Search results for: peptide sensor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1570

Search results for: peptide sensor

1390 A Taxonomy of Routing Protocols in Wireless Sensor Networks

Authors: A. Kardi, R. Zagrouba, M. Alqahtani

Abstract:

The Internet of Everything (IoE) presents today a very attractive and motivating field of research. It is basically based on Wireless Sensor Networks (WSNs) in which the routing task is the major analysis topic. In fact, it directly affects the effectiveness and the lifetime of the network. This paper, developed from recent works and based on extensive researches, proposes a taxonomy of routing protocols in WSNs. Our main contribution is that we propose a classification model based on nine classes namely application type, delivery mode, initiator of communication, network architecture, path establishment (route discovery), network topology (structure), protocol operation, next hop selection and latency-awareness and energy-efficient routing protocols. In order to provide a total classification pattern to serve as reference for network designers, each class is subdivided into possible subclasses, presented, and discussed using different parameters such as purposes and characteristics.

Keywords: routing, sensor, survey, wireless sensor networks, WSNs

Procedia PDF Downloads 152
1389 Biophysical Characterization of Archaeal Cyclophilin Like Chaperone Protein

Authors: Vineeta Kaushik, Manisha Goel

Abstract:

Chaperones are proteins that help other proteins fold correctly, and are found in all domains of life i.e., prokaryotes, eukaryotes and archaea. Various comparative genomic studies have suggested that the archaeal protein folding machinery appears to be highly similar to that found in eukaryotes. In case of protein folding; slow rotation of peptide prolyl-imide bond is often the rate limiting step. Formation of the prolyl-imide bond during the folding of a protein requires the assistance of other proteins, termed as peptide prolyl cis-trans isomerases (PPIases). Cyclophilins constitute the class of peptide prolyl isomerases with a wide range of biological function like protein folding, signaling and chaperoning. Most of the cyclophilins exhibit PPIase enzymatic activity and play active role in substrate protein folding which classifies them as a category of molecular chaperones. Till date, there is not very much data available in the literature on archaeal cyclophilins. We aim to compare the structural and biochemical features of the cyclophilin protein from within the three domains to elucidate the features affecting their stability and enzyme activity. In the present study, we carry out in-silico analysis of the cyclophilin proteins to predict their conserved residues, sites under positive selection and compare these proteins to their bacterial and eukaryotic counterparts to predict functional divergence. We also aim to clone and express these proteins in heterologous system and study their biophysical characteristics in detail using techniques like CD and fluorescence spectroscopy. Overall we aim to understand the features contributing to the folding, stability and dynamics of the archaeal cyclophilin proteins.

Keywords: biophysical characterization, x-ray crystallography, chaperone-like activity, cyclophilin, PPIase activity

Procedia PDF Downloads 181
1388 A Low Power Consumption Routing Protocol Based on a Meta-Heuristics

Authors: Kaddi Mohammed, Benahmed Khelifa D. Benatiallah

Abstract:

A sensor network consists of a large number of sensors deployed in areas to monitor and communicate with each other through a wireless medium. The collected routing data in the network consumes most of the energy of the sensor nodes. For this purpose, multiple routing approaches have been proposed to conserve energy resource at the sensors and to overcome the challenges of its limitation. In this work, we propose a new low energy consumption routing protocol for wireless sensor networks based on a meta-heuristic methods. Our protocol is to operate more fairly energy when routing captured data to the base station.

Keywords: WSN, routing, energy, heuristic

Procedia PDF Downloads 314
1387 The Combined Methodology To Detect Onboard Driver Fatigue

Authors: K. Senthil Nathan, P. Rajasekaran

Abstract:

Fatigue is a feeling of extreme physical or mental tiredness. Almost everyone becomes fatigued at some time, but driver’s fatigue is a serious problem that leads to thousands of automobile crashes each year. Fatigue process is often a change from the alertness and vigor state to the tiredness and weakness state. It is not only accompanied by drowsiness but also has a negative impact on mood. There have been studies to detect and quantify fatigue from the measurement of physiology variables such as electroencephalogram (EEG), electrooculogram (EOG), and electromyogram (EMG). This project involves a multimodal sensing of driver’s drowsiness. The first method is to count the eye blinking rate. In the second level, we authenticate the results of eye blink module with a grip sensor. The Flexiforce sensor is placed over the steering wheel. In the third level, the activities are sensed, the time elapsed from the driver’s last activity is counted here. The activities in the sense: Changing gear, applying brake, pressing sound horns, and turning the steering wheel. Absence of these activities is also an indicator of fatigue.

Keywords: eye blink sensor, Flexiforce sensor, EEG, EOG, EMG

Procedia PDF Downloads 452
1386 Performance Analysis of Wireless Sensor Networks in Areas for Sports Activities and Environmental Preservation

Authors: Teles de Sales Bezerra, Saulo Aislan da Silva Eleuterio, José Anderson Rodrigues de Souza, Ítalo de Pontes Oliveira

Abstract:

This paper presents a analysis of performance the Received Strength Signal Indicator (RSSI) to Wireless Sensor Networks, with a finality of investigate a behavior of ZigBee devices operating into real environments. The test of performance was realize using two Series 1 ZigBee Module and two modules of development Arduino Uno R3, evaluating in this form a measurements of RSSI into environments like places of sports, preservation forests and water reservoir.

Keywords: wireless sensor networks, RSSI, Arduino, environments

Procedia PDF Downloads 583
1385 A Survey of Attacks and Security Requirements in Wireless Sensor Networks

Authors: Vishnu Pratap Singh Kirar

Abstract:

Wireless sensor network (WSN) is a network of many interconnected networked systems, they equipped with energy resources and they are used to detect other physical characteristics. On WSN, there are many researches are performed in past decades. WSN applicable in many security systems govern by military and in many civilian related applications. Thus, the security of WSN gets attention of researchers and gives an opportunity for many future aspects. Still, there are many other issues are related to deployment and overall coverage, scalability, size, energy efficiency, quality of service (QoS), computational power and many more. In this paper we discus about various applications and security related issue and requirements of WSN.

Keywords: wireless sensor network (WSN), wireless network attacks, wireless network security, security requirements

Procedia PDF Downloads 453
1384 Development and Power Characterization of an IoT Network for Agricultural Imaging Applications

Authors: Jacob Wahl, Jane Zhang

Abstract:

This paper describes the development and characterization of a prototype IoT network for use with agricultural imaging and monitoring applications. The sensor and gateway nodes are designed using the ESP32 SoC with integrated Bluetooth Low Energy 4.2 and Wi-Fi. A development board, the Arducam IoTai ESP32, is used for prototyping, testing, and power measurements. Google’s Firebase is used as the cloud storage site for image data collected by the sensor. The sensor node captures images using the OV2640 2MP camera module and transmits the image data to the gateway via Bluetooth Low Energy. The gateway then uploads the collected images to Firebase via a known nearby Wi-Fi network connection. This image data can then be processed and analyzed by computer vision and machine learning pipelines to assess crop growth or other needs. The sensor node achieves a wireless transmission data throughput of 220kbps while consuming 150mA of current; the sensor sleeps at 162µA. The sensor node device lifetime is estimated to be 682 days on a 6600mAh LiPo battery while acquiring five images per day based on the development board power measurements. This network can be utilized by any application that requires high data rates, low power consumption, short-range communication, and large amounts of data to be transmitted at low-frequency intervals.

Keywords: Bluetooth low energy, ESP32, firebase cloud, IoT, smart farming

Procedia PDF Downloads 110
1383 Electrochemical Anodic Oxidation Synthesis of TiO2 nanotube as Perspective Electrode for the Detection of Phenyl Hydrazine

Authors: Sadia Ameen, M. Nazim, Hyumg-Kee Seo, Hyung-Shik Shin

Abstract:

TiO2 nanotube (NT) arrays were grown on titanium (Ti) foil substrate by electrochemical anodic oxidation and utilized as working electrode to fabricate a highly sensitive and reproducible chemical sensor for the detection of harmful phenyl hydrazine chemical. The fabricated chemical sensor based on TiO2 NT arrays electrode exhibited high sensitivity of ~40.9 µA.mM-1.cm-2 and detection limit of ~0.22 µM with short response time (10s).

Keywords: TiO2 NT, phenyl hydrazine, chemical sensor, sensitivity, electrocatalytic properties

Procedia PDF Downloads 464
1382 Bioactivity of Peptides from Two Mushrooms

Authors: Parisa Farzaneh, Azade Harati

Abstract:

Mushrooms, or macro-fungi, as an important superfood, contain many bioactive compounds, particularly bio-peptides. In this research, mushroom proteins were extracted by buffer or buffer plus salt (0.15 M), along with an ultrasound bath to extract the intercellular protein. As a result, the highest amount of proteins in mushrooms were categorized into albumin. Proteins were also hydrolyzed and changed into peptides through endogenous and exogenous proteases, including gastrointestinal enzymes. The potency of endogenous proteases was also higher in Agaricus bisporus than Terfezia claveryi, as their activity ended at 75 for 15 min. The blanching process, endogenous enzymes, the mixture of gastrointestinal enzymes (pepsin-trypsin-α-chymotrypsin or trypsin- α-chymotrypsin) produced the different antioxidant and antibacterial hydrolysates. The peptide fractions produced with different cut-off ultrafilters also had various levels of radical scavenging, lipid peroxidation inhibition, and antibacterial activities. The bio-peptides with superior bioactivities (less than 3 kD of T. claveryi) were resistant to various environmental conditions (pH and temperatures). Therefore, they are good options to be added to nutraceutical and pharmaceutical preparations or functional foods, even during processing.

Keywords: bio-peptide, mushrooms, gastrointestinal enzymes, bioactivity

Procedia PDF Downloads 17
1381 Estimation of the External Force for a Co-Manipulation Task Using the Drive Chain Robot

Authors: Sylvain Devie, Pierre-Philippe Robet, Yannick Aoustin, Maxime Gautier

Abstract:

The aim of this paper is to show that the observation of the external effort and the sensor-less control of a system is limited by the mechanical system. First, the model of a one-joint robot with a prismatic joint is presented. Based on this model, two different procedures were performed in order to identify the mechanical parameters of the system and observe the external effort applied on it. Experiments have proven that the accuracy of the force observer, based on the DC motor current, is limited by the mechanics of the robot. The sensor-less control will be limited by the accuracy in estimation of the mechanical parameters and by the maximum static friction force, that is the minimum force which can be observed in this case. The consequence of this limitation is that industrial robots without specific design are not well adapted to perform sensor-less precision tasks. Finally, an efficient control law is presented for high effort applications.

Keywords: control, identification, robot, co-manipulation, sensor-less

Procedia PDF Downloads 133
1380 Jitter Based Reconstruction of Transmission Line Pulse Using On-Chip Sensor

Authors: Bhuvnesh Narayanan, Bernhard Weiss, Tvrtko Mandic, Adrijan Baric

Abstract:

This paper discusses a method to reconstruct internal high-frequency signals through subsampling techniques in an IC using an on-chip sensor. Though there are existing methods to internally probe and reconstruct high frequency signals through subsampling techniques; these methods have been applicable mainly for synchronized systems. This paper demonstrates a method for making such non-intrusive on-chip reconstructions possible also in non-synchronized systems. The TLP pulse is used to demonstrate the experimental validation of the concept. The on-chip sensor measures the voltage in an internal node. The jitter in the input pulse causes a varying pulse delay with respect to the on-chip sampling command. By measuring this pulse delay and by correlating it with the measured on-chip voltage, time domain waveforms can be reconstructed, and the influence of the pulse on the internal nodes can be better understood.

Keywords: on-chip sensor, jitter, transmission line pulse, subsampling

Procedia PDF Downloads 114
1379 Coal Mining Safety Monitoring Using Wsn

Authors: Somdatta Saha

Abstract:

The main purpose was to provide an implementable design scenario for underground coal mines using wireless sensor networks (WSNs). The main reason being that given the intricacies in the physical structure of a coal mine, only low power WSN nodes can produce accurate surveillance and accident detection data. The work mainly concentrated on designing and simulating various alternate scenarios for a typical mine and comparing them based on the obtained results to arrive at a final design. In the Era of embedded technology, the Zigbee protocols are used in more and more applications. Because of the rapid development of sensors, microcontrollers, and network technology, a reliable technological condition has been provided for our automatic real-time monitoring of coal mine. The underground system collects temperature, humidity and methane values of coal mine through sensor nodes in the mine; it also collects the number of personnel inside the mine with the help of an IR sensor, and then transmits the data to information processing terminal based on ARM.

Keywords: ARM, embedded board, wireless sensor network (Zigbee)

Procedia PDF Downloads 312
1378 Smart Helmet for Two-Wheelers

Authors: Ravi Nandu, Kuldeep Singh

Abstract:

A helmet is a protective layer that is worn in order to prevent head injury. Helmet is the most important safety gear for two wheeler riders. However, due to carelessness of people, less importance toward safety, lot of causalities is every year. According to National Crime Records Bureau (NCRB) two wheelers claimed 92 lives every day out of which most were due to helmetless drive. The system design will be such that without wearing the helmet the rider cannot start two wheelers. The helmet will be connected to vehicle key ignition systems which will be electronically controlled. The smart helmet will be having proximity sensor fitted inside it, which will act as our switch for ignition and further with wireless connection the helmet sensor circuit will be connected to the vehicle ignition system.

Keywords: helmet, proximity sensor, microcontroller, head injury

Procedia PDF Downloads 282
1377 Sensor Data Analysis for a Large Mining Major

Authors: Sudipto Shanker Dasgupta

Abstract:

One of the largest mining companies wanted to look at health analytics for their driverless trucks. These trucks were the key to their supply chain logistics. The automated trucks had multi-level sub-assemblies which would send out sensor information. The use case that was worked on was to capture the sensor signal from the truck subcomponents and analyze the health of the trucks from repair and replacement purview. Open source software was used to stream the data into a clustered Hadoop setup in Amazon Web Services cloud and Apache Spark SQL was used to analyze the data. All of this was achieved through a 10 node amazon 32 core, 64 GB RAM setup real-time analytics was achieved on ‘300 million records’. To check the scalability of the system, the cluster was increased to 100 node setup. This talk will highlight how Open Source software was used to achieve the above use case and the insights on the high data throughput on a cloud set up.

Keywords: streaming analytics, data science, big data, Hadoop, high throughput, sensor data

Procedia PDF Downloads 379
1376 Engineering C₃ Plants with SbtA, a Cyanobacterial Transporter, for Enhancing CO₂ Fixation

Authors: Vandana Deopanée Tomar, Gurpreet Kaur Sidhu, Panchsheela Nogia, Rajesh Mehrotra, Sandhya Mehrotra

Abstract:

The cyanobacterial CO₂ concentrating mechanism (CCM) operates to raise the levels of CO₂ in the vicinity of the main carboxylation enzyme Rubisco which is encapsulated in protein micro compartments called carboxysomes. Thus, due to the presence of CCM, cyanobacterial cells are able to work with high photosynthetic efficiency even at low Ci conditions and can accumulate 1000 folds high internal concentrations of Ci than external environment. Engineering of some useful CCM components into higher plants is one of the plausible approaches to improve their photosynthetic performance. The first step and the simplest approach for attaining this objective would be the transfer of cyanobacterial bicarbonate transporter such as SbtA to inner chloroplast envelope of C₃ plants. For this, SbtA transporter gene from Synechococcus elongatus PCC 7942 was fused to a transit peptide element to generate chimeric constructs in order to direct it to chloroplast inner envelope. Two transit peptides namely, TnaXTP (transit peptide from AT3G56160) and TMDTP (transit peptide from AT2G02590) were shortlisted from Arabidopsis thaliana genome and cloned in plant expression vector pCAMBIA1302 having mgfp5 as a reporter gene. Plant transformation was done by agro infiltration and Agrobacterium mediated co-culture. DNA, RNA, and protein were isolated from the leaves four days post infiltration, and the presence of transgene was confirmed by gene specific PCR (Polymerase Chain Reaction) analysis and by RT-PCR (Reverse Transcription Polymerase Chain Reaction). The expression was confirmed at the protein level by western blotting using anti-GFP primary antibody and horseradish peroxidase (HRP) conjugated secondary antibody. The localization of the protein was detected by confocal microscopy of isolated protoplasts. We observed chloroplastic expression for both the fusion constructs which suggest that the transit peptide sequences are capable of taking the cargo protein to the chloroplasts. These constructs are now being used to generate stable transgenic plants by Agrobacterium mediated transformation. The stability of transgene expression will be analyzed from T₀ to T₂ generation.

Keywords: agro infiltration, bicarbonate transporter, carbon concentrating mechanisms, cyanobacteria, SbtA

Procedia PDF Downloads 188
1375 Levels of Selected Adipokines in Women with Gestational Diabetes and Type 2 Diabetes, Their Relationship to Metabolic Parameters

Authors: David Karasek, Veronika Kubickova, Ondrej Krystynik, Dominika Goldmannova, Lubica Cibickova, Jan Schovanek

Abstract:

Introduction: Adiponectin, adipocyte-fatty acid-binding protein (A-FABP), and Wnt1 inducible signaling pathway protein-1 (WISP-1) are adipokines particularly associated with insulin resistance. The aim of the study was to compare their levels in women with gestational diabetes (GDM), type 2 diabetes mellitus (T2DM) and healthy controls and determine their relation with metabolic parameters. Methods: Fifty women with GDM, 50 women with T2DM, and 35 healthy women were included in the study. In addition to adipokines, anthropometric, lipid parameters, and markers, insulin resistance, and glucose control were assessed in all participants. Results: Compared to healthy controls only significantly lower levels of adiponectin were detected in women with GDM, whereas lower levels of adiponectin, higher levels of A-FABP and of WISP-1 were present in women with T2DM. Women with T2DM had also lower levels of adiponectin and higher levels of A-FABP compared to women with GDM. In women with GDM or T2DM adiponectin correlated negatively with body mass index (BMI), triglycerides (TG), C-peptide and positively with HDL-cholesterol; A-FABP positively correlated with BMI, TG, waist, and C-peptide. Moreover, there was a positive correlation between WISP-1 and C-peptide in women with T2DM. Conclusion: Adverse adipokines production detecting dysfunctional fat tissue is in women with GDM less presented than in women with T2DM, but more expressed compared to healthy women. Acknowledgment: Supported by AZV NV18-01-00139 and MH CZ DRO (FNOl, 00098892).

Keywords: adiponectin, adipocyte-fatty acid binding protein, wnt1 inducible signaling pathway protein-1, gestational diabetes, type 2 diabetes mellitus

Procedia PDF Downloads 102
1374 Integration of Wireless Sensor Networks and Radio Frequency Identification (RFID): An Assesment

Authors: Arslan Murtaza

Abstract:

RFID (Radio Frequency Identification) and WSN (Wireless sensor network) are two significant wireless technologies that have extensive diversity of applications and provide limitless forthcoming potentials. RFID is used to identify existence and location of objects whereas WSN is used to intellect and monitor the environment. Incorporating RFID with WSN not only provides identity and location of an object but also provides information regarding the condition of the object carrying the sensors enabled RFID tag. It can be widely used in stock management, asset tracking, asset counting, security, military, environmental monitoring and forecasting, healthcare, intelligent home, intelligent transport vehicles, warehouse management, and precision agriculture. This assessment presents a brief introduction of RFID, WSN, and integration of WSN and RFID, and then applications related to both RFID and WSN. This assessment also deliberates status of the projects on RFID technology carried out in different computing group projects to be taken on WSN and RFID technology.

Keywords: wireless sensor network, RFID, embedded sensor, Wi-Fi, Bluetooth, integration, time saving, cost efficient

Procedia PDF Downloads 301
1373 Gan Nanowire-Based Sensor Array for the Detection of Cross-Sensitive Gases Using Principal Component Analysis

Authors: Ashfaque Hossain Khan, Brian Thomson, Ratan Debnath, Abhishek Motayed, Mulpuri V. Rao

Abstract:

Though the efforts had been made, the problem of cross-sensitivity for a single metal oxide-based sensor can’t be fully eliminated. In this work, a sensor array has been designed and fabricated comprising of platinum (Pt), copper (Cu), and silver (Ag) decorated TiO2 and ZnO functionalized GaN nanowires using industry-standard top-down fabrication approach. The metal/metal-oxide combinations within the array have been determined from prior molecular simulation study using first principle calculations based on density functional theory (DFT). The gas responses were obtained for both single and mixture of NO2, SO2, ethanol, and H2 in the presence of H2O and O2 gases under UV light at room temperature. Each gas leaves a unique response footprint across the array sensors by which precise discrimination of cross-sensitive gases has been achieved. An unsupervised principal component analysis (PCA) technique has been implemented on the array response. Results indicate that each gas forms a distinct cluster in the score plot for all the target gases and their mixtures, indicating a clear separation among them. In addition, the developed array device consumes very low power because of ultra-violet (UV) assisted sensing as compared to commercially available metal-oxide sensors. The nanowire sensor array, in combination with PCA, is a potential approach for precise real-time gas monitoring applications.

Keywords: cross-sensitivity, gas sensor, principle component analysis (PCA), sensor array

Procedia PDF Downloads 79
1372 A Facile and Room Temperature Growth of Pd-Pt Decorated Hexagonal-ZnO Framework and Their Selective H₂ Gas Sensing Properties

Authors: Gaurav Malik, Satyendra Mourya, Jyoti Jaiswal, Ramesh Chandra

Abstract:

The attractive and multifunctional properties of ZnO make it a promising material for the fabrication of highly sensitive and selective efficient gas sensors at room temperature. This presented article focuses on the development of highly selective and sensitive H₂ gas sensor based on the Pd-Pt decorated ZnO framework and its sensing mechanisms. The gas sensing performance of sputter made Pd-Pt/ZnO electrode on anodized porous silicon (PSi) substrate toward H₂ gas is studied under low detection limit (2–500 ppm) of H₂ in the air. The chemiresistive sensor demonstrated sublimate selectivity, good sensing response, and fast response/recovery time with excellent stability towards H₂ at low temperature operation under ambient environment. The elaborate selective measurement of Pd-Pt/ZnO/PSi structure was performed towards different oxidizing and reducing gases. This structure exhibited advance and reversible response to H₂ gas, which revealed that the acquired architecture with ZnO framework is a promising candidate for H₂ gas sensor.

Keywords: sputtering, porous silicon, ZnO framework, XPS spectra, gas sensor

Procedia PDF Downloads 358
1371 Advances in the Design of Wireless Sensor Networks for Environmental Monitoring

Authors: Shathya Duobiene, Gediminas Račiukaitis

Abstract:

Wireless Sensor Networks (WSNs) are an emerging technology that opens up a new field of research. The significant advance in WSN leads to an increasing prevalence of various monitoring applications and real-time assistance in labs and factories. Selective surface activation induced by laser (SSAIL) is a promising technology that adapts to the WSN design freedom of shape, dimensions, and material. This article proposes and implements a WSN-based temperature and humidity monitoring system, and its deployed architectures made for the monitoring task are discussed. Experimental results of newly developed sensor nodes implemented in university campus laboratories are shown. Then, the simulation and the implementation results obtained through monitoring scenarios are displayed. At last, a convenient solution to keep the WSN alive and functional as long as possible is proposed. Unlike other existing models, on success, the node is self-powered and can utilise minimal power consumption for sensing and data transmission to the base station.

Keywords: IoT, network formation, sensor nodes, SSAIL technology

Procedia PDF Downloads 58
1370 A Smart Sensor Network Approach Using Affordable River Water Level Sensors

Authors: Dian Zhang, Brendan Heery, Maria O’Neill, Ciprian Briciu-Burghina, Noel E. O’Connor, Fiona Regan

Abstract:

Recent developments in sensors, wireless data communication and the cloud computing have brought the sensor web to a whole new generation. The introduction of the concept of ‘Internet of Thing (IoT)’ has brought the sensor research into a new level, which involves the developing of long lasting, low cost, environment friendly and smart sensors; new wireless data communication technologies; big data analytics algorithms and cloud based solutions that are tailored to large scale smart sensor network. The next generation of smart sensor network consists of several layers: physical layer, where all the smart sensors resident and data pre-processes occur, either on the sensor itself or field gateway; data transmission layer, where data and instructions exchanges happen; the data process layer, where meaningful information is extracted and organized from the pre-process data stream. There are many definitions of smart sensor, however, to summarize all these definitions, a smart sensor must be Intelligent and Adaptable. In future large scale sensor network, collected data are far too large for traditional applications to send, store or process. The sensor unit must be intelligent that pre-processes collected data locally on board (this process may occur on field gateway depends on the sensor network structure). In this case study, three smart sensing methods, corresponding to simple thresholding, statistical model and machine learning based MoPBAS method, are introduced and their strength and weakness are discussed as an introduction to the smart sensing concept. Data fusion, the integration of data and knowledge from multiple sources, are key components of the next generation smart sensor network. For example, in the water level monitoring system, weather forecast can be extracted from external sources and if a heavy rainfall is expected, the server can send instructions to the sensor notes to, for instance, increase the sampling rate or switch on the sleeping mode vice versa. In this paper, we describe the deployment of 11 affordable water level sensors in the Dublin catchment. The objective of this paper is to use the deployed river level sensor network at the Dodder catchment in Dublin, Ireland as a case study to give a vision of the next generation of a smart sensor network for flood monitoring to assist agencies in making decisions about deploying resources in the case of a severe flood event. Some of the deployed sensors are located alongside traditional water level sensors for validation purposes. Using the 11 deployed river level sensors in a network as a case study, a vision of the next generation of smart sensor network is proposed. Each key component of the smart sensor network is discussed, which hopefully inspires the researchers who are working in the sensor research domain.

Keywords: smart sensing, internet of things, water level sensor, flooding

Procedia PDF Downloads 350
1369 A Paper Based Sensor for Mercury Ion Detection

Authors: Emine G. Cansu Ergun

Abstract:

Conjugated system based sensors for selective detection of metal ions have been taking attention during last two decades. Fluorescent sensors are the promising candidates for ion detection due to their high selectivity towards metal ions, and rapid response times. Detection of mercury in an environmenet is important since mercury is a toxic element for human. Beyond the maximum allowable limit, mercury may cause serious problems in human health by spreading into the atmosphere, water and the food chain. In this study, a quinoxaline and 3,4-ethylenedioxy thiophene based donor-acceptor-donor type conjugated molecule used as a fluorescent sensor for detecting the mercury ion in aqueous medium. Among other various cations, existence of mercury resulted in a full quenching of the fluorescence signal. Then, a paper based sensor is constructed and used for mercury detection. As a result it is concluded that the offering sensor is a good candidate for selective mercury detection in aqueous media both in solution and paper based forms.

Keywords: Conjugated molecules , fluorescence quenching, metal ion detection , sensors

Procedia PDF Downloads 129
1368 Load-Enabled Deployment and Sensing Range Optimization for Lifetime Enhancement of WSNs

Authors: Krishan P. Sharma, T. P. Sharma

Abstract:

Wireless sensor nodes are resource constrained battery powered devices usually deployed in hostile and ill-disposed areas to cooperatively monitor physical or environmental conditions. Due to their limited power supply, the major challenge for researchers is to utilize their battery power for enhancing the lifetime of whole network. Communication and sensing are two major sources of energy consumption in sensor networks. In this paper, we propose a deployment strategy for enhancing the average lifetime of a sensor network by effectively utilizing communication and sensing energy to provide full coverage. The proposed scheme is based on the fact that due to heavy relaying load, sensor nodes near to the sink drain energy at much faster rate than other nodes in the network and consequently die much earlier. To cover this imbalance, proposed scheme finds optimal communication and sensing ranges according to effective load at each node and uses a non-uniform deployment strategy where there is a comparatively high density of nodes near to the sink. Probable relaying load factor at particular node is calculated and accordingly optimal communication distance and sensing range for each sensor node is adjusted. Thus, sensor nodes are placed at locations that optimize energy during network operation. Formal mathematical analysis for calculating optimized locations is reported in present work.

Keywords: load factor, network lifetime, non-uniform deployment, sensing range

Procedia PDF Downloads 350
1367 Node Optimization in Wireless Sensor Network: An Energy Approach

Authors: Y. B. Kirankumar, J. D. Mallapur

Abstract:

Wireless Sensor Network (WSN) is an emerging technology, which has great invention for various low cost applications both for mass public as well as for defence. The wireless sensor communication technology allows random participation of sensor nodes with particular applications to take part in the network, which results in most of the uncovered simulation area, where fewer nodes are located at far distances. The drawback of such network would be that the additional energy is spent by the nodes located in a pattern of dense location, using more number of nodes for a smaller distance of communication adversely in a region with less number of nodes and additional energy is again spent by the source node in order to transmit a packet to neighbours, thereby transmitting the packet to reach the destination. The proposed work is intended to develop Energy Efficient Node Placement Algorithm (EENPA) in order to place the sensor node efficiently in simulated area, where all the nodes are equally located on a radial path to cover maximum area at equidistance. The total energy consumed by each node compared to random placement of nodes is less by having equal burden on fewer nodes of far location, having distributed the nodes in whole of the simulation area. Calculating the network lifetime also proves to be efficient as compared to random placement of nodes, hence increasing the network lifetime, too. Simulation is been carried out in a qualnet simulator, results are obtained on par with random placement of nodes with EENP algorithm.

Keywords: energy, WSN, wireless sensor network, energy approach

Procedia PDF Downloads 286
1366 Egg Yolk Peptide Stimulated Osteogenic Gene Expression

Authors: Hye Kyung Kim, Myung-Gyou Kim, Kang-Hyun Leem

Abstract:

Postmenopausal osteoporosis is characterized by low bone density which leads to increased bone fragility and greater susceptibility to fracture. Current treatments for osteoporosis are dominated by drugs that inhibit bone resorption although they also suppress bone formation that may contribute to pathogenesis of osteonecrosis. To restore the extensive bone loss, there is a great need for anabolic treatments that induce osteoblasts to build new bone. Pre-osteoblastic cells produce proteins of the extra-cellular matrix, including type I collagen at first, and then to successively produce alkaline phosphatase (ALP) and osteocalcin during differentiation to osteoblasts. Finally, osteoblasts deposit calcium. Present study investigated the effects of egg yolk peptide (EYP) on osteogenic activities and bone matrix gene expressions in human osteoblastic MG-63 cells. The effects of EYP on cell proliferation, alkaline phosphatase (ALP) activity, collagen synthesis, and mineralization were measured. The expression of osteogenic genes including COL1A1 (collagen, type I, alpha 1), ALP, BGLAP (osteocalcin), and SPP1 (secreted phosphoprotein 1, osteopontin) were measured by quantitative realtime PCR. EYP dose-dependently increased MG-63 cell proliferation, ALP activity, collagen synthesis, and calcium deposition. Furthermore, COL1A1, ALP, and SPP1 gene expressions were increased by EYP treatment. Present study suggested that EYP treatment enhanced osteogenic activities and increased bone matrix osteogenicgenes. These results could provide a mechanistic explanation for the bone-strengthening effects of EYP.

Keywords: egg yolk peptide, osteoblastic MG-63 cells, alkaline phosphatase, collagen synthesis, osteogenic genes, COL1A1, osteocalcin, osteopontin

Procedia PDF Downloads 364
1365 Monitoring of Water Quality Using Wireless Sensor Network: Case Study of Benue State of Nigeria

Authors: Desmond Okorie, Emmanuel Prince

Abstract:

Availability of portable water has been a global challenge especially to the developing continents/nations such as Africa/Nigeria. The World Health Organization WHO has produced the guideline for drinking water quality GDWQ which aims at ensuring water safety from source to consumer. Portable water parameters test include physical (colour, odour, temperature, turbidity), chemical (PH, dissolved solids) biological (algae, plytoplankton). This paper discusses the use of wireless sensor networks to monitor water quality using efficient and effective sensors that have the ability to sense, process and transmit sensed data. The integration of wireless sensor network to a portable sensing device offers the feasibility of sensing distribution capability, on site data measurements and remote sensing abilities. The current water quality tests that are performed in government water quality institutions in Benue State Nigeria are carried out in problematic locations that require taking manual water samples to the institution laboratory for examination, to automate the entire process based on wireless sensor network, a system was designed. The system consists of sensor node containing one PH sensor, one temperature sensor, a microcontroller, a zigbee radio and a base station composed by a zigbee radio and a PC. Due to the advancement of wireless sensor network technology, unexpected contamination events in water environments can be observed continuously. local area network (LAN) wireless local area network (WLAN) and internet web-based also commonly used as a gateway unit for data communication via local base computer using standard global system for mobile communication (GSM). The improvement made on this development show a water quality monitoring system and prospect for more robust and reliable system in the future.

Keywords: local area network, Ph measurement, wireless sensor network, zigbee

Procedia PDF Downloads 145
1364 Developement of a New Wearable Device for Automatic Guidance Service

Authors: Dawei Cai

Abstract:

In this paper, we present a new wearable device that provide an automatic guidance servie for visitors. By combining the position information from NFC and the orientation information from a 6 axis acceleration and terrestrial magnetism sensor, the head's direction can be calculated. We developed an algorithm to calculate the device orientation based on the data from acceleration and terrestrial magnetism sensor. If visitors want to know some explanation about an exhibit in front of him, what he has to do is just lift up his mobile device. The identification program will automatically identify the status based on the information from NFC and MEMS, and start playing explanation content for him. This service may be convenient for old people or disables or children.

Keywords: wearable device, ubiquitous computing, guide sysem, MEMS sensor, NFC

Procedia PDF Downloads 397
1363 A Memetic Algorithm Approach to Clustering in Mobile Wireless Sensor Networks

Authors: Masood Ahmad, Ataul Aziz Ikram, Ishtiaq Wahid

Abstract:

Wireless sensor network (WSN) is the interconnection of mobile wireless nodes with limited energy and memory. These networks can be deployed formany critical applications like military operations, rescue management, fire detection and so on. In flat routing structure, every node plays an equal role of sensor and router. The topology may change very frequently due to the mobile nature of nodes in WSNs. The topology maintenance may produce more overhead messages. To avoid topology maintenance overhead messages, an optimized cluster based mobile wireless sensor network using memetic algorithm is proposed in this paper. The nodes in this network are first divided into clusters. The cluster leaders then transmit data to that base station. The network is validated through extensive simulation study. The results show that the proposed technique has superior results compared to existing techniques.

Keywords: WSN, routing, cluster based, meme, memetic algorithm

Procedia PDF Downloads 447
1362 Adaptive Routing Protocol for Dynamic Wireless Sensor Networks

Authors: Fayez Mostafa Alhamoui, Adnan Hadi Mahdi Al- Helali

Abstract:

The main issue in designing a wireless sensor network (WSN) is the finding of a proper routing protocol that complies with the several requirements of high reliability, short latency, scalability, low power consumption, and many others. This paper proposes a novel routing algorithm that complies with these design requirements. The new routing protocol divides the WSN into several sub-networks and each sub-network is divided into several clusters. This division is designed to reduce the number of radio transmission and hence decreases the power consumption. The network division may be changed dynamically to adapt with the network changes and allows the realization of the design requirements.

Keywords: wireless sensor networks, routing protocols, AD HOC topology, cluster, sub-network, WSN design requirements

Procedia PDF Downloads 507
1361 Electrochemical Sensor Based on Poly(Pyrogallol) for the Simultaneous Detection of Phenolic Compounds and Nitrite in Wastewater

Authors: Majid Farsadrooh, Najmeh Sabbaghi, Seyed Mohammad Mostashari, Abolhasan Moradi

Abstract:

Phenolic compounds are chief environmental contaminants on account of their hazardous and toxic nature on human health. The preparation of sensitive and potent chemosensors to monitor emerging pollution in water and effluent samples has received great consideration. A novel and versatile nanocomposite sensor based on poly pyrogallol is presented for the first time in this study, and its electrochemical behavior for simultaneous detection of hydroquinone (HQ), catechol (CT), and resorcinol (RS) in the presence of nitrite is evaluated. The physicochemical characteristics of the fabricated nanocomposite were investigated by emission-scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), and Brunauer-Emmett-Teller (BET). The electrochemical response of the proposed sensor to the detection of HQ, CT, RS, and nitrite is studied using cyclic voltammetry (CV), chronoamperometry (CA), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). The kinetic characterization of the prepared sensor showed that both adsorption and diffusion processes can control reactions at the electrode. In the optimized conditions, the new chemosensor provides a wide linear range of 0.5-236.3, 0.8-236.3, 0.9-236.3, and 1.2-236.3 μM with a low limit of detection of 21.1, 51.4, 98.9, and 110.8 nM (S/N = 3) for HQ, CT and RS, and nitrite, respectively. Remarkably, the electrochemical sensor has outstanding selectivity, repeatability, and stability and is successfully employed for the detection of RS, CT, HQ, and nitrite in real water samples with the recovery of 96.2%–102.4%, 97.8%-102.6%, 98.0%–102.4% and 98.4%–103.2% for RS, CT, HQ, and nitrite, respectively. These outcomes illustrate that poly pyrogallol is a promising candidate for effective electrochemical detection of dihydroxybenzene isomers in the presence of nitrite.

Keywords: electrochemical sensor, poly pyrogallol, phenolic compounds, simultaneous determination

Procedia PDF Downloads 36