Search results for: organic matter and filtration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3889

Search results for: organic matter and filtration

3799 OBD-Biofertilizer Impact on Crop Yield and Soil Quality in Lowland Rice Production, Badeggi, Niger State, Nigeria

Authors: Ayodele A. Otaiku

Abstract:

Purpose: Nigeria has become the largest importer of rice in Africa and second in the world, 2015. Investigate interactions of organic rice farming on soil quality and health from bio-waste converted to biofertilizer and its environmental impact on rice crop. Methodology: Bio-wastes, poultry waste, organic agriculture wastes, wood ash mixed with microbial inoculant organisms called OBD-Plus microbes (broad spectrum) composted in anaerobic digester to OBD-biofertilizer (2010 - 2012) uses microbes to build humus and other stable carbons. Two field experiments were carried out at Badeggi, Niger state in 2011 and 2012 to evaluate the response of lowland rice production using biofertilizer. The experimental field was laid out in a strip-plot design with five treatments and three replications and at twenty-one day old seedlings of FARO 44 and FARO 52 rice varieties were transplanted. Plots without fertiliser application served as control. Findings: The highest rice grain yield increase of 4.4 t/ha over the control in 2012 against the Nigeria average of lowland rice grain yields of 1.5 t/ha. The utilization of OBD-Biofertilizer can decrease the use of chemical nitrogen fertilizer, prevent the depletion of soil organic matter and reduce environmental pollution. Increasing the floodwater productivity and optimizing the recycling of nutrients cum grazer populations and disease by biocontrols microbes present in the OBD-Biofertilizer. Organic matter in the soil improves by 58% and C/N 15 (2011) and 13.35 (2012). Implications: OBD- Biofertilizer produce plant growth hormones such as indole acetic acid (IAA), glomalin related soil protein and extracellular enzymes as phosphatases that promote soil health and quality. Conclusion: Microorganisms can enhance nutrients use efficiency by increasing root surface area e.g., mycorrhizal, fungi, promoting other beneficial symbioses of the host plant and microbial interactions resulting to increase in soil organic matter. By 2030, climate change is projected to depress cereal production in Africa by 2 to 3 percent. Improved seeds and increased fertilizer use should more than compensate, but this factor will still weigh heavily on efforts to make progress.

Keywords: OBD-plus microbial consortia, OBD-biofertilizer, rice production, soil quality, sustainable agriculture

Procedia PDF Downloads 236
3798 Biological Organic or Inorganic Sulfur Sources Feeding Effects on Intake and Some Blood Metabolites of Close-Up Holstein Cows

Authors: Mehdi Kazemi-Bonchenari, Esmaeil Manidari, Vahid Keshavarz

Abstract:

This study was carried out to investigate the effects of increased level of sulfur by supplementing magnesium sulfate with or without biologically organic source in dairy cow close-up diets on dry matter intake (DMI) and some blood metabolites. The 24 multiparous close-up Holstein cows averaging body weight 687.94 kg and days until expected calving date 21.89 d were allocated in three different treatments (8 cows per each) in a completely randomized design. The first treatment (T1) has contained 0.21% sulfur (DM basis), the second treatment (T2) has contained 0.41% sulfur which entirely supplied through magnesium sulfate and the third treatment (T3) has contained 0.41% sulfur which supplied through combination of magnesium sulfate and an organic source of sulfur. All the cows were fed same diet after parturition until 21 d. The DMI for both pre-calving (P < 0.001) and post-calving was affected by treatments (P < 0.004) and T2 showed the lowest DMI among treatments. Among the blood metabolites, glucose, calcium, and copper were decreased in T2 (P < 0.05). However, blood concentrations of BHBA, NEFA, urea, CPK, and AST were increased in T2 (P < 0.05). The results of the present study indicate that although magnesium sulfate has negative effect on dairy cow health and performance, a combination of magnesium sulfate and biological organic source of sulfur in close-up diets could have positive effects on DMI and performance of Holstein dairy cows.

Keywords: organic sulfur, dairy cow, intake, blood metabolites

Procedia PDF Downloads 276
3797 Organic Paddy Production as a Coping Strategy to the Adverse Impact of Climate Change

Authors: Thapa M., J.P. Dutta, K.R. Pandey, R.R. Kattel

Abstract:

Nepal is extremely vulnerable to the impact of climate change. To mitigate the climate change effects on agricultural production and productivity a range of adaptive strategies needs to be considered. The study was conducted to assess organic paddy production as a coping strategy to the adverse impact of climate change in Phulbari, VDC of Chitwan district. Altogether, 120 respondents (60 adopters of organic farming and 60 from non adopter) were selected using snowball technique of sampling. Pre- tested interview schedule, direct observation, focus group discussion, key informant interview as well as secondary data were used to collect the required information. Factors determining the adoption of organic farming were found to be age, year of schooling, training, frequency of extension contact, perception about climate change, economically active members and poor. A unit increase in these factors except poor would increase the probability of adoption by 4.1%, 7.5%, 7.8%, 43.1%, 41.8% and 7% respectively. However, for poor, it would decrease the probability of adoption of organic farming by 5.1%. Average organic matter content in the adopters' field was higher (2.7%) than the non-adopters' field (2.5%). The regression result showed that type of farmer, price and area under rice cultivation had positive and significant relationship with income; however dependency ratio had negative relationship. As the year of adoption of organic farming increases, the production of rice decline in the first two years then after goes on increasing but the cost of production goes on decreasing with the year of adoption. The respondents adapted to the changing climate through diversification of crops, use of resistance varieties and following good cropping pattern. Gradually growing consumers' awareness about health, preference towards quality food products are the strong points behind organic farming, whereas lacks of bio-fertilizers, lack of effective extension services, no price differentiation between organic and inorganic products were the weak points. There is need for more training and education to change the attitude of farmers and enhance their confidence about the role of organic farming to cope with climate change impact.

Keywords: Organic farming, climate change, sustainable development

Procedia PDF Downloads 429
3796 Organic Tuber Production Fosters Food Security and Soil Health: A Decade of Evidence from India

Authors: G. Suja, J. Sreekumar, A. N. Jyothi, V. S. Santhosh Mithra

Abstract:

Worldwide concerns regarding food safety, environmental degradation and threats to human health have generated interest in alternative systems like organic farming. Tropical tuber crops, cassava, sweet potato, yams, and aroids are food-cum-nutritional security-cum climate resilient crops. These form stable or subsidiary food for about 500 million global population. Cassava, yams (white yam, greater yam, and lesser yam) and edible aroids (elephant foot yam, taro, and tannia) are high energy tuberous vegetables with good taste and nutritive value. Seven on-station field experiments at ICAR-Central Tuber Crops Research Institute, Thiruvananthapuram, India and seventeen on-farm trials in three districts of Kerala, were conducted over a decade (2004-2015) to compare the varietal response, yield, quality and soil properties under organic vs conventional system in these crops and to develop a learning system based on the data generated. The industrial, as well as domestic varieties of cassava, the elite and local varieties of elephant foot yam and taro and the three species of Dioscorea (yams), were on a par under both systems. Organic management promoted yield by 8%, 20%, 9%, 11% and 7% over conventional practice in cassava, elephant foot yam, white yam, greater yam and lesser yam respectively. Elephant foot yam was the most responsive to organic management followed by yams and cassava. In taro, slight yield reduction (5%) was noticed under organic farming with almost similar tuber quality. The tuber quality was improved with higher dry matter, starch, crude protein, K, Ca and Mg contents. The anti-nutritional factors, oxalate content in elephant foot yam and cyanogenic glucoside content in cassava were lowered by 21 and 12.4% respectively. Organic plots had significantly higher water holding capacity, pH, available K, Fe, Mn and Cu, higher soil organic matter, available N, P, exchangeable Ca and Mg, dehydrogenase enzyme activity and microbial count. Organic farming scored significantly higher soil quality index (1.93) than conventional practice (1.46). The soil quality index was driven by water holding capacity, pH and available Zn followed by soil organic matter. Organic management enhanced net profit by 20-40% over chemical farming. A case in point is the cost-benefit analysis in elephant foot yam which indicated that the net profit was 28% higher and additional income of Rs. 47,716 ha-1 was obtained due to organic farming. Cost-effective technologies were field validated. The on-station technologies developed were validated and popularized through on-farm trials in 10 sites (5 ha) under National Horticulture Mission funded programme in elephant foot yam and seven sites in yams and taro. The technologies are included in the Package of Practices Recommendations for crops of Kerala Agricultural University. A learning system developed using artificial neural networks (ANN) predicted the performance of elephant foot yam organic system. Use of organically produced seed materials, seed treatment in cow-dung, neem cake, bio-inoculant slurry, farmyard manure incubated with bio-inoculants, green manuring, use of neem cake, bio-fertilizers and ash formed the strategies for organic production. Organic farming is an eco-friendly management strategy that enables 10-20% higher yield, quality tubers and maintenance of soil health in tuber crops.

Keywords: eco-agriculture, quality, root crops, healthy soil, yield

Procedia PDF Downloads 307
3795 Cenomanian-Turonian Oceanic Anoxic Event, Palynofacies and Optical Kerogen Analysis in Abu Gharadig Basin, Egypt

Authors: Mohamed Ibrahim, Suzan Kholeif

Abstract:

The Cenomanian-Turonian boundary was a ‘greenhouse’ period. The atmosphere at that time was characterized by high CO₂; in addition, there was the widespread deposition of organic-rich sediments anomalously rich in organic carbon. The sediments, palynological, total organic carbon (TOC), stable carbon and oxygen isotopes (δ¹³C, δ¹⁸O, organic) of the Cenomanian-Turonian Bahariya and basal Abu Roash formations at the southern Tethys margin were studied in two deep wells (AG5 and AG-13), Abu Gharadig Oil Field, North Western Desert, Egypt. Some of the marine (dinoflagellate cysts), as well as the terrestrial palynoflora (spores and pollen grains), reveal extinction and origination patterns that are known elsewhere, although other species may be survived across the Cenomanian-Turonian boundary. This implies control of global changes on the palynoflora, i.e., impact of Oceanic Anoxic Event OAE2 (Bonarelli Event), rather than changes in the local environmental conditions. The basal part of the Abu Roach Formation ('G' and 'F' members, late Cenomanian) shows a positive δ ¹³C excursion of the organic fraction. The TOC is generally high between 2.20 and 3.04 % in the basal Abu Roash Formation: shale of 'G' and carbonate of 'F' members, which indicates that these two members are the main Cretaceous source rocks in the Abu Gharadig Basin and have a type I-II kerogen composition. They are distinguished by an abundance of amorphous organic matter AOM and Chlorococcalean algae, mainly Pediastrum and Scenedesmus, along with subordinate dinoflagellate cysts.

Keywords: oceanic anoxic event, cenomanian-turonian, palynofacies, western desert, Egypt

Procedia PDF Downloads 92
3794 Quantification of Extent of Pollution from Total Lead in the Shooting Ranges Found in Southern and Central Botswana: A Pioneering Study

Authors: Nicholas Sehube, Rosemary Kelebemang, Pogisego Dinake

Abstract:

The extent of Pb contamination of shooting range soils has never been ascertained in Botswana, this was the first attempt in evaluating the deposition of Pb into the soils emanating from munitions. A total of 8 military shooting ranges were used for this study. Soil samples were collected at each of the 8 shooting ranges at the berm (stop butt), target line, 50 and 100 m from the berm. In all of the shooting ranges investigated the highest concentrations were found in the berm soils. The highest Pb concentrations of 38 406.87 mg/Kg were found in the berm soils of Thebephatshwa shooting range which is enclosed within a military camp with staff residential dwelling only a kilometre away. Most of the shooting ranges soils contained elevated levels of Pb in the ranges above 2000 mg/kg far exceeding the United States Environmental Protection Agency (USEPA) critical value of 400 mg/Kg. Mobilization of lead at high pH is attributed to low organic matter and such was the case with Thebephatshwa shooting range with a percept organic matter of 0.35±0.08. The predominant weathering products in these shooting ranges were cerussite (PbCO3), hydrocerussite (Pb(CO3)2(OH)2 and massicot (PbO). The detailed examination and characterization of the extent of pollution will help in the development and implementation of scientifically sound remediation and restoration of shooting ranges soils.

Keywords: ammunition, Botswana, Pb, pollution, soil

Procedia PDF Downloads 206
3793 Alexandrium pacificum Cysts Distribution in One North African Lagoon Ecosystem

Authors: M. Fertouna Bellakhal, M. Bellakhal, A. Dhib, A. Fathalli, S. Turki, L. Aleya

Abstract:

Study of dinoflagellate cysts is a precious tool to get information about environment and water quality in many aquatic ecosystems. The distribution of Alexandrium pacificum cysts, in Bizerta lagoon located in North of Tunisia, was made based on sediment samples analysis from 123 equidistant stations delimiting 125 km² surfaces. Sediment characteristics such as percentage of water, organic matter, and particle size were analyzed to determine the factors that influence the distribution of this dinoflagellate. In addition, morphological examination and ribotyping of vegetative forms from microalgal cultures made from cyst germination confirmed the identity of the species attributed to A. pacificum. A correlation between the abundance of A. pacificum cysts and the percentage of water and sediment organic matter was recorded. In addition, the sedimentary fraction < 63μm was found to be potentially favorable for the installation and initiation of the Alexandrium pacificum efflorescence at the Bizerte lagoon. The mapping of cysts in this aquatic ecosystem has also allowed us to define distinct areas with specific abundance with closed relationship with shellfish aquaculture stations located within the lagoon.

Keywords: Alexandrium pacificum, cysts, Dinoflagellate, microalgal culture

Procedia PDF Downloads 125
3792 The Study of the Absorption and Translocation of Chromium by Lygeum spartum in the Mining Region of Djebel Hamimat and Soil-Plant Interaction

Authors: H. Khomri, A. Bentellis

Abstract:

Since century of the Development Activities extraction and a dispersed mineral processing Toxic metals and much more contaminated vast areas occupied by what they natural outcrops. New types of metalliferous habitats are so appeared. A species that is Lygeum spartum attracted our curiosity because apart from its valuable role in desertification, it is apparently able to exclude antimony and other metals can be. This species, green leaf blades which are provided as cattle feed, would be a good subject for phytoremediation of mineral soils. The study of absorption and translocation of chromium by the Lygeum spartum in the mining region of Djebel Hamimat and the interaction soil-plant, revealed that soils of this species living in this region are alkaline, calcareous majority in their fine texture medium and saline in their minority. They have normal levels of organic matter. They are moderately rich in nitrogen. They contain total chromium content reaches a maximum of 66,80 mg Kg^(-1) and a total absence of soluble chromium. The results of the analysis of variance of the difference between bare soils and soils appear Lygeum spartum made a significant difference only for the silt and organic matter. But for the other variables analyzed this difference is not significant. Thus, this plant has only one action on the amendment, only the levels of silt and organic matter in soils. The results of the multiple regression of the chromium content of the roots according to all soil variables studied did appear that among the studied variables included in the model, only the electrical conductivity and clay occur in the explanation of contents chromium in roots. The chromium content of the aerial parts analyzed by regression based on all studied soil variables allows us to see only the variables: electrical conductivity and content of chromium in the root portion involved in the explanation of the content chromium in the aerial part.

Keywords: absorption, translocation, analysis of variance, chrome, Lygeum spartum, multiple regression, the soil variables

Procedia PDF Downloads 229
3791 Effect of Inorganic Fertilization on Soil N Dynamics in Agricultural Plots in Central Mexico

Authors: Karla Sanchez-Ortiz, Yunuen Tapia-Torres, John Larsen, Felipe Garcia-Oliva

Abstract:

Due to food demand production, the use of synthetic nitrogenous fertilizer has increased in agricultural soils to replace the N losses. Nevertheless, the intensive use of synthetic nitrogenous fertilizer in conventional agriculture negatively affects the soil and therefore the environment, so alternatives such as organic agriculture have been proposed for being more environmentally friendly. However, further research in soil is needed to see how agricultural management affects the dynamics of C and N. The objective of this research was to evaluate the C and N dynamics in the soil with three different agricultural management: an agricultural plot with intensive inorganic fertilization, a plot with semi-organic management and an agricultural plot with recent abandonment (2 years). For each plot, the soil C and N dynamics and the enzymatic activity of NAG and β-Glucosidase were characterized. Total C and N concentration of the plant biomass of each site was measured as well. Dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) was higher in abandoned plot, as well as this plot had higher total carbon (TC) and total nitrogen (TN), besides microbial N and microbial C. While the enzymatic activity of NAG and β-Glucosidase was greater in the agricultural plot with inorganic fertilization, as well as nitrate (NO₃) was higher in fertilized plot, in comparison with the other two plots. The aboveground biomass (AB) of maize in the plot with inorganic fertilization presented higher TC and TN concentrations than the maize AB growing in the semiorganic plot, but the C:N ratio was highest in the grass AB in the abandoned plot. The C:N ration in the maize grain was greater in the semi-organic agricultural plot. These results show that the plot under intensive agricultural management favors the loss of soil organic matter and N, degrading the dynamics of soil organic compounds, promoting its fertility depletion.

Keywords: mineralization, nitrogen cycle, soil degradation, soil nutrients

Procedia PDF Downloads 151
3790 The Relationship of Anthocyanins with Color of Organically and Conventionally Cultivated Potatoes

Authors: I. Murniece, L. Tomsone, I. Skrabule, A. Vaivode

Abstract:

Many of the compounds present in potato are important because of their beneficial effects on health, therefore, are highly desirable in the human diet. Potato tubers contain significant amounts of anthocyanins. The aim of this research was to determine the content of anthocyanins and its relationship with the colour of organically and conventionally cultivated potato varieties. In the research eight potato samples of three potato varieties were analysed on anthocyanins, dry matter content and colour. Obtained results show that there was no significant influence on amount of anthocyanins between different cultivation environments (p>0.05) while between varieties-significant difference (p<0.05). Strong correlation between the amount of anthocyanins and colour was determined.

Keywords: potato variety, anthocyanins, organic, conventional, dry matter

Procedia PDF Downloads 155
3789 The Importance of Storage Period on Biogas Potential of Cattle Manure

Authors: Seongwon Im, Jimin Kim, Kyeongcheol Kim, Dong-Hoon Kim

Abstract:

Cattle manure (CM) produced from farmhas been utilized to soils for increasing crop production owing to high nutrients content and effective microorganisms. Some cities with the concentrated activity of livestock industry have suffered from environmental problems, such as odorous gas emissions and soil and water pollution, caused by excessive use of compost. As an alternative option, the anaerobic digestion (AD) process can be utilized, which can reduce the volume of organic waste but also produce energy. According to Korea-Ministry of Trade, Industry, and Energy (KMTIE), the energy potential of CM via biogas production was estimated to be 0.8 million TOE per year, which is higher than that of other organic wastes. However, limited energy is recovered since useful organic matter, capable of converting to biogas, may be degraded during the long storage period (1-6 months).In this study, the effect of storage period on biogas potential of CM was investigated. Compared to fresh CM (VS 14±1 g/L, COD 205±5 g/L, TKN 7.4±0.8 g/L, NH4+-N 1.5±0.1), old CM has higher organic (35-37%) and nitrogen content (50-100%) due to the drying process during storage. After stabilization period, biogas potential of 0.09 L CH4/g VS was obtained in R1 (old CM supplement) at HRT of 150-100 d, and it was decreased further to 0.06 L CH4/g VS at HRT of 80 d. The drop of pH and organic acids accumulation were not observed during the whole operation of R1. Ammonia stripping and pretreatment of CM were found to be not effective to increase CH4 yield. On the other hand, a sudden increase of biogas potential to 0.19-0.22 L CH4/g VS was achieved in R2 after changing feedstock to fresh CM. The expected reason for the low biogas potential of old CM might be related with the composition of organic matters in CM. Easily biodegradable organic matters in the fresh CM were contained in high concentration, butthey were removed by microorganisms during storing CM in a farm, resulting low biogas yield. This study implies that fresh storage is important to make AD process applicable for CM.

Keywords: storage period, cattle manure, biogas potential, microbial analysis

Procedia PDF Downloads 138
3788 Evaluation of Total Phenolic Content and Antioxidant Activity in Amaranth Seeds Grown in Latvia

Authors: Alla Mariseva, Ilze Beitane

Abstract:

Daily intake of products rich in antioxidants that scavenge free radicals in cell membranes is an effective way to combat oxidative stress. Last year there was noticed higher interest towards the identification and utilization of plants rich in antioxidant compounds as they may behave as preventive medicine. Amaranth seeds due to polyphenols, anthocyanins, flavonoids, and tocopherols are characterized by high antioxidant activity. The study aimed to evaluate the total phenolic content and radical scavenging activity of amaranth seeds cultivated in 2020 in two farms in Latvia. One sample of amaranth seeds came from an organic farm, the other – from a conventional farm. The total phenol content of amaranth seed extracts was measured with the Folin-Ciocalte spectrophotometric method. The total phenols were expressed as gallic acid equivalents (GAE) per 100 g dry weight (DW) of the samples. The antioxidant activity of amaranth seed extracts was calculated based on scavenging activities of the stable 2.2-diphenyl-1-picrylhydrazyl (DPPH˙) radical, the radical scavenging capacity (ABTS) was demonstrated as Trolox mM equivalents (TE) per 100 g-1 dry weight. Three parallel measurements were performed on all samples. There were significant differences between organic and conventional amaranth seeds in terms of total phenolic content and antioxidant activity. Organic amaranth seeds showed higher total phenolic content compared to conventional amaranth seeds, 65.4±6.0 mg GAE 100 g⁻¹ DW and 43.4±7.8 mg GAE 100 g⁻¹ DW respectively. Organic amaranth seeds were also characterized by higher DPPH radical scavenging activity (7.9±0.4 mM TE 100 g⁻¹ of dry matter) and ABTS radical scavenging capacity (13.2±1.5 mM TE 100 g⁻¹ of dry matter). The results obtained on total phenolic content and antioxidant activity of amaranth seeds grown in Latvia confirmed that the samples have a high biological value; therefore, it would be necessary to promote their consumption by including them in various food products, including vegan products, increasing their nutritional value.

Keywords: ABTS, amaranth seeds, antioxidant activity, DPPH, total phenolic content

Procedia PDF Downloads 185
3787 Growth and Development of Membranes in Gas Sequestration

Authors: Sreevalli Bokka

Abstract:

The process of reducing the intensity of the carbon from a process or stream into the atmosphere is termed Decarbonization. Of the various technologies that are emerging to capture or reduce carbon intensity, membranes are emerging as a key player in separating carbon from a gas stream, such as industrial effluent air and others. Due to the advantage of high surface area and low flow resistance, fiber membranes are emerging widely for gas separation applications. A fiber membrane is a semipermeable barrier that is increasingly used for filtration and separation applications needing high packing density. A few of the many applications are in water desalination, medical applications, bioreactors, and gas separations applications. Only a few polymeric membranes were studied for fabricating fiber membranes such as cellulose acetate, Polysulfone, and Polyvinylidene fluoride. A few of the challenges of using fiber membranes are fouling and weak mechanical properties, leading to the breakage of membranes. In this work, the growth of fiber membranes and challenges for future developments in the filtration and gas separation applications are presented.

Keywords: membranes, filtration, separations, polymers, carbon capture

Procedia PDF Downloads 17
3786 Investigation of Biogas from Slaughterhouse and Dairy Farm Waste

Authors: Saadelnour Abdueljabbar Adam

Abstract:

Wastes from slaughterhouses in most towns in Sudan are often poorly managed and sometimes discharged into adjoining streams due to poor implementation of standards, thus causing environmental and public health hazards and also there is a large amount of manure from dairy farms. This paper presents a solution of organic waste from cow dairy farms and slaughterhouse. We present the findings of experimental investigation of biogas production using cow manure, blood and rumen content were mixed at three proportions :72.3%, 61%, 39% manure, 6%, 8.5%, 22% blood; and 21.7%, 30.5%, 39% rumen content in volume for bio-digester 1,2,3 respectively. This paper analyses the quantitative and qualitative composition of biogas: gas content, and the concentration of methane. The highest biogas output 0.116L/g dry matter from bio-digester1 together with a high-quality biogas of 85% methane Was from the mixture of cow manure with blood and rumen content were mixed at 72.3%manure, 6%blood and 21.7%rumen content which is useful for combustion and energy production. While bio-digester 2 and 3 gave 0.012L/g dry matter and 0.013L/g dry matter respectively with the weak concentration of methane (50%).

Keywords: anaerobic digestion, bio-digester, blood, cow manure, rumen content

Procedia PDF Downloads 532
3785 Simulation and Characterization of Organic Light Emitting Diodes and Organic Photovoltaics Using Physics Based Tool

Authors: T. A. Shahul Hameed, P. Predeep, Anju Iqbal, M. R. Baiju

Abstract:

Research and development in organic photovoltaic cells and Organic Light Emitting Diodes have gained wider acceptance due to the advent of many advanced techniques to enhance the efficiency and operational hours. Here we report our work on design, simulation and characterizationracterize the bulk heterojunction organic photo cell and polymer light emitting diodes in different layer configurations using ATLAS, a licensed device simulation tool. Bulk heterojuction and multilayer devices were simulated for comparing their performance parameters.

Keywords: HOMO, LUMO, PLED, OPV

Procedia PDF Downloads 548
3784 A Sustainable and Low-Cost Filter to Treat Pesticides in Water

Authors: T. Abbas, J. McEvoy, E. Khan

Abstract:

Pesticide contamination in water supply is a common environmental problem in rural agricultural communities. Advanced water treatment processes such as membrane filtration and adsorption on activated carbon only remove pesticides from water without degrading them into less toxic/easily degradable compounds leaving behind contaminated brine and activated carbon that need to be managed. Rural communities which normally cannot afford expensive water treatment technologies need an economical and sustainable filter which not only treats pesticides from water but also degrades them into benign products. In this study, iron turning waste experimented as potential point-of-use filtration media for the removal/degradation of a mixture of six chlorinated pesticides (lindane, heptachlor, endosulfan, dieldrin, endrin, and DDT) in water. As a common and traditional medium for water filtration, sand was also tested along with iron turning waste. Iron turning waste was characterized using scanning electron microscopy and energy dispersive X-Ray analyzer. Four glass columns with different filter media layer configurations were set up: (1) only sand, (2) only iron turning, (3) sand and iron turning (two separate layers), and (4) sand, iron turning and sand (three separate layers). The initial pesticide concentration and flow rate were 2 μg/L and 10 mL/min. Results indicate that sand filtration was effective only for the removal of DDT (100%) and endosulfan (94-96%). Iron turning filtration column effectively removed endosulfan, endrin, and dieldrin (85-95%) whereas the lindane and DDT removal were 79-85% and 39-56%, respectively. The removal efficiencies for heptachlor, endosulfan, endrin, dieldrin, and DDT were 90-100% when sand and iron turning waste (two separate layers) were used. However, better removal efficiencies (93-100%) for five out of six pesticides were achieved, when sand, iron turning and sand (three separate layers) were used as filtration media. Moreover, the effects of water pH, amounts of media, and minerals present in water such as magnesium, sodium, calcium, and nitrate on the removal of pesticides were examined. Results demonstrate that iron turning waste efficiently removed all the pesticides under studied parameters. Also, it completely de-chlorinated all the pesticides studied and based on the detection of by-products, the degradation mechanisms for all six pesticides were proposed.

Keywords: pesticide contamination, rural communities, iron turning waste, filtration

Procedia PDF Downloads 220
3783 Assessing the Impacts of Riparian Land Use on Gully Development and Sediment Load: A Case Study of Nzhelele River Valley, Limpopo Province, South Africa

Authors: B. Mavhuru, N. S. Nethengwe

Abstract:

Human activities on land degradation have triggered several environmental problems especially in rural areas that are underdeveloped. The main aim of this study is to analyze the contribution of different land uses to gully development and sediment load on the Nzhelele River Valley in the Limpopo Province. Data was collected using different methods such as observation, field data techniques and experiments. Satellite digital images, topographic maps, aerial photographs and the sediment load static model also assisted in determining how land use affects gully development and sediment load. For data analysis, the researcher used the following methods: Analysis of Variance (ANOVA), descriptive statistics, Pearson correlation coefficient and statistical correlation methods. The results of the research illustrate that high land use activities create negative changes especially in areas that are highly fragile and vulnerable. Distinct impact on land use change was observed within settlement area (9.6 %) within a period of 5 years. High correlation between soil organic matter and soil moisture (R=0.96) was observed. Furthermore, a significant variation (p ≤ 0.6) between the soil organic matter and soil moisture was also observed. A very significant variation (p ≤ 0.003) was observed in bulk density and extreme significant variations (p ≤ 0.0001) were observed in organic matter and soil particle size. The sand mining and agricultural activities has contributed significantly to the amount of sediment load in the Nzhelele River. A high significant amount of total suspended sediment (55.3 %) and bed load (53.8 %) was observed within the agricultural area. The connection which associates the development of gullies to various land use activities determines the amount of sediment load. These results are consistent with other previous research and suggest that land use activities are likely to exacerbate the development of gullies and sediment load in the Nzhelele River Valley.

Keywords: drainage basin, geomorphological processes, gully development, land degradation, riparian land use and sediment load

Procedia PDF Downloads 265
3782 Friction Coefficient of Epiphen Epoxy System Filled with Powder Resulting from the Grinding of Pine Needles

Authors: I. Graur, V. Bria, C. Muntenita

Abstract:

Recent ecological interests have resulted in scientific concerns regarding natural-organic powder composites. Because natural-organic powders are cheap and biodegradable, green composites represent a substantial contribution in polymer science area. The aim of this study is to point out the effect of natural-organic powder resulting from the grinding of pine needles used as a modifying agent for Epiphen epoxy resin and is focused on friction coefficient behavior. A pin-on-disc setup is used for friction coefficient experiments. Epiphen epoxy resin was used with the different ratio of organic powder from the grinding of pine needles. Because of the challenges of natural organic powder, more and more companies are looking at organic composite materials.

Keywords: epoxy, friction coefficient, organic powder, pine needles

Procedia PDF Downloads 141
3781 Organic Geochemistry of the Late Cenomanian–Early Turonian Source Rock in Central and Northern Tunisia

Authors: Belhaj Mohamed, M. Saidi, I. Bouazizi, M. Soussi, M. Ben Jrad

Abstract:

The Late Cenomanian-Early Turonian laminated, black, organic-rich limestones were described in Central Tunisia and attributed to the Bahloul Formation. It covers central and northern Tunisia, and the northern part of the Gulf of Gabes. The Bahloul Formation is considered as one of the main source rocks in Tunisia and is composed of outer-shelf to slop-laminated and dark-gray to black-colored limestones and marls. This formation had been deposited in a relatively deep-marine, calm, and anoxic environment. Rock-Eval analysis and vitrinite reflectance (Ro) measurements were performed on the basis of the organic carbon content. Several samples were chosen for molecular organic geochemistry. Saturate and aromatic hydrocarbons were analyzed by gas chromatography (GC) and GC–mass spectrometry. Geochemical data of the Bahloul Formation in northern and central Tunisia show this level to be a good potential source rock as indicated by the high content of type II organic matter. This formation exhibits high total organic carbon contents (as much as 14%), with an average value of 2% and a good to excellent petroleum potential, ranging between 2 and 50 kg of hydrocarbon/ton of rock. The extracts from the Bahloul Formation are characterized by Pr/Ph ratios ranging between 1.5 and 3, a moderate diasterane content, a C27 sterane approximately equal to C29 sterane, a high C28/C29 ratio, low gammacerane index, a C35/C34 homohopane ratio less than 1 and carbon isotope compositions between -24 and -26‰. The thermal maturity is relatively low, corresponding to the beginning of the oil window in the western area near the Algerian border, in the oil window in the eastern area (Sahel basin) and late mature in northern part.

Keywords: biomarkers, organic geochemistry, source rock, Tunisia

Procedia PDF Downloads 464
3780 Neutral Sugars in Two-Step Hydrolysis of Laurel-Leaved and Cryptomeria japonica Forests

Authors: Ayuko Itsuki, Sachiyo Aburatani

Abstract:

Soil neutral sugar contents in Kasuga-yama Hill Primeval Forest, which is a World Heritage Site in Nara, Japan consisting of lowland laurel-leaved forest where natural conditions have been preserved for more than 1,000 years, were examined using the two-step hydrolysis to clarify the source of the neutral sugar and relations with the neutral sugar constituted the soil organic matter and the microbial biomass. Samples were selected from the soil (L, F, H and A horizons) surrounding laurel-leaved (BB-1) and Carpinus japonica (BB-2 and PW) trees for analysis. The neutral sugars were one factor of increasing the fungal and bacterial biomass in the laurel-leaved forest soil (BB-1). The more neutral sugar contents in the Cryptomeria japonica forest soil (PW) contributed to the growth of the bacteria and fungi than those of in the Cryptomeria japonica forest soil (BB-2). The neutral sugars had higher correlation with the numbers of bacteria and fungi counted by the dilution plate count method than by the direct microscopic count method. The numbers of fungi had higher correlation with those of bacteria by the dilution plate method.

Keywords: forest soil, neutral sugars, soil organic matter, two-step hydrolysis

Procedia PDF Downloads 232
3779 The Impact of Initiators on Fast Drying Traffic Marking Paint

Authors: Maryam Taheri, Mehdi Jahanfar, Kenji Ogino

Abstract:

Fast drying traffic marking paint comprising a solvent-borne resin, a filler, a pigment and a solvent that is especially suitable for colder ambient (temperatures near freezing) applications, where waterborne traffic paint cannot be used. Acrylic resins based on methyl methacrylate, butyl acrylate, acrylic acid, and styrene were synthesized in different solvents using organic peroxide initiators such as peroxyester, peroxyketal, dialkylperoxide and azo. After polymerization, the molecular weight (Mw), polydispersity index= PDI (Mw/Mn), viscosity, total residual monomer and APHA color were evaluated and results of organic peroxide initiators (t- butyl and t-amyl derivatives) were also compared with the azo initiator. The Mw, PDI, viscosity, mass conversation and APHA color of resins with t-amyl derivatives of organic peroxide initiators are very proper. The results of the traffic marking paints test such as non-volatile matter, no- pick- up time, hiding power, resistance to wear and water resistance study that produced with these resins also confirm this.

Keywords: fast drying traffic marking paint, acrylic resin, organic peroxide initiator, peroxyester, peroxyketal, dialkylperoxide and azo initiator

Procedia PDF Downloads 174
3778 Risk Assessment of Particulate Matter (PM10) in Makkah, Saudi Arabia

Authors: Turki M. Habeebullah, Atef M. F. Mohammed, Essam A. Morsy

Abstract:

In recent decades, particulate matter (PM10) have received much attention due to its potential adverse health impact and the subsequent need to better control or regulate these pollutants. The aim of this paper is focused on study risk assessment of PM10 in four different districts (Shebikah, Masfalah, Aziziyah, Awali) in Makkah, Saudi Arabia during the period from 1 Ramadan 1434 AH - 27 Safar 1435 AH. samples was collected by using Low Volume Sampler (LVS Low Volume Sampler) device and filtration method for estimating the total concentration of PM10. The study indicated that the mean PM10 concentrations were 254.6 (186.1 - 343.2) µg/m3 in Shebikah, 184.9 (145.6 - 271.4) µg/m3 in Masfalah, 162.4 (92.4 - 253.8) µg/m3 in Aziziyah, and 56.0 (44.5 - 119.8) µg/m3 in Awali. These values did not exceed the permissible limits in PME (340 µg/m3 as daily average). Furthermore, health assessment is carried out using AirQ2.2.3 model to estimate the number of hospital admissions due to respiratory diseases. The cumulative number of cases per 100,000 were 1534 (18-3050 case), which lower than that recorded in the United States, Malaysia. The concentration response coefficient was 0.49 (95% CI 0.05 - 0.70) per 10 μg/m3 increase of PM10.

Keywords: air pollution, respiratory diseases, airQ2.2.3, Makkah

Procedia PDF Downloads 423
3777 An Evaluation of Different Weed Management Techniques in Organic Arable Systems

Authors: Nicola D. Cannon

Abstract:

A range of field experiments have been conducted since 1991 to 2017 on organic land at the Royal Agricultural University’s Harnhill Manor Farm near Cirencester, UK to explore the impact of different management practices on weed infestation in organic winter and spring wheat. The experiments were designed using randomised complete block and some with split plot arrangements. Sowing date, variety choice, crop height and crop establishment technique have all shown a significant impact on weed infestations. Other techniques have also been investigated but with less clear, but, still often significant effects on weed control including grazing with sheep, undersowing with different legumes and mechanical weeding techniques. Tillage treatments included traditional plough based systems, minimum tillage and direct drilling. Direct drilling had significantly higher weed dry matter than the other two techniques. Taller wheat varieties which do not contain Rht1 or Rht2 had higher weed populations than the wheat without dwarfing genes. Early sown winter wheat had greater weed dry matter than later sown wheat. Grazing with sheep interacted strongly with sowing date, with shorter varieties and also late sowing dates providing much less forage but, grazing did reduce weed biomass in June. Undersowing had mixed impacts which were related to the success of establishment of the undersown legume crop. Weeds are most successfully controlled when a range of techniques are implemented to give the wheat crop the greatest chance of competing with weeds.

Keywords: crop establishment, drilling date, grazing, undersowing, varieties, weeds

Procedia PDF Downloads 154
3776 Ecosystem Restoration: Remediation of Crude Oil-Polluted Soil by Leuceana leucocephala (Lam.) de Wit

Authors: Ayodele Adelusi Oyedeji

Abstract:

The study was carried out under a controlled environment with the aim of examining remediation of crude oil polluted soil. The germination rate, heights and girths, number of leaves and nodulation was determined following standard procedures. Some physicochemical (organic matter, pH, nitrogen, phosphorous, potassium, calcium, magnesium and sodium) characteristics of soil used were determined using standard protocols. Results showed that at varying concentration of crude oil i.e 0 ml, 25 ml, 50 ml, 75 ml and 100 ml, Leuceana leucocephala had germination rate of 92%, 90%, 84%, 62% and 56% respectively, mean height of 73.70cm, 58.30cm, 49.50cm, 46.45cm and 41.80cm respectively after 16 weeks after planting (WAP), mean girth of 0.54mm, 0.34mm, 0.33mm, 0.21mm and 0.19mm respectively at 16 WAP, number of nodules 18, 10, 10, 6 and 2 respectively and number of leaves 24.00, 16.00, 13.00, 10.00 and 6.00 respectively. The organic matter, pH, nitrogen, phosphorous, potassium, calcium, magnesium, and sodium decreased with the increase in the concentration of crude oil. Furthermore, as the concentration of crude oil increased the germination rate, height, girth, and number of leaves and nodules decreased, suggesting the effect of crude oil on Leuceana leucocephala. The plant withstands the varying concentration of the crude oil means that it could be used for the remediation of crude oil contaminated soil in the Niger Delta region of Nigeria.

Keywords: ecosystem conservation, Leuceana leucocephala, phytoremediation, soil pollution

Procedia PDF Downloads 79
3775 Membrane Bioreactor for Wastewater Treatment and Reuse

Authors: Sarra Kitanou

Abstract:

Water recycling and reuse is an effective measure to solve the water stress problem. The sustainable use of water resource has become a national development strategy in Morocco. A key aspect of improving overall sustainability is the potential for direct wastewater effluent reuse. However, the hybrid technology membrane bioreactors (MBR) have been identified as an attractive option for producing high quality and nutrient-rich effluents for wastewater treatment. It is based on complex interactions between biological processes, filtration process and rheological properties of the liquid to be treated. Currently, with the evolution of wastewater treatment projects in Morocco, the MBR technology can be used as a technology treating different types of wastewaters and to produce effluent with suitable quality for reuse. However, the energetic consumption of this process is a great concern, which can limit the development and implementation of this technology. In this investigation, the electric energy consumption of an ultrafiltration membrane bioreactor process in domestic wastewater treatment is evaluated and compared to some MBR installations based on literature review. Energy requirements of the MBR are linked to operational parameters and reactor performance. The analysis of energy consumption shows that the biological aeration and membrane filtration are more energy consuming than the other components listed as feed and recirculation pumps. Biological aeration needs 53% of the overall energetic consumption and the specific energy consumption for membrane filtration is about 25%. However, aeration is a major energy consumer, often exceeding 50% share of total energy consumption. The optimal results obtained on the MBR process (pressure p = 1.15 bar), hydraulic retention time (15 h) showed removal efficiencies up to 90% in terms of organic compounds removal, 100% in terms of suspended solids presence and up to 80% reduction of total nitrogen and total phosphorus. The effluent from this MBR system could be considered as qualified for irrigation reuse, showing its potential application in the future.

Keywords: hybrid process, membrane bioreactor, wastewater treatment, reuse

Procedia PDF Downloads 48
3774 A Combination of Filtration and Coagulation Processes for Tannery Effluent Treatment

Authors: M. G. Mostafa, Manjushree Chowdhury, Tapan Kumar Biswas, , Ananda Kumar Saha

Abstract:

This study focused on effluents characterization and treatment process to reduce of toxicity from tannery effluents. Tanning industry is one of the oldest industries in the world. It is typically characterized as pollutants generated industries which produce wide varieties of high strength toxic chemicals. The study was conducted during the year 2008 to 2009 and the tannery effluents were collected three times in a year from the outlet of some selected leather industries located in Hagaribagh industrial zone Dhaka, Bangladesh. The analysis results of the raw effluents reveal that the effluents were yellowish-brown color, having basic pH, very high value of BOD5¬¬, COD, TDS, TSS, TS, and high concentrations of Cr, Na, SO42-, Cl- and other organic and inorganic constituents. The tannery effluents were treated with various doses of FeCl3 after settling and a subsequent filtration through sand-stone. The study observed that coagulant (FeCl3) 150 mg/L dose around neutral pH showed the best removal efficiency for major physico-chemical parameters. The analysis results of illustrate that the most of the physical and chemical parameters were found well below the prescribed permissible limits for effluent discharged. The study suggests that tannery effluents could be treated by a combined process consisting of settling, filtering and coagulating with FeCl3.

Keywords: characterization, effluent, tannery, treatment

Procedia PDF Downloads 419
3773 Operating Parameters and Costs Assessments of a Real Fishery Wastewater Effluent Treated by Electrocoagulation Process

Authors: Mirian Graciella Dalla Porta, Humberto Jorge José, Danielle de Bem Luiz, Regina de F. P. M.Moreira

Abstract:

Similar to most processing industries, fish processing produces large volumes of wastewater, which contains especially organic contaminants, salts and oils dispersed therein. Different processes have been used for the treatment of fishery wastewaters, but the most commonly used are chemical coagulation and flotation. These techniques are well known but sometimes the characteristics of the treated effluent do not comply with legal standards for discharge. Electrocoagulation (EC) is an electrochemical process that can be used to treat wastewaters in terms of both organic matter and nutrient removal. The process is based on the use of sacrificial electrodes such as aluminum, iron or zinc, that are oxidized to produce metal ions that can be used to coagulate and react with organic matter and nutrients in the wastewater. While EC processes are effective to treatment of several types of wastewaters, applications have been limited due to the high energy demands and high current densities. Generally, the for EC process can be performed without additional chemicals or pre-treatment, but the costs should be reduced for EC processes to become more applicable. In this work, we studied the treatment of a real wastewater from fishmeal industry by electrocoagulation process. Removal efficiencies for chemical oxygen demand (COD), total organic carbon (TOC) turbidity, phosphorous and nitrogen concentration were determined as a function of the operating conditions, such as pH, current density and operating time. The optimum operating conditions were determined to be operating time of 10 minutes, current density 100 A.m-2, and initial pH 4.0. COD, TOC, phosphorous concentration, and turbidity removal efficiencies at the optimum operating conditions were higher than 90% for aluminum electrode. Operating costs at the optimum conditions were calculated as US$ 0.37/m3 (US$ 0.038/kg COD) for Al electrode. These results demonstrate that the EC process is a promising technology to remove nutrients from fishery wastewaters, as the process has both a high efficiency of nutrient removal, and low energy requirements.

Keywords: electrocoagulation, fish, food industry, wastewater

Procedia PDF Downloads 214
3772 Bio Energy from Metabolic Activity of Bacteria in Plant and Soil Using Novel Microbial Fuel Cells

Authors: B. Samuel Raj, Solomon R. D. Jebakumar

Abstract:

Microbial fuel cells (MFCs) are an emerging and promising method for achieving sustainable energy since they can remove contaminated organic matter and simultaneously generate electricity. Our approach was driven in three different ways like Bacterial fuel cell, Soil Microbial fuel cell (Soil MFC) and Plant Microbial fuel cell (Plant MFC). Bacterial MFC: Sulphate reducing bacteria (SRB) were isolated and identified as the efficient electricigens which is able to produce ±2.5V (689mW/m2) and it has sustainable activity for 120 days. Experimental data with different MFC revealed that high electricity production harvested continuously for 90 days 1.45V (381mW/m2), 1.98V (456mW/m2) respectively. Biofilm formation was confirmed on the surface of the anode by high content screening (HCS) and scanning electron Microscopic analysis (SEM). Soil MFC: Soil MFC was constructed with low cost and standard Mudwatt soil MFC was purchased from keegotech (USA). Vermicompost soil (V1) produce high energy (± 3.5V for ± 400 days) compared to Agricultural soil (A1) (± 2V for ± 150 days). Biofilm formation was confirmed by HCS and SEM analysis. This finding provides a method for extracting energy from organic matter, but also suggests a strategy for promoting the bioremediation of organic contaminants in subsurface environments. Our Soil MFC were able to run successfully a 3.5V fan and three LED continuously for 150 days. Plant MFC: Amaranthus candatus (P1) and Triticum aestivium (P2) were used in Plant MFC to confirm the electricity production from plant associated microbes, four uniform size of Plant MFC were constructed and checked for energy production. P2 produce high energy (± 3.2V for 40 days) with harvesting interval of two times and P1 produces moderate energy without harvesting interval (±1.5V for 24 days). P2 is able run 3.5V fan continuously for 10days whereas P1 needs optimization of growth conditions to produce high energy.

Keywords: microbial fuel cell, biofilm, soil microbial fuel cell, plant microbial fuel cell

Procedia PDF Downloads 306
3771 Oil Contaminate Removal from Wastewater with Novel Nanofiber-Based Membranes

Authors: Zhaoyang Liu

Abstract:

Oil pollution is typically caused by oil and gas-related operations such as vessel accidents, which can pollute waterways as well as the environment and damage the ecosystem. Tanker ship cleaning contributes to oil spills, which have a negative impact on coastal countries due to protracted service disruption. It is critical for coastal countries to develop efficient oil taint cleanup technology. There are various oil/water separation technologies, such as gravity separation, hydrocyclone, air flotation, and membrane filtration, among others. Among these, membrane filtration has been shown to produce high-quality effluent. Commercial membranes, on the other hand, nevertheless face significant practical challenges, such as a high susceptibility for membrane fouling when dealing with greasy effluent. We developed a unique anti-fouling filtering membrane for oil/water separation in this work. The membrane was made of inorganic nanofibers, which possesses the advantages of low membrane fouling, high permeation flux and long-term durability. This results from this study could facilitate to pave a new way for membranes filtration’s practical applications in oil/gas industry.

Keywords: oil, contaminate, wastewater, removal

Procedia PDF Downloads 38
3770 Evaluation of Fuel Properties of Six Tropical Hardwood Timber Species for Briquettes

Authors: Stephen J. Mitchual, Kwasi Frimpong-Mensah, Nicholas A. Darkwa

Abstract:

The fuel potential of six tropical hardwood species namely: Triplochiton scleroxylon, Ceiba pentandra, Aningeria robusta, Terminalia superba, Celtis mildbreadii and Piptadenia africana were studied. Properties studied include the species density, gross calorific value, volatile matter, ash, organic carbon, N, H, S, Cu, Pb, As and Cd content. Fuel properties were determined using standard laboratory methods. The result indicates that the Gross Calorific Value (GCV) of the species ranged from 20.16 to 22.22 MJ/kg and they slightly varied from each other. Additionally, the GCV of the biomass materials were higher than that of other biomass materials like; wheat straw, rice straw, maize straw and sugar cane. The ash and volatile matter content varied from 0.6075 to 5.0407%, and 75.23% to 83.70% respectively. The overall rating of the properties of the six biomass materials suggest that Piptadenia africana has the best fuel property to be used as briquettes and Aningeria robusta the worse. This study therefore suggests that a holistic assessment of a biomass material needs to be done before selecting it for fuel purpose.

Keywords: ash content, briquette, calorific value, elemental composition, species, volatile matter

Procedia PDF Downloads 382