Search results for: photodegradable polyethylene
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 359

Search results for: photodegradable polyethylene

359 Standard and Processing of Photodegradable Polyethylene

Authors: Nurul-Akidah M. Yusak, Rahmah Mohamed, Noor Zuhaira Abd Aziz

Abstract:

The introduction of degradable plastic materials into agricultural sectors has represented a promising alternative to promote green agriculture and environmental friendly of modern farming practices. Major challenges of developing degradable agricultural films are to identify the most feasible types of degradation mechanisms, composition of degradable polymers and related processing techniques. The incorrect choice of degradable mechanisms to be applied during the degradation process will cause premature losses of mechanical performance and strength. In order to achieve controlled process of agricultural film degradation, the compositions of degradable agricultural film also important in order to stimulate degradation reaction at required interval of time and to achieve sustainability of the modern agricultural practices. A set of photodegradable polyethylene based agricultural film was developed and produced, following the selective optimization of processing parameters of the agricultural film manufacturing system. Example of agricultural films application for oil palm seedlings cultivation is presented.

Keywords: photodegradable polyethylene, plasticulture, processing schemes

Procedia PDF Downloads 517
358 Interaction of Vegetable Fillers with Polyethylene Matrix in Biocomposites

Authors: P. V. Pantyukhov, T. V. Monakhova, A. A. Popov

Abstract:

The paper studies the diffusion of low molecular weight components from vegetable fillers into polyethylene matrix during the preparation of biocomposites. In order to identify the diffusible substances a model experiment used where the hexadecane acted as a model of polyethylene. It was determined that polyphenolic compounds and chlorophyll penetrate from vegetable fillers to hexadecane to the maximum extent. There was found a correlation between the amount of polyphenolic compounds diffusible from the fillers to hexadecane and thermal oxidation kinetics of real biocomposites based on polyethylene and vegetable fillers. Thus, it has been assumed the diffusion of polyphenols and chlorophyll from vegetable fillers into polyethylene matrix during the preparation of biocomposites.

Keywords: biocomposite, composite, diffusion, polyethylene, vegetable filler

Procedia PDF Downloads 445
357 Effect of Zinc Oxide Nanoparticles along with Sodium Hydroxide on Self-Cleaning and Antibacterial Properties of Polyethylene Terephthalate

Authors: Mohammad Mirjalili, Maryam Mohammdi, Loghman Karimi

Abstract:

In this study, synthesis of zinc oxide nanoparticles was carried out along with the hydrolysis of Polyethylene terephthalate using sodium hydroxide to increase the surface activity and enhance the nanoparticles adsorption. The polyester fabrics were treated with zinc acetate and sodium hydroxide at ultrasound bath, resulting in the formation of ZnO nanospheres. The presence of zinc oxide on the surface of the polyethylene terephthalate was confirmed by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The self-cleaning property of treated polyethylene terephthalate was evaluated through discoloring methylene blue stain under sunlight irradiation. The antibacterial activities of the samples against two common pathogenic bacteria including Escherichia coli and Staphylococcus aureus were also assessed. The results indicated that the photocatalytic and antibacterial activities of the ultrasound treated polyethylene terephthalate improved significantly.

Keywords: zinc oxide, polyethylene terephthalate, self-cleaning, antibacterial

Procedia PDF Downloads 328
356 A Unified Constitutive Model for the Thermoplastic/Elastomeric-Like Cyclic Response of Polyethylene with Different Crystal Contents

Authors: A. Baqqal, O. Abduhamid, H. Abdul-Hameed, T. Messager, G. Ayoub

Abstract:

In this contribution, the effect of crystal content on the cyclic response of semi-crystalline polyethylene is studied over a large strain range. Experimental observations on a high-density polyethylene with 72% crystal content and an ultralow density polyethylene with 15% crystal content are reported. The cyclic stretching does appear a thermoplastic-like response for high crystallinity and an elastomeric-like response for low crystallinity, both characterized by a stress-softening, a hysteresis and a residual strain, whose amount depends on the crystallinity and the applied strain. Based on the experimental observations, a unified viscoelastic-viscoplastic constitutive model capturing the polyethylene cyclic response features is proposed. A two-phase representation of the polyethylene microstructure allows taking into consideration the effective contribution of the crystalline and amorphous phases to the intermolecular resistance to deformation which is coupled, to capture the strain hardening, to a resistance to molecular orientation. The polyethylene cyclic response features are captured by introducing evolution laws for the model parameters affected by the microstructure alteration due to the cyclic stretching.

Keywords: cyclic loading unloading, polyethylene, semi-crystalline polymer, viscoelastic-viscoplastic constitutive model

Procedia PDF Downloads 223
355 Investigation of Active Modified Atmosphere and Nanoparticle Packaging on Quality of Tomatoes

Authors: M. Ghasemi-Varnamkhasti, S. H. Yoosefian, A. Mohammad-Razdari

Abstract:

This study investigated the effects of Ag nanoparticle polyethylene film and active modified atmosphere on the postharvest quality of tomatoes stored at 6 ºC. The atmosphere composition used in the packaging was 7% O2 + 7% CO2 + 86% N2, and synthetic air (control). The variables measured were weight loss, firmness, color and respiration rate over 21 days. The results showed that the combination of Ag nanoparticle polyethylene film and modified atmosphere could extend the shelf life of tomatoes to 21 days and could influence the postharvest quality of tomatoes. Also, existence of Ag nanoparticles caused preventing from increasing weight loss, a*, b*, Chroma, Hue angle and reducing firmness and L*. As well as, tomatoes at Ag nanoparticle polyethylene films had lower respiration rate than Polyethylene and paper bags to 13.27% and 23.50%, respectively. The combination of Ag nanoparticle polyethylene film and active modified atmosphere was effective with regard to delaying maturity during the storage period, and preserving the quality of tomatoes.

Keywords: ag nanoparticles, modified atmosphere, polyethylene film, tomato

Procedia PDF Downloads 276
354 Use of Nanoclay in Various Modified Polyolefins

Authors: Michael Tupý, Alice Tesaříková-Svobodová, Dagmar Měřínská, Vít Petránek

Abstract:

Polyethylene (PE), Polypropylene (PP), Polyethylene (vinyl acetate) (EVA) and Surlyn (modif-PE) nano composite samples were prepared with montmorillonite fillers Cloisite 93A and Dellite 67G. The amount of modified Na+ montmorillonite (MMT) was fixed to 5 % (w/w). For the compounding of polymer matrix and chosen nano fillers twin-screw kneader was used. The level of MMT intercalation or exfoliation in the nano composite systems was studied by transmission electron microscopy (TEM) observations. The properties of samples were evaluated by dynamical mechanical analysis (E* modulus at 30 °C) and by the measurement of tensile properties (stress and strain at break).

Keywords: polyethylene, polypropylene, polyethylene(vinyl acetate), clay, nanocomposite, montmorillonite

Procedia PDF Downloads 534
353 Investigation of Interaction between Interferons and Polyethylene Glycol Using Molecular Dynamics Simulation

Authors: M. Dehestani, F. Kamali, M. Klantari Pour, L. Zeidabadi-Nejad

Abstract:

Chemical bonding between polyethylene glycol (PEG) with pharmaceutical proteins called pegylation is one of the most effective methods of improving the pharmacological properties. The covalent attachment of polyethylene glycol (PEG) to proteins will increase their pharmacologic properties. For the formation of a combination of pegylated protein should first be activated PEG and connected to the protein. Interferons(IFNs) are a family of cytokines which show antiviral effects in front of the biological and are responsible for setting safety system. In this study, the nature and properties of the interaction between active positions of IFNs and polyethylene glycol have been investigated using molecular dynamics simulation. The main aspect of this theoretical work focuses on the achievement of valuable data on the reaction pathways of PEG-IFNs and the transition state energy. Our results provide a new perspective on the interactions, chemical properties and reaction pathways between IFNs and PEG.

Keywords: interaction, interferons, molecular dynamics simulation, polyethylene glycol

Procedia PDF Downloads 240
352 Bio-Based Polyethylene/Rice Starch Composite Prepared by Twin Screw Extruder

Authors: Waris Piyaphon, Sathaphorn O-Suwankul, Kittima Bootdee, Manit Nithitanakul

Abstract:

Starch from rice was used as a filler in low density polyethylene in preparation of low density polyethylene/rice starch composite. This study aims to prepare LDPE/rice starch composites. Glycerol (GC) was used as a plasticizer in order to increase dispersion and reduce agglomeration of rice starch in low density polyethylene (LDPE) matrix. Low density polyethylene grafted maleic anhydride (LDPE-g-MA) was used as a compatibilizer to increase the compatibility between LDPE and rice starch. The content of rice starch was varied between 10, 20, and 30 %wt. Results indicated that increase of rice starch content reduced tensile strength at break, elongation, and impact strength of composites. LDPE-g-MA showed positive effect on mechanical properties which increased in tensile strength and impact properties as well as compatibility between rice starch and LDPE matrix. Moreover, the addition of LDPE-g-MA significantly improved the impact strength by 50% compared to neat composite. The incorporation of GC enhanced the processability of composite. Introduction of GC affected the viscosity after blending by reducing the viscosity at all shear rate. The presence of plasticizer increased the impact strength but decreased the stiffness of composite. Water absorption of the composite was increased when plasticizer was added.

Keywords: composite material, plastic starch composite, polyethylene composite, PE grafted maleic anhydride

Procedia PDF Downloads 207
351 Valorisation of Polyethylene and Plastic Bottle Wastes as Pavement Blocks

Authors: Babagana Mohammed, Fidelis Patrick Afangide

Abstract:

This research investigated the possibility of using waste low-dense polyethylene and waste plastic bottles for the production of interlock pavement blocks. In many parts of the world, interlock pavement block is used widely as modern day solution to outdoor flooring applications and the blocks have different shapes, sizes and colours suiting the imagination of landscape architects. Using suitable and conventional mould having a 220 x 135 x 50 mm³ shape, the interlock blocks were produced. The material constituents of the produced blocks were waste low-dense polyethylene and waste plastic bottles mixed in varying, respective percentage-weight proportions of; 100%+0%, 75%+25%, 50%+50% and 25%+75%. The blocks were then tested for unconfined compressive strength and water absorption properties. The test results compared well with those of conventional concrete interlock blocks and the research demonstrates the possibility of value recovery from the waste streams which are currently dumped in open-spaces thereby affecting the environment.

Keywords: pavement blocks, polyethylene, plastic bottle, wastes, valorization

Procedia PDF Downloads 401
350 Simple Rheological Method to Estimate the Branch Structures of Polyethylene under Reactive Modification

Authors: Mahdi Golriz

Abstract:

The aim of this work is to estimate the change in molecular structure of linear low-density polyethylene (LLDPE) during peroxide modification can be detected by a simple rheological method. For this purpose a commercial grade LLDPE (Exxon MobileTM LL4004EL) was reacted with different doses of dicumyl peroxide (DCP). The samples were analyzed by size-exclusion chromatography coupled with a light scattering detector. The dynamic shear oscillatory measurements showed a deviation of the δ-׀G ׀٭curve from that of the linear LLDPE, which can be attributed to the presence of long-chain branching (LCB). By the use of a simple rheological method that utilizes melt rheology, transformations in molecular architecture induced on an originally linear low density polyethylene during the early stages of reactive modification were indicated. Reasonable and consistent estimates are obtained, concerning the degree of LCB, the volume fraction of the various molecular species produced in peroxide modification of LLDPE.

Keywords: linear low-density polyethylene, peroxide modification, long-chain branching, rheological method

Procedia PDF Downloads 152
349 Experimental Study on Hardness and Impact Strength of Polyethylene/Carbon Composites

Authors: Armin Najipour, A. M. Fattahi

Abstract:

The aim of this research was to investigate the effect of the addition of multi walled carbon nanotubes on the mechanical properties of polyethylene/carbon nanotube nanocomposites. To do so, polyethylene and carbon nanotube were mixed in different weight percentages containing 0, 0.5, 1, and 1.5% carbon nanotube in two screw extruder apparatus by fusion. Then the nanocomposite samples were molded in injection apparatus according to ASTM: D6110 standard. The effects of carbon nanotube addition in 4 different levels and injection pressure in 2 levels on the hardness and impact strength of the nanocomposite samples were investigated. The results showed that the addition of carbon nanotube had a significant effect on improving hardness and impact strength of the nanocomposite samples such that by adding 1% w/w carbon nanotube, the impact strength and hardness of the samples improved to 74% and 46.7% respectively. Also, according to the results, the effect of injection pressure on the results was much less than that of carbon nanotube weight percentage.

Keywords: carbon nanotube, injection molding, mechanical properties, nanocomposite, polyethylene

Procedia PDF Downloads 320
348 Investigation of Mechanical and Rheological Properties of Poly (trimethylene terephthalate) (PTT)/Polyethylene Blend Using Carboxylate and Ionomer as Compatibilizers

Authors: Wuttikorn Chayapanja, Sutep Charoenpongpool, Manit Nithitanakul, Brian P. Grady

Abstract:

Poly (trimethylene terephthalate) (PTT) is a linear aromatic polyester with good strength and stiffness, good surface appearance, low shrinkage and war page, and good dimensional stability. However, it has low impact strength which is a problem in automotive application. Thus, modification of PTT with the other polymer or polymer blending is a one way to develop a new material with excellence properties. In this study, PTT/High Density Polyethylene (HDPE) blends and PTT/Linear Low Density Polyethylene (LLDPE) blends with and without compatibilizers base on maleic anhydride grafted HDPE (MAH-g-HDPE) and ethylene-methacrylic acid neutralized sodium metal (Na-EMAA) were prepared by a twin-screw extruder. The blended samples with different ratios of polymers and compatibilizers were characterized on mechanical and rheological properties. Moreover, the phase morphology and dispersion size were studied by using SEM to give better understanding of the compatibility of the blends.

Keywords: poly trimethylene terephthalate, polyethylene, compatibilizer, polymer blend

Procedia PDF Downloads 413
347 Impact of Solar Radiation Effects on the Physicochemical Properties of Unformulated Polyethylene (PE) Plastic Film

Authors: A. Adelhafidhi, I. M. Babaghayou, S. F. Chabira, M. Sebaa

Abstract:

This study deals with the photodegradation of unformulated polyethylene films for greenhouse covering. The UV range of solar light appears as the most deleterious factor of plastic degradation in outdoor exposure. The reasons of this photosensitivity are structural defects which are light-absorbing. The use of FTIR as an investigation tool has revealed that the material reacts with surrounding oxygen via a photooxidation process. Although the photochemical process is quite complex, it appears through this study than crosslinking and chain scissions are the most important events taking place during aging These two key reactions change irremediably the average molecular weight affecting thus drastically the mechanical properties and reducing, in the same way, the service lifetime of the films.

Keywords: polyethylene, films, unformulated, FTIR, ageing

Procedia PDF Downloads 366
346 Experimental Study on Tensile Strength of Polyethylene/Carbon Injected Composites

Authors: Armin Najipour, A. M. Fattahi

Abstract:

The aim of this research was to investigate the effect of the addition of multi walled carbon nanotubes on the mechanical properties of polyethylene/carbon nanotube nanocomposites. To do so, polyethylene and carbon nanotube were mixed in different weight percentages containing 0, 0.5, 1, and 1.5% carbon nanotube in two screw extruder apparatus by fusion. Then the nanocomposite samples were molded in injection apparatus according to ASTM:D638 standard. The effects of carbon nanotube addition in 4 different levels on the tensile strength, elastic modulus and elongation of the nanocomposite samples were investigated. The results showed that the addition of carbon nanotube had a significant effect on improving tensile strength of the nanocomposite samples such that by adding 1% w/w carbon nanotube, the tensile strength 23.4%,elastic modulus 60.4%and elongation 29.7% of the samples improved. Also, according to the results, Manera approximation model at percentages about 0.5% weight and modified Halpin-Tsai at percentages about 1% weight lead to favorite and reliable results.

Keywords: carbon nanotube, injection molding, Mechanical properties, Nanocomposite, polyethylene

Procedia PDF Downloads 269
345 Effect of Tool Geometry and Welding Parameters on Macrostructure and Weld Strength in Friction Stir Welded of High Density Polyethylene Sheets

Authors: Mustafa Kemal Bilici, Memduh Kurtulmuş, İlyas Kartal, Ahmet İrfan Yükler

Abstract:

Friction stir welding is a solid-state joining process that has gained acceptable progress in recent years. This method which was first used for welding of aluminum and its alloys is now employed for welding of other materials such as polymers and composites. The aim of the present work is to investigate the mechanical properties of butt joints produced by friction stir welding (FSW) in high density polyethylene sheets of 4 mm thickness. The effects of critical welding parameters and tool design have affected on mechanical properties, weld surface and macrostructure of friction stir welded polyethylene. Experiments were performed at tool rotational speeds of 600, 900, 1200 and 1500 r/min and traverse speeds of 30, 45 and 60 mm/min, tool diameters (d) of 4, 5, 6 mm and tool shoulder diameters (D) 20, 25, 30 mm. A strength value of 80 % of the base material was achieved at the isolated optimum welding condition. According to the tool design, the welding parameters and the mechanical properties changed to a great extent. The highest tensile strength was achieved at low feed rates, high tool rotation speeds and shoulder diameters/pin diameters ratio.

Keywords: friction stir welding, mechanical properties, polyethylene, high density polyethylene, tool design

Procedia PDF Downloads 393
344 Recycling of Plastic Waste into Composites Using Kaolin as Reinforcement

Authors: Gloria P. Manu, Johnson K. Efavi, Abu Yaya, Grace K. Arkorful, Frank Godson

Abstract:

Plastics have been used extensively in both food and water packaging and other applications because of their inherent properties of low bulk densities and inertness as well as its low cost. Waste management of these plastics after usage is troubling in Ghana. One way of addressing the environmental problems associated with these plastic wastes is by recycling into useful products such as composites for energy and construction applications using natural or local materials as reinforcement. In this work, composites have been formed from waste low-density polyethylene (LDPE) and kaolin at temperatures as low as 70 ֯C using low-cost solvents like kerosene. Chemical surface modifications have been employed to improve the interfacial bonding resulting in the enhancement of properties of the composites. Kaolin particles of sizes ≤ 90µm were dispersed in the polyethylene matrix. The content of the LDPE was varied between 10, 20, 30, 40, 50, 60, and 70 %wt. Results obtained indicated that all the composites exhibited impressive compressive and flexural strengths with the 50%wt. composition having the highest strength. The hardness value of the composites increased as the polyethylene composition reduces and that of the kaolin increased. The average density and water of absorption of the composites were 530kg/m³ and 1.3% respectively.

Keywords: polyethylene, recycling, waste, composite, kaolin

Procedia PDF Downloads 172
343 Preparation of Polyethylene/Cashewnut Flour/ Gum Arabic Polymer Blends Through Melt-blending and Determination of Their Biodegradation by Composting Method for Possible Reduction of Polyethylene-based Wastes from the Environment

Authors: Abubakar Umar Birnin-yauri

Abstract:

Plastic wastes arising from Polyethylene (PE)-based materials are increasingly becoming environmental problem, this is owed to the fact that these PE waste materials will only decompose over hundreds, or even thousands of years, during which they cause serious environmental problems. In this research, Polymer blends prepared from PE, Cashewnut flour (CNF) and Gum Arabic (GA) were studied in order to assay their biodegradation potentials via composting method. Different sample formulations were made i.e., X1= (70% PE, 25% CNF and 5% GA, X2= (70% PE, 20% CNF and 10% GA), X3= (70% PE, 15% CNF and 15% GA), X4 = (70% PE, 10% CNF and 20% GA) and X5 = (70% PE, 5% CNF and 25% GA) respectively. The results obtained showed that X1 recorded weight loss of 9.89% of its original weight after the first 20 days and 37.45% after 100 day, and X2 lost 12.67 % after the first 20 days and 42.56% after 100day, sample X5 experienced the greatest weight lost in the two methods adopted which are 52.9% and 57.89%. Instrumental analysis such as Fourier Transform Infrared Spectroscopy, Thermogravimetric analysis and Scanning electron microscopy were performed on the polymer blends before and after biodegradation. The study revealed that the biodegradation of the polymer blends is influenced by the contents of both the CNF and GA added into the blends.

Keywords: polyethylene, cashewnut, gum Arabic, biodegradation, blend, environment

Procedia PDF Downloads 70
342 Comparative Life Cycle Assessment of High Barrier Polymer Packaging for Selecting Resource Efficient and Environmentally Low-Impact Materials

Authors: D. Kliaugaitė, J. K, Staniškis

Abstract:

In this study tree types of multilayer gas barrier plastic packaging films were compared using life cycle assessment as a tool for resource efficient and environmentally low-impact materials selection. The first type of multilayer packaging film (PET-AlOx/LDPE) consists of polyethylene terephthalate with barrier layer AlOx (PET-AlOx) and low density polyethylene (LDPE). The second type of polymer film (PET/PE-EVOH-PE) is made of polyethylene terephthalate (PET) and co-extrusion film PE-EVOH-PE as barrier layer. And the third one type of multilayer packaging film (PET-PVOH/LDPE) is formed from polyethylene terephthalate with barrier layer PVOH (PET-PVOH) and low density polyethylene (LDPE). All of analyzed packaging has significant impact to resource depletion, because of raw materials extraction and energy use and production of different kind of plastics. Nevertheless the impact generated during life cycle of functional unit of II type of packaging (PET/PE-EVOH-PE) was about 25% lower than impact generated by I type (PET-AlOx/LDPE) and III type (PET-PVOH/LDPE) of packaging. Result revealed that the contribution of different gas barrier type to the overall environmental problem of packaging is not significant. The impact are mostly generated by using energy and materials during raw material extraction and production of different plastic materials as plastic polymers material as PE, LDPE and PET, but not gas barrier materials as AlOx, PVOH and EVOH. The LCA results could be useful in different decision-making processes, for selecting resource efficient and environmentally low-impact materials.

Keywords: life cycle assessment, polymer packaging, resource efficiency, materials extraction, polyethylene terephthalate

Procedia PDF Downloads 362
341 The Effect of Linear Low-Density Polyethylene Cross-Contamination by Other Plastic Types on Bitumen Modification

Authors: Nioushasadat Haji Seyed Javadi, Ailar Hajimohammadi, Nasser Khalili

Abstract:

Currently, the recycling of plastic wastes has been the subject of much research attention, especially in pavement constructions, where virgin polymers can be replaced by recycled plastics for asphalt binder modification. Among the plastic types, recycled linear low-density polyethylene (RLLDPE) has been one of the common and largely available plastics for bitumen modification. However, it is important to note that during the recycling process, LLDPE can easily be contaminated with other plastic types, especially with low-density polyethylene (LDPE), high-density polyethylene (HDPE), and polypropylene (PP). The cross-contamination of LLDPE with other plastics lowers its quality and, consequently, can affect the asphalt modification process. This study aims to assess the effect of LLDPE cross-contamination on bitumen modification. To do so, samples of bitumen modified with LLDPE and blends of LLDPE with LDPE, HDPE, and PP were prepared and compared through physical and rheological evaluations. The experimental tests, including softening point, penetration, viscosity at 135 °C, and dynamic shear rheometer, were conducted. The results indicated that the effect of cross-contamination on softening point and rutting resistance was negligible. On the other side, penetration and viscosity were highly impacted. The results also showed that among contamination of LLDPE with the other plastic types, PP had the highest influence in comparison with HDPE and LDPE on changing the properties of the LLDPE- modified bitumen.

Keywords: recycled polyethylene, polymer cross-contamination, waste plastic, bitumen, rutting resistance

Procedia PDF Downloads 125
340 Enhancing of Paraffin Wax Properties by Adding of Low Density Polyethylene (LDPE)

Authors: Siham Mezher Yousif, Intisar Yahiya Mohammed, Salma Nagem Mouhy

Abstract:

Low Density Polyethylene is a thermoplastic resin extracted from petroleum based, whereas the wax is an oily organic component that is contains of alkanes, ester, polyester, and hydroxyl ester. The purpose of this research is to find out the optimum conditions of the wax produced by inducing with LDPE. The experiments were carried out by mixing different percentages of wax and LDPE to produce different polymer/wax compositions, in which lower values of the penetration, thickness, and electrical conductivity are obtained with increasing of mixing ratio of LDPE/wax which showed results of 19 mm penetration, 692 micron thickness and 5.9 mA electrical conductivity for 90 wt % of LDPE/wax) maximum mixing ratio (. It’s found that the optimum results regarding penetration, enamel thickness, and electrical conductivity “according to the enamel hardness, insulation properties, and economic aspects” are 20 mm, 276 micron, and 6.2 mA respectively.

Keywords: paraffin wax, low density polyethylene, blending, mixing ratio, bleaching

Procedia PDF Downloads 108
339 Extraction of Dyes Using an Aqueous Two-Phase System in Stratified and Slug Flow Regimes of a Microchannel

Authors: Garima, S. Pushpavanam

Abstract:

In this work, analysis of an Aqueous two-phase (polymer-salt) system for extraction of sunset yellow dye is carried out. A polymer-salt ATPS i.e.; Polyethylene glycol-600 and anhydrous sodium sulfate is used for the extraction. Conditions are chosen to ensure that the extraction results in a concentration of the dye in one of the phases. The dye has a propensity to come to the Polyethylene glycol-600 phase. This extracted sunset yellow dye is degraded photo catalytically into less harmful components. The cloud point method was used to obtain the binodal curve of ATPS. From the binodal curve, the composition of salt and Polyethylene glycol -600 was chosen such that the volume of Polyethylene glycol-600 rich phase is low. This was selected to concentrate the dye from a dilute solution in a large volume of contaminated solution into a small volume. This pre-concentration step provides a high reaction rate for photo catalytic degradation reaction. Experimentally the dye is extracted from the salt phase to Polyethylene glycol -600 phase in batch extraction. This was found to be very fast and all dye was extracted. The concentration of sunset yellow dye in salt and polymer phase is measured at 482nm by ultraviolet-visible spectrophotometry. The extraction experiment in micro channels under stratified flow is analyzed to determine factors which affect the dye extraction. Focus will be on obtaining slug flow by adding nanoparticles in micro channel. The primary aim is to exploit the fact that slug flow will help improve mass transfer rate from one phase to another through internal circulation in dispersed phase induced by shear.

Keywords: aqueous two phase system, binodal curve, extraction, sunset yellow dye

Procedia PDF Downloads 357
338 An Investigation on Fresh and Hardened Properties of Concrete While Using Polyethylene Terephthalate (PET) as Aggregate

Authors: Md. Jahidul Islam, A. K. M. Rakinul Islam, M. Salamah Meherier

Abstract:

This study investigates the suitability of using plastic, such as polyethylene terephthalate (PET), as a partial replacement of natural coarse and fine aggregates (for example, brick chips and natural sand) to produce lightweight concrete for load bearing structural members. The plastic coarse aggregate (PCA) and plastic fine aggregate (PFA) were produced from melted polyethylene terephthalate (PET) bottles. Tests were conducted using three different water–cement (w/c) ratios, such as 0.42, 0.48, and 0.57, where PCA and PFA were used as 50% replacement of coarse and fine aggregate respectively. Fresh and hardened properties of concrete have been compared for natural aggregate concrete (NAC), PCA concrete (PCC) and PFA concrete (PFC). The compressive strength of concrete at 28 days varied with the water–cement ratio for both the PCC and PFC. Between PCC and PFC, PFA concrete showed the highest compressive strength (23.7 MPa) at 0.42 w/c ratio and also the lowest compressive strength (13.7 MPa) at 0.57 w/c ratio. Significant reduction in concrete density was mostly observed for PCC samples, ranging between 1977–1924 kg/m³. With the increase in water–cement ratio PCC achieved higher workability compare to both NAC and PFC. It was found that both the PCA and PFA contained concrete achieved the required compressive strength to be used for structural purpose as partial replacement of the natural aggregate; but to obtain the desired lower density as lightweight concrete the PCA is most suited.

Keywords: polyethylene terephthalate, plastic aggregate, concrete, fresh and hardened properties

Procedia PDF Downloads 438
337 The Effect of Irgafos 168 in the Thermostabilization of High Density Polyethylene

Authors: Mahdi Almaky

Abstract:

The thermostabilization of High Density Polyethylene (HDPE) is realized through the action of primary antioxidant such as phenolic antioxidants and secondary antioxidants as aryl phosphates. The efficiency of two secondary antioxidants, commercially named Irgafos 168 and Weston 399, was investigated using different physical, mechanical, spectroscopic, and calorimetric methods. The effect of both antioxidants on the processing stability and long term stability of HDPE produced in Ras Lanuf oil and gas processing Company were measured and compared. The combination of Irgafos 168 with Irganox 1010, as used in smaller concentration, results in a synergetic effect against thermo-oxidation and protect better than the combination of Weston 399 with Irganox 1010 against the colour change at processing temperature and during long term oxidation process.

Keywords: thermostabilization, high density polyethylene, primary antioxidant, phenolic antioxidant, Irgafos 168, Irganox 1010, Weston 399

Procedia PDF Downloads 351
336 The Effect of Surface Modifiers on the Mechanical and Morphological Properties of Waste Silicon Carbide Filled High-Density Polyethylene

Authors: R. Dangtungee, A. Rattanapan, S. Siengchin

Abstract:

Waste silicon carbide (waste SiC) filled high-density polyethylene (HDPE) with and without surface modifiers were studied. Two types of surface modifiers namely; high-density polyethylene-grafted-maleic anhydride (HDPE-g-MA) and 3-aminopropyltriethoxysilane have been used in this study. The composites were produced using a two roll mill, extruder and shaped in a hydraulic compression molding machine. The mechanical properties of polymer composites such as flexural strength and modulus, impact strength, tensile strength, stiffness and hardness were investigated over a range of compositions. It was found that, flexural strength and modulus, tensile modulus and hardness increased, whereas impact strength and tensile strength decreased with the increasing in filler contents, compared to the neat HDPE. At similar filler content, the effect of both surface modifiers increased flexural modulus, impact strength, tensile strength and stiffness but reduced the flexural strength. Morphological investigation using SEM revealed that the improvement in mechanical properties was due to enhancement of the interfacial adhesion between waste SiC and HDPE.

Keywords: high-density polyethylene, HDPE-g-MA, mechanical properties, morphological properties, silicon carbide, waste silicon carbide

Procedia PDF Downloads 361
335 Phase Diagrams and Liquid-Liquid Extraction in Aqueous Biphasic Systems Formed by Polyethylene Glycol and Potassium Sodium Tartrate at 303.15 K

Authors: Amanda Cristina de Oliveira, Elias de Souza Monteiro Filho, Roberta Ceriani

Abstract:

Liquid-liquid extraction in aqueous two-phase systems (ATPSs) constitutes a powerful tool for purifying bio-materials, such as cells, organelles, proteins, among others. In this work, the extraction of the bovine serum albumin (BSA) has been studied in systems formed by polyethylene glycol (PEG) (1500, 4000, and 6000 g.mol⁻¹) + potassium sodium tartrate + water at 303.15°K. Phase diagrams were obtained by turbidimetry and Merchuk’s method (1998). The experimental tie-lines were described using the Othmer-Tobias and Bancroft correlations. ATPSs were correlated with the nonrandom two-liquid (NRTL) model. The results were considered excellent according to global root-mean-square deviations found which were between 0,72 and 1,13%. The concentrations of the proteins in each phase were determined by spectrophotometry at 280 nm, finding partition efficiencies greater than 71%.

Keywords: aqueous two phases systems, bovine serum albumin , liquid-liquid extraction, polyethylene glycol

Procedia PDF Downloads 156
334 The Role of Secondary Filler on the Fracture Toughness of HDPE/Clay Nanocomposites

Authors: R. Kamarudzaman, A. Kalam, N. A. Mohd Fadzil

Abstract:

Oil Palm Fruit Bunch Fiber (OPEFB) was used as secondary filler in HDPE/clay nanocomposites. The composites were prepared by melt compounding which contains High Density Polyethylene (HDPE), OPEFB fibers, Maleic Anhydride Graft Polyethylene (MAPE) and four different clay loading (3, 5, 7 and 10 PE nanoclay pellets per hundred of HDPE pellets). Four OPEFB sizes (180 µm, 250 µm, 300 µm and 355 µm) were added in the composites to investigate their effects on fracture toughness. Fracture toughness of the composites were determined according to ASTM D5045 and Single Edge Notch Bending (SENB) been employed during the test. The effects of alkali treatment were also investigated in this study. The results indicate that the fracture toughness slightly increased as clay loading increased. The highest value of fracture toughness was 0.47 and 1.06 MPa.m1/2 at 5 phr for both types of clay loading. The presence of filler as reinforcement with the matrix indicates the enhancement of composites compared to those without the filler.

Keywords: oil palm empty fruit bunch, fiber, polyethylene, polymer nanocomposite, impact strength

Procedia PDF Downloads 582
333 Surface Modification of Polyethylene Terephthalate Substrates via Direct Fluorination to Promote the Ag+ Ions Adsorption

Authors: Kohei Yamamoto, Jae-Ho Kim, Susumu Yonezawa

Abstract:

The surface of polyethylene terephthalate (PET) was modified with fluorine gas at 25 ℃ and 100 Torr for one h. Moreover, the effect of ethanol washing on surface modification was investigated in this study. The surface roughness of the fluorinated and washed PET samples was approximately six times larger than that (0.6 nm) of the untreated thing. The results of Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy showed that the bonds such as -C=O and -C-Hx derived from raw PET decreased and were converted into fluorinated bonds such as -CFx after surface fluorination. Even after washing with ethanol, the fluorinated bonds stably existed on the surface. These fluorinated bonds showed higher electronegativity according to the zeta potential results. The negative surface charges were increased by washing the ethanol, and it caused to increase in the number of polar groups such as -CHF- and -C-Fx. The fluorinated and washed surface of PET could promote the adsorption of Ag+ ions in AgNO₃ solution because of the increased surface roughness and the negatively charged surface.

Keywords: Ag+ ions adsorption, polyethylene terephthalate, surface fluorination, zeta potential

Procedia PDF Downloads 120
332 Effects of Additives on Thermal Decompositions of Carbon Black/High Density Polyethylene Compounds

Authors: Orathai Pornsunthorntawee, Wareerom Polrut, Nopphawan Phonthammachai

Abstract:

In the present work, the effects of additives, including contents of the added antioxidants and type of the selected metallic stearates (either calcium stearate (CaSt) or zinc stearate (ZnSt)), on the thermal stabilities of carbon black (CB)/high density polyethylene (HDPE) compounds were studied. The results showed that the AO contents played a key role in the thermal stabilities of the CB/HDPE compounds—the higher the AO content, the higher the thermal stabilities. Although the CaSt-containing compounds were slightly superior to those with ZnSt in terms of the thermal stabilities, the remaining solid residue of CaSt after heated to the temperature of 600 °C (mainly calcium carbonate (CaCO3) as characterized by the X-ray diffraction (XRD) technique) seemed to catalyze the decomposition of CB in the HDPE-based compounds. Hence, the quantification of CB in the CaSt-containing compounds with a muffle furnace gave an inaccurate CB content—much lower than actual value. However, this phenomenon was negligible in the ZnSt-containing system.

Keywords: antioxidant, stearate, carbon black, polyethylene

Procedia PDF Downloads 362
331 Role of Ionic Solutions Affect Water Treeing Propagation in XLPE Insulation for High Voltage Cable

Authors: T. Boonraksa, B. Marungsri

Abstract:

This paper presents the experimental results on role of ionic solutions affect water treeing propagation in cross-linked polyethylene insulation for high voltage cable. To study the water treeing expansion due to the ionic solutions, discs of 4mm thickness and 4cm diameter were taken from 115 kV XLPE insulation cable and were used as test specimen in this study. Ionic solutions composed of CuSO4, FeSO4, Na2SO4 and K2SO4 were used. Each specimen was immersed in 0.1 mole ionic solutions and was tested for 120 hrs. under a voltage stress at 7 kV AC rms, 1000 Hz. The results show that Na2SO4 and CuSO4solutions play an important role in the expansion of water treeing and cause degradation of the cross-linked polyethylene (XLPE) in the presence of the applied electric field.

Keywords: ionic solutions, water treeing, water treeing expansion, cross-linked polyethylene (XLPE)

Procedia PDF Downloads 381
330 Modeling Slow Crack Growth under Thermal and Chemical Effects for Fitness Predictions of High-Density Polyethylene Material

Authors: Luis Marquez, Ge Zhu, Vikas Srivastava

Abstract:

High-density polyethylene (HDPE) is one of the most commonly used thermoplastic polymer materials for water and gas pipelines. Slow crack growth failure is a well-known phenomenon in high-density polyethylene material and causes brittle failure well below the yield point with no obvious sign. The failure of transportation pipelines can cause catastrophic environmental and economic consequences. Using the non-destructive testing method to predict slow crack growth failure behavior is the primary preventative measurement employed by the pipeline industry but is often costly and time-consuming. Phenomenological slow crack growth models are useful to predict the slow crack growth behavior in the polymer material due to their ability to evaluate slow crack growth under different temperature and loading conditions. We developed a quantitative method to assess the slow crack growth behavior in the high-density polyethylene pipeline material under different thermal conditions based on existing physics-based phenomenological models. We are also working on developing an experimental protocol and quantitative model that can address slow crack growth behavior under different chemical exposure conditions to improve the safety, reliability, and resilience of HDPE-based pipeline infrastructure.

Keywords: mechanics of materials, physics-based modeling, civil engineering, fracture mechanics

Procedia PDF Downloads 204