Search results for: nano liposome
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1150

Search results for: nano liposome

940 Influence of Hydrogen Ion Concentration on the Production of Bio-Synthesized Nano-Silver

Authors: M.F. Elkady, Sahar Zaki, Desouky Abd-El-Haleem

Abstract:

Silver nanoparticles (AgNPs) are already widely prepared using different technologies. However, there are limited data on the effects of hydrogen ion concentration on nano-silver production. In this investigation, the impact of the pH reaction medium toward the particle size, agglomeration and the yield of the produced bio-synthesized silver were established. Quasi-spherical silver nanoparticles were synthesized through the biosynthesis green production process using the Egyptian E. coli bacterial strain 23N at different pH values. The formation of AgNPs has been confirmed with ultraviolet–visible spectra through identification of their characteristic peak at 410 nm. The quantitative production yield and the orientation planes of the produced nano-silver were examined using X-ray spectroscopy (EDS) and X-ray diffraction (XRD). Quantitative analyses indicated that the silver production yield was promoted at elevated pH regarded to increase the reduction rate of silver precursor through both chemical and biological processes. As a result, number of the nucleus and thus the size of the silver nanoparticles were tunable through changing pH of the reaction system. Accordingly, the morphological structure and size of the produced silver and its aggregates were determined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images. It was considered that the increment in pH value of the reaction media progress the aggregation of silver clusters. However, the presence of stain 23N biomass decreases the possibility of silver aggregation at the pH 7.

Keywords: silver nanoparticles, biosynthesis, reaction media pH, nano-silver characterization

Procedia PDF Downloads 337
939 Size-Controlled Synthesis of Bismuth Nanoparticles by Temperature Assisted Pulsed Laser Deposition

Authors: Ranjit A. Patil, Yung Liou, Yuan-Ron Ma

Abstract:

It has been observed that when the size of metals such as, Au, Zn, Ag, Cu, Te, and metal oxides is reduced to several nano-meters, it starts to show further interesting properties. These new properties boost the use of nano-structures to produce attractive functional materials or used as promising building blocks in electronic devices. Present work describes the synthesis of bismuth (Bi) nanoparticles (NP’s) having uniform morphology, high crystallinity, and single phase purity by the temperature assisted pulsed laser deposition (TAPLD). Pulsed Laser deposition (PLD) technique is one of the promising methods to synthesize nano-structures. It can provide the stable nucleation sites in orders of magnitudes higher than for MBE and sputtering deposition. The desired size of purely metallic Bi NP’s of can be easily controlled by adjusting the temperature of the substrate varying from 1000 C to 250 0C. When the temperatures of the substrate raised step wise the average size of Bi NP’s appeared to be increased by maintaining the uniform distribution of NP’s on the Si surfaces. The diameter range of NP’s is ~33-84 nm shows size distribution constrained in the limited range. The EDS results show that the 0D Bi NP’s synthesized at high temperature (250 0C) at a high vacuum still remained in a metallic phase. Moreover, XRD, TEM and SAED results showed that these Bi NP’s are hexagonal in crystalline in a space group R -3 m and no traces of bismuth oxide, confirming that Bi NP’s synthesized at wide range of temperatures persisted of the pure Bi-metallic phase.

Keywords: metal nano particles, bismuth, pulsed laser deposition (PLD), nano particles, temperature assisted growth

Procedia PDF Downloads 316
938 An Alternative Nano Design Strategy by Neutralized AMPS and Soy Bean Lecithin to Form Nanoparticles

Authors: Esra Cansever Mutlu, Muge Sennaroglu Bostan, Fatemeh Bahadori, Ebru Toksoy Oner, Mehmet S. Eroglu

Abstract:

Paclitaxel is used in treatment of different cancer types mainly breast, ovarian, lung and Kaposi’s sarcoma. It is poorly soluble in water; therefore, currently used formulations tremendously show side-effects and high toxicity. Encapsulation of the drug in a nano drug carrier which causes both reducing side effects and increasing drug activity is a desired new approach for the nano-medicine to target the site of cancer. In this study, synthesis of a novel nano paclitaxel formulation made of a new amphiphilic monomer was followed by the investigation of its pharmacological properties. UV radical polymerization was carried out by using the monomer Lecithin-2-Acrylamido-2-methylpropane (L-AMPS) and the drug-spacer, to obtain sterically high stabilized, biocompatible and biodegradable phospholipid nanoparticles, in which the drug paclitaxel (Pxl) was encapsulated (NanoPxl). Particles showed high drug loading capacity (68%) and also hydrodynamic size less than 200 nm with slight negative surface charge. The drug release profile was obtained and in vitro cytotoxicity test was performed on MCF-7 cell line. Consequently, these data indicated that paclitaxel loaded Lecithin-AMPS/PCL-MAC nanoparticles can be considered as a new, safe and effective nanocarrier for the treatment of breast cancer.

Keywords: paclitaxel, nanoparticle, drug delivery, L-AMPS

Procedia PDF Downloads 289
937 High-Temperature Tribological Characterization of Nano-Sized Silicon Nitride + 5% Boron Nitride Ceramic Composite

Authors: Mohammad Farooq Wani

Abstract:

Tribological studies on nano-sized ß-silicon nitride+5% BN were carried out in dry air at high temperatures to clarify the lack of consensus in the bibliographic data concerning the Tribological behavior of Si3N4 ceramics and effect of doped hexagonal boron nitride on coefficient of friction and wear coefficient at different loads and elevated temperatures. The composites were prepared via high energy mechanical milling and subsequent spark plasma sintering using Y2O3 and Al2O3 as sintering additives. After sintering, the average crystalline size of Si3N4 was observed to be 50 nm. Tribological tests were performed with temperature and Friction coefficients 0.16 to 1.183 and 0.54 to 0.71 were observed for Nano-sized ß-silicon nitride+5% BN composite under normal load of 10N-70 N and over high temperature range of 350 ºC-550 ºC respectively. Specific wear coefficients from 1.33x 10-4 mm3N-1m-1 to 4.42x 10-4 mm3N-1m-1 were observed for Nano-sized Si3N4 + 5% BN composite against Si3N4 ball as tribo-pair counterpart over high temperature range of 350 ºC-550 ºC while as under normal load of 10N to70N Specific wear coefficients of 6.91x 10-4 mm3N-1m-1 to 1.70x 10-4 were observed. The addition of BN to the Si3N4 composite resulted in a slight reduction of the friction coefficient and lower values of wear coefficient.

Keywords: ceramics, tribology, friction and wear, solid lubrication

Procedia PDF Downloads 347
936 Investigation on Polymer Based Nano-Silver as Food Packaging Materials

Authors: A. M. Metak, T. T. Ajaal, Amal Metak, Tawfik Ajaal

Abstract:

Commercial nanocomposite food packaging type nano-silver containers were characterised using scanning electron microscopy (SEM) and energy-dispersive X-Ray spectroscopy (EDX). The presence of nanoparticles consistent with the incorporation of 1% nano-silver (Ag) and 0.1% titanium dioxide (TiO2) nanoparticle into polymeric materials formed into food containers was confirmed. Both nanomaterials used in this type of packaging appear to be embedded in a layered configuration within the bulk polymer. The dimensions of the incorporated nanoparticles were investigated using X-Ray diffraction (XRD) and determined by calculation using the Scherrer Formula; these were consistent with Ag and TiO2 nanoparticles in the size range 20-70nm both were spherical shape nanoparticles. Antimicrobial assessment of the nanocomposite container has also been performed and the results confirm the antimicrobial activity of Ag and TiO2 nanoparticles in food packaging containers. Migration assessments were performed in a wide range of food matrices to determine the migration of nanoparticles from the packages. The analysis was based on the relevant European safety directives and involved the application of inductively coupled plasma mass spectrometry (ICP-MS) to identify the range of migration risk. The data pertain to insignificance levels of migration of Ag and TiO2 nanoparticles into the selected food matrices.

Keywords: nano-silver, antimicrobial food packaging, migration, titanium dioxide

Procedia PDF Downloads 335
935 Possible Management of Acute Liver Failure Caused Experimentally by Thioacetamide Through a Wide Range of Nano Natural Anti-Inflammatory And Antioxidants Compounds [Herbal Approach]

Authors: Sohair Hassan, Olfat Hammam, Sahar Hussein, Wessam Magdi

Abstract:

Objective: Acute liver failure (ALF) is a clinical condition with an unclear history of pathophysiology, making it a challenging task for scientists to reverse the disease in its initial phase and to help the liver re-function customary: this study aimed to estimate the hepatoprotective effects of Punica granatum Lpeel and Pistacia atlantica leaves as a multi-rich antioxidants ingredients either in their normal and/or in their nanoforms against thioacetamide induced acute liver failure in a rodent model. Method: Male Wistar rats (n=60) were divided into six equal groups, the first group employed as a control; The second group administered a dose of 350 mg /Kg/ b.w of thioacetamide (TAA)-IP, from the third to the sixth group received TAA + [2mls / 100 g b.w/d] of aqueous extracts of Punica granatum L and Pistacia atlantica either in their normal and/or Nano forms consecutively for (14 days) Results: Recorded significant elevation in liver enzymes, lipid profiles, LPO (p= 0.05) and NO with a marked significant decrease in GSH and SOD accompanied by an elevation in inflammatory cytokine (IL6, TNF-α, and AFP) in addition to a noticeable increase in HSP70 level & degradation in DNA respectively in TAA challenged group. However significant and subsequent amelioration of most of the impaired markers was observed with ip nano treatment of both extracts. Conclusion: The current results highlighted the high performance of both plant nano extracts and their hepatoprotective impact and their possible therapeutic role in the amelioration of TAA induced acute liver failure in experimental animals.

Keywords: acute liver failure HPLC, IL6, nano extracts, thioacetamide, TNF-α

Procedia PDF Downloads 169
934 Effect of Irradiation on Nano-Indentation Properties and Microstructure of X-750 Ni-Based Superalloy

Authors: Pooyan Changizian, Zhongwen Yao

Abstract:

The purpose of current study is to make an excellent correlation between mechanical properties and microstructures of ion irradiated X-750 Ni-based superalloy. Towards this end, two different irradiation procedures were carried out, including single Ni ion irradiation and pre-helium implantation with subsequent Ni ion irradiation. Nano-indentation technique was employed to evaluate the mechanical properties of irradiated material. The nano-hardness measurements depict highly different results for two irradiation procedures. Single ion irradiated X-750 shows softening behavior; however, pre-helium implanted specimens present significant hardening compared to the un-irradiated material. Cross-section TEM examination demonstrates that softening is attributed to the γ׳-precipitate instability (disordering/dissolution) which overcomes the hardening effect of irradiation-induced defects. In contrast, the presence of cavities or helium bubbles is probably the main cause for irradiation-induced hardening of helium implanted samples.

Keywords: Inconel X-750, nanoindentation, helium bubbles, defects

Procedia PDF Downloads 194
933 Role of Nano Gelatin and Hydrogel Based Scaffolds in Odontogenic Differentiation of Human Dental Pulp Stem Cells

Authors: Husain S. Yawer, Vasim Raja Panwar, Nidhi Priya

Abstract:

The objective of this study is to evaluate and compare the role of nano-gelatin and Bioengineered Scaffolds on the attachment, proliferation, and osteogenic differentiation of human dental pulp stem cells (DPSCs). Tooth decay and early fall have each been one of the most prevailing dental disorders which cause physical and emotional suffering and compromise the patient's quality of life. The design of novel scaffolding materials will be based on mimicking the architecture of natural dental extracellular matrix which may provide as in vivo environments for proper cell growth. This methodology will involve the combination of nano-fibred gelatin as well as biodegradable hydrogel based tooth scaffold. We have measured and optimized the Dental Pulp Stem Cells growth profile in cultures carried out on collagen-coated plastic surface, however, for tissue regeneration study, we aim to develop an enhanced microenvironment for stem cell growth and dental tissue regeneration. We believe biomimetic cell adhesion and scaffolds might provide a near in vivo growth environment for proper growth and differentiation of human DPSCs, which further help in dentin/pulp tissue regeneration.

Keywords: nano-gelatin, stem cells, dental pulp, scaffold

Procedia PDF Downloads 295
932 Can Bone Resorption Reduce with Nanocalcium Particles in Astronauts?

Authors: Ravi Teja Mandapaka, Prasanna Kumar Kukkamalla

Abstract:

Poor absorption of calcium, elevated levels in serum and loss of bone are major problems of astronauts during space travel. Supplementation of calcium could not reveal this problem. In normal condition only 33% of calcium is absorbed from dietary sources. In this paper effect of space environment on calcium metabolism was discussed. Many surprising study findings were found during literature survey. Clinical trials on ovariectomized mice showed that reduction of calcium particles to nano level make them more absorbable and bioavailable. Control of bone loss in astronauts in critical important In Fortification of milk with nana calcium particles showed reduces urinary pyridinoline, deoxypyridinoline levels. Dietary calcium and supplementation do not show much retention of calcium in zero gravity environment where absorption is limited. So, the fortification of foods with nano calcium particles seemed beneficial for astronauts during and after space travel in their speedy recovery.

Keywords: nano calcium, astronauts, fortification, supplementation

Procedia PDF Downloads 461
931 Submicron Size of Alumina/Titania Tubes for CO2-CH4 Conversion

Authors: Chien-Wan Hun, Shao-Fu Chang, Jheng-En Yang, Chien-Chon Chen, Wern-Dare Jheng

Abstract:

This research provides a systematic way to study and better understand double nano-tubular structure of alunina (Al2O3) and titania (TiO2). The TiO2 NT was prepared by immersing Al2O3 template in 0.02 M titanium fluoride (TiF4) solution (pH=3) at 25 °C for 120 min, followed by annealing at 450 °C for 1 h to obtain anatase TiO2 NT in the Al2O3 template. Large-scale development of film for nanotube-based CO2 capture and conversion can potentially result in more efficient energy harvesting. In addition, the production process will be relatively environmentally friendly. The knowledge generated by this research will significantly advance research in the area of Al2O3, TiO2, CaO, and Ca2O3 nano-structure film fabrication and applications for CO2 capture and conversion. This green energy source will potentially reduce reliance on carbon-based energy resources and increase interest in science and engineering careers.

Keywords: alumina, titania, nano-tubular, film, CO2

Procedia PDF Downloads 369
930 Modelling of Atomic Force Microscopic Nano Robot's Friction Force on Rough Surfaces

Authors: M. Kharazmi, M. Zakeri, M. Packirisamy, J. Faraji

Abstract:

Micro/Nanorobotics or manipulation of nanoparticles by Atomic Force Microscopic (AFM) is one of the most important solutions for controlling the movement of atoms, particles and micro/nano metrics components and assembling of them to design micro/nano-meter tools. Accurate modelling of manipulation requires identification of forces and mechanical knowledge in the Nanoscale which are different from macro world. Due to the importance of the adhesion forces and the interaction of surfaces at the nanoscale several friction models were presented. In this research, friction and normal forces that are applied on the AFM by using of the dynamic bending-torsion model of AFM are obtained based on Hurtado-Kim friction model (HK), Johnson-Kendall-Robert contact model (JKR) and Greenwood-Williamson roughness model (GW). Finally, the effect of standard deviation of asperities height on the normal load, friction force and friction coefficient are studied.

Keywords: atomic force microscopy, contact model, friction coefficient, Greenwood-Williamson model

Procedia PDF Downloads 172
929 Down Regulation of Smad-2 Transcription and TGF-B1 Signaling in Nano Sized Titanium Dioxide-Induced Liver Injury in Mice by Potent Antioxidants

Authors: Maha Z. Rizk, Sami A. Fattah, Heba M. Darwish, Sanaa A. Ali, Mai O. Kadry

Abstract:

Although it is known that nano-TiO2 and other nanoparticles can induce liver toxicity, the mechanisms and the molecular pathogenesis are still unclear. The present study investigated some biochemical indices of nano-sized Titanium dioxide (TiO2 NPS) toxicity in mice liver and the ameliorative efficacy of individual and combined doses of idebenone, carnosine and vitamin E. Nano-anatase TiO2 (21 nm) was administered as a total oral dose of 2.2 gm/Kg daily for 2 weeks followed by the afore-mentioned antioxidants daily either individually or in combination for 1month. TiO2-NPS induced a significant elevation in serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and hepatic oxidative stress biomarkers [lipid peroxides (LP), and nitric oxide levels (NOX), while it significantly reduced glutathione reductase (GR), reduced glutathione (GSH) and glutathione peroxidase(GPX) levels. Moreover the quantitative RT-PCR analysis showed that nano-anatase TiO2 can significantly alter the mRNA and protein expressions of the fibrotic factors TGF-B1, VEGFand Smad-2. Histopathological examination of hepatic tissue reinforced the previous biochemical results. Our results also implied that inflammatory responses and liver injury may be involved in nano-anatase TiO2-induced liver toxicity Tumor necrosis factor-α (TNF-α) and Interleukin -6 (IL-6) and increased the percent of DNA damage which was assessed by COMET assay in addition to the apoptotic marker Caspase-3. Moreover mRNA gene expression observed by RT-PCR showed a significant overexpression in nuclear factor relation -2 (Nrf2), nuclear factor kappa beta (NF-Kβ) and the apoptotic factor (bax), and a significant down regulation in the antiapoptotic factor (bcl2) level. In conclusion idebenone, carnosine and vitamin E ameliorated the deviated previously mentioned parameters with variable degrees with the most pronounced role in alleviating the hazardous effect of TiO2 NPS toxicity following the combination regimen.

Keywords: Nano-anatase TiO2, TGF-B1, SMAD-2

Procedia PDF Downloads 402
928 Numerical Analysis of the Melting of Nano-Enhanced Phase Change Material in a Rectangular Latent Heat Storage Unit

Authors: Radouane Elbahjaoui, Hamid El Qarnia

Abstract:

Melting of Paraffin Wax (P116) dispersed with Al2O3 nanoparticles in a rectangular latent heat storage unit (LHSU) is numerically investigated. The storage unit consists of a number of vertical and identical plates of nano-enhanced phase change material (NEPCM) separated by rectangular channels in which heat transfer fluid flows (HTF: Water). A two dimensional mathematical model is considered to investigate numerically the heat and flow characteristics of the LHSU. The melting problem was formulated using the enthalpy porosity method. The finite volume approach was used for solving equations. The effects of nanoparticles’ volumetric fraction and the Reynolds number on the thermal performance of the storage unit were investigated.

Keywords: nano-enhanced phase change material (NEPCM), phase change material (PCM), nanoparticles, latent heat storage unit (LHSU), melting.

Procedia PDF Downloads 380
927 Baby Bed Sheets with a Nanofiber Membrane

Authors: Roman Knizek, Denisa Knizkova, Vladimir Bajzik

Abstract:

Nowadays there are countless kinds of bedsheets or mattress covers for little children which should stop any liquid getting into the mattress. It is quite easy to wash the cover of the mattress, but it is almost impossible to clean the body of a mattress which is made of latex foam, wool or synthetic materials. Children bedsheets or mattress covers are often made with plastic coating which is not steam or air permeable and therefore is not very hygienic. This is our goal: by laminating a nanofiber membrane to a suitable bedsheet textile material, we can create a bedsheet which is waterproof but at the same time steam permeable and also partially breathable, thanks to the membrane. For the same reason, nanofiber membranes are widely used in outdoor clothing. The comfort properties and durability of the new nano-membrane bedsheet were studied. The following comfort properties were investigated: steam permeability - measured in accordance with Standard ISO 11902 hydrostatic resistances - measured in accordance with Standard ISO 811 and air permeability - measured in accordance with Standard ISO 9237. The durability or more precisely the wash resistance of the nano-membrane bedsheet was also measured by submitting the sheet to 30 washing cycles. The result of our work is a children's bedsheet with a nano-membrane. The nano-membrane is made of polyurethane to keep maximum flexibility and elasticity which are essential for this product. The comfort properties of this new bedsheet are very good especially its steam permeability and hydrostatic resistance.

Keywords: bed sheet, hydrostatic resistance, nanofiber membrane, water vapour permeable

Procedia PDF Downloads 186
926 The Effect of Nano-Silver Packaging on Quality Maintenance of Fresh Strawberry

Authors: Naser Valipour Motlagh, Majid Aliabadi, Elnaz Rahmani, Samira Ghorbanpour

Abstract:

Strawberry is one of the most favored fruits all along the world. But due to its vulnerability to microbial contamination and short life storage, there are lots of problems in industrial production and transportation of this fruit. Therefore, lots of ideas have tried to increase the storage life of strawberries especially through proper packaging. This paper works on efficient packaging as well. The primary material used is produced through simple mixing of low-density polyethylene (LDPE) and silver nanoparticles in different weight fractions of 0.5 and 1% in presence of dicumyl peroxide as a cross-linking agent. Final packages were made in a twin-screw extruder. Then, their effect on the quality maintenance of strawberry is evaluated. The SEM images of nano-silver packages show the distribution of silver nanoparticles in the packages. Total bacteria count, mold, yeast and E. coli are measured for microbial evaluation of all samples. Texture, color, appearance, odor, taste and total acceptance of various samples are evaluated by trained panelists and based on 9-point hedonic scale method. The results show a decrease in total bacteria count and mold in nano-silver packages compared to the samples packed in polyethylene packages for the same storage time. The optimum concentration of silver nanoparticles for the lowest bacteria count and mold is predicted to be around 0.5% which has attained the most acceptance from the panelist as well. Moreover, organoleptic properties of strawberry are preserved for a longer period in nano-silver packages. It can be concluded that using nano-silver particles in strawberry packages has improved the storage life and quality maintenance of the fruit.

Keywords: antimicrobial properties, polyethylene, silver nanoparticles, strawberry

Procedia PDF Downloads 123
925 Nano-Coating for Corrosion Prevention

Authors: M. J. Suriani, F. Mansor, W. Siti Maizurah, I. Nurizwani

Abstract:

Silicon Carbide (SiC) is one of the Silicon-based materials, which get interested by the researcher. SiC is an emerging semiconductor material, which has received a great deal of attention due to their application in high frequency and high power systems. Although its superior characteristic for a semiconductor material, its outstanding mechanical properties, chemical inertness and thermal stability has gained important aspect for a surface coating for deployment in extreme environments. Very high frequency (VHF)-PECVD technique utilized to deposit nano ns-SiC film in which variation in chamber pressure, substrate temperature, RF power and precursor gases flow rate will be investigated in order to get a good quality of thin film coating. Characterization of the coating performed in order to study the surface morphology, structural information. This performance of coating evaluated through corrosion test to determine the effectiveness of the coating for corrosion prevention. Ns-SiC film expected to possess better corrosion resistance and optical properties, as well as preserving the metal from the marine environment. Through this research project, corrosion protection performance by applying coating will be explored to obtain a great corrosion prevention method to the shipping and oil and gas industry in Malaysia. Besides, the cost of repair and maintenance spending by the government of Malaysia can be reduced through practicing this method.

Keywords: composite materials, marine corrosion, nano-composite, nano structure–coating

Procedia PDF Downloads 443
924 Effect of Different Types of Nano/Micro Fillers on the Interfacial Shear Properties of Polyamide 6 with De-Sized Carbon Fiber

Authors: Mohamed H. Gabr, Kiyoshi Uzawa

Abstract:

The current study aims to investigate the effect of fillers with different geometries and sizes on the interfacial shear properties of PA6 composites with de-sized carbon fiber. The fillers which have been investigated are namely; nano-layer silicates (nanoclay), sub-micro aluminum titanium (ALTi) particles, and multiwall carbon nanotube (MWCNT). By means of X-ray photoelectron spectroscopy (XPS), epoxide group which defined as a sizing agent, has been removed. Sizing removal can reduce the acid parameter of carbon fibers surface promoting bonding strength at the fiber/matrix interface which is a desirable property for the carbon fiber composites. Microdroplet test showed that the interfacial shear strength (IFSS) has been enhanced with the addition of 10wt% ALTi by about 23% comparing with neat PA6. However, with including other types of fillers into PA6, the results did not show enhancement of IFSS.

Keywords: sub-micro particles, nano-composites, interfacial shear strength, polyamide 6

Procedia PDF Downloads 214
923 Manufacturing of Nano Zeolite by Planetary Ball Mill and Investigation of the Effects on Concrete

Authors: Kourosh Kosari

Abstract:

This study is engineering the properties of concrete containing natural nano zeolite as supplementary cementitious material in the blended Portland-cement based binder in amounts of 5,7 and 10% by mass. Crashing of clinoptilolite zeolite is performed by means of planetary ball mill. Two types of concrete along with water to cementitious material ratio (W/(C + P)) in 0.45 and 0.4 at the ages of 7, 28 and 90 days and were compared with each other. The effect of these additives on mechanical properties (compressive and tensile strength) and durability has been investigated by Electrical Resistivity (ER) and Rapid Chloride Penetration Test (RCPT) at the ages 28 and 90 days. Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD) revealed that nanoparticles of natural clinoptilolite could improve quality of concrete. As a result of the tests, decrease in penetration of chloride ion and increase electrical resistivity significantly that are appropriate option for controlling of corrosion in reinforced concrete structures but increase of mechanical characteristics is not considerable.

Keywords: ball mill, durability, mechanical properties, nano zeolite

Procedia PDF Downloads 291
922 Producing Carbon Nanoparticles from Agricultural and Municipal Wastes

Authors: Kanik Sharma

Abstract:

In the year of 2011, the global production of carbon nano-materials (CNMs) was around 3,500 tons, and it is projected to expand at a compound annual growth rate of 30.6%. Expanding markets for applications of CNMs, such as carbon nano-tubes (CNTs) and carbon nano-fibers (CNFs), place ever-increasing demands on lowering their production costs. Current technologies for CNM generation require intensive premium feedstock consumption and employ costly catalysts; they also require input of external energy. Industrial-scale CNM production is conventionally achieved through chemical vapor deposition (CVD) methods which consume a variety of expensive premium chemical feedstocks such as ethylene, carbon monoxide (CO) and hydrogen (H2); or by flame synthesis techniques, which also consume premium feedstock fuels. Additionally, CVD methods are energy-intensive. Renewable and replenishable feedstocks, such as those found in municipal, industrial, agricultural recycling streams have a more judicious reason for usage, in the light of current emerging needs for sustainability. Agricultural sugarcane bagasse and corn residues, scrap tire chips as well as post-consumer polyethylene (PE) and polyethylene terephthalate (PET) bottle shreddings when either thermally treated by sole pyrolysis or by sequential pyrolysis and partial oxidation result in the formation of gaseous carbon-bearing effluents which when channeled into a heated reactor, produce CNMs, including carbon nano-tubes, catalytically synthesized therein on stainless steel meshes. The structure of the nano-material synthesized depends on the type of feedstock available for pyrolysis, and can be determined by analysing the feedstock. These feedstocks could supersede the use of costly and often toxic or highly-flammable chemicals such as hydrocarbon gases, carbon monoxide and hydrogen, which are commonly used as feedstocks in current nano-manufacturing process for CNMs.

Keywords: nanomaterials, waste plastics, sugarcane bagasse, pyrolysis

Procedia PDF Downloads 205
921 Design Modification of Lap Joint of Fiber Metal Laminates (CARALL)

Authors: Shaher Bano, Samia Fida, Asif Israr

Abstract:

The synergistic effect of properties of metals and fibers reinforced laminates has diverted attention of the world towards use of robust composite materials known as fiber-metal laminates in many high performance applications. In this study, modification of an adhesively bonded joint as a single lap joint of carbon fibers based CARALL FML has done to increase interlaminar shear strength of the joint. The effect of different configurations of joint designs such as spews, stepped and modification in adhesive by addition of nano-fillers was studied. Both experimental and simulation results showed that modified joint design have superior properties as maximum force experienced stepped joint was 1.5 times more than the simple lap joint. Addition of carbon nano-tubes as nano-fillers in the adhesive joint increased the maximum force due to crack deflection mechanism.

Keywords: adhesive joint, Carbon Reinforced Aluminium Laminate (CARALL), fiber metal laminates, spews

Procedia PDF Downloads 202
920 Enhancement of Solar Energy Storage by Nanofluid-Glass Impurities Mixture

Authors: Farhan Lafta Rashid, Khudhair Abass Dawood, Ahmed Hashim

Abstract:

Recent advancements in nanotechnology have originated the new emerging heat transfer fluids called nanofluids. Nanofluids are prepared by dispersing and stably suspending nanometer sized solid particles in conventional heat transfer fluids. Past researches have shown that a very small amount of suspending nano-particles have the potential to enhance the thermo physical, transport, and radiative properties of the base fluid. At this research adding very small quantities of nano particle (TiO2) to pure water with different weights percent ranged 0.1, 0.2, 0.3, and 0.4 wt.%, we found that the best weight percent is 0.2 that gave more heat absorbed. Then adding glass impurities ranged 10, 20, and 30 wt. Percentage to the nano-fluid in order to enhance the absorbed heat so energy storage. The best glass weights percent is 0.3.

Keywords: energy storage, enhancement absorbed heat, glass impurities, solar energy

Procedia PDF Downloads 407
919 Studies on Organic and Inorganic Micro/Nano Particle Reinforced Epoxy Composites

Authors: Daniel Karthik, Vijay Baheti, Jiri Militky, Sundaramurthy Palanisamy

Abstract:

Fibre based nano particles are presently considered as one of the potential filler materials for the improvement of mechanical and physical properties of polymer composites. Due to high matrix-filler interfacial area there will be uniform and homogeneous dispersion of nanoparticles. In micro/nano filler reinforced composites, resin material is usually tailored by organic or inorganic nanoparticles to have improved matrix properties. The objective of this study was to compare the potential of reinforcement of different organic and inorganic micro/nano fillers in epoxy composites. Industrial and agricultural waste of fibres like Agave Americana, cornhusk, jute, basalt, carbon, glass and fly ash was utilized to prepare micro/nano particles. Micro/nano particles were obtained using high energy planetary ball milling process in dry condition. Milling time and ball size were kept constant throughout the ball milling process. Composites were fabricated by hand lay method. Particle loading was kept constant to 3% wt. for all composites. In present study, loading of fillers was selected as 3 wt. % for all composites. Dynamic mechanical properties of the nanocomposite films were performed in three-point bending mode with gauge length and sample width of 50 mm and 10 mm respectively. The samples were subjected to an oscillating frequency of 1 Hz, 5 Hz and 10 Hz and 100 % oscillating amplitude in the temperature ranges of 30°C to 150°C at the heating rate of 3°C/min. Damping was found to be higher with the jute composites. Amongst organic fillers lowest damping factor was observed with Agave Americana particles, this means that Agave americana fibre particles have betters interface adhesion with epoxy resin. Basalt, fly ash and glass particles have almost similar damping factors confirming better interface adhesion with epoxy.

Keywords: ball milling, damping factor, matrix-filler interface, particle reinforcements

Procedia PDF Downloads 243
918 Effect of Anionic Lipid on Zeta Potential Values and Physical Stability of Liposomal Amikacin

Authors: Yulistiani, Muhammad Amin, Fasich

Abstract:

A surface charge of the nanoparticle is a very important consideration in pulmonal drug delivery system. The zeta potential (ZP) is related to the surface charge which can predict stability of nanoparticles as nebules of liposomal amikacin. Anionic lipid such as 1,2-dipalmitoyl-sn-glycero-3-phosphatidylglycerol (DPPG) is expected to contribute to the physical stability of liposomal amikacin and the optimal ZP value. Suitable ZP can improve drug release profiles at specific sites in alveoli as well as their stability in dosage form. This study aimed to analyze the effect of DPPG on ZP values and physical stability of liposomal amikacin. Liposomes were prepared by using the reserved phase evaporation method. Liposomes consisting of DPPG, 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC), cholesterol and amikacin were formulated in five different compositions 0/150/5/100, 10//150/5/100, 20/150/5/100, 30/150/5/100 and 40/150/5/100 (w/v) respectively. A chloroform/methanol mixture in the ratio of 1 : 1 (v/v) was used as solvent to dissolve lipids. These systems were adjusted in the phosphate buffer at pH 7.4. Nebules of liposomal amikacin were produced by using the vibrating nebulizer and then characterized by the X-ray diffraction, differential scanning calorimetry, particle size and zeta potential analyzer, and scanning electron microscope. Amikacin concentration from liposome leakage was determined by the immunoassay method. The study revealed that presence of DPPG could increase the ZP value. The addition of 10 mg DPPG in the composition resulted in increasing of ZP value to 3.70 mV (negatively charged). The optimum ZP value was reached at -28.780 ± 0.70 mV and particle size of nebules 461.70 ± 21.79 nm. Nebulizing process altered parameters such as particle size, conformation of lipid components and the amount of surface charges of nanoparticles which could influence the ZP value. These parameters might have profound effects on the application of nebules in the alveoli; however, negatively charge nanoparticles were unexpected to have a high ZP value in this system due to increased macrophage uptake and pulmonal clearance. Therefore, the ratio of liposome 20/150/5/100 (w/v) resulted in the most stable colloidal system and might be applicable to pulmonal drug delivery system.

Keywords: anionic lipid, dipalmitoylphosphatidylglycerol, liposomal amikacin, stability, zeta potential

Procedia PDF Downloads 315
917 Design and Optimization Fire Alarm System to Protect Gas Condensate Reservoirs With the Use of Nano-Technology

Authors: Hefzollah Mohammadian, Ensieh Hajeb, Mohamad Baqer Heidari

Abstract:

In this paper, for the protection and safety of tanks gases (flammable materials) and also due to the considerable economic value of the reservoir, the new system for the protection, the conservation and fire fighting has been cloned. The system consists of several parts: the Sensors to detect heat and fire with Nanotechnology (nano sensor), Barrier for isolation and protection from a range of two electronic zones, analyzer for detection and locating point of fire accurately, Main electronic board to announce fire, Fault diagnosis in different locations, such as relevant alarms and activate different devices for fire distinguish and announcement. An important feature of this system, high speed and capability of fire detection system in a way that is able to detect the value of the ambient temperature that can be adjusted. Another advantage of this system is autonomous and does not require human operator in place. Using nanotechnology, in addition to speeding up the work, reduces the cost of construction of the sensor and also the notification system and fire extinguish.

Keywords: analyser, barrier, heat resistance, general fault, general alarm, nano sensor

Procedia PDF Downloads 428
916 Investigation of Polypropylene Composite Films With Carbon Nanotubes and the Role of β Nucleating Agents for the Improvement of Their Water Vapor Permeability

Authors: Glykeria A. Visvini, George N. Mathioudakis, Amaia Soto Beobide, Aris E. Giannakas, George A. Voyiatzis

Abstract:

Polymeric nanocomposites have generated considerable interest in both academic research and industry because their properties can be tailored by adjusting the type & concentration of nano-inclusions, resulting in complementary and adaptable characteristics. The exceptional and/or unique properties of the nanocomposites, including the high mechanical strength and stiffness, the ease of processing, and their lightweight nature, are attributed to the high surface area, the electrical and/or thermal conductivity of the nano-fillers, which make them appealing materials for a wide range of engineering applications. Polymeric «breathable» membranes enabling water vapor permeability (WVP) can be designed either by using micro/nano-fillers with the ability to interrupt the continuity of the polymer phase generating micro/nano-porous structures or/and by creating micro/nano-pores into the composite material by uniaxial/biaxial stretching. Among the nanofillers, carbon nanotubes (CNTs) exhibit particular high WVP and for this reason, they have already been proposed for gas separation membranes. In a similar context, they could prove to be promising alternative/complementary filler nano-materials, for the development of "breathable" products. Polypropylene (PP) is a commonly utilized thermoplastic polymer matrix in the development of composite films, due to its easy processability and low price, combined with its good chemical & physical properties. PP is known to present several crystalline phases (α, β and γ), depending on the applied treatment process, which have a significant impact on its final properties, particularly in terms of WVP. Specifically, the development of the β-phase in PP in combination with stretching is anticipated to modify the crystalline behavior and extend the microporosity of the polymer matrix exhibiting enhanced WVP. The primary objective of this study is to develop breathable nano-carbon based (functionalized MWCNTs) PP composite membranes, potentially also avoiding the stretching process. This proposed alternative is expected to have a better performance/cost ratio over current stretched PP/CaCO3 composite benchmark membranes. The focus is to investigate the impact of both β-nucleator(s) and nano-carbon fillers on water vapor transmission rate properties of relevant PP nanocomposites.

Keywords: carbon nanotubes, nanocomposites, nucleating agents, polypropylene, water vapor permeability

Procedia PDF Downloads 41
915 Production and Valorization of Nano Lignins by Organosolv and Steam Explosion

Authors: V. Girard, I. Ziegler-Devin, H. Chapuis, N. Canilho, L. Marchal-Heussler, N. Brosse

Abstract:

Lignocellulosic biomass is made up of the three polymeric fractions that are cellulose, hemicellulose, and lignin, which are highly entangled. In this project, we are particularly interested in the under-valued lignin polymer, which is mainly used for thermal valorization. Lignin from Macro to Nanosize (LIMINA) project will first focus on the extraction of macro lignin from forestry waste (hardwood and softwood) by the mean of eco-friendly processes (organosolv and steam explosion) and then the valorization of nano lignins produced by using anti-solvent precipitation (UV-blocker, cosmetic, food products).

Keywords: nanolignin, nanoparticles, organosolv, steam explosion

Procedia PDF Downloads 105
914 Genome Sequencing and Analysis of the Spontaneous Nanosilver Resistant Bacterium Proteus mirabilis Strain scdr1

Authors: Amr Saeb, Khalid Al-Rubeaan, Mohamed Abouelhoda, Manojkumar Selvaraju, Hamsa Tayeb

Abstract:

Background: P. mirabilis is a common uropathogenic bacterium that can cause major complications in patients with long-standing indwelling catheters or patients with urinary tract anomalies. In addition, P. mirabilis is a common cause of chronic osteomyelitis in diabetic foot ulcer (DFU) patients. Methodology: P. mirabilis SCDR1 was isolated from a diabetic ulcer patient. We examined P. mirabilis SCDR1 levels of resistance against nano-silver colloids, the commercial nano-silver and silver containing bandages and commonly used antibiotics. We utilized next generation sequencing techniques (NGS), bioinformatics, phylogenetic analysis and pathogenomics in the identification and characterization of the infectious pathogen. Results: P. mirabilis SCDR1 is a multi-drug resistant isolate that also showed high levels of resistance against nano-silver colloids, nano-silver chitosan composite and the commercially available nano-silver and silver bandages. The P. mirabilis-SCDR1 genome size is 3,815,621 bp with G+C content of 38.44%. P. mirabilis-SCDR1 genome contains a total of 3,533 genes, 3,414 coding DNA sequence genes, 11, 10, 18 rRNAs (5S, 16S, and 23S), and 76 tRNAs. Our isolate contains all the required pathogenicity and virulence factors to establish a successful infection. P. mirabilis SCDR1 isolate is a potential virulent pathogen that despite its original isolation site, wound, it can establish kidney infection and its associated complications. P. mirabilis SCDR1 contains several mechanisms for antibiotics and metals resistance including, biofilm formation, swarming mobility, efflux systems, and enzymatic detoxification. Conclusion: P. mirabilis SCDR1 is the spontaneous nano-silver resistant bacterial strain. P. mirabilis SCDR1 strain contains all reported pathogenic and virulence factors characteristic for the species. In addition, it possesses several mechanisms that may lead to the observed nano-silver resistance.

Keywords: Proteus mirabilis, multi-drug resistance, silver nanoparticles, resistance, next generation sequencing techniques, genome analysis, bioinformatics, phylogeny, pathogenomics, diabetic foot ulcer, xenobiotics, multidrug resistance efflux, biofilm formation, swarming mobility, resistome, glutathione S-transferase, copper/silver efflux system, altruism

Procedia PDF Downloads 308
913 An Efficient Green Catalyst for Chemo-Selectiveoxidative Coupling of Thiols

Authors: E. Kolvari, N. Koukabi, A. Sabet, A. Fakhraee, M. Ramezanpour

Abstract:

A green and efficient method for oxidation of thiols to the corresponding disulfides is reported using free nano-iron oxide in the H2O2 and methanol as solvent at room tempereture. H2O2 is anoxidant for S-S coupling variety aromatic of thiols to corresponding disulfide in the presence of supported iron oxide as recoverable catalyst. This reaction is clean, fast, mild and easy work-up with no side reaction.

Keywords: thiol, disulfide, free nano-iron oxide, H2O2, oxidation, coupling

Procedia PDF Downloads 313
912 Electromagnetic and Physicochemical Properties in the Addition of Silicon Oxide on the SSPS Renewable Films

Authors: Niloofar Alipoormazandarani

Abstract:

The rift environmental, efficiency and being environmental-friendly of these innovative food packaging in edible films made them as an alternative to synthetic packages. This issue has been widely studied in this experiment. Some of the greatest advances in food packaging industry is associated with nanotechnology. Recently, a polysaccharide extracted from the cell wall of soybean cotyledons: A soluble soybean polysaccharide (SSPS), a pectin-like structure. In this study, the addition (0%, 1%, 3%, and 5%) of nano silica dioxide (SiO2) film is examined SSPS in different features. The research aims to investigate the effect of nano-SiO2 on the physicochemical and electromagnetic properties of the SSPS films were sonicated and then heated to the melting point, besides the addition of plasticizer. After that, it has been cooled into the room temperature and were dried with Casting method. In final examinations,improvement in Moisture Content and Water Absorption was observed with a significant decrease.Also, in Color measurements there were some obvious differences. These reports indicate that the incorporation of nano-SiO2 and SSPS has the power to be extensively used in pharmaceutical and food packaging industry as well.

Keywords: SSPS, NanoSiO2, food packaging, renewable films

Procedia PDF Downloads 359
911 The Socio-Technical Relationship between Architects and Nano-Enhanced Materials: An Ethnographic Study in Cairo, Egypt

Authors: Ramy Bakir

Abstract:

Advancements in the field of nanoscience and nanotechnology have had a sweeping effect on the manufacturing industry in the last two decades, and have specifically allowed for the enhancement of a multitude of applications in the field of building technology. Research carried out in the architectural field in the past decade highlights how those enhancements have improved the structural and environmental performance of buildings, and/or how they developed the aesthetic value of façade or interior treatments. In developing countries, such as Egypt, the actual use of those nano-enhanced applications and their benefits rarely manifest. Hence this paper investigates the socio-technical relationship between the architectural design process and nanotechnology in Cairo using participant observation within an ethnographic study. The study focused on the socio-cultural context of an environmental design process in a specific design firm, and the role of nano-enhanced applications in it, and provided a thick description of the design decisions made within the preliminary stages of the design process of a residential building in Cairo, Egypt. Using Grounded Theory, and through the analysis and coding of the qualitative data collected, this paper was able to identify specific socio-cultural issues influencing individual architect cognition, clarifying how the context of the design process of the studied project affected the design team members’ responses to nano-enhanced materials. This paper presents those findings within a framework of the three identified statuses of response to nanotechnology and classifies the socio-cultural reasons influencing them. In doing so, the paper aims to shed more light on the relation between nanotechnology and architects in their natural environment, and hence allow both to benefit more from a clearer understanding of how the socio-cultural context, along with the benefits of using nanotechnology, influences the design decisions made.

Keywords: nanotechnology, design process, socio-cultural context, nano-enhanced applications

Procedia PDF Downloads 235