Search results for: optimal binary linear codes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7069

Search results for: optimal binary linear codes

1159 Optimization of SOL-Gel Copper Oxide Layers for Field-Effect Transistors

Authors: Tomas Vincze, Michal Micjan, Milan Pavuk, Martin Weis

Abstract:

In recent years, alternative materials are gaining attention to replace polycrystalline and amorphous silicon, which are a standard for low requirement devices, where silicon is unnecessarily and high cost. For that reason, metal oxides are envisioned as the new materials for these low-requirement applications such as sensors, solar cells, energy storage devices, or field-effect transistors. Their most common way of layer growth is sputtering; however, this is a high-cost fabrication method, and a more industry-suitable alternative is the sol-gel method. In this group of materials, many oxides exhibit a semiconductor-like behavior with sufficiently high mobility to be applied as transistors. The sol-gel method is a cost-effective deposition technique for semiconductor-based devices. Copper oxides, as p-type semiconductors with free charge mobility up to 1 cm2/Vs., are suitable replacements for poly-Si or a-Si:H devices. However, to reach the potential of silicon devices, a fine-tuning of material properties is needed. Here we focus on the optimization of the electrical parameters of copper oxide-based field-effect transistors by modification of precursor solvent (usually 2-methoxy ethanol). However, to achieve solubility and high-quality films, a better solvent is required. Since almost no solvents have both high dielectric constant and high boiling point, an alternative approach was proposed with blend solvents. By mixing isopropyl alcohol (IPA) and 2-methoxy ethanol (2ME) the precursor reached better solubility. The quality of the layers fabricated using mixed solutions was evaluated in accordance with the surface morphology and electrical properties. The IPA:2ME solution mixture reached optimum results for the weight ratio of 1:3. The cupric oxide layers for optimal mixture had the highest crystallinity and highest effective charge mobility.

Keywords: copper oxide, field-effect transistor, semiconductor, sol-gel method

Procedia PDF Downloads 104
1158 Thermal Regulation of Channel Flows Using Phase Change Material

Authors: Kira Toxopeus, Kamran Siddiqui

Abstract:

Channel flows are common in a wide range of engineering applications. In some types of channel flows, particularly the ones involving chemical or biological processes, the control of the flow temperature is crucial to maintain the optimal conditions for the chemical reaction or to control the growth of biological species. This often becomes an issue when the flow experiences temperature fluctuations due to external conditions. While active heating and cooling could regulate the channel temperature, it may not be feasible logistically or economically and is also regarded as a non-sustainable option. Thermal energy storage utilizing phase change material (PCM) could provide the required thermal regulation sustainably by storing the excess heat from the channel and releasing it back as required, thus regulating the channel temperature within a range in the proximity of the PCM melting temperature. However, in designing such systems, the configuration of the PCM storage within the channel is critical as it could influence the channel flow dynamics, which would, in turn, affect the heat exchange between the channel fluid and the PCM. The present research is focused on the investigation of the flow dynamical behavior in the channel during heat transfer from the channel flow to the PCM thermal energy storage. Offset vertical columns in a narrow channel were used that contained the PCM. Two different column shapes, square and circular, were considered. Water was used as the channel fluid that entered the channel at a temperature higher than that of the PCM melting temperature. Hence, as the water was passing through the channel, the heat was being transferred from the water to the PCM, causing the PCM to store the heat through a phase transition from solid to liquid. Particle image velocimetry (PIV) was used to measure the two-dimensional velocity field of the channel flow as it flows between the PCM columns. Thermocouples were also attached to the PCM columns to measure the PCM temperature at three different heights. Three different water flow rates (0.5, 0.75 and 1.2 liters/min) were considered. At each flow rate, experiments were conducted at three different inlet water temperatures (28ᵒC, 33ᵒC and 38ᵒC). The results show that the flow rate and the inlet temperature influenced the flow behavior inside the channel.

Keywords: channel flow, phase change material, thermal energy storage, thermal regulation

Procedia PDF Downloads 113
1157 High Level Expression of Fluorinase in Escherichia Coli and Pichia Pastoris

Authors: Lee A. Browne, K. Rumbold

Abstract:

The first fluorinating enzyme, 5'-fluoro-5'-deoxyadenosine synthase (fluorinase) was isolated from the soil bacterium Streptomyces cattleya. Such an enzyme, with the ability to catalyze a C-F bond, presents great potential as a biocatalyst. Naturally fluorinated compounds are extremely rare in nature. As a result, the number of fluorinases identified remains relatively few. The field of fluorination is almost completely synthetic. However, with the increasing demand for fluorinated organic compounds of commercial value in the agrochemical, pharmaceutical and materials industries, it has become necessary to utilize biologically based methods such as biocatalysts. A key step in this crucial process is the large-scale production of the fluorinase enzyme in considerable quantities for industrial applications. Thus, this study aimed to optimize expression of the fluorinase enzyme in both prokaryotic and eukaryotic expression systems in order to obtain high protein yields. The fluorinase gene was cloned into the pET 41b(+) and pPinkα-HC vectors and used to transform the expression hosts, E.coli BL21(DE3) and Pichia pastoris (PichiaPink™ strains) respectively. Expression trials were conducted to select optimal conditions for expression in both expression systems. Fluorinase catalyses a reaction between S-adenosyl-L-Methionine (SAM) and fluoride ion to produce 5'-fluorodeoxyadenosine (5'FDA) and L-Methionine. The activity of the enzyme was determined using HPLC by measuring the product of the reaction 5'FDA. A gradient mobile phase of 95:5 v/v 50mM potassium phosphate buffer to a final mobile phase containing 80:20 v/v 50mM potassium phosphate buffer and acetonitrile were used. This resulted in the complete separation of SAM and 5’-FDA which eluted at 1.3 minutes and 3.4 minutes respectively. This proved that the fluorinase enzyme was active. Optimising expression of the fluorinase enzyme was successful in both E.coli and PichiaPink™ where high expression levels in both expression systems were achieved. Protein production will be scaled up in PichiaPink™ using fermentation to achieve large-scale protein production. High level expression of protein is essential in biocatalysis for the availability of enzymes for industrial applications.

Keywords: biocatalyst, expression, fluorinase, PichiaPink™

Procedia PDF Downloads 523
1156 Effect of an Oral Dose of M. elsdenii NCIMB 41125 on Lower Digestive Tract, Bacteria Count and Rumen Fermentation in Holstein Calves

Authors: M. C. Muya, L. J. Erasmus

Abstract:

Twenty four new born male Holstein calves were divided into two treatments groups and used to evaluate the effects of M. elsdenii NCIMB 41125. The first groups were dosed with 50 ml containing 108 CFU/mL of M. elsdenii NCIMB 41125 (Me) and the control calves were not dosed. Within each of the two treatments groups, calves were divided into three treatment groups (Not dosed: 7 d, 14 d and 21 d vs dosed Me 7 d, Me14 and Me21 d (treatments), each groups contained 4 calves within which two calves were euthanized at 24 h and two calves at 72 h. Calves entered the trial until euthanize at whether 24 or 72 H after dosing time. After receiving colostrum for 3 consecutive days after birth, calves were fed whole milk and had free access to a commercial calf starter pellet and fresh water. Fecal grab samples were taken from each calf in duplicate +24 h or +72 h relative to dosing. Immediately after euthanizing, the digestive tract was harvested, and duplicate rumen and colon digesta samples collected for VFA’s determination and DNA extraction for bacteria count using 16s RNA PCR probe technique. Independent two t-test was performed to compare mean volatile fatty acids. Mixed-effects linear regressions were performed to establish relationships between: 1) M. elsdenii and Me, and between VFA’s and Me using SAS (2009). M. elsdenii NCIMB 41125 was detected in the faeces, colon and rumen of dosed calves at both +24H and +72H and ranged from 1.6 x 106 to 4.9 x 109 cfu/ml, indicating its potential to colonize in the digestive tract of calves. There was a strong positive relationship (R²=0.96; P < 0.0001) between M. elsdenii NCIMB 41125 and M. elsdenii population (cfu/ml) in the rumen, suggesting that the increase in M. elsdenii was due to increased M. elsdenii NCIMB 41125. An increase in butyrate was observed from +24 h to +72 h when calves were dosed on both d 7 and 14. Results showed that Me presented a positive relationship with butyrate (P < 0.001, R² = 0.43) and a concomitant negative relationship with acetate (P = 0.017, R² = -0.33). These results suggest that dosing pre-weaned dairy calves with M. elsdenii NCIMB 41125 has the potential to alter ruminal VFA production through increasing proportions of butyrate at the expense of propionate.

Keywords: calves, megasphaera elsdenii, rumen fermentation, bacteria

Procedia PDF Downloads 366
1155 Applied Canonical Correlation Analysis to Explore the Relationship between Resourcefulness and Quality of Life in Cancer Population

Authors: Chiou-Fang Liou

Abstract:

Cancer has been one of the most life-threaten diseases worldwide for 30+ years. The influences of cancer illness include symptoms from cancer itself along with its treatments. The quality of life among patients diagnosed with cancer during cancer treatments has been conceptualized within four domains: Functional Well-Being, Social Well-Being, Physical Well-Being, and Emotional Well-Being. Patients with cancer often need to make adjustments to face all the challenges. The middle-range theory of Resourcefulness and Quality of life has been applied to explore factors contributing to cancer patients’ needs. Resourcefulness is defined as sets of skills that can be learned and consisted of Person and Social Resourcefulness. Empirical evidence also supported a possible relationship between Resourcefulness and Quality of Life. However, little is known about the extent to which the two concepts are related to each other. This study, therefore, applied a multivariate technique, Canonical Correlation Analysis, to identify the relationship between the two sets of variables with multi-dimensional measures, the Resourcefulness and Quality of Life in Cancer patients receiving treatments. After IRB approval, this multi-centered study took place at two medical centers in the Central Region of Taiwan. Sample A total of 186 patients with various cancer diagnoses and either receiving radiation therapy or chemotherapy consented to and answered questionnaires. The Import findings of the Generalized F test identified two typical sets with several linear relations and explained a total of 79.1% of the total variance. The first typical set found Personal Resourcefulness negatively related to Social Well-being, Functional being, Emotional Well-being, and Physical, in that order. The second typical set found Social Resourcefulness negatively related to Functional Well-being and Physical-being yet positively related to Social Well-being and Emotional Well-being. Discussion and Conclusion, The results of this presented study supported the statistically significant relationship between two sets of variables that are consistent with the theory. In addition, the results are considerably important in cancer patients receiving cancer treatments.

Keywords: cancer, canonical correlation analysis, quality of life, resourcefulness

Procedia PDF Downloads 47
1154 Comparative Analysis of in vitro Release profile for Escitalopram and Escitalopram Loaded Nanoparticles

Authors: Rashi Rajput, Manisha Singh

Abstract:

Escitalopram oxalate (ETP), an FDA approved antidepressant drug from the category of SSRI (selective serotonin reuptake inhibitor) and is used in treatment of general anxiety disorder (GAD), major depressive disorder (MDD).When taken orally, it is metabolized to S-demethylcitalopram (S-DCT) and S-didemethylcitalopram (S-DDCT) in the liver with the help of enzymes CYP2C19, CYP3A4 and CYP2D6. Hence, causing side effects such as dizziness, fast or irregular heartbeat, headache, nausea etc. Therefore, targeted and sustained drug delivery will be a helpful tool for increasing its efficacy and reducing side effects. The present study is designed for formulating mucoadhesive nanoparticle formulation for the same Escitalopram loaded polymeric nanoparticles were prepared by ionic gelation method and characterization of the optimised formulation was done by zeta average particle size (93.63nm), zeta potential (-1.89mV), TEM (range of 60nm to 115nm) analysis also confirms nanometric size range of the drug loaded nanoparticles along with polydispersibility index of 0.117. In this research, we have studied the in vitro drug release profile for ETP nanoparticles, through a semi permeable dialysis membrane. The three important characteristics affecting the drug release behaviour were – particle size, ionic strength and morphology of the optimised nanoparticles. The data showed that on increasing the particle size of the drug loaded nanoparticles, the initial burst was reduced which was comparatively higher in drug. Whereas, the formulation with 1mg/ml chitosan in 1.5mg/ml tripolyphosphate solution showed steady release over the entire period of drug release. Then this data was further validated through mathematical modelling to establish the mechanism of drug release kinetics, which showed a typical linear diffusion profile in optimised ETP loaded nanoparticles.

Keywords: ionic gelation, mucoadhesive nanoparticle, semi-permeable dialysis membrane, zeta potential

Procedia PDF Downloads 268
1153 The Contribution of Experience Scapes to Building Resilience in Communities: A Comparative Case Study Approach in Germany and the Netherlands

Authors: Jorn Fricke, Frans Melissen

Abstract:

Citizens in urban areas are prone to increased levels of stress due to urbanization, inadequate and overburdened infrastructure and services, and environmental degradation. Moreover, communities are fragile and subject to shocks and stresses through various social and political processes. A loss of (a sense of) community is often seen as related to increasing political and civic disintegration. Feelings of community can manifest themselves in various ways but underlying all these manifestations is the need for trust between people. One of the main drivers of trust between individuals is (shared) experiences. It is these shared experiences that may play an important role in building resilience, i.e., the ability of a community and its members to adapt to and deal with stresses, as well as ensure the ongoing development of a community. So far, experience design, as a discipline and academic field, has mainly focused on designing products or services. However, people-to-people experiences are the ones that play a pivotal role in building inclusiveness, safety, and resilience in communities. These experiences represent challenging objects of design as they develop in an interactive space of spontaneity, serendipity, and uniqueness that is based on intuition, freedom of expression, and interaction. Therefore, there is a need for research to identify which elements are required in designing the social and physical environment (or ‘experience scape’) to increase the chance for people-to-people experiences to be successful and what elements are required for these experiences to help in building resilience in urban communities that can resist shocks and stresses. By means of a comparative case study approach in urban areas in Germany and the Netherlands, using a range of qualitative research methods such as in-depth interviews, focus groups, participant observation, storytelling techniques, and life stories, this research identifies relevant actors and their roles in creating building blocks of optimal experience scrapes for building resilience in communities.

Keywords: community development, experiences, experience scapes, resilience

Procedia PDF Downloads 156
1152 Improvement of the Q-System Using the Rock Engineering System: A Case Study of Water Conveyor Tunnel of Azad Dam

Authors: Sahand Golmohammadi, Sana Hosseini Shirazi

Abstract:

Because the status and mechanical parameters of discontinuities in the rock mass are included in the calculations, various methods of rock engineering classification are often used as a starting point for the design of different types of structures. The Q-system is one of the most frequently used methods for stability analysis and determination of support systems of underground structures in rock, including tunnel. In this method, six main parameters of the rock mass, namely, the rock quality designation (RQD), joint set number (Jn), joint roughness number (Jr), joint alteration number (Ja), joint water parameter (Jw) and stress reduction factor (SRF) are required. In this regard, in order to achieve a reasonable and optimal design, identifying the effective parameters for the stability of the mentioned structures is one of the most important goals and the most necessary actions in rock engineering. Therefore, it is necessary to study the relationships between the parameters of a system and how they interact with each other and, ultimately, the whole system. In this research, it has attempted to determine the most effective parameters (key parameters) from the six parameters of rock mass in the Q-system using the rock engineering system (RES) method to improve the relationships between the parameters in the calculation of the Q value. The RES system is, in fact, a method by which one can determine the degree of cause and effect of a system's parameters by making an interaction matrix. In this research, the geomechanical data collected from the water conveyor tunnel of Azad Dam were used to make the interaction matrix of the Q-system. For this purpose, instead of using the conventional methods that are always accompanied by defects such as uncertainty, the Q-system interaction matrix is coded using a technique that is actually a statistical analysis of the data and determining the correlation coefficient between them. So, the effect of each parameter on the system is evaluated with greater certainty. The results of this study show that the formed interaction matrix provides a reasonable estimate of the effective parameters in the Q-system. Among the six parameters of the Q-system, the SRF and Jr parameters have the maximum and minimum impact on the system, respectively, and also the RQD and Jw parameters have the maximum and minimum impact on the system, respectively. Therefore, by developing this method, we can obtain a more accurate relation to the rock mass classification by weighting the required parameters in the Q-system.

Keywords: Q-system, rock engineering system, statistical analysis, rock mass, tunnel

Procedia PDF Downloads 40
1151 The Response of Soil Biodiversity to Agriculture Practice in Rhizosphere

Authors: Yan Wang, Guowei Chen, Gang Wang

Abstract:

Soil microbial diversity is one of the important parameters to assess the soil fertility and soil health, even stability of the ecosystem. In this paper, we aim to reveal the soil microbial difference in rhizosphere and root zone, even to pick the special biomarkers influenced by the long term tillage practices, which included four treatments of no-tillage, ridge tillage, continuous cropping with corn and crop rotation with corn and soybean. Here, high-throughput sequencing was performed to investigate the difference of bacteria in rhizosphere and root zone. The results showed a very significant difference of species richness between rhizosphere and root zone soil at the same crop rotation system (p < 0.01), and also significant difference of species richness was found between continuous cropping with corn and corn-soybean rotation treatment in the rhizosphere statement, no-tillage and ridge tillage in root zone soils. Implied by further beta diversity analysis, both tillage methods and crop rotation systems influence the soil microbial diversity and community structure in varying degree. The composition and community structure of microbes in rhizosphere and root zone soils were clustered distinctly by the beta diversity (p < 0.05). Linear discriminant analysis coupled with effect size (LEfSe) analysis of total taxa in rhizosphere picked more than 100 bacterial taxa, which were significantly more abundant than that in root zone soils, whereas the number of biomarkers was lower between the continuous cropping with corn and crop rotation treatment, the same pattern was found at no-tillage and ridge tillage treatment. Bacterial communities were greatly influenced by main environmental factors in large scale, which is the result of biological adaptation and acclimation, hence it is beneficial for optimizing agricultural practices.

Keywords: tillage methods, biomarker, biodiversity, rhizosphere

Procedia PDF Downloads 135
1150 Age Estimation from Teeth among North Indian Population: Comparison and Reliability of Qualitative and Quantitative Methods

Authors: Jasbir Arora, Indu Talwar, Daisy Sahni, Vidya Rattan

Abstract:

Introduction: Age estimation is a crucial step to build the identity of a person, both in case of deceased and alive. In adults, age can be estimated on the basis of six regressive (Attrition, Secondary dentine, Dentine transparency, Root resorption, Cementum apposition and Periodontal Disease) changes in teeth qualitatively using scoring system and quantitatively by micrometric method. The present research was designed to establish the reliability of qualitative (method 1) and quantitative (method 2) of age estimation among North Indians and to compare the efficacy of these two methods. Method: 250 single-rooted extracted teeth (18-75 yrs.) were collected from Department of Oral Health Sciences, PGIMER, Chandigarh. Before extraction, periodontal score of each tooth was noted. Labiolingual sections were prepared and examined under light microscope for regressive changes. Each parameter was scored using Gustafson’s 0-3 point score system (qualitative), and total score was calculated. For quantitative method, each regressive change was measured quantitatively in form of 18 micrometric parameters under microscope with the help of measuring eyepiece. Age was estimated using linear and multiple regression analysis in Gustafson’s method and Kedici’s method respectively. Estimated age was compared with actual age on the basis of absolute mean error. Results: In pooled data, by Gustafson’s method, significant correlation (r= 0.8) was observed between total score and actual age. Total score generated an absolute mean error of ±7.8 years. Whereas, for Kedici’s method, a value of correlation coefficient of r=0.5 (p<0.01) was observed between all the eighteen micrometric parameters and known age. Using multiple regression equation, age was estimated, and an absolute mean error of age was found to be ±12.18 years. Conclusion: Gustafson’s (qualitative) method was found to be a better predictor for age estimation among North Indians.

Keywords: forensic odontology, age estimation, North India, teeth

Procedia PDF Downloads 218
1149 Exploring Smartphone Applications for Enhancing Second Language Vocabulary Learning

Authors: Abdulmajeed Almansour

Abstract:

Learning a foreign language with the assistant of technological tools has become an interest of learners and educators. Increased use of smartphones among undergraduate students has made them popular for not only social communication but also for entertainment and educational purposes. Smartphones have provided remarkable advantages in language learning process. Learning vocabulary is an important part of learning a language. The use of smartphone applications for English vocabulary learning provides an opportunity for learners to improve vocabulary knowledge beyond the classroom wall anytime anywhere. Recently, various smartphone applications were created specifically for vocabulary learning. This paper aims to explore the use of smartphone application Memrise designed for vocabulary learning to enhance academic vocabulary among undergraduate students. It examines whether the use of a Memrise smartphone application designed course enhances the academic vocabulary learning among ESL learners. The research paradigm used in this paper followed a mixed research model combining quantitative and qualitative research. The study included two hundred undergraduate students randomly assigned to the experimental and controlled group during the first academic year at the Faculty of English Language, Imam University. The research instruments included an attitudinal questionnaire and an English vocabulary pre-test administered to students at the beginning of the semester whereas post-test and semi-structured interviews administered at the end of the semester. The findings of the attitudinal questionnaire revealed a positive attitude towards using smartphones in learning vocabulary. The post-test scores showed a significant difference in the experimental group performance. The results from the semi-structure interviews showed that there were positive attitudes towards Memrise smartphone application. The students found the application enjoyable, convenient and efficient learning tool. From the study, the use of the Memrise application is seen to have long-term and motivational benefits to students. For this reason, there is a need for further research to identify the long-term optimal effects of learning a language using smartphone applications.

Keywords: second language vocabulary learning, academic vocabulary, mobile learning technologies, smartphone applications

Procedia PDF Downloads 134
1148 Absorption Behavior of Some Acids During Chemical Aging of HDPE-100 Polyethylene

Authors: Berkas Khaoula

Abstract:

Based on selection characteristics, high-density polyethylene (HDPE) extruded pipes are among the most economical and durable materials as well-designed solutions for water and gas transmission systems. The main reasons for such a choice are the high quality-performance ratio and the long-term service durability under aggressive conditions. Due to inevitable interactions with soils of different chemical compositions and transported fluids, aggressiveness becomes a key factor in studying resilient strength and life prediction limits. This phenomenon is known as environmental stress cracking resistance (ESCR). In this work, the effect of 3 acidic environments (5% acetic, 20% hydrochloric and 20% sulfuric) on HDPE-100 samples (~10x11x24 mm3). The results presented in the form (Δm/m0, %) as a function of √t indicate that the absorption, in the case of strong acids (HCl and H2SO4), evolves towards negative values involving material losses such as antioxidants and some additives. On the other hand, acetic acid and deionized water (DW) give a form of linear Fickean (LF) and B types, respectively. In general, the acids cause a slow but irreversible alteration of the chemical structure, composition and physical integrity of the polymer. The DW absorption is not significant (~0.02%) for an immersion duration of 69 days. Such results are well accepted in actual applications, while changes caused by acidic environments are serious and must be subjected to particular monitoring of the OIT factor (Oxidation Induction Time). After 55 days of aging, the H2SO4 and HCl media showed particular values with a loss of % mass in the interval [0.025-0.038] associated with irreversible chemical reactions as well as physical degradations. This state is usually explained by hydrolysis of the polymer, causing the loss of functions and causing chain scissions. These results are useful for designing and estimating the lifetime of the tube in service and in contact with adverse environments.

Keywords: HDPE, environmental stress cracking, absorption, acid media, chemical aging

Procedia PDF Downloads 56
1147 Black-Hole Dimension: A Distinct Methodology of Understanding Time, Space and Data in Architecture

Authors: Alp Arda

Abstract:

Inspired by Nolan's ‘Interstellar’, this paper delves into speculative architecture, asking, ‘What if an architect could traverse time to study a city?’ It unveils the ‘Black-Hole Dimension,’ a groundbreaking concept that redefines urban identities beyond traditional boundaries. Moving past linear time narratives, this approach draws from the gravitational dynamics of black holes to enrich our understanding of urban and architectural progress. By envisioning cities and structures as influenced by black hole-like forces, it enables an in-depth examination of their evolution through time and space. The Black-Hole Dimension promotes a temporal exploration of architecture, treating spaces as narratives of their current state interwoven with historical layers. It advocates for viewing architectural development as a continuous, interconnected journey molded by cultural, economic, and technological shifts. This approach not only deepens our understanding of urban evolution but also empowers architects and urban planners to create designs that are both adaptable and resilient. Echoing themes from popular culture and science fiction, this methodology integrates the captivating dynamics of time and space into architectural analysis, challenging established design conventions. The Black-Hole Dimension champions a philosophy that welcomes unpredictability and complexity, thereby fostering innovation in design. In essence, the Black-Hole Dimension revolutionizes architectural thought by emphasizing space-time as a fundamental dimension. It reimagines our built environments as vibrant, evolving entities shaped by the relentless forces of time, space, and data. This groundbreaking approach heralds a future in architecture where the complexity of reality is acknowledged and embraced, leading to the creation of spaces that are both responsive to their temporal context and resilient against the unfolding tapestry of time.

Keywords: black-hole, timeline, urbanism, space and time, speculative architecture

Procedia PDF Downloads 20
1146 Carbon Sequestration Modeling in the Implementation of REDD+ Programmes in Nigeria

Authors: Oluwafemi Samuel Oyamakin

Abstract:

The forest in Nigeria is currently estimated to extend to around 9.6 million hectares, but used to expand over central and southern Nigeria decades ago. The forest estate is shrinking due to long-term human exploitation for agricultural development, fuel wood demand, uncontrolled forest harvesting and urbanization, amongst other factors, compounded by population growth in rural areas. Nigeria has lost more than 50% of its forest cover since 1990 and currently less than 10% of the country is forested. The current deforestation rate is estimated at 3.7%, which is one of the highest in the world. Reducing Emissions from Deforestation and forest Degradation plus conservation, sustainable management of forests and enhancement of forest carbon stocks constituted what is referred to as REDD+. This study evaluated some of the existing way of computing carbon stocks using eight indigenous tree species like Mansonia, Shorea, Bombax, Terminalia superba, Khaya grandifolia, Khaya senegalenses, Pines and Gmelina arborea. While these components are the essential elements of REDD+ programme, they can be brought under a broader framework of systems analysis designed to arrive at optimal solutions for future predictions through statistical distribution pattern of carbon sequestrated by various species of tree. Available data on height and diameter of trees in Ibadan were studied and their respective potentials of carbon sequestration level were assessed and subjected to tests so as to determine the best statistical distribution that would describe the carbon sequestration pattern of trees. The result of this study suggests a reasonable statistical distribution for carbons sequestered in simulation studies and hence, allow planners and government in determining resources forecast for sustainable development especially where experiments with real-life systems are infeasible. Sustainable management of forest can then be achieved by projecting future condition of forests under different management regimes thereby supporting conservation and REDD+ programmes in Nigeria.

Keywords: REDD+, carbon, climate change, height and diameter

Procedia PDF Downloads 135
1145 3D Numerical Simulation of Undoweled and Uncracked Joints in Short Paneled Concrete Pavements

Authors: K. Sridhar Reddy, M. Amaranatha Reddy, Nilanjan Mitra

Abstract:

Short paneled concrete pavement (SPCP) with shorter panel size can be an alternative to the conventional jointed plain concrete pavements (JPCP) at the same cost as the asphalt pavements with all the advantages of concrete pavement with reduced thickness, less chance of mid-slab cracking and or dowel bar locking so common in JPCP. Cast-in-situ short concrete panels (short slabs) laid on a strong foundation consisting of a dry lean concrete base (DLC), and cement treated subbase (CTSB) will reduce the thickness of the concrete slab to the order of 180 mm to 220 mm, whereas JPCP was with 280 mm for the same traffic. During the construction of SPCP test sections on two Indian National Highways (NH), it was observed that the joints remain uncracked after a year of traffic. The undoweled and uncracked joints load transfer variability and joint behavior are of interest with anticipation on its long-term performance of the SPCP. To investigate the effects of undoweled and uncracked joints on short slabs, the present study was conducted. A multilayer linear elastic analysis using 3D finite element package for different panel sizes with different thicknesses resting on different types of solid elastic foundation with and without temperature gradient was developed. Surface deflections were obtained from 3D FE model and validated with measured field deflections from falling weight deflectometer (FWD) test. Stress analysis indicates that flexural stresses in short slabs are decreased with a decrease in panel size and increase in thickness. Detailed evaluation of stress analysis with the effects of curling behavior, the stiffness of the base layer and a variable degree of load transfer, is underway.

Keywords: joint behavior, short slabs, uncracked joints, undoweled joints, 3D numerical simulation

Procedia PDF Downloads 151
1144 DNA Methylation Changes in Response to Ocean Acidification at the Time of Larval Metamorphosis in the Edible Oyster, Crassostrea hongkongensis

Authors: Yong-Kian Lim, Khan Cheung, Xin Dang, Steven Roberts, Xiaotong Wang, Vengatesen Thiyagarajan

Abstract:

Unprecedented rate of increased CO₂ level in the ocean and the subsequent changes in carbonate system including decreased pH, known as ocean acidification (OA), is predicted to disrupt not only the calcification process but also several other physiological and developmental processes in a variety of marine organisms, including edible oysters. Nonetheless, not all species are vulnerable to those OA threats, e.g., some species may be able to cope with OA stress using environmentally induced modifications on gene and protein expressions. For example, external environmental stressors, including OA, can influence the addition and removal of methyl groups through epigenetic modification (e.g., DNA methylation) process to turn gene expression “on or off” as part of a rapid adaptive mechanism to cope with OA. In this study, the above hypothesis was tested through testing the effect of OA, using decreased pH 7.4 as a proxy, on the DNA methylation pattern of an endemic and a commercially important estuary oyster species, Crassostrea hongkongensis, at the time of larval habitat selection and metamorphosis. Larval growth rate did not differ between control pH 8.1 and treatment pH 7.4. The metamorphosis rate of the pediveliger larvae was higher at pH 7.4 than those in control pH 8.1; however, over one-third of the larvae raised at pH 7.4 failed to attach to an optimal substrate as defined by biofilm presence. During larval development, a total of 130 genes were differentially methylated across the two treatments. The differential methylation in the larval genes may have partially accounted for the higher metamorphosis success rate under decreased pH 7.4 but with poor substratum selection ability. Differentially methylated loci were concentrated in the exon regions and appear to be associated with cytoskeletal and signal transduction, oxidative stress, metabolic processes, and larval metamorphosis, which implies the high potential of C. hongkongensis larvae to acclimate and adapt through non-genetic ways to OA threats within a single generation.

Keywords: adaptive plasticity, DNA methylation, larval metamorphosis, ocean acidification

Procedia PDF Downloads 112
1143 Statistical Correlation between Ply Mechanical Properties of Composite and Its Effect on Structure Reliability

Authors: S. Zhang, L. Zhang, X. Chen

Abstract:

Due to the large uncertainty on the mechanical properties of FRP (fibre reinforced plastic), the reliability evaluation of FRP structures are currently receiving much attention in industry. However, possible statistical correlation between ply mechanical properties has been so far overlooked, and they are mostly assumed to be independent random variables. In this study, the statistical correlation between ply mechanical properties of uni-directional and plain weave composite is firstly analyzed by a combination of Monte-Carlo simulation and finite element modeling of the FRP unit cell. Large linear correlation coefficients between the in-plane mechanical properties are observed, and the correlation coefficients are heavily dependent on the uncertainty of the fibre volume ratio. It is also observed that the correlation coefficients related to Poisson’s ratio are negative while others are positive. To experimentally achieve the statistical correlation coefficients between in-plane mechanical properties of FRP, all concerned in-plane mechanical properties of the same specimen needs to be known. In-plane shear modulus of FRP is experimentally derived by the approach suggested in the ASTM standard D5379M. Tensile tests are conducted using the same specimens used for the shear test, and due to non-uniform tensile deformation a modification factor is derived by a finite element modeling. Digital image correlation is adopted to characterize the specimen non-uniform deformation. The preliminary experimental results show a good agreement with the numerical analysis on the statistical correlation. Then, failure probability of laminate plates is calculated in cases considering and not considering the statistical correlation, using the Monte-Carlo and Markov Chain Monte-Carlo methods, respectively. The results highlight the importance of accounting for the statistical correlation between ply mechanical properties to achieve accurate failure probability of laminate plates. Furthermore, it is found that for the multi-layer laminate plate, the statistical correlation between the ply elastic properties significantly affects the laminate reliability while the effect of statistical correlation between the ply strength is minimal.

Keywords: failure probability, FRP, reliability, statistical correlation

Procedia PDF Downloads 127
1142 Evaluation of Stress Relief using Ultrasonic Peening in GTAW Welding and Stress Corrosion Cracking (SCC) in Stainless Steel, and Comparison with the Thermal Method

Authors: Hamidreza Mansouri

Abstract:

In the construction industry, the lifespan of a metal structure is directly related to the quality of welding. In most metal structures, the welded area is considered critical and is one of the most important factors in design. To date, many fracture incidents caused by these types of cracks have occurred. Various methods exist to increase the lifespan of welds to prevent failure in the welded area. Among these methods, the application of ultrasonic peening, in addition to the stress relief process, can manually and more precisely adjust the geometry of the weld toe and prevent stress concentration in this part. This research examined Gas Tungsten Arc Welding (GTAW) on common structural steels and 316 stainless steel, which require precise welding, to predict the optimal condition. The GTAW method was used to create residual stress; two samples underwent ultrasonic stress relief, and for comparison, two samples underwent thermal stress relief. Also, no treatment was considered for two samples. The residual stress of all six pieces was measured by X-Ray Diffraction (XRD) method. Then, the two ultrasonically stress-relieved samples and two untreated samples were exposed to a corrosive environment to initiate cracking and determine the effectiveness of the ultrasonic stress relief method. Thus, the residual stress caused by GTAW in the samples decreased by 3.42% with thermal treatment and by 7.69% with ultrasonic peening. Furthermore, the results show that the untreated sample developed cracks after 740 hours, while the ultrasonically stress-relieved piece showed no cracks. Given the high costs of welding and post-welding zone modification processes, finding an economical, effective, and comprehensive method that has the least limitations alongside a broad spectrum of usage is of great importance. Therefore, the impact of various ultrasonic peening stress relief parameters and the selection of the best stress relief parameter to achieve the longest lifespan for the weld area is highly significant.

Keywords: GTAW welding, stress corrosion cracking(SCC), thermal method, ultrasonic peening.

Procedia PDF Downloads 15
1141 The Use of Coronary Calcium Scanning for Cholesterol Assessment and Management

Authors: Eva Kirzner

Abstract:

Based on outcome studies published over the past two decades, in 2018, the ACC/AHA published new guidelines for the management of hypercholesterolemia that incorporate the use of coronary artery calcium (CAC) scanning as a decision tool for ascertaining which patients may benefit from statin therapy. This use is based on the recognition that the absence of calcium on CAC scanning (i.e., a CAC score of zero) usually signifies the absence of significant atherosclerotic deposits in the coronary arteries. Specifically, in patients with a high risk for atherosclerotic cardiovascular disease (ASCVD), initiation of statin therapy is generally recommended to decrease ASCVD risk. However, among patients with intermediate ASCVD risk, the need for statin therapy is less certain. However, there is a need for new outcome studies that provide evidence that the management of hypercholesterolemia based on these new ACC/AHA recommendations is safe for patients. Based on a Pub-Med and Google Scholar literature search, four relevant population-based or patient-based cohort studies that studied the relationship between CAC scanning, risk assessment or mortality, and statin therapy that were published between 2017 and 2021 were identified (see references). In each of these studies, patients were assessed for their baseline risk for atherosclerotic cardiovascular disease (ASCVD) using the Pooled Cohorts Equation (PCE), an ACC/AHA calculator for determining patient risk based on assessment of patient age, gender, ethnicity, and coronary artery disease risk factors. The combined findings of these four studies provided concordant evidence that a zero CAC score defines patients who remain at low clinical risk despite the non-use of statin therapy. Thus, these new studies confirm the use of CAC scanning as a safe tool for reducing the potential overuse of statin therapy among patients with zero CAC scores. Incorporating these new data suggest the following best practice: (1) ascertain ASCVD risk according to the PCE in all patients; (2) following an initial attempt trial to lower ASCVD risk with optimal diet among patients with elevated ASCVD risk, initiate statin therapy for patients who have a high ASCVD risk score; (3) if the ASCVD score is intermediate, refer patients for CAC scanning; and (4) and if the CAC score is zero among the intermediate risk ASCVD patients, statin therapy can be safely withheld despite the presence of an elevated serum cholesterol level.

Keywords: cholesterol, cardiovascular disease, statin therapy, coronary calcium

Procedia PDF Downloads 90
1140 Long-Term Otitis Media with Effusion and Related Hearing Loss and Its Impact on Developmental Outcomes

Authors: Aleema Rahman

Abstract:

Introduction: This study aims to estimate the prevalence of long-term otitis media with effusion (OME) and hearing loss in a prospective longitudinal cohort studyand to study the relationship between the condition and educational and psychosocial outcomes. Methods: Analysis of data from the Avon Longitudinal Study of Parents and Children (ALSPAC) will be undertaken. ALSPAC is a longitudinal birth cohort study carried out in the UK, which has collected detailed measures of hearing on ~7000 children from the age of seven. A descriptive analysis of the data will be undertaken to estimate the prevalence of OME and hearing loss (defined as having average hearing levels > 20dB and type B tympanogram) at 7, 9, 11, and 15 years as well as that of long-term OME and hearing loss. Logistic and linear regression analyses will be conducted to examine associations between long-term OME and hearing loss and educational outcomes (grades obtained from standardised national attainment tests) and psychosocial outcomes such as anxiety, social fears, and depression at ages 10-11 and 15-16 years. Results: Results will be presented in terms of the prevalence of OME and hearing loss in the population at each age. The prevalence of long-term OME and hearing loss, defined as having OME and hearing loss at two or more time points, will also be reported. Furthermore, any associations between long-term OME and hearing loss and the educational and psychosocial outcomes will be presented. Analyses will take into account demographic factors such as sex and social deprivation and relevant confounders, including socioeconomic status, ethnicity, and IQ. Discussion: Findings from this study will provide new epidemiological information on the prevalence of long-term OME and hearing loss. The research will provide new knowledge on the impact of OME for the small group of children who do not grow out of condition by age 7 but continue to have hearing loss and need clinical care through later childhood. The study could have clinical implications and may influence service delivery for this group of children.

Keywords: educational attainment, hearing loss, otitis media with effusion, psychosocial development

Procedia PDF Downloads 109
1139 Electron Beam Melting Process Parameter Optimization Using Multi Objective Reinforcement Learning

Authors: Michael A. Sprayberry, Vincent C. Paquit

Abstract:

Process parameter optimization in metal powder bed electron beam melting (MPBEBM) is crucial to ensure the technology's repeatability, control, and industry-continued adoption. Despite continued efforts to address the challenges via the traditional design of experiments and process mapping techniques, there needs to be more successful in an on-the-fly optimization framework that can be adapted to MPBEBM systems. Additionally, data-intensive physics-based modeling and simulation methods are difficult to support by a metal AM alloy or system due to cost restrictions. To mitigate the challenge of resource-intensive experiments and models, this paper introduces a Multi-Objective Reinforcement Learning (MORL) methodology defined as an optimization problem for MPBEBM. An off-policy MORL framework based on policy gradient is proposed to discover optimal sets of beam power (P) – beam velocity (v) combinations to maintain a steady-state melt pool depth and phase transformation. For this, an experimentally validated Eagar-Tsai melt pool model is used to simulate the MPBEBM environment, where the beam acts as the agent across the P – v space to maximize returns for the uncertain powder bed environment producing a melt pool and phase transformation closer to the optimum. The culmination of the training process yields a set of process parameters {power, speed, hatch spacing, layer depth, and preheat} where the state (P,v) with the highest returns corresponds to a refined process parameter mapping. The resultant objects and mapping of returns to the P-v space show convergence with experimental observations. The framework, therefore, provides a model-free multi-objective approach to discovery without the need for trial-and-error experiments.

Keywords: additive manufacturing, metal powder bed fusion, reinforcement learning, process parameter optimization

Procedia PDF Downloads 61
1138 Vibration-Based Structural Health Monitoring of a 21-Story Building with Tuned Mass Damper in Seismic Zone

Authors: David Ugalde, Arturo Castillo, Leopoldo Breschi

Abstract:

The Tuned Mass Dampers (TMDs) are an effective system for mitigating vibrations in building structures. These dampers have traditionally focused on the protection of high-rise buildings against earthquakes and wind loads. The Camara Chilena de la Construction (CChC) building, built in 2018 in Santiago, Chile, is a 21-story RC wall building equipped with a 150-ton TMD and instrumented with six permanent accelerometers, offering an opportunity to monitor the dynamic response of this damped structure. This paper presents the system identification of the CChC building using power spectral density plots of ambient vibration and two seismic events (5.5 Mw and 6.7 Mw). Linear models of the building with and without the TMD are used to compute the theoretical natural periods through modal analysis and simulate the response of the building through response history analysis. Results show that natural periods obtained from both ambient vibrations and earthquake records are quite similar to the theoretical periods given by the modal analysis of the building model. Some of the experimental periods are noticeable by simple inspection of the earthquake records. The accelerometers in the first story better captured the modes related to the building podium while the upper accelerometers clearly captured the modes related to the tower. The earthquake simulation showed smaller accelerations in the model with TMD that are similar to that measured by the accelerometers. It is concluded that the system identification through power spectral density shows consistency with the expected dynamic properties. The structural health monitoring of the CChC building confirms the advantages of seismic protection technologies such as TMDs in seismic prone areas.

Keywords: system identification, tuned mass damper, wall buildings, seismic protection

Procedia PDF Downloads 95
1137 The Art of Resilience in the Case of Skopje

Authors: Kristina Nikolovska

Abstract:

Social movements have become common in the Post Yugoslav cities. Consequently, the wave of activism has been considerably present in Skopje. Starting from 2009 the activist wave in Skopje emerged with the notion of the city. Diversity of initiatives appeared in the city in order to defend places that have been contested by the urban development project SK2014. The activist wave diffused into many different initiatives and diversity of issues. The result was unification in one massive movement in 2016, called 'The Colourful Revolution'. The paper explores the scope of activism in Skopje, with taking into consideration the influence of the spatial transformation, the project SK2014. Moreover, it examines the processes of spatiality into shaping the contention in Skopje, focusing on interdisciplinary and comprehensive approaches. Except the diversity of theoretical framework mainly founded on contentious politics theory and space elaboration from different perspectives, the study is founded on field work based on conducted interviews. Using an interdisciplinary approach and focusing on three main dimensions, the research contributes to understand the dynamics of the activist wave and importance of spatial processes in the creation of the contention in Skopje. Moreover, it elaborates the characteristics, possible effects, and reflections of the cycles of protests in Skopje. The main results of the research showed that dynamics of space is important in the creation of the activist wave in Skopje, moreover space context can give explanation about how opportunities diffuse and transformative power is created. The study contributed into deeper understanding of the importance of spatiality in contentious politics, it showed that in general contentions politics can benefit from deeper analyses of place specificity. Finally, the thesis opposes the traditional linear understanding of social movements, and proposes more dynamic, comprehensive, and sensitive elaboration.

Keywords: contentious politics, place, Skopje, SK2014, social movements, space

Procedia PDF Downloads 193
1136 Environmental Impact Assessment in Mining Regions with Remote Sensing

Authors: Carla Palencia-Aguilar

Abstract:

Calculations of Net Carbon Balance can be obtained by means of Net Biome Productivity (NBP), Net Ecosystem Productivity (NEP), and Net Primary Production (NPP). The latter is an important component of the biosphere carbon cycle and is easily obtained data from MODIS MOD17A3HGF; however, the results are only available yearly. To overcome data availability, bands 33 to 36 from MODIS MYD021KM (obtained on a daily basis) were analyzed and compared with NPP data from the years 2000 to 2021 in 7 sites where surface mining takes place in the Colombian territory. Coal, Gold, Iron, and Limestone were the minerals of interest. Scales and Units as well as thermal anomalies, were considered for net carbon balance per location. The NPP time series from the satellite images were filtered by using two Matlab filters: First order and Discrete Transfer. After filtering the NPP time series, comparing the graph results from the satellite’s image value, and running a linear regression, the results showed R2 from 0,72 to 0,85. To establish comparable units among NPP and bands 33 to 36, the Greenhouse Gas Equivalencies Calculator by EPA was used. The comparison was established in two ways: one by the sum of all the data per point per year and the other by the average of 46 weeks and finding the percentage that the value represented with respect to NPP. The former underestimated the total CO2 emissions. The results also showed that coal and gold mining in the last 22 years had less CO2 emissions than limestone, with an average per year of 143 kton CO2 eq for gold, 152 kton CO2 eq for coal, and 287 kton CO2 eq for iron. Limestone emissions varied from 206 to 441 kton CO2 eq. The maximum emission values from unfiltered data correspond to 165 kton CO2 eq. for gold, 188 kton CO2 eq. for coal, and 310 kton CO2 eq. for iron and limestone, varying from 231 to 490 kton CO2 eq. If the most pollutant limestone site improves its production technology, limestone could count with a maximum of 318 kton CO2 eq emissions per year, a value very similar respect to iron. The importance of gathering data is to establish benchmarks in order to attain 2050’s zero emissions goal.

Keywords: carbon dioxide, NPP, MODIS, MINING

Procedia PDF Downloads 65
1135 Investigating the Relationship Between Alexithymia and Mobile Phone Addiction Along with the Mediating Role of Anxiety, Stress and Depression: A Path Analysis Study and Structural Model Testing

Authors: Pouriya Darabiyan, Hadis Nazari, Kourosh Zarea, Saeed Ghanbari, Zeinab Raiesifar, Morteza Khafaie, Hanna Tuvesson

Abstract:

Introduction Since the beginning of mobile phone addiction, alexithymia, depression, anxiety and stress have been stated as risk factors for Internet addiction, so this study was conducted with the aim of investigating the relationship between Alexithymia and Mobile phone addiction along with the mediating role of anxiety, stress and depression. Materials and methods In this descriptive-analytical and cross-sectional study in 2022, 412 students School of Nursing & Midwifery of Ahvaz Jundishapur University of Medical Sciences were included in the study using available sampling method. Data collection tools were: Demographic Information Questionnaire, Toronto Alexithymia Scale (TAS-20), Depression, Anxiety, Stress Scale (DASS-21) and Mobile Phone Addiction Index (MPAI). Frequency, Pearson correlation coefficient test and linear regression were used to describe and analyze the data. Also, structural equation models and path analysis method were used to investigate the direct and indirect effects as well as the total effect of each dimension of Alexithymia on Mobile phone addiction with the mediating role of stress, depression and anxiety. Statistical analysis was done by SPSS version 22 and Amos version 16 software. Results Alexithymia was a predictive factor for mobile phone addiction. Also, Alexithymia had a positive and significant effect on depression, anxiety and stress. Depression, anxiety and stress had a positive and significant effect on mobile phone addiction. Depression, anxiety and stress variables played the role of a relative mediating variable between Alexithymia and mobile phone addiction. Alexithymia through depression, anxiety and stress also has an indirect effect on Internet addiction. Conclusion Alexithymia is a predictive factor for mobile phone addiction; And the variables of depression, anxiety and stress play the role of a relative mediating variable between Alexithymia and mobile phone addiction.

Keywords: alexithymia, mobile phone, depression, anxiety, stress

Procedia PDF Downloads 66
1134 New Roles of Telomerase and Telomere-Associated Proteins in the Regulation of Telomere Length

Authors: Qin Yang, Fan Zhang, Juan Du, Chongkui Sun, Krishna Kota, Yun-Ling Zheng

Abstract:

Telomeres are specialized structures at chromosome ends consisting of tandem repetitive DNA sequences [(TTAGGG)n in humans] and associated proteins, which are necessary for telomere function. Telomere lengths are tightly regulated within a narrow range in normal human somatic cells, the basis of cellular senescence and aging. Previous studies have extensively focused on how short telomeres are extended and have demonstrated that telomerase plays a central role in telomere maintenance through elongating the short telomeres. However, the molecular mechanisms of regulating excessively long telomeres are unknown. Here, we found that telomerase enzymatic component hTERT plays a dual role in the regulation of telomeres length. We analyzed single telomere alterations at each chromosomal end led to the discoveries that hTERT shortens excessively long telomeres and elongates short telomeres simultaneously, thus maintaining the optimal telomere length at each chromosomal end for an efficient protection. The hTERT-mediated telomere shortening removes large segments of telomere DNA rapidly without inducing telomere dysfunction foci or affecting cell proliferation, thus it is mechanistically distinct from rapid telomere deletion. We found that expression of hTERT generates telomeric circular DNA, suggesting that telomere homologous recombination may be involved in this telomere shortening process. Moreover, the hTERT-mediated telomere shortening is required its enzymatic activity, but telomerase RNA component hTR is not involved in it. Furthermore, shelterin protein TPP1 interacts with hTERT and recruits it on telomeres to mediate telomere shortening. In addition, telomere-associated proteins, DKC1 and TCAB1 also play roles in this process. This novel hTERT-mediated telomere shortening mechanism not only exists in cancer cells, but also in primary human cells. Thus, the hTERT-mediated telomere shortening is expected to shift the paradigm on current molecular models of telomere length maintenance, with wide-reaching consequences in cancer and aging fields.

Keywords: aging, hTERT, telomerase, telomeres, human cells

Procedia PDF Downloads 393
1133 Quantification of Global Cerebrovascular Reactivity in the Principal Feeding Arteries of the Human Brain

Authors: Ravinder Kaur

Abstract:

Introduction Global cerebrovascular reactivity (CVR) mapping is a promising clinical assessment for stress-testing the brain using physiological challenges, such as CO₂, to elicit changes in perfusion. It enables real-time assessment of cerebrovascular integrity and health. Conventional imaging approaches solely use steady-state parameters, like cerebral blood flow (CBF), to evaluate the integrity of the resting parenchyma and can erroneously show a healthy brain at rest, despite the underlying pathogenesis in the presence of cerebrovascular disease. Conversely, coupling CO₂ inhalation with phase-contrast MRI neuroimaging interrogates the capacity of the vasculature to respond to changes under stress. It shows promise in providing prognostic value as a novel health marker to measure neurovascular function in disease and to detect early brain vasculature dysfunction. Objective This exploratory study was established to:(a) quantify the CBF response to CO₂ in hypocapnia and hypercapnia,(b) evaluate disparities in CVR between internal carotid (ICA) and vertebral artery (VA), and (c) assess sex-specific variation in CVR. Methodology Phase-contrast MRI was employed to measure the cerebrovascular reactivity to CO₂ (±10 mmHg). The respiratory interventions were presented using the prospectively end-tidal targeting RespirActTM Gen3 system. Post-processing and statistical analysis were conducted. Results In 9 young, healthy subjects, the CBF increased from hypocapnia to hypercapnia in all vessels (4.21±0.76 to 7.20±1.83 mL/sec in ICA, 1.36±0.55 to 2.33±1.31 mL/sec in VA, p < 0.05). The CVR was quantitatively higher in ICA than VA (slope of linear regression: 0.23 vs. 0.07 mL/sec/mmHg, p < 0.05). No statistically significant effect was observed in CVR between male and female (0.25 vs 0.20 mL/sec/mmHg in ICA, 0.09 vs 0.11 mL/sec/mmHg in VA, p > 0.05). Conclusions The principal finding in this investigation validated the modulation of CBF by CO₂. Moreover, it has indicated that regional heterogeneity in hemodynamic response exists in the brain. This study provides scope to standardize the quantification of CVR prior to its clinical translation.

Keywords: cerebrovascular disease, neuroimaging, phase contrast MRI, cerebrovascular reactivity, carbon dioxide

Procedia PDF Downloads 118
1132 Viscoelastic Characterization of Gelatin/Cellulose Nanocrystals Aqueous Bionanocomposites

Authors: Liliane Samara Ferreira Leite, Francys Kley Vieira Moreira, Luiz Henrique Capparelli Mattoso

Abstract:

The increasing environmental concern regarding the plastic pollution worldwide has stimulated the development of low-cost biodegradable materials. Proteins are renewable feedstocks that could be used to produce biodegradable plastics. Gelatin, for example, is a cheap film-forming protein extracted from animal skin and connective tissues of Brazilian Livestock residues; thus it has a good potential in low-cost biodegradable plastic production. However, gelatin plastics are limited in terms of mechanical and barrier properties. Cellulose nanocrystals (CNC) are efficient nanofillers that have been used to extend physical properties of polymers. This work was aimed at evaluating the reinforcing efficiency of CNC on gelatin films. Specifically, we have employed the continuous casting as the processing method for obtaining the gelatin/CNC bionanocomposites. This required a first rheological study for assessing the effect of gelatin-CNC and CNC-CNC interactions on the colloidal state of the aqueous bionanocomposite formulations. CNC were isolated from eucalyptus pulp by sulfuric acid hydrolysis (65 wt%) at 55 °C for 30 min. Gelatin was solubilized in ultra-pure water at 85°C for 20 min and then mixed with glycerol at 20 wt.% and CNC at 0.5 wt%, 1.0 wt% and 2.5 wt%. Rotational measurements were performed to determine linear viscosity (η) of bionanocomposite solutions, which increased with increasing CNC content. At 2.5 wt% CNC, η increased by 118% regarding the neat gelatin solution, which was ascribed to percolation CNC network formation. Storage modulus (G’) and loss modulus (G″) further determined by oscillatory tests revealed that a gel-like behavior was dominant in the bionanocomposite solutions (G’ > G’’) over a broad range of temperature (20 – 85 °C), particularly at 2.5 wt% CNC. These results confirm effective interactions in the aqueous gelatin-CNC bionanocomposites that could substantially increase the physical properties of the gelatin plastics. Tensile tests are underway to confirm this hypothesis. The authors would like to thank the Fapesp (process n 2016/03080-3) for support.

Keywords: bionanocomposites, cellulose nanocrystals, gelatin, viscoelastic characterization

Procedia PDF Downloads 126
1131 Neural Correlates of Attention Bias to Threat during the Emotional Stroop Task in Schizophrenia

Authors: Camellia Al-Ibrahim, Jenny Yiend, Sukhwinder S. Shergill

Abstract:

Background: Attention bias to threat play a role in the development, maintenance, and exacerbation of delusional beliefs in schizophrenia in which patients emphasize the threatening characteristics of stimuli and prioritise them for processing. Cognitive control deficits arise when task-irrelevant emotional information elicits attentional bias and obstruct optimal performance. This study is investigating neural correlates of interference effect of linguistic threat and whether these effects are independent of delusional severity. Methods: Using an event-related functional magnetic resonance imaging (fMRI), neural correlates of interference effect of linguistic threat during the emotional Stroop task were investigated and compared patients with schizophrenia with high (N=17) and low (N=16) paranoid symptoms and healthy controls (N=20). Participants were instructed to identify the font colour of each word presented on the screen as quickly and accurately as possible. Stimuli types vary between threat-relevant, positive and neutral words. Results: Group differences in whole brain effects indicate decreased amygdala activity in patients with high paranoid symptoms compared with low paranoid patients and healthy controls. Regions of interest analysis (ROI) validated our results within the amygdala and investigated changes within the striatum showing a pattern of reduced activation within the clinical group compared to healthy controls. Delusional severity was associated with significant decreased neural activity in the striatum within the clinical group. Conclusion: Our findings suggest that the emotional interference mediated by the amygdala and striatum may reduce responsiveness to threat-related stimuli in schizophrenia and that attenuation of fMRI Blood-oxygen-level dependent (BOLD) signal within these areas might be influenced by the severity of delusional symptoms.

Keywords: attention bias, fMRI, Schizophrenia, Stroop

Procedia PDF Downloads 171
1130 Removal of Cr (VI) from Water through Adsorption Process Using GO/PVA as Nanosorbent

Authors: Syed Hadi Hasan, Devendra Kumar Singh, Viyaj Kumar

Abstract:

Cr (VI) is a known toxic heavy metal and has been considered as a priority pollutant in water. The effluent of various industries including electroplating, anodizing baths, leather tanning, steel industries and chromium based catalyst are the major source of Cr (VI) contamination in the aquatic environment. Cr (VI) show high mobility in the environment and can easily penetrate cell membrane of the living tissues to exert noxious effects. The Cr (VI) contamination in drinking water causes various hazardous health effects to the human health such as cancer, skin and stomach irritation or ulceration, dermatitis, damage to liver, kidney circulation and nerve tissue damage. Herein, an attempt has been done to develop an efficient adsorbent for the removal of Cr (VI) from water. For this purpose nanosorbent composed of polyvinyl alcohol functionalized graphene oxide (GO/PVA) was prepared. Thus, obtained GO/PVA was characterized through FTIR, XRD, SEM, and Raman Spectroscopy. As prepared nanosorbent of GO/PVA was utilized for the removal Cr (VI) in batch mode experiment. The process variables such as contact time, initial Cr (VI) concentration, pH, and temperature were optimized. The maximum 99.8 % removal of Cr (VI) was achieved at initial Cr (VI) concentration 60 mg/L, pH 2, temperature 35 °C and equilibrium was achieved within 50 min. The two widely used isotherm models viz. Langmuir and Freundlich were analyzed using linear correlation coefficient (R2) and it was found that Langmuir model gives best fit with high value of R2 for the data of present adsorption system which indicate the monolayer adsorption of Cr (VI) on the GO/PVA. Kinetic studies were also conducted using pseudo-first order and pseudo-second order models and it was observed that chemosorptive pseudo-second order model described the kinetics of current adsorption system in better way with high value of correlation coefficient. Thermodynamic studies were also conducted and results showed that the adsorption was spontaneous and endothermic in nature.

Keywords: adsorption, GO/PVA, isotherm, kinetics, nanosorbent, thermodynamics

Procedia PDF Downloads 367