scattering (WAXS) and differential scanning calorimetry (DSC) were used to characterize the phase composition of electrospun PVDF. Additionally, surface chemistry was verified with X-ray photoelectron spectroscopy (XPS). Piezoelectric performance of individual electrospun PVDF fibers was measured using piezoresponse force microscopy (PFM), and the power output from meshes was analyzed via custom-built equipment. To prepare the solution for electrospinning, PVDF pellets were dissolved in dimethylacetamide and acetone solution in a 1:1 ratio to achieve a 24% solution. Fibers were electrospun with a constant voltage of +/-15kV applied to the stainless steel nozzle with the inner diameter of 0.8mm. The flow rate was kept constant at 6mlh⁻¹. The electrospinning of PVDF was performed at T = 25°C and relative humidity of 30 and 60% for PVDF30+/- and PVDF60+/- samples respectively in the environmental chamber. The SEM and TEM analysis of fibers produced at a lower relative humidity of 30% (PVDF30+/-) showed a smooth surface in opposition to fibers obtained at 60% relative humidity (PVDF60+/-), which had wrinkled surface and additionally internal voids. XPS results confirmed lower fluorine content at the surface of PVDF- fibers obtained by electrospinning with negative voltage polarity comparing to the PVDF+ obtained with positive voltage polarity. Changes in surface composition measured with XPS were found to influence the piezoelectric performance of obtained fibers what was further confirmed by PFM as well as by custom-built fiber-based piezoelectric generator. For PVDF60+/- samples humidity led to an increase of β-phase contents in PVDF fibers as confirmed by FTIR, WAXS, and DSC measurements, which showed almost two times higher concentrations of β-phase. A combination of negative voltage polarity with high relative humidity led to fibers with the highest β-phase contents and the best piezoelectric performance of all investigated samples. This study outlines the possibility to produce electrospun PVDF fibers with tunable piezoelectric performance in a one-step electrospinning process by controlling relative humidity and voltage polarity conditions. Acknowledgment: This research was conducted within the funding from m the Sonata Bis 5 project granted by National Science Centre, No 2015/18/E/ST5/00230, and supported by the infrastructure at International Centre of Electron Microscopy for Materials Science (IC-EM) at AGH University of Science and Technology. The PFM measurements were supported by an STSM Grant from COST Action CA17107.

Keywords: crystallinity, electrospinning, PVDF, voltage polarity

Procedia PDF Downloads 106
481 Behavior of Oil Palm Shell Reinforced Concrete Beams Added with Kenaf Fibres

Authors: Sharifah M. Syed Mohsin, Sayid J. Azimi, Abdoullah Namdar

Abstract:

The present article reports the findings of a study into the behavior of oil palm shell reinforced concrete (OPSRC) beams with the addition of kenaf fibres. The work aim is to examine the potential of using kenaf fibres to improve the strength and ductility of the OPSRC beams and also observe its potential in serving as part of shear reinforcement in the beams. Two different arrangements of the shear links in OPSRC beams with a selection of kenaf fibres (amount of [10kg/m] ^3 and [20kg/m] ^3) content are tested under monotonic loading. In the first arrangement, the kenaf fibres are added to the beam which has full shear reinforcement to study the structural behavior of OPSRC beams with fibres. In the second arrangement, the spacing between the shear links in the OPSRC beams are increased by 50% and experimental work is carried out to study the effect of kenaf fibres without compromising the beams strength and ductility. The results show that the addition of kenaf fibres enhanced the load carrying capacity, ductility and also altered the failure mode of the beams from a brittle shear mode to a flexural ductile one. Furthermore, the study depicts that kenaf fibres are compatible with OPSRC and suggest prospective results.

Keywords: oil palm shell reinforced concrete, kenaf fibres, peak strength, ductility

Procedia PDF Downloads 403