Search results for: number plate recognition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11966

Search results for: number plate recognition

11666 Recognition and Enforcement of International Commercial Arbitral Awards in Sri Lanka, A Lesson from Singapore

Authors: Kahandawala Arachchige Thani Chathurika Kahandawala

Abstract:

This research is attempted to analyse, Sri Lanka’s current situation regarding the recognition and enforcement of international commercial arbitration awards. Sri Lanka has been involved with commercial arbitration for a long time period. But there are good and bad legal practices in place in proceedings in Sri Lanka legal system. The common perception and reality of Sri Lanka’s arbitration law and practices regarding recognition and enforcement of international arbitral awards is far behind the international standards. Therefore arbitration as a dispute resolution method has become a time-consuming and costly method in Sri Lanka. This research is employed with the qualitative method based on both primary and secondary resources. This carried out the comparative analysis of recognition and enforcement in international arbitration laws established jurisdiction in Singapore and the United Kingdom, which are known as best counties as a seat of arbitration in Asia and Europe. International conventions, act and all the legal proceedings regarding recognition and enforcement of an international arbitral award in Sri Lanka are going to be discussed in the research. In the Jurisdiction of Sri Lanka, critically need to value an international arbitral award in the domestic legal system. Therefore an award has to be recognised in Sri Lanka. Otherwise, it doesn’t have any value. After recognizing it, court can enforce it. This research intends to provide a comparative analysis to overcome the drawbacks.

Keywords: arbitration, alternative dispute method, recognition and enforcement, foreign arbitral awards, Sri Lankan legal system, arbitral award in Singapore

Procedia PDF Downloads 139
11665 Three Dimensional Model of Full Scale Plate Load Test on Stone Column in Sabkha Deposit: Case Study from Jubail Industrial City - Saudi Arabia

Authors: Hassan. A. Abas, Saad A. Aiban

Abstract:

Soil improvement by means of stone column method is used to improve sabkha soils in order to limit total and differential settlement and to achieve the required bearing capacity. Full-scale plate test was performed on site to confirm the achievement of required bearing capacity at the specified settlement. Despite the fact that this technique is widely used to improve sabkha soils, there are no studies focusing on the behavior of stone columns in such problematic soils. Sabkha soils are known for its high compressibility, low strength and water sensitivity due to loss of salt cementation upon flooding during installation of stone columns. Numerical modeling of plate load test assist to understand complicated behavior of sabkha – stone column interaction. This paper presents a three-dimensional Finite element model, using PLAXIS 3D software, to simulate vertical plate load tests on a stone column installed in sabkha. The predicted settlement values are in reasonable agreement with the field measure values and the field load - settlement curve can be predicted with good accuracy.

Keywords: soil improvement, stone column, sabkha, PLAXIS 3D

Procedia PDF Downloads 350
11664 Visualization of Corrosion at Plate-Like Structures Based on Ultrasonic Wave Propagation Images

Authors: Aoqi Zhang, Changgil Lee Lee, Seunghee Park

Abstract:

A non-contact nondestructive technique using laser-induced ultrasonic wave generation method was applied to visualize corrosion damage at aluminum alloy plate structures. The ultrasonic waves were generated by a Nd:YAG pulse laser, and a galvanometer-based laser scanner was used to scan specific area at a target structure. At the same time, wave responses were measured at a piezoelectric sensor which was attached on the target structure. The visualization of structural damage was achieved by calculating logarithmic values of root mean square (RMS). Damage-sensitive feature was defined as the scattering characteristics of the waves that encounter corrosion damage. The corroded damage was artificially formed by hydrochloric acid. To observe the effect of the location where the corrosion was formed, the both sides of the plate were scanned with same scanning area. Also, the effect on the depth of the corrosion was considered as well as the effect on the size of the corrosion. The results indicated that the damages were successfully visualized for almost cases, whether the damages were formed at the front or back side. However, the damage could not be clearly detected because the depth of the corrosion was shallow. In the future works, it needs to develop signal processing algorithm to more clearly visualize the damage by improving signal-to-noise ratio.

Keywords: non-destructive testing, corrosion, pulsed laser scanning, ultrasonic waves, plate structure

Procedia PDF Downloads 276
11663 Study of Natural Convection Heat Transfer of Plate-Fin Heat Sink

Authors: Han-Taw Chen, Tzu-Hsiang Lin, Chung-Hou Lai

Abstract:

This study applies the inverse method and three-dimensional CFD commercial software in conjunction with the experimental temperature data to investigate the heat transfer and fluid flow characteristics of the plate-fin heat sink in a rectangular closed enclosure. The inverse method with the finite difference method and the experimental temperature data is applied to determine the approximate heat transfer coefficient. Later, based on the obtained results, the zero-equation turbulence model is used to obtain the heat transfer and fluid flow characteristics between two fins. To validate the accuracy of the results obtained, the comparison of the heat transfer coefficient is made. The obtained temperature at selected measurement locations of the fin is also compared with experimental data. The effect of the height of the rectangular enclosure on the obtained results is discussed.

Keywords: inverse method, fluent, heat transfer characteristics, plate-fin heat sink

Procedia PDF Downloads 364
11662 Classification Earthquake Distribution in the Banda Sea Collision Zone with Point Process Approach

Authors: H. J. Wattimanela, U. S. Passaribu, N. T. Puspito, S. W. Indratno

Abstract:

Banda Sea collision zone (BSCZ) of is the result of the interaction and convergence of Indo-Australian plate, Eurasian plate and Pacific plate. This location in the eastern part of Indonesia. This zone has a very high seismic activity. In this research, we will be calculated rate (λ) and Mean Square Eror (MSE). By this result, we will identification of Poisson distribution of earthquakes in the BSCZ with the point process approach. Chi-square test approach and test Anscombe made in the process of identifying a Poisson distribution in the partition area. The data used are earthquakes with Magnitude ≥ 6 SR and its period 1964-2013 and sourced from BMKG Jakarta. This research is expected to contribute to the Moluccas Province and surrounding local governments in performing spatial plan document related to disaster management.

Keywords: molluca banda sea collision zone, earthquakes, mean square error, poisson distribution, chi-square test, anscombe test

Procedia PDF Downloads 276
11661 Colour Recognition Pen Technology in Dental Technique and Dental Laboratories

Authors: M. Dabirinezhad, M. Bayat Pour, A. Dabirinejad

Abstract:

Recognition of the color spectrum of the teeth plays a significant role in the dental laboratories to produce dentures. Since there are various types and colours of teeth for each patient, there is a need to specify the exact and the most suitable colour to produce a denture. Usually, dentists utilize pallets to identify the color that suits a patient based on the color of the adjacent teeth. Consistent with this, there can be human errors by dentists to recognize the optimum colour for the patient, and it can be annoying for the patient. According to the statistics, there are some claims from the patients that they are not satisfied by the colour of their dentures after the installation of the denture in their mouths. This problem emanates from the lack of sufficient accuracy during the colour recognition process of denture production. The colour recognition pen (CRP) is a technology to distinguish the colour spectrum of the intended teeth with the highest accuracy. CRP is equipped with a sensor that is capable to read and analyse a wide range of spectrums. It is also connected to a database that contains all the spectrum ranges, which exist in the market. The database is editable and updatable based on market requirements. Another advantage of this invention can be mentioned as saving time for the patients since there is no need to redo the denture production in case of failure on the first try.

Keywords: colour recognition pen, colour spectrum, dental laboratory, denture

Procedia PDF Downloads 167
11660 ECG Based Reliable User Identification Using Deep Learning

Authors: R. N. Begum, Ambalika Sharma, G. K. Singh

Abstract:

Identity theft has serious ramifications beyond data and personal information loss. This necessitates the implementation of robust and efficient user identification systems. Therefore, automatic biometric recognition systems are the need of the hour, and ECG-based systems are unquestionably the best choice due to their appealing inherent characteristics. The CNNs are the recent state-of-the-art techniques for ECG-based user identification systems. However, the results obtained are significantly below standards, and the situation worsens as the number of users and types of heartbeats in the dataset grows. As a result, this study proposes a highly accurate and resilient ECG-based person identification system using CNN's dense learning framework. The proposed research explores explicitly the calibre of dense CNNs in the field of ECG-based human recognition. The study tests four different configurations of dense CNN which are trained on a dataset of recordings collected from eight popular ECG databases. With the highest FAR of 0.04 percent and the highest FRR of 5%, the best performing network achieved an identification accuracy of 99.94 percent. The best network is also tested with various train/test split ratios. The findings show that DenseNets are not only extremely reliable but also highly efficient. Thus, they might also be implemented in real-time ECG-based human recognition systems.

Keywords: Biometrics, Dense Networks, Identification Rate, Train/Test split ratio

Procedia PDF Downloads 131
11659 A Communication Signal Recognition Algorithm Based on Holder Coefficient Characteristics

Authors: Hui Zhang, Ye Tian, Fang Ye, Ziming Guo

Abstract:

Communication signal modulation recognition technology is one of the key technologies in the field of modern information warfare. At present, communication signal automatic modulation recognition methods are mainly divided into two major categories. One is the maximum likelihood hypothesis testing method based on decision theory, the other is a statistical pattern recognition method based on feature extraction. Now, the most commonly used is a statistical pattern recognition method, which includes feature extraction and classifier design. With the increasingly complex electromagnetic environment of communications, how to effectively extract the features of various signals at low signal-to-noise ratio (SNR) is a hot topic for scholars in various countries. To solve this problem, this paper proposes a feature extraction algorithm for the communication signal based on the improved Holder cloud feature. And the extreme learning machine (ELM) is used which aims at the problem of the real-time in the modern warfare to classify the extracted features. The algorithm extracts the digital features of the improved cloud model without deterministic information in a low SNR environment, and uses the improved cloud model to obtain more stable Holder cloud features and the performance of the algorithm is improved. This algorithm addresses the problem that a simple feature extraction algorithm based on Holder coefficient feature is difficult to recognize at low SNR, and it also has a better recognition accuracy. The results of simulations show that the approach in this paper still has a good classification result at low SNR, even when the SNR is -15dB, the recognition accuracy still reaches 76%.

Keywords: communication signal, feature extraction, Holder coefficient, improved cloud model

Procedia PDF Downloads 118
11658 Emotion Recognition with Occlusions Based on Facial Expression Reconstruction and Weber Local Descriptor

Authors: Jadisha Cornejo, Helio Pedrini

Abstract:

Recognition of emotions based on facial expressions has received increasing attention from the scientific community over the last years. Several fields of applications can benefit from facial emotion recognition, such as behavior prediction, interpersonal relations, human-computer interactions, recommendation systems. In this work, we develop and analyze an emotion recognition framework based on facial expressions robust to occlusions through the Weber Local Descriptor (WLD). Initially, the occluded facial expressions are reconstructed following an extension approach of Robust Principal Component Analysis (RPCA). Then, WLD features are extracted from the facial expression representation, as well as Local Binary Patterns (LBP) and Histogram of Oriented Gradients (HOG). The feature vector space is reduced using Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). Finally, K-Nearest Neighbor (K-NN) and Support Vector Machine (SVM) classifiers are used to recognize the expressions. Experimental results on three public datasets demonstrated that the WLD representation achieved competitive accuracy rates for occluded and non-occluded facial expressions compared to other approaches available in the literature.

Keywords: emotion recognition, facial expression, occlusion, fiducial landmarks

Procedia PDF Downloads 153
11657 Influence of Flexible Plate's Contour on Dynamic Behavior of High Speed Flexible Coupling of Combat Aircraft

Authors: Dineshsingh Thakur, S. Nagesh, J. Basha

Abstract:

A lightweight High Speed Flexible Coupling (HSFC) is used to connect the Engine Gear Box (EGB) with an Accessory Gear Box (AGB) of the combat aircraft. The HSFC transmits the power at high speeds ranging from 10000 to 18000 rpm from the EGB to AGB. The HSFC is also accommodates larger misalignments resulting from thermal expansion of the aircraft engine and mounting arrangement. The HSFC has the series of metallic contoured annular thin cross-sectioned flexible plates to accommodate the misalignments. The flexible plates are accommodating the misalignment by the elastic material flexure. As the HSFC operates at higher speed, the flexural and axial resonance frequencies are to be kept away from the operating speed and proper prediction is required to prevent failure in the transmission line of a single engine fighter aircraft. To study the influence of flexible plate’s contour on the lateral critical speed (LCS) of HSFC, a mathematical model of HSFC as a elven rotor system is developed. The flexible plate being the bending member of the system, its bending stiffness which results from the contoured governs the LCS. Using transfer matrix method, Influence of various flexible plate contours on critical speed is analyzed. In the above analysis, the support bearing flexibility on critical speed prediction is also considered. Based on the study, a model is built with the optimum contour of flexible plate, for validation by experimental modal analysis. A good correlation between the theoretical prediction and model behavior is observed. From the study, it is found that the flexible plate’s contour is playing vital role in modification of system’s dynamic behavior and the present model can be extended for the development of similar type of flexible couplings for its computational simplicity and reliability.

Keywords: flexible rotor, critical speed, experimental modal analysis, high speed flexible coupling (HSFC), misalignment

Procedia PDF Downloads 188
11656 Proposed Solutions Based on Affective Computing

Authors: Diego Adrian Cardenas Jorge, Gerardo Mirando Guisado, Alfredo Barrientos Padilla

Abstract:

A system based on Affective Computing can detect and interpret human information like voice, facial expressions and body movement to detect emotions and execute a corresponding response. This data is important due to the fact that a person can communicate more effectively with emotions than can be possible with words. This information can be processed through technological components like Facial Recognition, Gait Recognition or Gesture Recognition. As of now, solutions proposed using this technology only consider one component at a given moment. This research investigation proposes two solutions based on Affective Computing taking into account more than one component for emotion detection. The proposals reflect the levels of dependency between hardware devices and software, as well as the interaction process between the system and the user which implies the development of scenarios where both proposals will be put to the test in a live environment. Both solutions are to be developed in code by software engineers to prove the feasibility. To validate the impact on society and business interest, interviews with stakeholders are conducted with an investment mind set where each solution is labeled on a scale of 1 through 5, being one a minimum possible investment and 5 the maximum.

Keywords: affective computing, emotions, emotion detection, face recognition, gait recognition

Procedia PDF Downloads 335
11655 A Hybrid LES-RANS Approach to Analyse Coupled Heat Transfer and Vortex Structures in Separated and Reattached Turbulent Flows

Authors: C. D. Ellis, H. Xia, X. Chen

Abstract:

Experimental and computational studies investigating heat transfer in separated flows have been of increasing importance over the last 60 years, as efforts are being made to understand and improve the efficiency of components such as combustors, turbines, heat exchangers, nuclear reactors and cooling channels. Understanding of not only the time-mean heat transfer properties but also the unsteady properties is vital for design of these components. As computational power increases, more sophisticated methods of modelling these flows become available for use. The hybrid LES-RANS approach has been applied to a blunt leading edge flat plate, utilising a structured grid at a moderate Reynolds number of 20300 based on the plate thickness. In the region close to the wall, the RANS method is implemented for two turbulence models; the one equation Spalart-Allmaras model and Menter’s two equation SST k-ω model. The LES region occupies the flow away from the wall and is formulated without any explicit subgrid scale LES modelling. Hybridisation is achieved between the two methods by the blending of the nearest wall distance. Validation of the flow was obtained by assessing the mean velocity profiles in comparison to similar studies. Identifying the vortex structures of the flow was obtained by utilising the λ2 criterion to identify vortex cores. The qualitative structure of the flow compared with experiments of similar Reynolds number. This identified the 2D roll up of the shear layer, breaking down via the Kelvin-Helmholtz instability. Through this instability the flow progressed into hairpin like structures, elongating as they advanced downstream. Proper Orthogonal Decomposition (POD) analysis has been performed on the full flow field and upon the surface temperature of the plate. As expected, the breakdown of POD modes for the full field revealed a relatively slow decay compared to the surface temperature field. Both POD fields identified the most energetic fluctuations occurred in the separated and recirculation region of the flow. Latter modes of the surface temperature identified these levels of fluctuations to dominate the time-mean region of maximum heat transfer and flow reattachment. In addition to the current research, work will be conducted in tracking the movement of the vortex cores and the location and magnitude of temperature hot spots upon the plate. This information will support the POD and statistical analysis performed to further identify qualitative relationships between the vortex dynamics and the response of the surface heat transfer.

Keywords: heat transfer, hybrid LES-RANS, separated and reattached flow, vortex dynamics

Procedia PDF Downloads 200
11654 Local Spectrum Feature Extraction for Face Recognition

Authors: Muhammad Imran Ahmad, Ruzelita Ngadiran, Mohd Nazrin Md Isa, Nor Ashidi Mat Isa, Mohd ZaizuIlyas, Raja Abdullah Raja Ahmad, Said Amirul Anwar Ab Hamid, Muzammil Jusoh

Abstract:

This paper presents two technique, local feature extraction using image spectrum and low frequency spectrum modelling using GMM to capture the underlying statistical information to improve the performance of face recognition system. Local spectrum features are extracted using overlap sub block window that are mapping on the face image. For each of this block, spatial domain is transformed to frequency domain using DFT. A low frequency coefficient is preserved by discarding high frequency coefficients by applying rectangular mask on the spectrum of the facial image. Low frequency information is non Gaussian in the feature space and by using combination of several Gaussian function that has different statistical properties, the best feature representation can be model using probability density function. The recognition process is performed using maximum likelihood value computed using pre-calculate GMM components. The method is tested using FERET data sets and is able to achieved 92% recognition rates.

Keywords: local features modelling, face recognition system, Gaussian mixture models, Feret

Procedia PDF Downloads 629
11653 Conceptual Design of Suction Cup Lifting System

Authors: Mohammed Aijaz

Abstract:

In industries, to transfer fragile materials like glasses, a holding, lifting, and manipulation system are required. In this report, we designed and analysed a suction cup holding, lifting, and manipulation system that is attached to a head plate and must be able to grip/hold securely, the largest glass panel with 3m x 2.5m x 20mm thick with a mass of 115 kg. The system is able to rotate the panel through 180 degrees in the X, Y, and Z axis in any direction from the outer reach of the robotic arm. The structural analysis is performed to verify the structural strength of the suction cup’s head plate system.

Keywords: designing, mechanical, engineering, suction

Procedia PDF Downloads 67
11652 Unsupervised Reciter Recognition Using Gaussian Mixture Models

Authors: Ahmad Alwosheel, Ahmed Alqaraawi

Abstract:

This work proposes an unsupervised text-independent probabilistic approach to recognize Quran reciter voice. It is an accurate approach that works on real time applications. This approach does not require a prior information about reciter models. It has two phases, where in the training phase the reciters' acoustical features are modeled using Gaussian Mixture Models, while in the testing phase, unlabeled reciter's acoustical features are examined among GMM models. Using this approach, a high accuracy results are achieved with efficient computation time process.

Keywords: Quran, speaker recognition, reciter recognition, Gaussian Mixture Model

Procedia PDF Downloads 349
11651 The Capacity of Mel Frequency Cepstral Coefficients for Speech Recognition

Authors: Fawaz S. Al-Anzi, Dia AbuZeina

Abstract:

Speech recognition is of an important contribution in promoting new technologies in human computer interaction. Today, there is a growing need to employ speech technology in daily life and business activities. However, speech recognition is a challenging task that requires different stages before obtaining the desired output. Among automatic speech recognition (ASR) components is the feature extraction process, which parameterizes the speech signal to produce the corresponding feature vectors. Feature extraction process aims at approximating the linguistic content that is conveyed by the input speech signal. In speech processing field, there are several methods to extract speech features, however, Mel Frequency Cepstral Coefficients (MFCC) is the popular technique. It has been long observed that the MFCC is dominantly used in the well-known recognizers such as the Carnegie Mellon University (CMU) Sphinx and the Markov Model Toolkit (HTK). Hence, this paper focuses on the MFCC method as the standard choice to identify the different speech segments in order to obtain the language phonemes for further training and decoding steps. Due to MFCC good performance, the previous studies show that the MFCC dominates the Arabic ASR research. In this paper, we demonstrate MFCC as well as the intermediate steps that are performed to get these coefficients using the HTK toolkit.

Keywords: speech recognition, acoustic features, mel frequency, cepstral coefficients

Procedia PDF Downloads 227
11650 Mixed Convection Enhancement in a 3D Lid-Driven Cavity Containing a Rotating Cylinder by Applying an Artificial Roughness

Authors: Ali Khaleel Kareem, Shian Gao, Ahmed Qasim Ahmed

Abstract:

A numerical investigation of unsteady mixed convection heat transfer in a 3D moving top wall enclosure, which has a central rotating cylinder and uses either artificial roughness on the bottom hot plate or smooth bottom hot plate to study the heat transfer enhancement, is completed for fixed circular cylinder, and anticlockwise and clockwise rotational speeds, -1 ≤ Ω ≤ 1, at Reynolds number of 5000. The top lid-driven wall was cooled, while the other remaining walls that completed obstructed cubic were kept insulated and motionless. A standard k-ε model of Unsteady Reynolds-Averaged Navier-Stokes (URANS) method is involved to deal with turbulent flow. It has been clearly noted that artificial roughness can strongly control the thermal fields and fluid flow patterns. Ultimately, the heat transfer rate has been dramatically increased by involving artificial roughness on the heated bottom wall in the presence of rotating cylinder.

Keywords: artificial roughness, lid-driven cavity, mixed convection heat transfer, rotating cylinder, URANS method

Procedia PDF Downloads 170
11649 Optimizing the Probabilistic Neural Network Training Algorithm for Multi-Class Identification

Authors: Abdelhadi Lotfi, Abdelkader Benyettou

Abstract:

In this work, a training algorithm for probabilistic neural networks (PNN) is presented. The algorithm addresses one of the major drawbacks of PNN, which is the size of the hidden layer in the network. By using a cross-validation training algorithm, the number of hidden neurons is shrunk to a smaller number consisting of the most representative samples of the training set. This is done without affecting the overall architecture of the network. Performance of the network is compared against performance of standard PNN for different databases from the UCI database repository. Results show an important gain in network size and performance.

Keywords: classification, probabilistic neural networks, network optimization, pattern recognition

Procedia PDF Downloads 224
11648 A Fast, Reliable Technique for Face Recognition Based on Hidden Markov Model

Authors: Sameh Abaza, Mohamed Ibrahim, Tarek Mahmoud

Abstract:

Due to the development in the digital image processing, its wide use in many applications such as medical, security, and others, the need for more accurate techniques that are reliable, fast and robust is vehemently demanded. In the field of security, in particular, speed is of the essence. In this paper, a pattern recognition technique that is based on the use of Hidden Markov Model (HMM), K-means and the Sobel operator method is developed. The proposed technique is proved to be fast with respect to some other techniques that are investigated for comparison. Moreover, it shows its capability of recognizing the normal face (center part) as well as face boundary.

Keywords: HMM, K-Means, Sobel, accuracy, face recognition

Procedia PDF Downloads 298
11647 Study on the Wave Dissipation Performance of Double-Cylinder and Double-Plate Floating Breakwater

Authors: Liu Bijin

Abstract:

Floating breakwaters have several advantages, including being environmentally friendly, easy to construct, and cost-effective regardless of water depth. They have a broad range of applications in coastal engineering. However, they face significant challenges due to the unstable effect of wave dissipation, structural vulnerability, and high mooring system requirements. This paper investigates the wave dissipation performance of a floating breakwater structure. The structure consists of double cylinders, double vertical plates, and horizontal connecting plates. The investigation is carried out using physical model tests and numerical simulation methods based on STAR-CCM+. This paper discusses the impact of wave elements, relative vertical plate heights, and relative horizontal connecting plate widths on the wave dissipation performance of the double-cylinder, double-plate floating breakwater (DCDPFB). The study also analyses the changes in local vorticity and velocity fields around the DCDPFB to determine the optimal structural dimensions. The study found that the relative width of the horizontal connecting plate, the relative height of the vertical plate, and the size of the semi-cylinder are the key factors affecting the wave dissipation performance of the DCDPFB. The transmittance coefficient is minimally affected by the wave height and the depth of water entry. The local vortex and velocity field formed around the DCDPFB are important factors for dissipating wave energy. The test section of the DCDPFB, constructed according to the relative optimal structural dimensions, showed good wave dissipation performance during offshore prototype tests. The test section of DCDPFB, constructed with optimal structural dimensions, exhibits excellent wave dissipation performance in offshore prototype tests.

Keywords: floating breakwater, wave dissipation performance, transmittance coefficient, model test

Procedia PDF Downloads 14
11646 Mood Recognition Using Indian Music

Authors: Vishwa Joshi

Abstract:

The study of mood recognition in the field of music has gained a lot of momentum in the recent years with machine learning and data mining techniques and many audio features contributing considerably to analyze and identify the relation of mood plus music. In this paper we consider the same idea forward and come up with making an effort to build a system for automatic recognition of mood underlying the audio song’s clips by mining their audio features and have evaluated several data classification algorithms in order to learn, train and test the model describing the moods of these audio songs and developed an open source framework. Before classification, Preprocessing and Feature Extraction phase is necessary for removing noise and gathering features respectively.

Keywords: music, mood, features, classification

Procedia PDF Downloads 472
11645 Nonlinear Analysis with Failure Using the Boundary Element Method

Authors: Ernesto Pineda Leon, Dante Tolentino Lopez, Janis Zapata Lopez

Abstract:

The current paper shows the application of the boundary element method for the analysis of plates under shear stress causing plasticity. In this case, the shear deformation of a plate is considered by means of the Reissner’s theory. The probability of failure of a Reissner’s plate due to a proposed index plastic behavior is calculated taken into account the uncertainty in mechanical and geometrical properties. The problem is developed in two dimensions. The classic plasticity’s theory is applied and a formulation for initial stresses that lead to the boundary integral equations due to plasticity is also used. For the plasticity calculation, the Von Misses criteria is used. To solve the non-linear equations an incremental method is employed. The results show a relatively small failure probability for the ranges of loads between 0.6 and 1.0. However, for values between 1.0 and 2.5, the probability of failure increases significantly. Consequently, for load bigger than 2.5 the plate failure is a safe event. The results are compared to those that were found in the literature and the agreement is good.

Keywords: boundary element method, failure, plasticity, probability

Procedia PDF Downloads 275
11644 Enhancing Seismic Performance of Ductile Moment Frames with Delayed Wire-Rope Bracing Using Middle Steel Plate

Authors: Babak Dizangian, Mohammad Reza Ghasemi, Akram Ghalandari

Abstract:

Moment frames have considerable ductility against cyclic lateral loads and displacements; however, if this feature causes the relative displacement to exceed the permissible limit, it can impose unfavorable hysteretic behavior on the frame. Therefore, adding a bracing system with the capability of preserving the capacity of high energy absorption and controlling displacements without a considerable increase in the stiffness is quite important. This paper investigates the retrofitting of a single storey steel moment frame through a delayed wire-rope bracing system using a middle steel plate. In this model, the steel plate lies where the wire ropes meet, and the model geometry is such that the cables are continuously under tension so that they can take the most advantage of the inherent potential they have in tolerating tensile stress. Using the steel plate also reduces the system stiffness considerably compared to cross bracing systems and preserves the ductile frame’s energy absorption capacity. In this research, the software models of delayed wire-rope bracing system have been studied, validated, and compared with other researchers’ laboratory test results.

Keywords: cyclic loading, delayed wire rope bracing, ductile moment frame, energy absorption, hysteresis curve

Procedia PDF Downloads 259
11643 Iris Feature Extraction and Recognition Based on Two-Dimensional Gabor Wavelength Transform

Authors: Bamidele Samson Alobalorun, Ifedotun Roseline Idowu

Abstract:

Biometrics technologies apply the human body parts for their unique and reliable identification based on physiological traits. The iris recognition system is a biometric–based method for identification. The human iris has some discriminating characteristics which provide efficiency to the method. In order to achieve this efficiency, there is a need for feature extraction of the distinct features from the human iris in order to generate accurate authentication of persons. In this study, an approach for an iris recognition system using 2D Gabor for feature extraction is applied to iris templates. The 2D Gabor filter formulated the patterns that were used for training and equally sent to the hamming distance matching technique for recognition. A comparison of results is presented using two iris image subjects of different matching indices of 1,2,3,4,5 filter based on the CASIA iris image database. By comparing the two subject results, the actual computational time of the developed models, which is measured in terms of training and average testing time in processing the hamming distance classifier, is found with best recognition accuracy of 96.11% after capturing the iris localization or segmentation using the Daughman’s Integro-differential, the normalization is confined to the Daugman’s rubber sheet model.

Keywords: Daugman rubber sheet, feature extraction, Hamming distance, iris recognition system, 2D Gabor wavelet transform

Procedia PDF Downloads 35
11642 A Comparison of Double Sided Friction Stir Welding in Air and Underwater for 6mm S275 Steel Plate

Authors: Philip Baillie, Stuart W. Campbell, Alexander M. Galloway, Stephen R. Cater, Norman A. McPherson

Abstract:

This study compared the mechanical and microstructural properties produced during friction stir welding(FSW) of S275 structural steel in air and underwater. Post weld tests assessed the tensile strength, micro-hardness, distortion, Charpy impact toughness and fatigue performance in each case. The study showed that there was no significant difference in the strength, hardness or fatigue life of the air and underwater specimens. However, Charpy impact toughness was shown to decrease for the underwater specimens and was attributed to a lower degree of recrystallization caused by the higher rate of heat loss experienced when welding underwater. Reduced angular and longitudinal distortion was observed in the underwater welded plate compared to the plate welded in air.

Keywords: Charpy impact toughness, distortion, fatigue, friction stir welding(FSW), micro-hardness, underwater

Procedia PDF Downloads 365
11641 Object Recognition System Operating from Different Type Vehicles Using Raspberry and OpenCV

Authors: Maria Pavlova

Abstract:

In our days, it is possible to put the camera on different vehicles like quadcopter, train, airplane and etc. The camera also can be the input sensor in many different systems. That means the object recognition like non separate part of monitoring control can be key part of the most intelligent systems. The aim of this paper is to focus of the object recognition process during vehicles movement. During the vehicle’s movement the camera takes pictures from the environment without storage in Data Base. In case the camera detects a special object (for example human or animal), the system saves the picture and sends it to the work station in real time. This functionality will be very useful in emergency or security situations where is necessary to find a specific object. In another application, the camera can be mounted on crossroad where do not have many people and if one or more persons come on the road, the traffic lights became the green and they can cross the road. In this papers is presented the system has solved the aforementioned problems. It is presented architecture of the object recognition system includes the camera, Raspberry platform, GPS system, neural network, software and Data Base. The camera in the system takes the pictures. The object recognition is done in real time using the OpenCV library and Raspberry microcontroller. An additional feature of this library is the ability to display the GPS coordinates of the captured objects position. The results from this processes will be sent to remote station. So, in this case, we can know the location of the specific object. By neural network, we can learn the module to solve the problems using incoming data and to be part in bigger intelligent system. The present paper focuses on the design and integration of the image recognition like a part of smart systems.

Keywords: camera, object recognition, OpenCV, Raspberry

Procedia PDF Downloads 194
11640 The Effect of Discontinued Water Spray Cooling on the Heat Transfer Coefficient

Authors: J. Hrabovský, M. Chabičovský, J. Horský

Abstract:

Water spray cooling is a technique typically used in heat treatment and other metallurgical processes where controlled temperature regimes are required. Water spray cooling is used in static (without movement) or dynamic (with movement of the steel plate) regimes. The static regime is notable for the fixed position of the hot steel plate and fixed spray nozzle. This regime is typical for quenching systems focused on heat treatment of the steel plate. The second application of spray cooling is the dynamic regime. The dynamic regime is notable for its static section cooling system and moving steel plate. This regime is used in rolling and finishing mills. The fixed position of cooling sections with nozzles and the movement of the steel plate produce nonhomogeneous water distribution on the steel plate. The length of cooling sections and placement of water nozzles in combination with the nonhomogeneity of water distribution leads to discontinued or interrupted cooling conditions. The impact of static and dynamic regimes on cooling intensity and the heat transfer coefficient during the cooling process of steel plates is an important issue. Heat treatment of steel is accompanied by oxide scale growth. The oxide scale layers can significantly modify the cooling properties and intensity during the cooling. The combination of the static and dynamic (section) regimes with the variable thickness of the oxide scale layer on the steel surface impact the final cooling intensity. The study of the influence of the oxide scale layers with different cooling regimes was carried out using experimental measurements and numerical analysis. The experimental measurements compared both types of cooling regimes and the cooling of scale-free surfaces and oxidized surfaces. A numerical analysis was prepared to simulate the cooling process with different conditions of the section and samples with different oxide scale layers.

Keywords: heat transfer coefficient, numerical analysis, oxide layer, spray cooling

Procedia PDF Downloads 373
11639 The Study on How Social Cues in a Scene Modulate Basic Object Recognition Proces

Authors: Shih-Yu Lo

Abstract:

Stereotypes exist in almost every society, affecting how people interact with each other. However, to our knowledge, the influence of stereotypes was rarely explored in the context of basic perceptual processes. This study aims to explore how the gender stereotype affects object recognition. Participants were presented with a series of scene pictures, followed by a target display with a man or a woman, holding a weapon or a non-weapon object. The task was to identify whether the object in the target display was a weapon or not. Although the gender of the object holder could not predict whether he or she held a weapon, and was irrelevant to the task goal, the participant nevertheless tended to identify the object as a weapon when the object holder was a man than a woman. The analysis based on the signal detection theory showed that the stereotype effect on object recognition mainly resulted from the participant’s bias to make a 'weapon' response when a man was in the scene instead of a woman in the scene. In addition, there was a trend that the participant’s sensitivity to differentiate a weapon from a non-threating object was higher when a woman was in the scene than a man was in the scene. The results of this study suggest that the irrelevant social cues implied in the visual scene can be very powerful that they can modulate the basic object recognition process.

Keywords: gender stereotype, object recognition, signal detection theory, weapon

Procedia PDF Downloads 173
11638 The Effect of Artificial Intelligence on Civil Engineering Outputs and Designs

Authors: Mina Youssef Makram Ibrahim

Abstract:

Engineering identity contributes to the professional and academic sustainability of female engineers. Recognizability is an important factor that shapes an engineer's identity. People who are deprived of real recognition often fail to create a positive identity. This study draws on Hornet’s recognition theory to identify factors that influence female civil engineers' sense of recognition. Over the past decade, a survey was created and distributed to 330 graduate students in the Department of Civil, Civil and Environmental Engineering at Iowa State University. Survey items include demographics, perceptions of a civil engineer's identity, and factors that influence recognition of a civil engineer's identity, such as B. Opinions about society and family. Descriptive analysis of survey responses revealed that perceptions of civil engineering varied significantly. The definitions of civil engineering provided by participants included the terms structure, design and infrastructure. Almost half of the participants said the main reason for studying Civil Engineering was their interest in the subject, and the majority said they were proud to be a civil engineer. Many study participants reported that their parents viewed them as civil engineers. Institutional and operational treatment was also found to have a significant impact on the recognition of women civil engineers. Almost half of the participants reported feeling isolated or ignored at work because of their gender. This research highlights the importance of recognition in developing the identity of women engineers.

Keywords: civil service, hiring, merit, policing civil engineering, construction, surveying, mapping, pile civil service, Kazakhstan, modernization, a national model of civil service, civil service reforms, bureaucracy civil engineering, gender, identity, recognition

Procedia PDF Downloads 16
11637 Evaluate the Changes in Stress Level Using Facial Thermal Imaging

Authors: Amin Derakhshan, Mohammad Mikaili, Mohammad Ali Khalilzadeh, Amin Mohammadian

Abstract:

This paper proposes a stress recognition system from multi-modal bio-potential signals. For stress recognition, Support Vector Machines (SVM) and LDA are applied to design the stress classifiers and its characteristics are investigated. Using gathered data under psychological polygraph experiments, the classifiers are trained and tested. The pattern recognition method classifies stressful from non-stressful subjects based on labels which come from polygraph data. The successful classification rate is 96% for 12 subjects. It means that facial thermal imaging due to its non-contact advantage could be a remarkable alternative for psycho-physiological methods.

Keywords: stress, thermal imaging, face, SVM, polygraph

Procedia PDF Downloads 452