Search results for: nanoparticles additive
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2010

Search results for: nanoparticles additive

2010 Wire Arc Additive Manufacturing of Aluminium–Magnesium Alloy AlMg4.5Mn With TiC Nanoparticles

Authors: Javad Karimi

Abstract:

The grain morphology and size of the additively manufactured (AM) aluminium alloys play a vital role in the performance and mechanical properties. AM-fabricated aluminium parts exhibit a relatively coarse microstructure with a columnar morphology. Ceramic nanoparticles, such as Titanium carbide (TiC), have shown great potential to reduce grain size and consequently influence the mechanical properties. In this study, the microstructural and mechanical properties of aluminium parts with TiC nanoparticles will be investigated. AM aluminium components will be fabricated using wire arc additive manufacturing (WAAM). The effect of the addition of TiC nanoparticles with different wt% on the melt pool geometry will be examined, and the obtained results will be compared to those obtained from pure ER5183. The impact of TiC nanoparticles addition in the AM parts will be analyzed comprehensively, and the results will be discussed in detail.

Keywords: additive manufacturing, wire arc additive manufacturing, nanoparticles, grain refinement

Procedia PDF Downloads 58
2009 Energy-efficient Buildings In Construction Industry Using Fly Ash-based Geopolymer Technology

Authors: Maryam Kiani

Abstract:

The aim of this study was to investigate the influence of nanoparticles additive on the properties of fly ash-based geopolymer. The geopolymer samples were prepared using fly ash as the primary source material, along with an alkali activator solution and different concentrations of carbon black additive. The effects of nanoparticles flexural strength, water absorption, and micro-structural properties of the cured samples. The results revealed that the inclusion of nanoparticles additive significantly enhanced the mechanical and electrical properties of the geopolymer binder. Micro-structural analysis using scanning electron microscopy (SEM) revealed a more compact and homogeneous structure in the geopolymer samples with nanoparticles. The dispersion of nanoparticles particles within the geopolymer matrix was observed, suggesting improved inter-particle bonding and increased density. Overall, this study demonstrates the positive impact of nanoparticles additive on the qualities of fly ash-based geopolymer, emphasizing its potential as an effective enhancer for geopolymer binder applications for the development of construction and infrastructure for energy buildings.

Keywords: fly-ash, geopolymer, energy buildings, nanotechnology

Procedia PDF Downloads 67
2008 Study of TiO2 Nanoparticles as Lubricant Additive in Two-Axial Groove Journal Bearing

Authors: K. Yathish, K. G. Binu, B. S. Shenoy, D. S. Rao, R. Pai

Abstract:

Load carrying capacity of an oil lubricated two-axial groove journal bearing is simulated by taking into account the viscosity variations in lubricant due to the addition of TiO2 nanoparticles as lubricant additive. Shear viscosities of TiO2 nanoparticle dispersions in oil are measured for various nanoparticle additive concentrations. The viscosity model derived from the experimental viscosities is employed in a modified Reynolds equation to obtain the pressure profiles and load carrying capacity of two-axial groove journal bearing. Results reveal an increase in load carrying capacity of bearings operating on nanoparticle dispersions as compared to plain oil

Keywords: journal bearing, TiO2 nanoparticles, viscosity model, Reynold's equation, load carrying capacity

Procedia PDF Downloads 505
2007 Fabrication and Characterization of Glass Nanofibers through Electrospinning of Silica Sol-Gel along with in situ Synthesis of Ag Nanoparticles

Authors: Mahsa Kangazian Kangazi, Ali Akbar Ghareh Aghaji, Majid Montazer

Abstract:

Nowadays, silica nanofibers are highly regarded among the inorganic nanofibers due to the high reactivity and availability of silicon compounds in nature. Sol-gel process is required for electrospinning of silica nanofibers in which a metal alkoxide is hydrolyzed, and the viscosity is increased. In this study, silica nanofibers containing silver nanoparticles were synthesized and electrospun from a mixture of silica sol with an easy spinnable polymer (PVA) as an additive. The silica sol contains tetraethyl orthosilicate (TEOS), silver nitrate, distilled water, nitric acid, and ethanol. Nanofibers were formed through electrospinning setup. The nanofibers were calcinated to remove the solvent and additive polymer. Consequently, pure silica nanofibers were produced. FTIR analysis indicated entire removal of polyvinyl alcohol from the structure and formation of silan groups. The presence of silver, silica and oxygen was confirmed by EDX. Also, XRD patterns revealed the presence of silver nanoparticles with a mean crystal size of 18 nm. FESEM images showed that adding silver nitrate into the sol-gel, resulted in lower nanofibers diameter from 286 to 136 nm. Furthermore, the electrospun nanofibers were more resistance in acidic media than alkaline media.

Keywords: in situ synthesis of silver nanoparticles, silica nanofibers, sol-gel, tetraethyl orthosilicate

Procedia PDF Downloads 152
2006 Logistic Regression Model versus Additive Model for Recurrent Event Data

Authors: Entisar A. Elgmati

Abstract:

Recurrent infant diarrhea is studied using daily data collected in Salvador, Brazil over one year and three months. A logistic regression model is fitted instead of Aalen's additive model using the same covariates that were used in the analysis with the additive model. The model gives reasonably similar results to that using additive regression model. In addition, the problem with the estimated conditional probabilities not being constrained between zero and one in additive model is solved here. Also martingale residuals that have been used to judge the goodness of fit for the additive model are shown to be useful for judging the goodness of fit of the logistic model.

Keywords: additive model, cumulative probabilities, infant diarrhoea, recurrent event

Procedia PDF Downloads 612
2005 Tribological Behaviour Improvement of Lubricant Using Copper (II) Oxide Nanoparticles as Additive

Authors: M. A. Hassan, M. H. Sakinah, K. Kadirgama, D. Ramasamy, M. M. Noor, M. M. Rahman

Abstract:

Tribological properties that include nanoparticles are an alternative to improve the tribological behaviour of lubricating oil, which has been investigated by many researchers for the past few decades. Various nanostructures can be used as additives for tribological improvement. However, this also depends on the characteristics of the nanoparticles. In this study, tribological investigation was performed to examine the effect of CuO nanoparticles on the tribological behaviour of Syntium 800 SL 10W−30. Three parameters used in the analysis using the wear tester (piston ring) were load, revolutions per minute (rpm), and concentration. The specifications of the nanoparticles, such as size, concentration, hardness, and shape, can affect the tribological behaviour of the lubricant. The friction and wear experiment was conducted using a tribo-tester and the Response Surface Methodology method was used to analyse any improvement of the performance. Therefore, two concentrations of 40 nm nanoparticles were used to conduct the experiments, namely, 0.005 wt % and 0.01 wt % and compared with base oil 0 wt % (control). A water bath sonicator was used to disperse the nanoparticles in base oil, while a tribo-tester was used to measure the coefficient of friction and wear rate. In addition, the thermal properties of the nanolubricant were also measured. The results have shown that the thermal conductivity of the nanolubricant was increased when compared with the base oil. Therefore, the results indicated that CuO nanoparticles had improved the tribological behaviour as well as the thermal properties of the nanolubricant oil.

Keywords: concentration, improvement, tribological, copper (II) oxide, nano lubricant

Procedia PDF Downloads 419
2004 Silver Nanoparticle Application in Food Packaging and Impacts on Food Safety and Consumer’s Health

Authors: Worku Dejene Bekele, András Marczika Csilla Sörös

Abstract:

Silver nanoparticles are silver metal with a size of 1-100nm. The most common source of silver nanoparticles is inorganic salts. Nanoparticles can be ingested through our foods and constitute nanoparticles and silver ions, whether as an additive or by migrants and, in some cases, as a pollutant. Silver nanoparticles are the most widely applicable engineered nanomaterials, especially for antimicrobial function. Ag nanoparticles give different advantages in the case of food safety, quality, and overall acceptability; however, they affect the health of humans and animals, putting them at risk of health problems and environmental pollution. Silver nanoparticles have been used widely in food packaging technologies, especially in water treatments, meat and meat products, fruit, and many other food products. This is for bio-preservation from food products. The primary goal of this review is to determine the safety and health impact of Ag nanoparticles application in food packaging and analysis of the human organs more affected by this preservative technology, to assess the implications of a nanoparticle on food safety, to determine the effects of nanoparticles on consumers health and to determine the impact of nanotechnology on product acceptability. But currently, much research has demonstrated that there is cause to believe that silver nanoparticles may have toxicological effects on biological organs and systems. The silver nanoparticles affect DNA expression, gastrointestinal barriers, lungs, and other breathing organs illness. Silver particles and molecules are very toxic. During its application in food packaging, food industries used the thinnest particle. This particle can potentially affect the gastrointestinal tracts-it suffers from mucus production, DNA, lungs, and other breezing organs. This review is targeted to demonstrate the knowledge gap that industrials use in the application of silver nanoparticles in food packaging and preservation and its health effects on the consumer.

Keywords: food preservatives, health impact, nanoparticle, silver nanoparticle

Procedia PDF Downloads 43
2003 Effect of Carbon Black Nanoparticles Additive on the Qualities of Fly Ash Based Geopolymer

Authors: Maryam Kiani

Abstract:

The aim of this study was to investigate the influence of carbon black additive on the properties of fly ash-based geopolymer. The geopolymer samples were prepared using fly ash as the primary source material, along with an alkali activator solution and different concentrations of carbon black additive. The effects of carbon black on the geopolymer binder were evaluated by analyzing the compressive strength, flexural strength, water absorption, and microstructural properties of the cured samples. The results revealed that the inclusion of carbon black additive significantly enhanced the mechanical properties of the geopolymer binder. The compressive and flexural strengths were found to increase with the addition of carbon black, showing improvements of up to 25% and 15%, respectively. Moreover, the water absorption of the geopolymer samples reduced due to the presence of carbon black, indicating improved resistance against water permeability. Microstructural analysis using scanning electron microscopy (SEM) revealed a more compact and homogenous structure in the geopolymer samples with carbon black. The dispersion of carbon black particles within the geopolymer matrix was observed, suggesting improved interparticle bonding and increased densification. Overall, this study demonstrates the positive impact of carbon black additive on the qualities of fly ash-based geopolymer, emphasizing its potential as an effective enhancer for geopolymer binder applications.

Keywords: fly-ash, carbon black, nanotechnology, geopolymer

Procedia PDF Downloads 74
2002 Magnetic Nanoparticles for Cancer Therapy

Authors: Sachinkumar Patil, Sonali Patil, Shitalkumar Patil

Abstract:

Nanoparticles played important role in the biomedicine. New advanced methods having great potential apllication in the diagnosis and therapy of cancer. Now a day’s magnetic nanoparticles used in cancer therapy. Cancer is the major disease causes death. Magnetic nanoparticles show response to the magnetic field on the basis of this property they are used in cancer therapy. Cancer treated with hyperthermia by using magnetic nanoparticles it is unconventional but more safe and effective method. Magnetic nanoparticles prepared by using different innovative techniques that makes particles in uniform size and desired effect. Magnetic nanoparticles already used as contrast media in magnetic resonance imaging. A magnetic nanoparticle has been great potential application in cancer diagnosis and treatment as well as in gene therapy. In this review we will discuss the progress in cancer therapy based on magnetic nanoparticles, mainly including magnetic hyperthermia, synthesis and characterization of magnetic nanoparticles, mechanism of magnetic nanoparticles and application of magnetic nanoparticles.

Keywords: magnetic nanoparticles, synthesis, characterization, cancer therapy, hyperthermia, application

Procedia PDF Downloads 617
2001 Synthesis and Characterization of Silver Nanoparticles Using Daucus carota Extract

Authors: M. R. Bindhu, M. Umadevi

Abstract:

Silver nanoparticles have been synthesized by Daucus carota extract as reducing agent was reported here. The involvement of phytochemicals in the Daucus carota extract in the reduction and stabilization of silver nanoparticles has been established using XRD and UV-vis studies. The UV-vis spectrum of the prepared silver nanoparticles showed surface plasmon absorbance peak at 450 nm. The obtained silver nanoparticles were almost spherical in shape with the average size of 15 nm. Crystalline nature of the nanoparticles was evident from bright spots in the SAED pattern and peaks in the XRD pattern. This new, simple and natural method for biosynthesis of silver nanoparticles offers a valuable contribution in the area of green synthesis and nanotechnology avoiding the presence of hazardous and toxic solvents and waste.

Keywords: Daucus carota, green synthesis, silver nanoparticles, surface plasmon resonance

Procedia PDF Downloads 441
2000 An Evaluation Model for Enhancing Flexibility in Production Systems through Additive Manufacturing

Authors: Angela Luft, Sebastian Bremen, Nicolae Balc

Abstract:

Additive manufacturing processes have entered large parts of the industry and their range of application have progressed and grown significantly in the course of time. A major advantage of additive manufacturing is the innate flexibility of the machines. This corelates with the ongoing demand of creating highly flexible production environments. However, the potential of additive manufacturing technologies to enhance the flexibility of production systems has not yet been truly considered and quantified in a systematic way. In order to determine the potential of additive manufacturing technologies with regards to the strategic flexibility design in production systems, an integrated evaluation model has been developed, that allows for the simultaneous consideration of both conventional as well as additive production resources. With the described model, an operational scope of action can be identified and quantified in terms of mix and volume flexibility, process complexity, and machine capacity that goes beyond the current cost-oriented approaches and offers a much broader and more holistic view on the potential of additive manufacturing. A respective evaluation model is presented this paper.

Keywords: additive manufacturing, capacity planning, production systems, strategic production planning, flexibility enhancement

Procedia PDF Downloads 131
1999 Preparation and Characterization of Nickel-Tungsten Nanoparticles Using Microemulsion Mediated Synthesis

Authors: S. Pal, R. Singh, S. Sivakumar, D. Kunzru

Abstract:

AOT stabilized reverse micelles of deionized water, dispersed in isooctane have been used to synthesize bimetallic nickel tungsten nanoparticles. Prepared nanoparticles were supported on γ-Al2O3 followed by calcination at 500oC. Characterizations of the nanoparticles were done by TEM, XRD, FTIR, XRF, TGA and BET. XRF results showed that this method gave good composition control with W/Ni weight ratio equal to 3.2. TEM images showed particle size of 5-10 nm. Removal of surfactant after calcination was confirmed by TGA and FTIR.

Keywords: nanoparticles, reverse micelles, nickel, tungsten

Procedia PDF Downloads 566
1998 Ta-doped Nb2O5: Synthesis and Photocatalytic Activity

Authors: Mahendrasingh J. Pawar, M. D. Gaoner

Abstract:

Ta-doped Nb2O5 (Ta content 0.5-2% mole fraction) nanoparticles in the range of 20-40 nm were synthesized by combustion technique. The crystalline phase, morphology and size of the nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and UV-vis spectroscopy. The specific surface area of the nanoparticles was measured by nitrogen adsorption (BET analysis). The undoped Nb2O5 nanoparticles were found to have the particles size in the range of 50−80 nm. The photocatalytic performance of the samples was characterized by degrading 20 mg/L toluene under UV−Vis irradiation. The results show that the Ta-doped Nb2O5 nanoparticles exhibit a significant increase in photocatalytic performance over the undoped Nb2O5 nanoparticles, and the Nb2O5 nanoparticles doped with 1.5% Ta and calcined at 450°C show the best photocatalytic performance.

Keywords: Nb2O5, Ta-doped Nb2O5, photodegradation of Toluene, combustion method

Procedia PDF Downloads 539
1997 Ecotoxicity Evaluation and Suggestion of Remediation Method of ZnO Nanoparticles in Aqueous Phase

Authors: Hyunsang Kim, Younghun Kim, Younghee Kim, Sangku Lee

Abstract:

We investigated ecotoxicity and performed an experiment for removing ZnO nanoparticles in water. Short-term exposure of hatching test using fertilized eggs (O. latipes) showed deformity in 5 ppm of ZnO nanoparticles solution, and in 10ppm ZnO nanoparticles solution delayed hatching was observed. Herein, chemical precipitation method was suggested for removing ZnO nanoparticles in water. The precipitated ZnO nanoparticles showed the form of ZnS after addition of Na2S, and the form of Zn3(PO4)2 for Na2HPO4. The removal efficiency of ZnO nanoparticles in water was closed to 100% for two case. In ecotoxicity evaluation of as-precipitated ZnS and Zn3(PO4)2, they did not cause any acute toxicity for D. magna. It is noted that this precipitation treatment of ZnO is effective to reduce the potential cytotoxicity.

Keywords: ZnO nanopraticles, ZnS, Zn3(PO4)2, ecotoxicity evaluation, chemical precipitation

Procedia PDF Downloads 252
1996 Metal Nanoparticles Caused Death of Metastatic MDA-MB-231 Cells

Authors: O. S. Adeyemi, C. G. Whiteley

Abstract:

The present study determined the toxic potential of metal nanoparticles in cell culture system. Silver and gold nanoparticles were synthesized and characterized following established "green" protocols. The synthesized nanoparticles, in varying concentrations ranging from 0.1–100 µM were evaluated for toxicity in metastatic MDA-MB-231 cells. The nanoparticles promoted a generation of reactive oxygen species and reduced cell viability to less than 50% in the demonstration of cellular toxicity. The nanoparticles; gold and the silver-gold mixture had IC50 values of 56.65 and 18.44 µM respectively. The IC50 concentration for silver nanoparticles could not be determined. Furthermore, the probe of the cell death using flow cytometry and confocal microscopy revealed the partial involvement of apoptosis as well as necrosis. Our results revealed cellular toxicity caused by the nanoparticles but the mechanism remains yet undefined.

Keywords: cell death, nanomedicine, nanotoxicology, toxicity

Procedia PDF Downloads 366
1995 Mechanical and Long Term Ageing Properties of PMMA Silica Nanoparticles

Authors: M. Khlifa, A. Youssef. M. Almakki

Abstract:

The addition of silica nanoparticles to poly(methyl methacrylate) (PMMA) can influence its mechanical and aging properties. Dispersed PMMA in colloidal and aggregated silica revealed considerable increase in modulus above the glass transition temperature when aggregated silica nanoparticles were used, whereas colloidally dispersed silica nanoparticles showed only a marginal improvement. In addition, Dispersed PMMA in both aggregated and colloidally silica nanoparticles accelerated physical ageing.

Keywords: nanoparticles, physical aging, PMMA, chemical and molecular engineering

Procedia PDF Downloads 496
1994 Heat Transfer Enhancement Using Aluminium Oxide Nanofluid: Effect of the Base Fluid

Authors: M. Amoura, M. Benmoussa, N. Zeraibi

Abstract:

The flow and heat transfer is an important phenomenon in engineering systems due to its wide application in electronic cooling, heat exchangers, double pane windows etc.. The enhancement of heat transfer in these systems is an essential topic from an energy saving perspective. Lower heat transfer performance when conventional fluids, such as water, engine oil and ethylene glycol are used hinders improvements in performance and causes a consequent reduction in the size of such systems. The use of solid particles as an additive suspended into the base fluid is a technique for heat transfer enhancement. Therefore, the heat transfer enhancement in a horizontal circular tube that is maintained at a constant temperature under laminar regime has been investigated numerically. A computational code applied to the problem by use of the finite volume method was developed. Nanofluid was made by dispersion of Al2O3 nanoparticles in pure water and ethylene glycol. Results illustrate that the suspended nanoparticles increase the heat transfer with an increase in the nanoparticles volume fraction and for a considered range of Reynolds numbers. On the other hand, the heat transfer is very sensitive to the base fluid.

Keywords: Al2O3 nanoparticles, circular tube, heat transfert enhancement, numerical simulation

Procedia PDF Downloads 299
1993 Study of Dispersion of Silica and Chitosan Nanoparticles into Gelatin Film

Authors: Mohit Batra, Noel Sarkar, Jayeeta Mitra

Abstract:

In this study silica nanoparticles were synthesized using different methods and different silica sources namely Tetraethyl ortho silicate (TEOS), Sodium Silicate, Rice husk while chitosan nanoparticles were prepared with ionic gelation method using Sodium tripolyphosphate (TPP). Size and texture of silica nanoparticles were studied using field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) along with the effect of change in concentration of various reagents in different synthesis processes. Size and dispersion of Silica nanoparticles prepared from TEOS using stobber’s method were found better than other methods while nanoparticles prepared using rice husk were cheaper than other ones. Catalyst found to play a very significant role in controlling the size of nanoparticles in all methods.

Keywords: silica nanoparticles, gelatin, bio-nanocomposites, SEM, TEM, chitosan

Procedia PDF Downloads 288
1992 Green Approach towards Synthesis of Chitosan Nanoparticles for in vitro Release of Quercetin

Authors: Dipali Nagaonkar, Mahendra Rai

Abstract:

Chitosan, a carbohydrate polymer at nanoscale level has gained considerable momentum in drug delivery applications due to its inherent biocompatibility and non-toxicity. However, conventional synthetic strategies for chitosan nanoparticles mainly rely upon physicochemical techniques, which often yield chitosan microparticles. Hence, there is an emergent need for development of controlled synthetic protocols for chitosan nanoparticles within the nanometer range. In this context, we report the green synthesis of size controlled chitosan nanoparticles by using Pongamia pinnata (L.) leaf extract. Nanoparticle tracking analysis confirmed formation of nanoparticles with mean particle size of 85 nm. The stability of chitosan nanoparticles was investigated by zetasizer analysis, which revealed positive surface charged nanoparticles with zeta potential 20.1 mV. The green synthesized chitosan nanoparticles were further explored for encapsulation and controlled release of antioxidant biomolecule, quercetin. The resulting drug loaded chitosan nanoparticles showed drug entrapment efficiency of 93.50% with drug-loading capacity of 42.44%. The cumulative in vitro drug release up to 15 hrs was achieved suggesting towards efficacy of green synthesized chitosan nanoparticles for drug delivery applications.

Keywords: Chitosan nanoparticles, green synthesis, Pongamia pinnata, quercetin

Procedia PDF Downloads 556
1991 A Comparative Study of Additive and Nonparametric Regression Estimators and Variable Selection Procedures

Authors: Adriano Z. Zambom, Preethi Ravikumar

Abstract:

One of the biggest challenges in nonparametric regression is the curse of dimensionality. Additive models are known to overcome this problem by estimating only the individual additive effects of each covariate. However, if the model is misspecified, the accuracy of the estimator compared to the fully nonparametric one is unknown. In this work the efficiency of completely nonparametric regression estimators such as the Loess is compared to the estimators that assume additivity in several situations, including additive and non-additive regression scenarios. The comparison is done by computing the oracle mean square error of the estimators with regards to the true nonparametric regression function. Then, a backward elimination selection procedure based on the Akaike Information Criteria is proposed, which is computed from either the additive or the nonparametric model. Simulations show that if the additive model is misspecified, the percentage of time it fails to select important variables can be higher than that of the fully nonparametric approach. A dimension reduction step is included when nonparametric estimator cannot be computed due to the curse of dimensionality. Finally, the Boston housing dataset is analyzed using the proposed backward elimination procedure and the selected variables are identified.

Keywords: additive model, nonparametric regression, variable selection, Akaike Information Criteria

Procedia PDF Downloads 246
1990 Functionalized Nanoparticles for Biomedical Applications

Authors: Temesgen Geremew

Abstract:

Functionalized nanoparticles have emerged as a revolutionary class of materials with immense potential in various biomedical applications. These engineered nanoparticles possess unique properties tailored to interact with biological systems, offering unprecedented opportunities in drug delivery, imaging, diagnostics, and therapy. This research delves into the design, synthesis, and characterization of functionalized nanoparticles for targeted biomedical applications. The primary focus lies on developing nanoparticles with precisely controlled size, surface chemistry, and biocompatibility for specific medical purposes. The research will also explore the crucial interaction of these nanoparticles with biological systems, encompassing cellular uptake, biodistribution, and potential toxicity evaluation. The successful development of functionalized nanoparticles holds the promise to revolutionize various aspects of healthcare. This research aspires to contribute significantly to this advancement by providing valuable insights into the design and application of these versatile materials within the ever-evolving field of biomedicine.

Keywords: nanoparticles, biomedicals, cancer, biocompatibility

Procedia PDF Downloads 41
1989 Beijerinckia indica Extracellular Extract Mediated Green Synthesis of Silver Nanoparticles with Antioxidant and Antibacterial Activities against Clinical Pathogens

Authors: Gopalu Karunakaran, Matheswaran Jagathambal, Nguyen Van Minh, Evgeny Kolesnikov, Denis Kuznetsov

Abstract:

This work investigated the use of Beijerinckia indica extracellular extract for the synthesis of silver nanoparticles using AgNO3. The formation of nanoparticles was confirmed by different methods, such as UV-Vis absorption spectroscopy, XRD, FTIR, EDX, and TEM analysis. The formation of silver nanoparticles (AgNPs) was confirmed by the change in color from light yellow to dark brown. The absorbance peak obtained at 430 nm confirmed the presence of silver nanoparticles. The XRD analysis showed the cubic crystalline phase of the synthesized nanoparticles. FTIR revealed the presence of groups that acts as stabilizing and reducing agents for silver nanoparticles formation. The synthesized silver nanoparticles were generally found to be spherical in shape with size ranging from 5 to 20 nm, as evident by TEM analysis. These nanoparticles were found to inhibit pathogenic bacterial strains. This work proved that the bacterial extract is a potential eco-friendly candidate for the synthesis of silver nanoparticles with promising antibacterial and antioxidant properties. 

Keywords: antioxidant activity, antimicrobial activity, Beijerinckia indica, characterisation, extracellular extracts, silver nanoparticles

Procedia PDF Downloads 318
1988 Anticandidal and Antibacterial Silver and Silver(Core)-Gold(Shell) Bimetallic Nanoparticles by Fusarium graminearum

Authors: Dipali Nagaonkar, Mahendra Rai

Abstract:

Nanotechnology has experienced significant developments in engineered nanomaterials in the core-shell arrangement. Nanomaterials having nanolayers of silver and gold are of primary interest due to their wide applications in catalytical and biomedical fields. Further, mycosynthesis of nanoparticles has been proved as a sustainable synthetic approach of nanobiotechnology. In this context, we have synthesized silver and silver (core)-gold (shell) bimetallic nanoparticles using a fungal extract of Fusarium graminearum by sequential reduction. The core-shell deposition of nanoparticles was confirmed by the red shift in the surface plasmon resonance from 434 nm to 530 nm with the aid of the UV-Visible spectrophotometer. The mean particle size of Ag and Ag-Au nanoparticles was confirmed by nanoparticle tracking analysis as 37 nm and 50 nm respectively. Quite polydispersed and spherical nanoparticles are evident by TEM analysis. These mycosynthesized bimetallic nanoparticles were tested against some pathogenic bacteria and Candida sp. The antimicrobial analysis confirmed enhanced anticandidal and antibacterial potential of bimetallic nanoparticles over their monometallic counterparts.

Keywords: bimetallic nanoparticles, core-shell arrangement, mycosynthesis, sequential reduction

Procedia PDF Downloads 548
1987 Optimization of Surface Roughness in Additive Manufacturing Processes via Taguchi Methodology

Authors: Anjian Chen, Joseph C. Chen

Abstract:

This paper studies a case where the targeted surface roughness of fused deposition modeling (FDM) additive manufacturing process is improved. The process is designing to reduce or eliminate the defects and improve the process capability index Cp and Cpk for an FDM additive manufacturing process. The baseline Cp is 0.274 and Cpk is 0.654. This research utilizes the Taguchi methodology, to eliminate defects and improve the process. The Taguchi method is used to optimize the additive manufacturing process and printing parameters that affect the targeted surface roughness of FDM additive manufacturing. The Taguchi L9 orthogonal array is used to organize the parameters' (four controllable parameters and one non-controllable parameter) effectiveness on the FDM additive manufacturing process. The four controllable parameters are nozzle temperature [°C], layer thickness [mm], nozzle speed [mm/s], and extruder speed [%]. The non-controllable parameter is the environmental temperature [°C]. After the optimization of the parameters, a confirmation print was printed to prove that the results can reduce the amount of defects and improve the process capability index Cp from 0.274 to 1.605 and the Cpk from 0.654 to 1.233 for the FDM additive manufacturing process. The final results confirmed that the Taguchi methodology is sufficient to improve the surface roughness of FDM additive manufacturing process.

Keywords: additive manufacturing, fused deposition modeling, surface roughness, six-sigma, Taguchi method, 3D printing

Procedia PDF Downloads 361
1986 Antifungal Activity of Silver Colloidal Nanoparticles against Phytopathogenic Fungus (Phomopsis sp.) in Soybean Seeds

Authors: J. E. Mendes, L. Abrunhosa, J. A. Teixeira, E. R. de Camargo, C. P. de Souza, J. D. C. Pessoa

Abstract:

Among the many promising nanomaterials with antifungal properties, metal nanoparticles (silver nanoparticles) stand out due to their high chemical activity. Therefore, the aim of this study was to evaluate the effect of silver nanoparticles (AgNPs) against Phomopsis sp. AgNPs were synthesized by silver nitrate reduction with sodium citrate and stabilized with ammonia. The synthesized AgNPs have further been characterized by UV/Visible spectroscopy, Biophysical techniques like Dynamic light scattering (DLS) and Scanning Electron Microscopy (SEM). The average diameter of the prepared silver colloidal nanoparticles was about 52 nm. Absolute inhibitions (100%) were observed on treated with a 270 and 540 µg ml-1 concentration of AgNPs. The results from the study of the AgNPs antifungal effect are significant and suggest that the synthesized silver nanoparticles may have an advantage compared with conventional fungicides.

Keywords: antifungal activity, Phomopsis sp., seeds, silver nanoparticles, soybean

Procedia PDF Downloads 424
1985 Synthesis of Nickel Oxide Nanoparticles in Presence of Sodium Dodecyl Sulphate

Authors: Fereshteh Chekin, Sepideh Sadeghi

Abstract:

Nickel nanoparticles have attracted much attention because of applications in catalysis, medical diagnostics and magnetic applications. In this work, we reported a simple and low-cost procedure to synthesize nickel oxide nanoparticles (NiO-NPs) by using sodium dodecyl sulphate (SDS) and gelatin as stabilizer. The synthesized NiO-NPs were characterized by a variety of means such as transmission electron microscope (TEM), powder X-ray diffraction (XRD), scanning electron microscope (SEM) and UV-vis spectroscopy. The results show that the NiO nanoparticles with high crystalline can be obtained using this simple method. The grain size measured by TEM was 16 in presence of SDS, which agrees well with the XRD data. SDS plays an important role in the formation of the NiO nanoparticles. Moreover, the NiO nanoparticles have been used as a solid phase catalyst for the decomposition of hydrazine hydrate at room temperatures. The decomposition process has been monitored by UV–vis analysis. The present study showed that nanoparticles are not poisoned after their repeated use in decomposition of hydrazine.

Keywords: nickel oxide nanoparticles, sodium dodecyl sulphate, synthesis, stabilizer

Procedia PDF Downloads 463
1984 Synthesis of Silver Nanoparticles by Different Types of Plants

Authors: Khamael Abualnaja, Hala M. Abo-Dief

Abstract:

Silver nanoparticles (AgNPs) are the subject of important recent interest, present in a large range of applications such as electronics, catalysis, chemistry, energy, and medicine. Metallic nanoparticles are traditionally synthesized by wet chemical techniques, where the chemicals used are quite often toxic and flammable. In this work, we describe an effective and environmental-friendly technique of green synthesis of silver nanoparticles. Silver nanoparticles (AgNPs) synthesized using silver nitrate solution and the extract of mint, basil, orange peel and Tangerines peel which used as reducing agents. Silver Nanoparticles were characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and UV–Vis absorption spectroscopy. SEM analysis showed the average particle size of mint, basil, orange peel, Tangerines peel are 30, 20, 12, 10 nm respectively. This is for the first time that any plant extract was used for the synthesis of nanoparticles.

Keywords: silver nanoparticles, green synthesis, scanning electron microscopy, plants

Procedia PDF Downloads 232
1983 Applications of Sulfur Nanoparticles: Synthesis and Characterizations

Authors: Sandeep K. Shukla, Roli Jain, Soumitra S. Pande, Archna Pandey

Abstract:

Sulfur nanoparticles were prepared by different methods with different sizes and shapes. When the sulfur is present as nanoparticles they have many practical applications in our life. This research discusses sulfur nanoparticles synthesis, characterizations and applications. With dandruff being a common everyday problem and the market is loaded with antidandruff shampoos and such skin care products, it is obvious to assume resourceful research into this area would be both objective to present scenario and potentially lucrative. Nanoparticles are frequently in use in some very powerful antimicrobial, antifungal cosmetics nowadays, especially silver. To check its antidandruff activity, experiments have been conducted on Malassezia furfur the causal organism for seborrheaic dermatitis or dandruff, which have been cultured for such study in our lab.

Keywords: CTAB surfactant SEM, sulfur nanoparticles (S-NPs), XRD, polymeric surfactant

Procedia PDF Downloads 564
1982 Industrial Applications of Additive Manufacturing and 3D Printing Technology: A Review from South Africa Perspective

Authors: Micheal O. Alabi

Abstract:

Additive manufacturing (AM) is the official industry standard term (ASTM F2792) for all applications of the technology which is also known as 3D printing technology. It is defined as the process of joining materials to make objects from 3D model data, and it is usually layer upon layer, as opposed to subtractive manufacturing methodologies. This technology has gained significant interest within the academic, research institute and industry because of its ability to create complex geometries with customizable material properties. Despite the late adoption of the technology, additive manufacturing has been active in South Africa for past 21 years and it is predicted that additive manufacturing technology will play a significant and game-changing role in the fourth industrial revolution and in particular it promises to play an ever-growing role in efforts to re-industrialize the economy of South Africa. At the end of 2006, there are approximately ninety 3D printers in South Africa and in 2015 it was estimated that there are 3500 additive manufacturing systems and 3D printers in circulation in South Africa. A reasonable number of these additive manufacturing machines are in the high end of the market, in science councils and higher education institutions and this shows that the future of additive manufacturing in South Africa is very brighter compared to other African countries. This paper reviews the past and current industrial applications of additive manufacturing in South Africa from the academic research and industry perspective and what are the benefits of this technology to manufacturing companies and industrial sectors in the country.

Keywords: additive manufacturing, 3D printing technology, industrial applications, manufacturing

Procedia PDF Downloads 446
1981 Inhibitory Mechanism of Ag and Fe Colloidal Nanoparticles on P. aeruginosa and E.coli Growth

Authors: Fatemeh Moradian, Razieh Ghorbani, Poria Biparva

Abstract:

Growing resistance of microorganisms to potent antibiotics has renewed a great interest towards investigating bactericidal properties of nanoparticles and their Nano composites as an alternative. The use of metal nanoparticles to combat bacterial infections is one of the most wide spread applications of nanotechnology in the field of antibacterial. Nanomaterials have unique properties compared to their bulk counterparts. In this report, we demonstrate the antimicrobial activity of zerovalent Iron(ZVI) and Ag(silver) nanoparticles against Gram-negative bacteria E.coli(DH5α) and Pseudomonas aeruginosa. At first ZVI and Ag nanoparticles were synthesized by chemical reduction method and using scanning electron microscopy (SEM) the nanoparticle size determined. Different concentrations of Ag and ZVI nanoparticles were added to bacteria on nutrient agar medium. Minimum inhibitory concentration (MIC) of Ag and Fe nanoparticles for P. aeruginosa were 5µM and 1µg as well as for E.coli were 6µM. and 10 µg, respectively. Among the two nanoparticles, ZVI showed that the greatest antimicrobial activity against E.coli and Ag nanoparticle on P.aeruginosa. Results suggested that the bactericidal effect of metal nanoparticles has been attributed to their small size as well as high surface to volume ratio and NPs could be used as an effective antibacterial material.

Keywords: bactericidal properties, MIC, nanoparticle, SEM

Procedia PDF Downloads 573