Search results for: mineral elements
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4220

Search results for: mineral elements

3770 Elements of Usability and Sociability in Activity Management System for e-Masjid

Authors: Hidayah bt Rahmalan, Marhazli Kipli, Muhammad Suffian Sikandar Ghani, Maisarah Abu, Muhammad Faisal Ashaari, Norlizam Md Sukiban

Abstract:

This study presents an example of activity management system for e-Masjid implementing elements of usability and sociability. It is expected to resolve the shortcomings of the most e-Masjid that provide lot of activities to their community. However, the data on handling a lot of activities or events in which involve a lot of people will be difficult to manipulate. Thus, this paper presents the usability and sociability element on an activity management system that not only eases the job for the user but being practical for future when the community join any events. For the time being, this activity management system was only applied for Sayyidina Abu Bakar Mosque in Utem, Malacca.

Keywords: e-masjid, usability, sociability, activity management system

Procedia PDF Downloads 340
3769 Innovative Dissipative Bracings for Seismic-Resistant Automated Rack Supported Warehouses

Authors: Agnese Natali, Francesco Morelli, Walter Salvatore

Abstract:

Automated Rack Supported Warehouses (ARSWs) are storage buildings whose structure is made of the same racks where goods are placed. The possibility of designing dissipative seismic-resistant ARSWs is investigated. Diagonals are the dissipative elements, arranged as tense-only X bracings. Local optimization is numerically performed to satisfy the over-resistant connection request for the dissipative element, that is hard to be reached due the geometrical limits of the thin-walled diagonals and must be balanced with resistance, the limit of slenderness, and ductility requests.

Keywords: steel racks, thin-walled cold-formed elements, structural optimization, hierarchy rules, dog-bone philosophy

Procedia PDF Downloads 139
3768 Identification and Characterisation of Oil Sludge Degrading Bacteria Isolated from Compost

Authors: O. Ubani, H. I. Atagana, M. S. Thantsha, R. Adeleke

Abstract:

The oil sludge components (polycyclic aromatic hydrocarbons, PAHs) have been found to be cytotoxic, mutagenic and potentially carcinogenic and microorganisms such as bacteria and fungi can degrade the oil sludge to less toxic compounds such as carbon dioxide, water and salts. In the present study, we isolated different bacteria with PAH-degrading potentials from the co-composting of oil sludge and different animal manure. These bacteria were isolated on the mineral base medium and mineral salt agar plates as a growth control. A total of 31 morphologically distinct isolates were carefully selected from 5 different compost treatments for identification using polymerase chain reaction (PCR) of the 16S rDNA gene with specific primers (16S-P1 PCR and 16S-P2 PCR). The amplicons were sequenced and sequences were compared with the known nucleotides from the gene bank database. The phylogenetical analyses of the isolates showed that they belong to 3 different clades namely Firmicutes, Proteobacteria and Actinobacteria. These bacteria identified were closely related to genera Bacillus, Arthrobacter, Staphylococcus, Brevibacterium, Variovorax, Paenibacillus, Ralstonia and Geobacillus species. The results showed that Bacillus species were more dominant in all treated compost piles. Based on their characteristics these bacterial isolates have high potential to utilise PAHs of different molecular weights as carbon and energy sources. These identified bacteria are of special significance in their capacity to emulsify the PAHs and their ability to utilize them. Thus, they could be potentially useful for bioremediation of oil sludge and composting processes.

Keywords: bioaugmentation, biodegradation, bioremediation, composting, oil sludge, PAHs, animal manures

Procedia PDF Downloads 226
3767 Chemical Pollution of Water: Waste Water, Sewage Water, and Pollutant Water

Authors: Nabiyeva Jamala

Abstract:

We divide water into drinking, mineral, industrial, technical and thermal-energetic types according to its use and purpose. Drinking water must comply with sanitary requirements and norms according to organoleptic devices and physical and chemical properties. Mineral water - must comply with the norms due to some components having therapeutic properties. Industrial water must fulfill its normative requirements by being used in the industrial field. Technical water should be suitable for use in the field of agriculture, household, and irrigation, and the normative requirements should be met. Heat-energy water is used in the national economy, and it consists of thermal and energy water. Water is a filter-accumulator of all types of pollutants entering the environment. This is explained by the fact that it has the property of dissolving compounds of mineral and gaseous water and regular water circulation. Environmentally clean, pure, non-toxic water is vital for the normal life activity of humans, animals and other living beings. Chemical pollutants enter water basins mainly with wastewater from non-ferrous and ferrous metallurgy, oil, gas, chemical, stone, coal, pulp and paper and forest materials processing industries and make them unusable. Wastewater from the chemical, electric power, woodworking and machine-building industries plays a huge role in the pollution of water sources. Chlorine compounds, phenols, and chloride-containing substances have a strong lethal-toxic effect on organisms when mixed with water. Heavy metals - lead, cadmium, mercury, nickel, copper, selenium, chromium, tin, etc. water mixed with ingredients cause poisoning in humans, animals and other living beings. Thus, the mixing of selenium with water causes liver diseases in people, the mixing of mercury with the nervous system, and the mixing of cadmium with kidney diseases. Pollution of the World's ocean waters and other water basins with oil and oil products is one of the most dangerous environmental problems facing humanity today. So, mixing even the smallest amount of oil and its products in drinking water gives it a bad, unpleasant smell. Mixing one ton of oil with water creates a special layer that covers the water surface in an area of 2.6 km2. As a result, the flood of light, photosynthesis and oxygen supply of water is getting weak and there is a great danger to the lives of living beings.

Keywords: chemical pollutants, wastewater, SSAM, polyacrylamide

Procedia PDF Downloads 43
3766 Identification of the Usage of Some Special Places in the Prehistoric Site of Tapeh Zagheh through Multi-Elemental Chemical Analysis of the Soil Samples

Authors: Iraj Rezaei, Kamal Al Din Niknami

Abstract:

Tapeh Zagheh is an important prehistoric site located in the central plateau of Iran, which has settlement layers of the Neolithic and Chalcolithic periods. For this research, 38 soil samples were collected from different parts of the site, as well as two samples from its outside as witnesses. Then the samples were analyzed by XRF. The purpose of this research was to identify some places with special usage for human activities in Tapeh Zagheh by measuring the amount of some special elements in the soil. The result of XRF analysis shows a significant amount of P and K in samples No.3 (fourth floor) and No.4 (third floor), probably due to certain activities such as food preparation and consumption. Samples No.9 and No.10 can be considered suitable examples of the hearths of the prehistoric period in the central plateau of Iran. The color of these samples was completely darkened due to the presence of ash, charcoal, and burnt materials. According to the XRF results, the soil of these hearths has very high amounts of elements such as P, Ca, Mn, S, K, and significant amounts of Ti, Fe, and Na. In addition, the elemental composition of sample No. 14, which was taken from a home waster, also has very high amounts of P, Mn, Mg, Ti, and Fe and high amounts of K and Ca. Sample No. 11, which is related to soil containing large amounts of waster of the kiln, along with a very strong increase in Cl and Na, the amount of elements such as K, Mg, and S has also increased significantly. It seems that the reason for the increase of elements such as Ti and Fe in some Tapeh Zagheh floors (for example, samples number 1, 2, 3, 4, 5) was the use of materials such as ocher mud or fire ash in the composition of these floors. Sample No. 13, which was taken from an oven located in the FIX trench, has very high amounts of Mn, Ti, and Fe and high amounts of P and Ca. Sample No. 15, which is related to House No. VII (probably related to a pen or a place where animals were kept) has much more phosphate compared to the control samples, which is probably due to the addition of animal excrement and urine to the soil. Sample No. 29 was taken from the north of the industrial area of Zagheh village (place of pottery kilns). The very low amount of index elements in sample No. 29 shows that the industrial activities did not extend to the mentioned point, and therefore, the range of this point can be considered as the boundary between the residential part of the Zagheh village and its industrial part.

Keywords: prehistory, multi-elemental analysis, Tapeh Zagheh, XRF

Procedia PDF Downloads 70
3765 Biocompatibility of Calcium Phosphate Coatings With Different Crystallinity Deposited by Sputtering

Authors: Ekaterina S. Marchenko, Gulsharat A. Baigonakova, Kirill M. Dubovikov, Igor A. Khlusov

Abstract:

NiTi alloys combine biomechanical and biochemical properties. This makes them a perfect candidate for medical applications. However, there is a serious problem with these alloys, such as the release of Ni from the matrix. Ni ions are known to be toxic to living tissues and leach from the matrix into the surrounding implant tissues due to corrosion after prolonged use. To prevent the release of Ni ions, corrosive strong coatings are usually used. Titanium nitride-based coatings are perfect corrosion inhibitors and also have good bioactive properties. However, there is an opportunity to improve the biochemical compatibility of the surface by depositing another layer. This layer can consist of elements such as calcium and phosphorus. The Ca and P ions form different calcium phosphate phases, which are present in the mineral part of human bones. We therefore believe that these elements must promote osteogenesis and osteointegration. In view of the above, the aim of this study is to investigate the effect of crystallinity on the biocompatibility of a two-layer coating deposited on NiTi substrate by sputtering. The first step of the research, apart from the NiTi polishing, is the layer-by-layer deposition of Ti-Ni-Ti by magnetron sputtering and the subsequent synthesis of this composite in an N atmosphere at 900 °C. The total thickness of the corrosion resistant layer is 150 nm. Plasma assisted RF sputtering was then used to deposit a bioactive film on the titanium nitride layer. A Ca-P powder target was used to obtain such a film. We deposited three types of Ca-P layers with different crystallinity and compared them in terms of cytotoxicity. One group of samples had no Ca-P coating and was used as a control. We obtained different crystallinity by varying the sputtering parameters such as bias voltage, plasma source current and pressure. XRD analysis showed that all coatings are calcium phosphate, but the sample obtained at maximum bias and plasma source current and minimum pressure has the most intense peaks from the coating phase. SEM and EDS showed that all three coatings have a homogeneous and dense structure without cracks and consist of calcium, phosphorus and oxygen. Cytotoxic tests carried out on three types of samples with Ca-P coatings and a control group showed that the control sample and the sample with Ca-P coating obtained at maximum bias voltage and plasma source current and minimum pressure had the lowest number of dead cells on the surface, around 11 ± 4%. Two other types of samples with Ca-P coating have 40 ± 9% and 21 ± 7% dead cells on the surface. It can therefore be concluded that these two sputtering modes have a negative effect on the corrosion resistance of the whole samples. The third sputtering mode does not affect the corrosion resistance and has the same level of cytotoxicity as the control. It can be concluded that the most suitable sputtering mode is the third with maximum bias voltage and plasma source current and minimum pressure.

Keywords: calcium phosphate coating, cytotoxicity, NiTi alloy, two-layer coating

Procedia PDF Downloads 48
3764 Integration of Load Introduction Elements into Fabrics

Authors: Jan Schwennen, Harlad Schmid, Juergen Fleischer

Abstract:

Lightweight design plays an important role in the automotive industry. Especially the combination of metal and CFRP shows great potential for future vehicle concepts. This requires joining technologies that are cost-efficient and appropriate for the materials involved. Previous investigations show that integrating load introduction elements during CFRP part manufacturing offers great advantages in mechanical performance. However, it is not yet clear how to integrate the elements in an automated process without harming the fiber structure. In this paper, a test rig is build up to investigate the effect of different parameters during insert integration experimentally. After a short description of the experimental equipment, preliminary tests are performed to determine a set of important process parameters. Based on that, the planning of design of experiments is given. The interpretation and evaluation of the test results show that with a minimization of the insert diameter and the peak angle less harm on the fiber structure can be achieved. Furthermore, a maximization of the die diameter above the insert shows a positive effect on the fiber structure. At the end of this paper, a theoretical description of alternative peak shaping is given and then the results get validated on the basis of an industrial reference part.

Keywords: CFRP, fabrics, insert, load introduction element, integration

Procedia PDF Downloads 220
3763 Formulation of Sun Screen Cream and Sun Protecting Factor Activity from Standardized–Partition Compound of Mahkota Dewa Leaf (Phaleria macrocarpa (Scheff.) Boerl.)

Authors: Abdul Karim Zulkarnain, Marchaban, Subagus Wahyono, Ratna Asmah Susidarti

Abstract:

Mahkota Dewa contains phalerin which has activity as sun screen. In this study, 13 formulations of cream oil in water (o/w) were prepared and tested for their physical characteristics. The physical characteristics were then used for determining the optimum formula. This study aimed to explore the physical stability of optimized formulation of cream, its sun protecting factor (SPF) values using in vitro and in vivo tests. The optimum formula of o/w cream were prepared based on Simplex Lattice Design (LSD) method using software Design Expert®. The formulation of o/w cream were varied based on the proportion of cetyl alcohol, mineral oil and tween 80. The difference of physical characteristic of optimum and predicted formula was tested using t-test with significant level of 95%. The optimum formula of o/w cream was the formula which consists of cetyl alcohol 9.71%, mineral oil, 29%, and tween 80 3.29. Based on t-test, there was no significant difference of physical characteristics of optimum and predicted formulation. Viscosity, spread power, adhesive power, and separation volume ratio of o/w at week 0-4 were relatively stable. The o/w creams were relatively stable at extreme temperature. The o/w creams from mahkota dewa, phalerin, and benzophenone have SPF values of 21.32, 33.12, and 42.49, respectively. The formulas did not irritate the skin based on in vivo test.

Keywords: cream, stability, In vitro, In vivo

Procedia PDF Downloads 202
3762 The Reasons for the Continuous Decline in the Quality of Higher Education in Iran, with a Case Study of Students at Tehran University Law School

Authors: Mohammad Matin

Abstract:

Nowadays, one of the basic problems of higher education is a significant decline in the quality of education and reduction in efficiency of training. These research and studies are aiming to assess affecting factors of the erosion of academic quality, including educational environmental and content, social and economic factors, elements of the training, elements of education, family factors, from the perspective of students. The result of such improper competition, totally, has led to the decline of education quality in higher education centers, and in many aspects. The results showed a significant difference between male and female students' perspective for two areas of social and economic factors.

Keywords: higher education, decline, the quality of education, student

Procedia PDF Downloads 309
3761 A Study on Neighborhood of Dwelling with Historical-Islamic Architectural Elements

Authors: M.J. Seddighi, Moradchelleh, M. Keyvan

Abstract:

The ultimate goal in building a city is to provide pleasant, comfortable and nurturing environment as a context of public life. City environment establishes strong connection with people and their surrounding habitant, acting as relevance in social interactions between citizens itself. Urban environment and appropriate municipal facilities are the only way for proper communication between city and citizens and also citizens themselves.There is a need for complement elements between buildings and constructions to settling city life through which the move, comfort, reactions and anxiety will adjust and reflect the spirit to the city. In the surging development of society, urban’ spaces are encountered evolution, sometimes causing the symbols to fade and waste, and as a result, leading to destroy belongs among humans and their physical liquidate. Houses and living spaces exhibit materialistic reflection of life style. In the other words, way of life makes the symbolic essence of living spaces. In addition, it is of sociocultural factor of lifestyle, consisting the concepts and culture, morality, worldview, and national character. Culture is responsible for some crucial meaningful needs which can be wide because they depend on various causes such as perception and interpretation of believes, philosophy of life, interaction with neighbors and protection against climate and enemies. The bi-lateral relationship between human and nature is the main factor that needs to be properly addressed. It is because of the fact that the approach which is taken against landscape and nature has a pertinent influence on creation and shaping the structure of a house. The first response of human in tackling the environment is to build a “shelter” and place as dwelling. This has been a crucial factor in all time periods. In the proposed study, dwelling in Khorasgan’ Stream, as an area located in one of the important historical city of Iran, has been studied. Khorasgan’ Stream is the basic constituent elements of the present architectural form of Isfahan. The influence of Islamic spiritual culture and neighborhood with the historical elements on the dwelling of the selected location, subsequently on other regions of the town are presented.

Keywords: dwelling, neighborhood, historical, Islamic, architectural elements

Procedia PDF Downloads 384
3760 The Ludic Exception and the Permanent Emergency: Understanding the Emergency Regimes with the Concept of Play

Authors: Mete Ulaş Aksoy

Abstract:

In contemporary politics, the state of emergency has become a permanent and salient feature of politics. This study aims to clarify the anthropological and ontological dimensions of the permanent state of emergency. It pays special attention to the structural relation between the exception and play. Focusing on the play in the context of emergency and exception enables the recognition of the difference and sometimes the discrepancy between the exception and emergency, which has passed into oblivion because of the frequency and normalization of emergency situations. This study coins the term “ludic exception” in order to highlight the difference between the exceptions in which exuberance and paroxysm rule over the socio-political life and the permanent emergency that protects the authority with a sort of extra-legality. The main thesis of the study is that the ludic elements such as risk, conspicuous consumption, sacrificial gestures, agonism, etc. circumscribe the exceptional moments temporarily, preventing them from being routine and normal. The study also emphasizes the decline of ludic elements in modernity as the main factor in the transformation of the exceptions into permanent emergency situations. In the introduction, the relationship between play and exception is taken into consideration. In the second part, the study elucidates the concept of ludic exceptions and dwells on the anthropological examples of the ludic exceptions. In the last part, the decline of ludic elements in modernity is addressed as the main factor for the permanent emergency.

Keywords: emergency, exception, ludic exception, play, sovereignty

Procedia PDF Downloads 66
3759 The Impact of Glass Additives on the Functional and Microstructural Properties of Sand-Lime Bricks

Authors: Anna Stepien

Abstract:

The paper presents the results of research on modifications of sand-lime bricks, especially using glass additives (glass fiber and glass sand) and other additives (e.g.:basalt&barite aggregate, lithium silicate and microsilica) as well. The main goal of this paper is to answer the question ‘How to use glass additives in the sand-lime mass and get a better bricks?’ The article contains information on modification of sand-lime bricks using glass fiber, glass sand, microsilica (different structure of silica). It also presents the results of the conducted compression tests, which were focused on compressive strength, water absorption, bulk density, and their microstructure. The Scanning Electron Microscope, spectrum EDS, X-ray diffractometry and DTA analysis helped to define the microstructural changes of modified products. The interpretation of the products structure revealed the existence of diversified phases i.e.the C-S-H and tobermorite. CaO-SiO2-H2O system is the object of intensive research due to its meaning in chemistry and technologies of mineral binding materials. Because the blocks are the autoclaving materials, the temperature of hydrothermal treatment of the products is around 200°C, the pressure - 1,6-1,8 MPa and the time - up to 8hours (it means: 1h heating + 6h autoclaving + 1h cooling). The microstructure of the products consists mostly of hydrated calcium silicates with a different level of structural arrangement. The X-ray diffraction indicated that the type of used sand is an important factor in the manufacturing of sand-lime elements. Quartz sand of a high hardness is also a substrate hardly reacting with other possible modifiers, which may cause deterioration of certain physical and mechanical properties. TG and DTA curves show the changes in the weight loss of the sand-lime bricks specimen against time as well as the endo- and exothermic reactions that took place. The endothermic effect with the maximum at T=573°C is related to isomorphic transformation of quartz. This effect is not accompanied by a change of the specimen weight. The next endothermic effect with the maximum at T=730-760°C is related to the decomposition of the calcium carbonates. The bulk density of the brick it is 1,73kg/dm3, the presence of xonotlite in the microstructure and significant weight loss during DTA and TG tests (around 0,6% after 70 minutes) have been noticed. Silicate elements were assessed on the basis of their compressive property. Orthogonal compositional plan type 3k (with k=2), i.e.full two-factor experiment was applied in order to carry out the experiments both, in the compression strength test and bulk density test. Some modification (e.g.products with barite and basalt aggregate) have improved the compressive strength around 41.3 MPa and water absorption due to capillary raising have been limited to 12%. The next modification was adding glass fiber to sand-lime mass, then glass sand. The results show that the compressive strength was higher than in the case of traditional bricks, while modified bricks were lighter.

Keywords: bricks, fiber, glass, microstructure

Procedia PDF Downloads 329
3758 The Determination of the Phosphorous Solubility in the Iron by the Function of the Other Components

Authors: Andras Dezső, Peter Baumli, George Kaptay

Abstract:

The phosphorous is the important components in the steels, because it makes the changing of the mechanical properties and possibly modifying the structure. The phosphorous can be create the Fe3P compounds, what is segregated in the ferrite grain boundary in the intervals of the nano-, or microscale. This intermetallic compound is decreasing the mechanical properties, for example it makes the blue brittleness which means that the brittle created by the segregated particles at 200 ... 300°C. This work describes the phosphide solubility by the other components effect. We make calculations for the Ni, Mo, Cu, S, V, C, Si, Mn, and the Cr elements by the Thermo-Calc software. We predict the effects by approximate functions. The binary Fe-P system has a solubility line, which has a determinating equation. The result is below: lnwo = -3,439 – 1.903/T where the w0 means the weight percent of the maximum soluted concentration of the phosphorous, and the T is the temperature in Kelvin. The equation show that the P more soluble element when the temperature increasing. The nickel, molybdenum, vanadium, silicon, manganese, and the chromium make dependence to the maximum soluted concentration. These functions are more dependent by the elements concentration, which are lower when we put these elements in our steels. The copper, sulphur and carbon do not make effect to the phosphorous solubility. We predict that all of cases the maximum solubility concentration increases when the temperature more and more high. Between 473K and 673 K, in the phase diagram, these systems contain mostly two or three phase eutectoid, and the singe phase, ferritic intervals. In the eutectoid areas the ferrite, the iron-phosphide, and the metal (III)-phospide are in the equilibrium. In these modelling we predicted that which elements are good for avoid the phosphide segregation or not. These datas are important when we make or choose the steels, where the phosphide segregation stopping our possibilities.

Keywords: phosphorous, steel, segregation, thermo-calc software

Procedia PDF Downloads 602
3757 Improving the Dielectric Strength of Transformer Oil for High Health Index: An FEM Based Approach Using Nanofluids

Authors: Fatima Khurshid, Noor Ul Ain, Syed Abdul Rehman Kashif, Zainab Riaz, Abdullah Usman Khan, Muhammad Imran

Abstract:

As the world is moving towards extra-high voltage (EHV) and ultra-high voltage (UHV) power systems, the performance requirements of power transformers are becoming crucial to the system reliability and security. With the transformers being an essential component of a power system, low health index of transformers poses greater risks for safe and reliable operation. Therefore, to meet the rising demands of the power system and transformer performance, researchers are being prompted to provide solutions for enhanced thermal and electrical properties of transformers. This paper proposes an approach to improve the health index of a transformer by using nano-technology in conjunction with bio-degradable oils. Vegetable oils can serve as potential dielectric fluid alternatives to the conventional mineral oils, owing to their numerous inherent benefits; namely, higher fire and flashpoints, and being environment-friendly in nature. Moreover, the addition of nanoparticles in the dielectric fluid further serves to improve the dielectric strength of the insulation medium. In this research, using the finite element method (FEM) in COMSOL Multiphysics environment, and a 2D space dimension, three different oil samples have been modelled, and the electric field distribution is computed for each sample at various electric potentials, i.e., 90 kV, 100 kV, 150 kV, and 200 kV. Furthermore, each sample has been modified with the addition of nanoparticles of different radii (50 nm and 100 nm) and at different interparticle distance (5 mm and 10 mm), considering an instant of time. The nanoparticles used are non-conductive and have been modelled as alumina (Al₂O₃). The geometry has been modelled according to IEC standard 60897, with a standard electrode gap distance of 25 mm. For an input supply voltage of 100 kV, the maximum electric field stresses obtained for the samples of synthetic vegetable oil, olive oil, and mineral oil are 5.08 ×10⁶ V/m, 5.11×10⁶ V/m and 5.62×10⁶ V/m, respectively. It is observed that for the unmodified samples, vegetable oils have a greater dielectric strength as compared to the conventionally used mineral oils because of their higher flash points and higher values of relative permittivity. Also, for the modified samples, the addition of nanoparticles inhibits the streamer propagation inside the dielectric medium and hence, serves to improve the dielectric properties of the medium.

Keywords: dielectric strength, finite element method, health index, nanotechnology, streamer propagation

Procedia PDF Downloads 120
3756 Embedment Design Concept of Signature Tower in Chennai

Authors: M. Gobinath, S. Balaji

Abstract:

Assumptions in model inputs: Grade of concrete=40 N/mm2 (for slab), Grade of concrete=40 N/mm2 (for shear wall), Grade of Structural steel (plate girder)=350 N/mm2 (yield strength), Ultimate strength of structural steel=490 N/mm2, Grade of rebar=500 N/mm2 (yield strength), Applied Load=1716 kN (un-factored). Following assumptions are made for the mathematical modelling of RCC with steel embedment: (1) The bond between the structural steel and concrete is neglected. (2) The stiffener is provided with shear studs to transfer the shear force. Hence nodal connectivity is established between solid nodes (concrete) and shell elements (stiffener) at those locations. (3) As the end reinforcements transfer either tension/compression, it is modeled as line element and connected to solid nodes. (4) In order to capture the bearing of bottom flange on to the concrete, the line element of plan size of solid equal to the cross section of line elements is connected between solid and shell elements below for bottom flange and above for top flange. (5) As the concrete cannot resist tension at the interface (i.e., between structural steel and RCC), the tensile stiffness is assigned as zero and only compressive stiffness is enabled to take. Hence, non-linear static analysis option is invoked.

Keywords: structure, construction, signature tower, embedment design concept

Procedia PDF Downloads 279
3755 Models of Copyrights System

Authors: A. G. Matveev

Abstract:

The copyrights system is a combination of different elements. The number, content and the correlation of these elements are different for different legal orders. The models of copyrights systems display this system in terms of the interaction of economic and author's moral rights. Monistic and dualistic models are the most popular ones. The article deals with different points of view on the monism and dualism in copyright system. A specific model of the copyright in Switzerland in the XXth century is analyzed. The evolution of a French dualistic model of copyright is shown. The author believes that one should talk not about one, but rather about a number of dualism forms of copyright system.

Keywords: copyright, exclusive copyright, economic rights, author's moral rights, rights of personality, monistic model, dualistic model

Procedia PDF Downloads 401
3754 Polymer Nanocoatings With Enhanced Self-Cleaning and Icephobic Properties

Authors: Bartlomiej Przybyszewski, Rafal Kozera, Katarzyna Zolynska, Anna Boczkowska, Daria Pakula

Abstract:

The build-up and accumulation of dirt, ice, and snow on structural elements and vehicles is an unfavorable phenomenon, leading to economic losses and often also posing a threat to people. This problem occurs wherever the use of polymer coatings has become a standard, among others in photovoltaic farms, aviation, wind energy, and civil engineering. The accumulated pollution on the photovoltaic modules can reduce their efficiency by several percent, and snow stops power production. Accumulated ice on the blades of wind turbines or the wings of airplanes and drones disrupts the airflow by changing their shape, leading to increased drag and reduced efficiency. This results in costly maintenance and repairs. The goal of the work is to reduce or completely eliminate the accumulation of dirt, snow, and ice build-up on polymer coatings by achieving self-cleaning and icephobic properties. It is done by the use of a multi-step surface modification of the polymer nanocoatings. For this purpose, two methods of surface structuring and the preceding volumetric modification of the chemical composition with proprietary organosilicon compounds and/or mineral additives were used. To characterize the surface topography of the modified coatings, light profilometry was utilized. Measurements of the wettability parameters (static contact angle and contact angle hysteresis) on the investigated surfaces allowed to identify their wetting behavior and determine relation between hydrophobic and anti-icing properties. Ice adhesion strength was measured to assess coatings' anti-icing behavior.

Keywords: anti-icing properties, self-cleaning, polymer coatings, icephobic coatings

Procedia PDF Downloads 87
3753 Comparison of Microwave-Assisted and Conventional Leaching for Extraction of Copper from Chalcopyrite Concentrate

Authors: Ayfer Kilicarslan, Kubra Onol, Sercan Basit, Muhlis Nezihi Saridede

Abstract:

Chalcopyrite (CuFeS2) is the most common primary mineral used for the commercial production of copper. The low dissolution efficiency of chalcopyrite in sulfate media has prevented an efficient industrial leaching of this mineral in sulfate media. Ferric ions, bacteria, oxygen and other oxidants have been used as oxidizing agents in the leaching of chalcopyrite in sulfate and chloride media under atmospheric or pressure leaching conditions. Two leaching methods were studied to evaluate chalcopyrite (CuFeS2) dissolution in acid media. First, the conventional oxidative acid leaching method was carried out using sulfuric acid (H2SO4) and potassium dichromate (K2Cr2O7) as oxidant at atmospheric pressure. Second, microwave-assisted acid leaching was performed using the microwave accelerated reaction system (MARS) for same reaction media. Parameters affecting the copper extraction such as leaching time, leaching temperature, concentration of H2SO4 and concentration of K2Cr2O7 were investigated. The results of conventional acid leaching experiments were compared to the microwave leaching method. It was found that the copper extraction obtained under high temperature and high concentrations of oxidant with microwave leaching is higher than those obtained conventionally. 81% copper extraction was obtained by the conventional oxidative acid leaching method in 180 min, with the concentration of 0.3 mol/L K2Cr2O7 in 0.5M H2SO4 at 50 ºC, while 93.5% copper extraction was obtained in 60 min with microwave leaching method under same conditions.

Keywords: extraction, copper, microwave-assisted leaching, chalcopyrite, potassium dichromate

Procedia PDF Downloads 341
3752 Parameter Selection and Monitoring for Water-Powered Percussive Drilling in Green-Fields Mineral Exploration

Authors: S. J. Addinell, T. Richard, B. Evans

Abstract:

The Deep Exploration Technologies Cooperative Research Centre (DET CRC) is researching and developing a new coiled tubing based greenfields mineral exploration drilling system utilising downhole water powered percussive drill tooling. This new drilling system is aimed at significantly reducing the costs associated with identifying mineral resource deposits beneath deep, barron cover. This system has shown superior rates of penetration in water-rich hard rock formations at depths exceeding 500 meters. Several key challenges exist regarding the deployment and use of these bottom hole assemblies for mineral exploration, and this paper discusses some of the key technical challenges. This paper presents experimental results obtained from the research program during laboratory and field testing of the prototype drilling system. A study of the morphological aspects of the cuttings generated during the percussive drilling process is presented and shows a strong power law relationship for particle size distributions. Several percussive drilling parameters such as RPM, applied fluid pressure and weight on bit have been shown to influence the particle size distributions of the cuttings generated. This has direct influence on other drilling parameters such as flow loop performance, cuttings dewatering, and solids control. Real-time, accurate knowledge of percussive system operating parameters will assist the driller in maximising the efficiency of the drilling process. The applied fluid flow, fluid pressure, and rock properties are known to influence the natural oscillating frequency of the percussive hammer, but this paper also shows that drill bit design, drill bit wear and the applied weight on bit can also influence the oscillation frequency. Due to the changing drilling conditions and therefore changing operating parameters, real-time understanding of the natural operating frequency is paramount to achieving system optimisation. Several techniques to understand the oscillating frequency have been investigated and presented. With a conventional top drive drilling rig, spectral analysis of applied fluid pressure, hydraulic feed force pressure, hold back pressure and drill string vibrations have shown the presence of the operating frequency of the bottom hole tooling. Unfortunately, however, with the implementation of a coiled tubing drilling rig, implementing a positive displacement downhole motor to provide drill bit rotation, these signals are not available for interrogation at the surface and therefore another method must be considered. The investigation and analysis of ground vibrations using geophone sensors, similar to seismic-while-drilling techniques have indicated the presence of the natural oscillating frequency of the percussive hammer. This method is shown to provide a robust technique for the determination of the downhole percussive oscillation frequency when used with a coiled tubing drill rig.

Keywords: cuttings characterization, drilling optimization, oscillation frequency, percussive drilling, spectral analysis

Procedia PDF Downloads 207
3751 Perspectives and Challenges Functional Bread with Yeast Extract to Improve Human Diet

Authors: Jelena Filipović, Milenko Košutić, Vladimir Filipović

Abstract:

In the last decades, the urban population has been characterized by sedentary lifestyles, low physical activity, and "fast food". These changes in diet and physical nonactivity have been associated with an increase in chronic diseases. Bread is one of the most popular wheat products consumed worldwide. Spelt wheat has shown potential in various food applications, including bread, pasta, breakfast cereal, and other products of altered nutritional characteristics compared to conventional wheat products. It has very high protein content and even 30 to 60% higher concentration of mineral elements Fe, Zn, Cu, Mg and P compared to Triticum Aestivum. Spelt wheat is growing without the use of pesticides in harsh ecological conditions and it is an old cultivar. So it can be used for organic and health-safe food. Changes in the formulation of bread with the aim of improving its nutritional and functional properties usually lead to changes in the dough's properties, which are related to the quality of the finished product. The aim of this paper is to research the impact of adding yeast extract to bread on sensory characteristics and consumer acceptance of a new product as a key factor for the successful marketing of a distinct product. The sensory analysis of bread with 5% yeast extract is as follows: the technological quality is very good (3.8), and the color of the product is excellent (4.85). Based on data, consumers' survey declared that they liked the taste of bread with 5% yeast extract (74%), consumers marked the product as likable (70%), and 75% of the total number of respondents would buy this new product. This paper is promoting a type of bread with 5% yeast extract (Z score 0.80) to improve diet and a product intended for consumers conscious about their health and diet.

Keywords: bread, yeast extract, sensory analysis, consumer survey, score analysis

Procedia PDF Downloads 26
3750 Reliability-Based Codified Design of Concrete Structures

Authors: Naser Alenezi, Ibrahim Alsakkaf, Osama Eid

Abstract:

The main objective of this study is to develop an independent reliability based code for reinforced concrete (R/C) structural components and elements solely for the State of Kuwait and its neighboring countries. The proposed code will take into account the harsh Kuwait’s harsh environment, loading conditions and material strengths. The method for developing such a code is based on structural reliability theory that takes into accounts the specific geographical and the various prescribed societal environment of the Kuwait region. These methods were developed according to the following four components: (1) loads, (2) structural strength, (3) reliability analysis, and (4) achieving target reliability levels (reliability index ’s ). The final product from this study will be a design code for R/C structural elements that include beams and columns, and some other structural members. This reliability-based LRFD design code will provide appropriate, easy, fast, and economical approach for designing R/C structural elements such as, beams and columns, for both houses and bridges, and other concrete structures. In addition, this reliability-based codified design of R/C beams, columns, and, possibly, concrete slabs will improve the design and serviceability of R/C bridge and building systems in Kuwait and neighboring GCC countries. Also, it has the potential to reduce the cost of new concrete structures, as fewer materials are used with more design efficiency.

Keywords: live laod, design, evaluation, structural building

Procedia PDF Downloads 316
3749 Logical-Probabilistic Modeling of the Reliability of Complex Systems

Authors: Sergo Tsiramua, Sulkhan Sulkhanishvili, Elisabed Asabashvili, Lazare Kvirtia

Abstract:

The paper presents logical-probabilistic methods, models and algorithms for reliability assessment of complex systems, based on which a web application for structural analysis and reliability assessment of systems was created. The reliability assessment process included the following stages, which were reflected in the application: 1) Construction of a graphical scheme of the structural reliability of the system; 2) Transformation of the graphic scheme into a logical representation and modeling of the shortest ways of successful functioning of the system; 3) Description of system operability condition with logical function in the form of disjunctive normal form (DNF); 4) Transformation of DNF into orthogonal disjunction normal form (ODNF) using the orthogonalization algorithm; 5) Replacing logical elements with probabilistic elements in ODNF, obtaining a reliability estimation polynomial and quantifying reliability; 6) Calculation of weights of elements. Using the logical-probabilistic methods, models and algorithms discussed in the paper, a special software was created, by means of which a quantitative assessment of the reliability of systems of a complex structure is produced. As a result, structural analysis of systems, research and designing of optimal structure systems are carried out.

Keywords: Complex systems, logical-probabilistic methods, orthogonalization algorithm, reliability, weight of element

Procedia PDF Downloads 41
3748 Different Processing Methods to Obtain a Carbon Composite Element for Cycling

Authors: Maria Fonseca, Ana Branco, Joao Graca, Rui Mendes, Pedro Mimoso

Abstract:

The present work is focused on the production of a carbon composite element for cycling through different techniques, namely, blow-molding and high-pressure resin transfer injection (HP-RTM). The main objective of this work is to compare both processes to produce carbon composite elements for the cycling industry. It is well known that the carbon composite components for cycling are produced mainly through blow-molding; however, this technique depends strongly on manual labour, resulting in a time-consuming production process. Comparatively, HP-RTM offers a more automated process which should lead to higher production rates. Nevertheless, a comparison of the elements produced through both techniques must be done, in order to assess if the final products comply with the required standards of the industry. The main difference between said techniques lies in the used material. Blow-moulding uses carbon prepreg (carbon fibres pre-impregnated with a resin system), and the material is laid up by hand, piece by piece, on a mould or on a hard male. After that, the material is cured at a high temperature. On the other hand, in the HP-RTM technique, dry carbon fibres are placed on a mould, and then resin is injected at high pressure. After some research regarding the best material systems (prepregs and braids) and suppliers, an element was designed (similar to a handlebar) to be constructed. The next step was to perform FEM simulations in order to determine what the best layup of the composite material was. The simulations were done for the prepreg material, and the obtained layup was transposed to the braids. The selected material was a prepreg with T700 carbon fibre (24K) and an epoxy resin system, for the blow-molding technique. For HP-RTM, carbon fibre elastic UD tubes and ± 45º braids were used, with both 3K and 6K filaments per tow, and the resin system was an epoxy as well. After the simulations for the prepreg material, the optimized layup was: [45°, -45°,45°, -45°,0°,0°]. For HP-RTM, the transposed layup was [ ± 45° (6k); 0° (6k); partial ± 45° (6k); partial ± 45° (6k); ± 45° (3k); ± 45° (3k)]. The mechanical tests showed that both elements can withstand the maximum load (in this case, 1000 N); however, the one produced through blow-molding can support higher loads (≈1300N against 1100N from HP-RTM). In what concerns to the fibre volume fraction (FVF), the HP-RTM element has a slightly higher value ( > 61% compared to 59% of the blow-molding technique). The optical microscopy has shown that both elements have a low void content. In conclusion, the elements produced using HP-RTM can compare to the ones produced through blow-molding, both in mechanical testing and in the visual aspect. Nevertheless, there is still space for improvement in the HP-RTM elements since the layup of the braids, and UD tubes could be optimized.

Keywords: HP-RTM, carbon composites, cycling, FEM

Procedia PDF Downloads 105
3747 Improving Trainings of Mineral Processing Operators Through Gamification and Modelling and Simulation

Authors: Pedro A. S. Bergamo, Emilia S. Streng, Jan Rosenkranz, Yousef Ghorbani

Abstract:

Within the often-hazardous mineral industry, simulation training has speedily gained appreciation as an important method of increasing site safety and productivity through enhanced operator skill and knowledge. Performance calculations related to froth flotation, one of the most important concentration methods, is probably the hardest topic taught during the training of plant operators. Currently, most training teach those skills by traditional methods like slide presentations and hand-written exercises with a heavy focus on memorization. To optimize certain aspects of these pieces of training, we developed “MinFloat”, which teaches the operation formulas of the froth flotation process with the help of gamification. The simulation core based on a first-principles flotation model was implemented in Unity3D and an instructor tutoring system was developed, which presents didactic content and reviews the selected answers. The game was tested by 25 professionals with extensive experience in the mining industry based on a questionnaire formulated for training evaluations. According to their feedback, the game scored well in terms of quality, didactic efficacy and inspiring character. The feedback of the testers on the main target audience and the outlook of the mentioned solution is presented. This paper aims to provide technical background on the construction of educational games for the mining industry besides showing how feedback from experts can more efficiently be gathered thanks to new technologies such as online forms.

Keywords: training evaluation, simulation based training, modelling, and simulation, froth flotation

Procedia PDF Downloads 93
3746 Beyond Replicating Linguistic Elements: Novel Concept Combinations in Multilingual Children

Authors: Xiao-lei Wang

Abstract:

The Novel Concept Combination (NCC) refers to the unique ability of multilingual children to creatively merge and integrate different linguistic and cultural elements to form innovative and original concepts. Children raised with more than one language often exhibit this skill in their daily communication, such as creating innovative metaphors that enrich their communication, showcasing their creativity in conveying the essence of their messages. This paper explores NCC abilities in multilingual children by focusing on two male trilingual siblings exposed to Chinese, French, and English from birth. The siblings were observed for 19 years in their daily context. Seventy-six hours of video-recorded data were used for this study (38 hours for each participant). A coding scheme developed by Wang et al. was employed to code the recorded data. The results suggest that these multilingual siblings proportionally increased their NCC skills over the years, emerging at age 3 and peaking at age 15. The characteristic of their NCC lies in their capacity to not merely replicate linguistic elements of different languages but to recreate, reshape, and reconstruct novel ideas in communication, enriching their interactions. The paper also addresses the educational implications for educators and parents, emphasizing the importance of valuing these novel ideas in everyday environments to encourage NCC development. This, in turn, contributes to cognitive and social development.

Keywords: multilingual children, novel concept combination, multilingual creativity, linguistic richness

Procedia PDF Downloads 39
3745 Finite Element Approximation of the Heat Equation under Axisymmetry Assumption

Authors: Raphael Zanella

Abstract:

This works deals with the finite element approximation of axisymmetric problems. The weak formulation of the heat equation under the axisymmetry assumption is established for continuous finite elements. The weak formulation is implemented in a C++ solver with implicit march-in-time. The code is verified by space and time convergence tests using a manufactured solution. The solving of an example problem with an axisymmetric formulation is compared to that with a full-3D formulation. Both formulations lead to the same result, but the code based on the axisymmetric formulation is much faster due to the lower number of degrees of freedom. This confirms the correctness of our approach and the interest in using an axisymmetric formulation when it is possible.

Keywords: axisymmetric problem, continuous finite elements, heat equation, weak formulation

Procedia PDF Downloads 166
3744 Correlation Volumic Shrinkage, Conversion Degree of Dental Composites

Authors: A. Amirouche, M. Mouzali, D. C. Watts

Abstract:

During polymerization of dental composites, the volumic shrinkage is related to the conversion degree. The variation of the volumic shrinkage (S max according to the degree of conversion CD.), was examined for the experimental composites: (BisGMA/TEGDMA): (50/50), (75/25), (25/75) mixed with seven radiopac fillers: La2O3, BaO, BaSO4, SrO, ZrO2 , SrZrO3 and BaZrO 3 with different contents in weight, from 0 to 80%. We notice that whatever the filler and the composition in monomers, Smax increases with the increase in CD. This variation is, linear in particular in the case of the fillers containing only one heavy metal, and that whatever the composition in monomers. For a given salt, the increase of BisGMA composition leads to significant increase of S max more pronounced than the increase in CD. The variation of ratio (S max / CD.) with the increase of filler content is negligible. However the fillers containing two types of heavy metals have more effect on the volumic shrinkage than on the degree of conversion. Whatever the composition in monomer, and the content of filler containing only one heavy atom, S max increases with the increase in CD. Nevertheless, S max is affected by the viscosity of the medium compared with CD. For high percentages of mineral fillers (≥ 70% in weight), the diagrams S max according to CD are deviated of the linearity, owing to the fact that S max is affected by the high percentage of fillers compared with CD. The number of heavy atoms influences directly correlation (S max / CD.). In the case of the two mineral fillers: SrZrO3 and BaZrO3 ratio (S max / CD) moves away from the proportionality. The linearity of the diagrams Smax according to CD is less regular, due to the viscosity of high content of BisGMA. The study of Smax and DC of four commercial composites are presented and compared to elaborate experimental composites.

Keywords: Dental composites, degree of conversion, volumic shrinkage, photopolymerization

Procedia PDF Downloads 347
3743 Durability of Slurry Infiltrated Fiber Concrete to Corrosion in Chloride Environment: An Experimental Study, Part I

Authors: M. F. Alrubaie, S. A. Salih, W. A. Abbas

Abstract:

Slurry infiltrated fiber concrete (SIFCON) is considered as a special type of high strength high-performance fiber reinforced concrete, extremely strong, and ductile. The objective of this study is to investigate the durability of SIFCON to corrosion in chloride environments. Six different SIFCON mixes were made in addition to two refinance mixes with 0% and 1.5% steel fiber content. All mixes were exposed to 10% chloride solution for 180 days. Half of the specimens were partially immersed in chloride solution, and the others were exposed to weekly cycles of wetting and drying in 10% chloride solution. The effectiveness of using corrosion inhibitors, mineral admixture, and epoxy protective coating were also evaluated as protective measures to reduce the effect of chloride attack and to improve the corrosion resistance of SIFCON mixes. Corrosion rates, half-cell potential, electrical resistivity, total permeability tests had been monitored monthly. The results indicated a significant improvement in performance for SIFCON mixes exposed to chloride environment, when using corrosion inhibitor or epoxy protective coating, whereas SIFCON mix contained mineral admixture (metakaolin) did not improve the corrosion resistance at the same level. The cyclic wetting and drying exposure were more aggressive to the specimens than the partial immersion in chloride solution although the observed surface corrosion for the later was clearer.

Keywords: chloride attack, chloride environments, corrosion inhibitor, corrosion resistance, durability, SIFCON, slurry infiltrated fiber concrete

Procedia PDF Downloads 104
3742 Investigation Studies of WNbMoVTa and WNbMoVTaCr₀.₅Al Refractory High Entropy Alloys as Plasma-Facing Materials

Authors: Burçak Boztemur, Yue Xu, Laima Luo, M. Lütfi Öveçoğlu, Duygu Ağaoğulları

Abstract:

Tungsten (W) is used chiefly as plasma-facing material. However, it has some problems, such as brittleness after plasma exposure. High-entropy alloys (RHEAs) are a new opportunity for this deficiency. So, the neutron shielding behavior of WNbMoVTa and WNbMoVTaCr₀.₅Al compositions were examined against He⁺ irradiation in this study. The mechanical and irradiation properties of the WNbMoVTa base composition were investigated by adding the Al and Cr elements. The mechanical alloying (MA) for 6 hours was applied to obtain RHEA powders. According to the X-ray diffraction (XRD) method, the body-centered cubic (BCC) phase and NbTa phase with a small amount of WC impurity that comes from vials and balls were determined after 6 h MA. Also, RHEA powders were consolidated with the spark plasma sintering (SPS) method (1500 ºC, 30 MPa, and 10 min). After the SPS method, (Nb,Ta)C and W₂C₀.₈₅ phases were obtained with the decomposition of WC and stearic acid that is added during MA based on XRD results. Also, the BCC phase was obtained for both samples. While the Al₂O₃ phase with a small intensity was seen for the WNbMoVTaCr₀.₅Al sample, the Ta₂VO₆ phase was determined for the base sample. These phases were observed as three different regions according to scanning electron microscopy (SEM). All elements were distributed homogeneously on the white region by measuring an electron probe micro-analyzer (EPMA) coupled with a wavelength dispersive spectroscope (WDS). Also, the grey region of the WNbMoVTa sample was rich in Ta, V, and O elements. However, the amount of Al and O elements was higher for the grey region of the WNbMoVTaCr₀.₅Al sample. The high amount of Nb, Ta, and C elements were determined for both samples. Archimedes’ densities that were measured with alcohol media were closer to the theoretical densities of RHEAs. These values were important for the microhardness and irradiation resistance of compositions. While the Vickers microhardness value of the WNbMoVTa sample was measured as ~11 GPa, this value increased to nearly 13 GPa with the WNbMoVTaCr₀.₅Al sample. These values were compatible with the wear behavior. The wear volume loss was decreased to 0.16×10⁻⁴ from 1.25×10⁻⁴ mm³ by the addition of Al and Cr elements to the WNbMoVTa. The He⁺ irradiation was conducted on the samples to observe surface damage. After irradiation, the XRD patterns were shifted to the left because of defects and dislocations. He⁺ ions were infused under the surface, so they created the lattice expansion. The peak shifting of the WNbMoVTaCr₀.₅Al sample was less than the WNbMoVTa base sample, thanks to less impact. A small amount of fuzz was observed for the base sample. This structure was removed and transformed into a wavy structure with the addition of Cr and Al elements. Also, the deformation hardening was actualized after irradiation. A lower amount of hardening was obtained with the WNbMoVTaCr₀.₅Al sample based on the changing microhardness values. The surface deformation was decreased in the WNbMoVTaCr₀.₅Al sample.

Keywords: refractory high entropy alloy, microhardness, wear resistance, He⁺ irradiation

Procedia PDF Downloads 48
3741 Comparison of Bone Mineral Density of Lumbar Spines between High Level Cyclists and Sedentary

Authors: Mohammad Shabani

Abstract:

The physical activities depending on the nature of the mechanical stresses they induce on bone sometimes have brought about different results. The purpose of this study was to compare bone mineral density (BMD) of the lumbar spine between the high-level cyclists and sedentary. Materials and Methods: In the present study, 73 cyclists senior (age: 25.81 ± 4.35 years; height: 179.66 ± 6.31 cm; weight: 71.55 ± 6.31 kg) and 32 sedentary subjects (age: 28.28 ± 4.52 years; height: 176.56 ± 6.2 cm; weight: 74.47 ± 8.35 kg) participated voluntarily. All cyclists belonged to the different teams from the International Cycling Union and they trained competitively for 10 years. BMD of the lumbar spine of the subjects was measured using DXA X-ray (Lunar). Descriptive statistics calculations were performed using computer software data processing (Statview 5, SAS Institute Inc. USA). The comparison of two independent distributions (BMD high level cyclists and sedentary) was made by the Student T Test standard. Probability 0.05 (p≤0 / 05) was adopted as significance. Results: The result of this study showed that the BMD values of the lumbar spine of sedentary subjects were significantly higher for all measured segments. Conclusion and Discussion: Cycling is firstly a common sport and on the other hand endurance sport. It is now accepted that weight bearing exercises have an osteogenic effect compared to non-weight bearing exercises. Thus, endurance sports such as cycling, compared to the activities imposing intense force in short time, seem not to really be osteogenic. Therefore, it can be concluded that cycling provides low stimulates osteogenic because of specific biomechanical forces of the sport and its lack of impact.

Keywords: BMD, lumbar spine, high level cyclist, cycling

Procedia PDF Downloads 246