Search results for: milk yield
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2740

Search results for: milk yield

610 Parametric Appraisal of Robotic Arc Welding of Mild Steel Material by Principal Component Analysis-Fuzzy with Taguchi Technique

Authors: Amruta Rout, Golak Bihari Mahanta, Gunji Bala Murali, Bibhuti Bhusan Biswal, B. B. V. L. Deepak

Abstract:

The use of industrial robots for performing welding operation is one of the chief sign of contemporary welding in these days. The weld joint parameter and weld process parameter modeling is one of the most crucial aspects of robotic welding. As weld process parameters affect the weld joint parameters differently, a multi-objective optimization technique has to be utilized to obtain optimal setting of weld process parameter. In this paper, a hybrid optimization technique, i.e., Principal Component Analysis (PCA) combined with fuzzy logic has been proposed to get optimal setting of weld process parameters like wire feed rate, welding current. Gas flow rate, welding speed and nozzle tip to plate distance. The weld joint parameters considered for optimization are the depth of penetration, yield strength, and ultimate strength. PCA is a very efficient multi-objective technique for converting the correlated and dependent parameters into uncorrelated and independent variables like the weld joint parameters. Also in this approach, no need for checking the correlation among responses as no individual weight has been assigned to responses. Fuzzy Inference Engine can efficiently consider these aspects into an internal hierarchy of it thereby overcoming various limitations of existing optimization approaches. At last Taguchi method is used to get the optimal setting of weld process parameters. Therefore, it has been concluded the hybrid technique has its own advantages which can be used for quality improvement in industrial applications.

Keywords: robotic arc welding, weld process parameters, weld joint parameters, principal component analysis, fuzzy logic, Taguchi method

Procedia PDF Downloads 158
609 Enhanced Production of Endo-β-1,4-Xylanase from a Newly Isolated Thermophile Geobacillus stearothermophilus KIBGE-IB29 for Prospective Industrial Applications

Authors: Zainab Bibi, Afsheen Aman, Shah Ali Ul Qader

Abstract:

Endo-β-1,4-xylanases [EC 3.2.1.8] are one of the major groups of enzymes that are involved in degradation process of xylan and have several applications in food, textile and paper processing industries. Due to broad utility of endo-β-1,4-xylanase, researchers are focusing to increase the productivity of this hydrolase from various microbial species. Harsh industrial condition, faster reaction rate and efficient hydrolysis of xylan with low risk of contamination are critical requirements of industry that can be fulfilled by synthesizing the enzyme with efficient properties. In the current study, a newly isolated thermophile Geobacillus stearothermophilus KIBGE-IB29 was used in order to attain the maximum production of endo-1,4-β-xylanase. Bacterial culture was isolated from soil, collected around the blast furnace site of a steel processing mill, Karachi. Optimization of various nutritional and physical factors resulted the maximum synthesis of endo-1,4-β-xylanase from a thermophile. High production yield was achieved at 60°C and pH-6.0 after 24 hours of incubation period. Various nitrogen sources viz. peptone, yeast extract and meat extract improved the enzyme synthesis with 0.5%, 0.2% and 0.1% optimum concentrations. Dipotassium hydrogen phosphate (0.25%), potassium dihydrogen phosphate (0.05%), ammonium sulfate (0.05%) and calcium chloride (0.01%) were noticed as valuable salts to improve the production of enzyme. The thermophilic nature of isolate, with its broad pH stability profile and reduced fermentation time indicates its importance for effective xylan saccharification and for large scale production of endo-1,4-β-xylanase.

Keywords: geobacillus, optimization, production, xylanase

Procedia PDF Downloads 292
608 Plasma-Assisted Nitrogen Fixation for the Elevation of Seed Germination and Plant Growth

Authors: Pradeep Lamichhane

Abstract:

Plasma-assisted nitrogen fixation is a process by which atomic nitrogen generated by plasma is converted into ammonia (NH₃) or related nitrogenous compounds. Nitrogen fixation is essential to plant because fixed inorganic nitrogen compounds are required to them for the biosynthesis of all nitrogen-containing organic compounds, such as amino acids and proteins, nucleoside triphosphates and nucleic acid. Most of our atmosphere is composed of nitrogen; however, the plant cannot absorb it directly from the air ambient. As a portion of the nitrogen cycle, nitrogen fixation fundamental for agriculture and the manufacture of fertilizer. In this study, plasma-assisted nitrogen fixation was performed by exposing a non-thermal atmospheric pressure nitrogen plasma generated a sinusoidal power supply (with an applied voltage of 10 kV and frequency of 33 kHz) on a water surface. Besides this, UV excitation of water molecules at the water interface was also done in order to disassociate water. Hydrogen and hydroxyl radical obtained from this UV photolysis electrochemically combine with nitrogen atom obtained from plasma. As a result of this, nitrogen fixation on plasma-activated water (PAW) significantly enhanced. The amount of nitrogen-based products like NOₓ and ammonia (NH₃) synthesized by this combined process of UV and plasma are 1.4 and 2.8 times higher than those obtained by plasma alone. In every 48 hours, 20 ml of plasma-activated water (pH≈3.15) for 10 minutes with moderate concentrations of NOₓ, NH₃ and hydrogen peroxide (H₂O₂) was irrigated on each corn plant (Zea Mays). It was found that the PAW has shown a significant impact on seeds germination rate and improved seedling growth. The result obtained from this experiment suggested that crop yield could increase in a short duration. In the future, this experiment could open boundless opportunities in plasma agriculture to mobilize nitrogen because nitrite, nitrate, and ammonia are more suitable for plant uptake.

Keywords: plasma-assisted nitrogen fixation, nitrogen plasma, UV excitation of water, ammonia synthesis

Procedia PDF Downloads 106
607 Novel Bioinspired Design to Capture Smoky CO2 by Reactive Absorption with Aqueous Scrubber

Authors: J. E. O. Hernandez

Abstract:

In the next 20 years, energy production by burning fuels will increase and so will the atmospheric concentration of CO2 and its well-known threats to life on Earth. The technologies available for capturing CO2 are still dubious and this keeps fostering an interest in bio-inspired approaches. The leading one is the application of carbonic anhydrase (CA) –a superfast biocatalyst able to convert up to one million molecules of CO2 into carbonates in water. However, natural CA underperforms when applied to real smoky CO2 in chimneys and, so far, the efforts to create superior CAs in the lab rely on screening methods running under pristine conditions at the micro level, which are far from resembling those in chimneys. For the evolution of man-made enzymes, selection rather than screening would be ideal but this is challenging because of the need for a suitable artificial environment that is also sustainable for our society. Herein we present the stepwise design and construction of a bioprocess (from bench-scale to semi-pilot) for evolutionary selection experiments. In this bioprocess, reaction and adsorption took place simultaneously at atmospheric pressure in a spray tower. The scrubbing solution was fed countercurrently by reusing municipal pressure and it was mainly prepared with water, carbonic anhydrase and calcium chloride. This bioprocess allowed for the enzymatic carbonation of smoky CO2; the reuse of process water and the recovery of solid carbonates without cooling of smoke, pretreatments, solvent amines and compression of CO2. The average yield of solid carbonates was 0.54 g min-1 or 12-fold the amount produced in serum bottles at lab bench scale. This bioprocess could be used as a tailor-made environment for driving the selection of superior CAs. The bioprocess and its match CA could be sustainably used to reduce global warming by CO2 emissions from exhausts.

Keywords: biological carbon capture and sequestration, carbonic anhydrase, directed evolution, global warming

Procedia PDF Downloads 170
606 Mitigating Ruminal Methanogenesis Through Genomic and Transcriptomic Approaches

Authors: Muhammad Adeel Arshad, Faiz-Ul Hassan, Yanfen Cheng

Abstract:

According to FAO, enteric methane (CH4) production is about 44% of all greenhouse gas emissions from the livestock sector. Ruminants produce CH4 as a result of fermentation of feed in the rumen especially from roughages which yield more CH4 per unit of biomass ingested as compared to concentrates. Efficient ruminal fermentation is not possible without abating CO2 and CH4. Methane abatement strategies are required to curb the predicted rise in emissions associated with greater ruminant production in future to meet ever increasing animal protein requirements. Ecology of ruminal methanogenesis and avenues for its mitigation can be identified through various genomic and transcriptomic techniques. Programs such as Hungate1000 and the Global Rumen Census have been launched to enhance our understanding about global ruminal microbial communities. Through Hungate1000 project, a comprehensive reference set of rumen microbial genome sequences has been developed from cultivated rumen bacteria and methanogenic archaea along with representative rumen anaerobic fungi and ciliate protozoa cultures. But still many species of rumen microbes are underrepresented especially uncultivable microbes. Lack of sequence information specific to the rumen's microbial community has inhibited efforts to use genomic data to identify specific set of species and their target genes involved in methanogenesis. Metagenomic and metatranscriptomic study of entire microbial rumen populations offer new perspectives to understand interaction of methanogens with other rumen microbes and their potential association with total gas and methane production. Deep understanding of methanogenic pathway will help to devise potentially effective strategies to abate methane production while increasing feed efficiency in ruminants.

Keywords: Genome sequences, Hungate1000, methanogens, ruminal fermentation

Procedia PDF Downloads 112
605 Design of a Small Mobile PV Driven RO Water Desalination Plant to be Deployed at the North West Coast of Egypt

Authors: Hosam A. Shawky, Amr A. Abdel Fatah, Moustafa M. S. Abo ElFad, Abdel Hameed M. El-Aassar

Abstract:

Water desalination projects based on reverse osmosis technology are being introduced in Egypt to combat drinking water shortage in remote areas. Reverse osmosis (RO) desalination is a pressure driven process. This paper focuses on the design of an integrated brackish water and seawater RO desalination and solar Photovoltaic (PV) technology. A small Mobile PV driven RO desalination plant prototype without batteries is designed and tested. Solar-driven reverse osmosis desalination can potentially break the dependence of conventional desalination on fossil fuels, reduce operational costs, and improve environmental sustainability. Moreover, the innovative features incorporated in the newly designed PV-RO plant prototype are focusing on improving the cost effectiveness of producing drinkable water in remote areas. This is achieved by maximizing energy yield through an integrated automatic single axis PV tracking system with programmed tilting angle adjustment. An autonomous cleaning system for PV modules is adopted for maximizing energy generation efficiency. RO plant components are selected so as to produce 4-5 m3/day of potable water. A basic criterion in the design of this PV-RO prototype is to produce a minimum amount of fresh water by running the plant during peak sun hours. Mobility of the system will provide potable water to isolated villages and population as well as ability to provide good drinking water to different number of people from any source that is not drinkable.

Keywords: design, reverse osmosis, photovoltaic, energy, desalination, Egypt

Procedia PDF Downloads 546
604 Effect of Ultrasound-Assisted Pretreatment on Saccharification of Spent Coffee Grounds

Authors: Shady S. Hassan, Brijesh K. Tiwari, Gwilym A. Williams, Amit K. Jaiswal

Abstract:

EU is known as the destination with the highest rate of the coffee consumption per capita in the world. Spent coffee grounds (SCG) are the main by-product of coffee brewing. SCG is either disposed as a solid waste or employed as compost, although the polysaccharides from such lignocellulosic biomass might be used as feedstock for fermentation processes. However, SCG as a lignocellulose have a complex structure and pretreatment process is required to facilitate an efficient enzymatic hydrolysis of carbohydrates. However, commonly used pretreatment methods, such as chemical, physico-chemical and biological techniques are still insufficient to meet optimal industrial production requirements in a sustainable way. Ultrasound is a promising candidate as a sustainable green pretreatment solution for lignocellulosic biomass utilization in a large scale biorefinery. Thus, ultrasound pretreatment of SCG without adding harsh chemicals investigated as a green technology to enhance enzyme hydrolysis. In the present work, ultrasound pretreatment experiments were conducted on SCG using different ultrasound frequencies (25, 35, 45, 130, and 950 kHz) for 60 min. Regardless of ultrasound power, low ultrasound frequency is more effective than high ultrasound frequency in pretreatment of biomass. Ultrasound pretreatment of SCG (at ultrasound frequency of 25 kHz for 60 min) followed by enzymatic hydrolysis resulted in total reducing sugars of 56.1 ± 2.8 mg/g of biomass. Fourier transform Infrared Spectroscopy (FTIR) was employed to investigate changes in functional groups of biomass after pretreatment, while high-performance liquid chromatography (HPLC) was employed for determination of glucose. Pretreatment of lignocellulose by low frequency ultrasound in water only was found to be an effective green approach for SCG to improve saccharification and glucose yield compared to native biomass. Pretreatment conditions will be optimized, and the enzyme hydrolysate will be used as media component substitute for the production of ethanol.

Keywords: lignocellulose, ultrasound, pretreatment, spent coffee grounds

Procedia PDF Downloads 291
603 EcoMush: Mapping Sustainable Mushroom Production in Bangladesh

Authors: A. A. Sadia, A. Emdad, E. Hossain

Abstract:

The increasing importance of mushrooms as a source of nutrition, health benefits, and even potential cancer treatment has raised awareness of the impact of climate-sensitive variables on their cultivation. Factors like temperature, relative humidity, air quality, and substrate composition play pivotal roles in shaping mushroom growth, especially in Bangladesh. Oyster mushrooms, a commonly cultivated variety in this region, are particularly vulnerable to climate fluctuations. This research explores the climatic dynamics affecting oyster mushroom cultivation and, presents an approach to address these challenges and provides tangible solutions to fortify the agro-economy, ensure food security, and promote the sustainability of this crucial food source. Using climate and production data, this study evaluates the performance of three clustering algorithms -KMeans, OPTICS, and BIRCH- based on various quality metrics. While each algorithm demonstrates specific strengths, the findings provide insights into their effectiveness for this specific dataset. The results yield essential information, pinpointing the optimal temperature range of 13°C-22°C, the unfavorable temperature threshold of 28°C and above, and the ideal relative humidity range of 75-85% with the suitable production regions in three different seasons: Kharif-1, 2, and Robi. Additionally, a user-friendly web application is developed to support mushroom farmers in making well-informed decisions about their cultivation practices. This platform offers valuable insights into the most advantageous periods for oyster mushroom farming, with the overarching goal of enhancing the efficiency and profitability of mushroom farming.

Keywords: climate variability, mushroom cultivation, clustering techniques, food security, sustainability, web-application

Procedia PDF Downloads 33
602 Characterization of Common Maize Ear Rot Pathogens in Ilesa Nigeria and Their Potential Control Using Selected Arbuscular Mycorrhizal Fungi

Authors: Olumayowa M. Olowe, Michael D. Asemoloye Odunayo J. Olawuyi, Hilda Vasanthakaalam

Abstract:

Poor management of maize ear rot caused by fungal infection in Nigeria affected the quantity and quality of maize. This study, therefore, aims at characterizing and controlling Fusarium strains using arbuscular mycorrhizal fungi. Maize ear showing rot symptoms were obtained from some selected farms located at Ilesa East and West using random sampling technique. Isolation of Fusarium pathogen from infected maize grain was done using direct pour plate method on potato dextrose agar (PDA) and was characterized based on morphological and molecular ITS-amplification methods. The reaction of PVASYN8F2, T2LCOMP1STR SYN-W-1, and T2LCOMP4 maize varieties, to the Fusarium ear rot pathogens and biocontrol efficacy of the mycorrhizal fungi were assessed on growth, yield, agronomic parameters and symptoms observed. The strains; olowILH1 and olowILH2 identified as Fusarium napiforme were the most dominant and virulent pathogens associated with the maize. They showed genetic similarity with documented ear rot pathogens on NCBI with accession numbers Fusarium proliferatum KT224027, KT224023, and Fusarium sp AY237110. They both exhibited varying inhibitory effects on the three maize varieties compare to control (uninfected plant) which had better growth characteristics. It was also observed that strain olowILH1 was more virulent than olowILH2. T2LCOMP4 was generally more susceptible to both fungal strains compared to the other two maize (T2LCOMP1STR SYN-W-1 and T2LCOMP4 ). In all, strain olowILH1 was more virulent than olowILH2, and Glomus clarum had higher inhibitory pathogenic effect against Fusarium strains compared to G. deserticola.

Keywords: arbuscular mycorrhizal fungi, disease management, Fusarium strains, identification

Procedia PDF Downloads 135
601 Effect of Botanical and Synthetic Insecticide on Different Insect Pests and Yield of Pea (Pisum sativum)

Authors: Muhammad Saeed, Nazeer Ahmed, Mukhtar Alam, Fazli Subhan, Muhammad Adnan, Fazli Wahid, Hidayat Ullah, Rafiullah

Abstract:

The present experiment evaluated different synthetic insecticides against Jassid (Amrasca devastations) on pea crop at Agriculture Research Institute Tarnab, Peshawar Khyber Pakhtunkhwa. The field was prepared to cultivate okra crop in Randomized Complete Block (RCB) Design having six treatments with four replications. Plant to plant and row to row distance was kept at 15 cm and 30 cm, respectively. Pre and post spray data were recorded randomly from the top, middle and bottom leaves of five selected plants. Five synthetic insecticides, namely Confidor (Proponil), a neonicotinoid insecticide, Chlorpyrifos (chlorinated organophosphate (OP) insecticide), Lazer (dinitroaniline) (Pendimethaline), Imidacloprid (neonicotinoids insecticide) and Thiodan (Endosulfan, organochlorine insecticide), were used against infestation of aphids, pea pod borer, stem fly, leaf minor and pea weevil. Each synthetic insecticide showed significantly more effectiveness than control (untreated plots) but was non-significant among each other. The lowest population density was recorded in the plot treated with synthetic insecticide i.e. Confidor (0.6175 liter.ha-1) (4.24 aphids plant⁻¹) which is followed by Imidacloprid (0.6175 liter.ha⁻¹) (4.64 pea pod borer plant⁻¹), Thiodan (1.729 liter.ha⁻¹) (4.78 leaf minor plant⁻¹), Lazer (2.47 liter.ha-1) (4.91 pea weevil plant⁻¹), Chlorpyrifos (1.86 liter.ha⁻¹) (5.11 stem fly plant⁻¹), respectively while the highest population was recorded from the control plot. It is concluded from the data that the residual effect decreases with time after the application of spray, which may be less dangerous to the environment and human beings and can effectively manage this dread.

Keywords: okra crop, jassids, Confidor, imidacloprid, chlorpyrifos, laser, Thiodan

Procedia PDF Downloads 48
600 Reuse of Wastewater After Pretreatment Under Teril and Sand in Bechar City

Authors: Sara Seddiki, Maazouzi Abdelhak

Abstract:

The main objective of this modest work is to follow the physicochemical and bacteriological evolution of the wastewater from the town of Bechar subjected to purification by filtration according to various local supports, namely Sable and Terrill by reducing nuisances that undergo the receiving environment (Oued Bechar) and therefore make this water source reusable in different areas. The study first made it possible to characterize the urban wastewater of the Bechar wadi, which presents an environmental threat, thus allowing an estimation of the pollutant load, the chemical oxygen demand COD (145 mg / l) and the biological oxygen demand BOD5 (72 mg / l) revealed that these waters are less biodegradable (COD / BOD5 ratio = 0.62), have a fairly high conductivity (2.76 mS/cm), and high levels of mineral matter presented by chlorides and sulphates 390 and 596.1 mg / l respectively, with a pH of 8.1. The characterization of the sand dune (Beni Abbes) shows that quartz (97%) is the most present mineral. The granular analysis allowed us to determine certain parameters like the uniformity coefficient (CU) and the equivalent diameter, and scanning electron microscope (SEM) observations and X-ray analysis were performed. The study of filtered wastewater shows satisfactory and very encouraging treatment results, with complete elimination of total coliforms and streptococci and a good reduction of total aerobic germs in the sand and clay-sand filter. A good yield has been reported in the sand Terrill filter for the reduction of turbidity. The rates of reduction of organic matter in terms of the biological oxygen demand, in chemical oxygen demand recorded, are of the order of 60%. The elimination of sulphates is 40% for the sand filter.

Keywords: urban wastewater, filtration, bacteriological and physicochemical parameters, sand, Terrill, Oued Bechar

Procedia PDF Downloads 56
599 Fungal Flocculation of Single Algae Species and Mixed Algal Communities

Authors: Digby Wrede, Stephen Gray, Syed Hussainy

Abstract:

Microalgae are extremely useful organisms but notoriously hard to harvest. The use of fungal pellets has been found to be an efficient way to flocculate numerous species of algae. However, only the flocculation of single species of algae has been investigated. Algae are generally found in complex communities in the environment comprising of numerous species of algae ranging from simple single cell algae such as Chlorella to more complex or communal algae such as Dictyosphaerium. This study investigated the flocculation capabilities of Aspergillus oryzae to flocculate four species of algae; Chlorella vulgaris, Scenedesmus quadricauda, Scenedesmus acuminatus and Dictyosphaerium sp., and the algal communities in four different types of domestic effluent from a lagoon-based treatment plant; primary effluent, secondary effluent and the high rate algal pond effluent at a natural and at a lowered pH level. Spectrophotometry was used to measure the changes in algal population. C. vulgaris, S. acuminatus and S. quadricauda, had over 90% reduction of algal in suspension after 24 hours. Dictyosphaerium sp. showed a little to no removal after 24 hours. The primary, secondary, and natural pH level HRAP had roughly a 50% removal after 24 hours, the HRAP which was grown at a lower pH level had over a 90% removal after 24 hours. pH has been shown previously to affect fungal flocculation. Fungal and algae pellets have been shown to be able to treat wastewater and can be converted to biofuels in a very similar method to how algae are currently converted. The mixture of both fungi and algae has also been shown to provide a higher yield of oils then separately and are able to more efficiently treat wastewater then algae or fungi by themselves.

Keywords: algae harvesting, Aspergillus oryzae, fungal flocculation, wastewater treatment

Procedia PDF Downloads 133
598 Innovative Technologies for Aeration and Feeding of Fish in Aquaculture with Minimal Impact on the Environment

Authors: Vasile Caunii, Andreea D. Serban, Mihaela Ivancia

Abstract:

The paper presents a new approach in terms of the circular economy of technologies for feeding and aeration of accumulations and water basins for fish farming and aquaculture. Because fish is and will be one of the main foods on the planet, the use of bio-eco-technologies is a priority for all producers. The technologies proposed in the paper want to reduce by a substantial percentage the costs of operation of ponds and water accumulation, using non-polluting technologies with minimal impact on the environment. The paper proposes two innovative, intelligent systems, fully automated that use a common platform, completely eco-friendly. One system is intended to aerate the water of the fish pond, and the second is intended to feed the fish by dispersing an optimal amount of fodder, depending on population size, age and habits. Both systems use a floating platform, regenerative energy sources, are equipped with intelligent and innovative systems, and in addition to fully automated operation, significantly reduce the costs of aerating water accumulations (natural or artificial) and feeding fish. The intelligent system used for feeding, in addition, to reduce operating costs, optimizes the amount of food, thus preventing water pollution and the development of bacteria, microorganisms. The advantages of the systems are: increasing the yield of fish production, these are green installations, with zero pollutant emissions, can be arranged anywhere on the water surface, depending on the user's needs, can operate autonomously or remotely controlled, if there is a component failure, the system provides the operator with accurate data on the issue, significantly reducing maintenance costs, transmit data about the water physical and chemical parameters.

Keywords: bio-eco-technologies, economy, environment, fish

Procedia PDF Downloads 115
597 Increasing Photosynthetic H2 Production by in vivo Expression of Re-Engineered Ferredoxin-Hydrogenase Fusion Protein in the Green Alga Chlamydomonas reinhardtii

Authors: Dake Xiong, Ben Hankamer, Ian Ross

Abstract:

The most urgent challenge of our time is to replace the depleting resources of fossil fuels by sustainable environmentally friendly alternatives. Hydrogen is a promising CO2-neutral fuel for a more sustainable future especially when produced photo-biologically. Hydrogen can be photosynthetically produced in unicellular green alga like Chlamydomonas reinhardtii, catalysed by the inducible highly active and bidirectional [FeFe]-hydrogenase enzymes (HydA). However, evolutionary and physiological constraints severely restrict the hydrogen yield of algae for industrial scale-up, mainly due to its competition among other metabolic pathways on photosynthetic electrons. Among them, a major challenge to be resolved is the inferior competitiveness of hydrogen production (catalysed by HydA) with NADPH production (catalysed by ferredoxin-NADP+-reductase (FNR)), which is essential for cell growth and takes up ~95% of photosynthetic electrons. In this work, the in vivo hydrogen production efficiency of mutants with ferredoxin-hydrogenase (Fd*-HydA1*) fusion protein construct, where the electron donor ferredoxin (Fd*) is fused to HydA1* and expressed in the model organism C. reinhardtii was investigated. Once Fd*-HydA1* fusion gene is expressed in algal cells, the fusion enzyme is able to draw the redistributed photosynthetic electrons and use them for efficient hydrogen production. From preliminary data, mutants with Fd*-HydA1* transgene showed a ~2-fold increase in the photosynthetic hydrogen production rate compared with its parental strain, which only possesses the native HydA in vivo. Therefore, a solid method of having more efficient hydrogen production in microalgae can be achieved through the expression of the synthetic enzymes.

Keywords: Chlamydomonas reinhardtii, ferredoxin, fusion protein, hydrogen production, hydrogenase

Procedia PDF Downloads 234
596 Synthesis of Pd Nanoparticles Confined in Graphene Oxide Framework as Nano Catalyst with Improved Activity and Recyclability in Suzuki-Miyaura Cross-Coupling Reaction

Authors: Thuy Phuong Nhat Tran, Ashutosh Thakur, Toshiaki Taniike

Abstract:

Recently, covalently linked graphene oxide frameworks (GOFs) have attracted considerable attention in gas absorbance and water purification as well-defined microporous materials. In spite of their potential advantages such as a controllable pore dimension, adjustable hydrophobicity, and structural stability, these materials have been scarcely employed in heterogeneous catalysis. Here we demonstrate a novel and facile method to synthesize Pd nanoparticles (NPs) confined in a GOF (Pd@GOF). The GOF with uniform interlayer space was obtained by the intercalation of diboronic acid between graphene oxide layers. It was found that Pd NPs were generated inside the graphitic gallery spaces of the GOF, and thus, formed Pd NPs were well-dispersed with a narrow particle size distribution. The synthesized Pd@GOF emerged as an efficient nanocatalyst based on its superior performance (product yield and recyclability) toward Suzuki-Miyaura cross-coupling reaction in both polar and apolar solvents, which has been hardly observed for previously reported graphene-based Pd nanocatalysts. Furthermore, the rational comparison of the catalytic performance between two kinds of Pd@GOF (Pd NPs encapsulated in a diboronic ester-intercalated GOF and in a monoboronic ester-intercalated GOF) firmly confirmed the essential role of a rigid framework design in the stabilization of Pd NPs. Based on these results, the covalently assembled GOF was proposed as a promising scaffold for hosting noble metal NPs to construct desired metal@GOF nanocatalysts with improved activity and durability.

Keywords: graphene oxide framework, palladium nanocatalyst, pore confinement, Suzuki-Miyaura cross-coupling reaction

Procedia PDF Downloads 116
595 Development and Pre-clinical Evaluation of New ⁶⁴Cu-NOTA-Folate Conjugates for PET Imaging of Folate Receptor-Positive Tumors

Authors: Norah Al Hokbany, Ibrahim Al Jammaz, Basem Al Otaibi, Yousif Al Malki, Subhani M. Okarvi

Abstract:

Objective: The folate receptor is over-expressed in a wide variety of human tumors. Conjugates of folate have been shown to be selectively taken up by tumor cells via the folate receptor. In an attempt to develop new folate radiotracers with favorable biochemical properties for detecting folate receptor-positive cancers. Methods: we synthesized ⁶⁴Cu-NOTA- and ⁶⁴Cu-NOTAM-folate conjugates using a straightforward and simple one-step reaction. Radiochemical yields were greater than 95% (decay-corrected) with a total synthesis time of less than 20 min. Results: Radiochemical purities were always greater than 98% without high-performance liquid chromatography (HPLC) purification. These synthetic approaches hold considerable promise as a rapid and simple method for ⁶⁴Cu-folate conjugate preparation with high radiochemical yield in a short synthesis time. In vitro tests on the KB cell line showed that significant amounts of the radio conjugates were associated with cell fractions. Bio-distribution studies in nude mice bearing human KB xenografts demonstrated a significant tumor uptake and favorable bio-distribution profile for ⁶⁴Cu-NOTA- and ⁶⁴Cu-NOTAM-folate conjugate. The uptake in the tumors was blocked by the excess injection of folic acid, suggesting a receptor-mediated process. Conclusion: These results demonstrate that the ⁶⁴Cu-NOTAM-folate conjugate may be useful as a molecular probe for the detection and staging of folate receptor-positive cancers, such as ovarian cancer and their metastasis, as well as monitoring tumor response to treatment.

Keywords: folate, receptor, tumor imaging, ⁶⁴Cu-NOTA-folate, PET

Procedia PDF Downloads 83
594 Phenotypic and Symbiotic Characterization of Rhizobia Isolated from Faba Bean (Vicia faba L.) in Moroccan Soils

Authors: Y. Hajjam, I. T. Alami, S. M. Udupa, S. Cherkaoui

Abstract:

Faba bean (Vicia faba L.) is an important food legume crop in Morocco. It is mainly used as human food and feed for animals. Faba bean also plays an important role in cereal-based cropping systems, when rotated with cereals it improves soil fertility by fixing N2 in root nodules mediated by Rhizobium. Both faba bean and its biological nitrogen fixation symbiotic bacterium Rhizobium are affected by different stresses such as: salinity, drought, pH, heavy metal, and the uptake of inorganic phosphate compounds. Therefore, the aim of the present study was to evaluate the phenotypic diversity among the faba bean rhizobial isolates and to select the tolerant strains that can fix N2 under environmental constraints for inoculation particularly for affected soils, in order to enhance the productivity of faba bean and to improve soil fertility. Result have shown that 62% of isolates were fast growing with the ability of producing acids compounds , while 38% of isolates are slow growing with production of alkalins. Moreover, 42.5% of these isolates were able to solubilize inorganic phosphate Ca3(PO4)2 and the index of solubilization was ranged from 2.1 to 3.0. The resistance to extreme pH, temperature, water stress heavy metals and antibiotics lead us to classify rhizobial isolates into different clusters. Finally, the authentication test under greenhouse conditions showed that 55% of the rhizobial isolates could induce nodule formation on faba bean (Vicia faba L.) under greenhouse experiment. This phenotypic characterization may contribute to improve legumes and non legumes crops especially in affected soils and also to increase agronomic yield in the dry areas.

Keywords: rhizobia, vicia faba, phenotypic characterization, nodule formation, environmental constraints

Procedia PDF Downloads 224
593 Effects of Ascophyllum nodosum in Tomato in the Tropical Caribbean Climate: Effects and Molecular Insights into Mechanisms

Authors: Omar Ali, Adesh Ramsubhag, Jayaraj Jayaraman

Abstract:

Seaweed extracts have been reported as plant biostimulants which could be a safer, organic alternative to harsh pesticides. The incentive to use seaweed-based biostimulants is becoming paramount in sustainable agriculture. The current study, therefore, screened a commercial extract of A. nodosum in tomatoes, cultivated in Trinidad to showcase the multiple beneficial effects. Foliar treatment with an A. nodosum commercial extract led to significant increases in fruit yield and a significant reduction of incidence of bacterial spots and early blight diseases under both greenhouse and field conditions. Investigations were carried out to reveal the possible mechanisms of action of this biostimulant through defense enzyme assays and transcriptome profiling via RNA sequencing of tomato. Studies into disease control mechanisms by A. nodosum showed that the extract stimulated the activity of enzymes such as peroxidase, phenylalanine ammonia-lyase, chitinase, polyphenol oxidase, and β-1,3-glucanase. Additionally, the transcriptome survey revealed the upregulation and enrichment of genes responsible for the biosynthesis of growth hormones, defense enzymes, PR proteins and defense-related secondary metabolites, as well as genes involved in the nutrient mobilization, photosynthesis and primary and secondary metabolic pathways. The results of the transcriptome study also demonstrated the cross-talks between growth and defense responses, confirming the bioelicitor and biostimulant value of seaweed extracts in plants. These effects could potentially implicate the benefits of seaweed extract and validate its usage in sustainable crop production.

Keywords: A. nodosum, biostimulants, elicitor, enzymes, growth responses, seaweeds, tomato, transcriptome analysis

Procedia PDF Downloads 138
592 Antioxidant Activity of the Methanolic Extract and Antimicrobial Activity of the Essential Oil of Rosmarinus officinalis L. Grown in Algeria

Authors: Nassim Belkacem, Amina Azzam, Dalila Haouchine, Kahina Bennacer, Samira Soufit

Abstract:

Objective: To evaluate the antioxidant activity of the methanolic extract along with the antimicrobial activity of the essential oil of the aerial parts of Rosmarinus officinalis L. collected in the region of Bejaia (northern center of Algeria). Materials and methods: The polyphenols and flavonoids contents of the methanolic extract were measured. The antioxidant activity was evaluated using two methods: the ABTS method and DPPH assay. The antimicrobial activity was studied by the agar diffusion method against five bacterial strains (Three Gram positive strains and two Gram negative strains) and one fungus. Results: The total polyphenol and flavonoid content was about 43.8 mg gallic acid equivalent per gram (GA Eq/g) and 7.04 mg quercetin equivalent per gram (Q Eq/g), respectively. In the ABTS assay, the rosemary extract has shown an inhibition of 98.02% at the concentration of 500ug/ml with a half maximal inhibitory concentration value (IC50) of 194.92ug/ml. The results of DPPH assay have shown that the rosemary extract has an inhibition of 94.67 % with an IC50 value of 17.87ug/ml, which is lower than that of Butylhydroxyanisol (BHA) about 6.03ug/ml and ascorbic acid about 1.24μg/ml. The yield in essential oil of rosemary obtained by hydrodistillation was 1.42%. Based on the determination of the diameter of inhibition, different antimicrobial activity of the essential oil was revealed against the six tested microbes. Escherichia coli from the University Hospital (UH), Streptococcus aureus (UH) and Pseudomonas aeruginosa ATCC have a minimum inhibitory concentration value (MIC) of 62.5µl/ml. However, Bacillus sp (UH) and Staphylococcus aureus ATCC have an MIC value of 125μl/ml. The inhibition zone against Candida sp was about 24 mm. The aromatograms showed that the essential oil of rosemary exercises an antifungal activity more important than the antibacterial one.

Keywords: Rosmarinus officinalis L., maceration, essential oil, antioxidant, antimicrobial activity

Procedia PDF Downloads 493
591 Use of Corn Stover for the Production of 2G Bioethanol, Enzymes, and Xylitol Under a Biorefinery Concept

Authors: Astorga-Trejo Rebeca, Fonseca-Peralta Héctor Manuel, Beltrán-Arredondo Laura Ivonne, Castro-Martínez Claudia

Abstract:

The use of biomass as feedstock for the production of fuels and other chemicals of interest is an ever-growing accepted option in the way to the development of biorefinery complexes; in the Mexican state of Sinaloa, two million tons of residues from corn crops are produced every year, most of which can be converted to bioethanol and other products through biotechnological conversion using yeast and other microorganisms. Therefore, the objective of this work was to take advantage of corn stover and evaluate its potential as a substrate for the production of second-generation bioethanol (2G), enzymes, and xylitol. To produce bioethanol 2G, an acid-alkaline pretreatment was carried out prior to saccharification and fermentation. The microorganisms used for the production of enzymes, as well as for the production of xylitol, were isolated and characterized in our workgroup. Statistical analysis was performed using Design Expert version 11.0. The results showed that it is possible to obtain 2G bioethanol employing corn stover as a carbon source and Saccharomyces cerevisiae ItVer01 and Candida intermedia CBE002 with yields of 0.42 g and 0.31 g, respectively. It was also shown that C. intermedia has the ability to produce xylitol with a good yield (0.46 g/g). On the other hand, qualitative and quantitative studies showed that the native strains of Fusarium equiseti (0.4 IU/mL - xylanase), Bacillus velezensis (1.2 IU/mL – xylanase and 0.4 UI/mL - amylase) and Penicillium funiculosum (1.5 IU / mL - cellulases) have the capacity to produce xylanases, amylases or cellulases using corn stover as raw material. This study allowed us to demonstrate that it is possible to use corn stover as a carbon source, a low-cost raw material with high availability in our country, to obtain bioproducts of industrial interest, using processes that are more environmentally friendly and sustainable. It is necessary to continue the optimization of each bioprocess.

Keywords: biomass, corn stover, biorefinery, bioethanol 2G, enzymes, xylitol

Procedia PDF Downloads 140
590 Smart Technology Work Practices to Minimize Job Pressure

Authors: Babar Rasheed

Abstract:

The organizations are in continuous effort to increase their yield and to retain their associates, employees. Technology is considered an integral part of attaining apposite work practices, work environment, and employee engagement. Unconsciously, these advanced practices like work from home, personalized intra-network are disturbing employee work-life balance which ultimately increases psychological pressure on employees. The smart work practice is to develop business models and organizational practices with enhanced employee engagement, minimum trouncing of organization resources with persistent revenue and positive addition in global societies. Need of smart work practices comes from increasing employee turnover rate, global economic recession, unnecessary job pressure, increasing contingent workforce and advancement in technologies. Current practices are not enough elastic to tackle global changing work environment and organizational competitions. Current practices are causing many reciprocal problems among employee and organization mechanically. There is conscious understanding among business sectors smart work practices that will deal with new century challenges with addressing the concerns of relevant issues. It is aimed in this paper to endorse customized and smart work practice tools along knowledge framework to manage the growing concerns of employee engagement, use of technology, orgaization concerns and challenges for the business. This includes a Smart Management Information System to address necessary concerns of employees and combine with a framework to extract the best possible ways to allocate companies resources and re-align only required efforts to adopt the best possible strategy for controlling potential risks.

Keywords: employees engagement, management information system, psychological pressure, current and future HR practices

Procedia PDF Downloads 158
589 Determination of Critical Period for Weed Control in the Second Crop Forage Maize (454 Cultivar)

Authors: Farhad Farahvash, Parya Mobaseri

Abstract:

Weeds control based on their critical period leads to less production costs and risks of wide chemical application of weeds control methods. The present study considered effect of weeds control time (weeds interference after 20, 40 and 60 days, weeds full control, weeds interference and weeds control after 20, 40 and 60 days) on growth and yield of forage maize 454. The experiment based on full-randomized blocks design with three replications was conducted at research farm of Islamic Azad University of Tabriz located at 15th km of East Tabriz in 2013. According to the results, weeds interference after 40 and 60 days as well as weeds control after 20 days prevented from decrease of maize biomass resulted from weeds presence while weeds interference after 20 days, weeds interference and weeds control after 40 and 60 days led respectively to 41.2%, 35%, 25% and 32.5% decrease of forage maize biomass. The weeds-influenced decrease was manifested at different parts of the plant depending on presence period of weeds. Decrease of fresh weight of ear and fresh weight of leaf and stem was observed due to weeds interference after 20 days and weeds interference. If weeds are controlled after 60 days, decrease of ear weight and fresh weight of stem will lead to biomass decrease. Also, if weeds are controlled after 40 days, decrease of fresh weight of maize stems will result in biomass decrease. Ear traits were affected by weeds control treatment. Being affected by treatments of weeds interference after 20 days, weeds non-interference, weeds control after 40 and 60 days, ear length was shortened 29.9 %, 41.4 %, 27.6 % and 37.2 %, respectively. The stem diameter demonstrated a significant decrease although it was only affected by treatments of weeds interference and weeds control after 60 days. Considering results of the present study, generally, it is suggested to control weeds during initial 20-60 days of maize growth in order to prevent undesirable effect of weeds on growth, production and production biomass of maize and decrease of production costs.

Keywords: maize, competition, weed, biomass

Procedia PDF Downloads 338
588 Determination of the Runoff Coefficient in Urban Regions, an Example from Haifa, Israel

Authors: Ayal Siegel, Moshe Inbar, Amatzya Peled

Abstract:

This study examined the characteristic runoff coefficient in different urban areas. The main area studied is located in the city of Haifa, northern Israel. Haifa spreads out eastward from the Mediterranean seacoast to the top of the Carmel Mountain range with an elevation of 300 m. above sea level. For this research project, four watersheds were chosen, each characterizing a different part of the city; 1) Upper Hadar, a spacious suburb on the upper mountain side; 2) Qiryat Eliezer, a crowded suburb on a level plane of the watershed; 3) Technion, a large technical research university which is located halfway between the top of the mountain range and the coast line. 4) Keret, a remote suburb, on the southwestern outskirts of Haifa. In all of the watersheds found suitable, instruments were installed to continuously measure the water level flowing in the channels. Three rainfall gauges scattered in the study area complete the hydrological requirements for this research project. The runoff coefficient C in peak discharge events was determined by the Rational Formula. The main research finding is the significant relationship between the intensity of rainfall, and the impervious area which is connected to the drainage system of the watershed. For less intense rainfall, the full potential of the connected impervious area will not be exploited. As a result, the runoff coefficient value decreases as do the peak discharge rate and the runoff yield from the storm event. The research results will enable application to other areas by means of hydrological model to be be set up on GIS software that will make it possible to estimate the runoff coefficient of any given city watershed.

Keywords: runoff coefficient, rational method, time of concentration, connected impervious area.

Procedia PDF Downloads 328
587 Improving the Genetic Diversity of Soybean Seeds and Tolerance to Drought Irradiated with Gamma Rays

Authors: Aminah Muchdar

Abstract:

To increase the genetic diversity of soybean in order to adapt to agroecology in Indonesia conducted ways including introduction, cross, mutation and genetic transformation. The purpose of this research is to obtain early maturity soybean mutant lines, large seed tolerant to drought with high yield potential. This study consisted of two stages: the first is sensitivity of gamma rays carried out in the Laboratory BATAN. The genetic variety used is Anjasmoro. The method seeds irradiated with gamma rays at a rate of activity with the old ci 1046.16976 irradiation 0-71 minutes. Irradiation doses of 0, 100, 200, 300, 400, 500, 600, 700, 800, 900 and 1000gy. The results indicated all seeds irradiated with doses of 0 - 1000gy, just a dose of 200 and 300gy are able to show the percentage of germination, plant height, number of leaves, number of normal sprouts and green leaves of the best and can be continued for a second trial in order to assemble and to get mutants which is expected. The result of second stage of soybean M2 Population irradiated with diversity Gamma Irradiation performed that in the form of soybean planting, the seed planted is the first derivative of the M2 irradiated seeds. The result after the age of 30ADP has already showing growth and development of plants that vary when compared to its parent, both in terms of plant height, number of leaves, leaf shape and leaf forage level. In the generative phase, a plant that has been irradiated 200 and 300 gy seen some plants flower form packs, but not formed pods, there is also a form packs of flowers, but few pods produce soybean morphological characters such as plant height, number of branches, pods, days to flowering, harvesting, seed weight and seed number.

Keywords: gamma ray, genetic mutation, irradiation, soybean

Procedia PDF Downloads 360
586 Detection of Triclosan in Water Based on Nanostructured Thin Films

Authors: G. Magalhães-Mota, C. Magro, S. Sério, E. Mateus, P. A. Ribeiro, A. B. Ribeiro, M. Raposo

Abstract:

Triclosan [5-chloro-2-(2,4-dichlorophenoxy) phenol], belonging to the class of Pharmaceuticals and Personal Care Products (PPCPs), is a broad-spectrum antimicrobial agent and bactericide. Because of its antimicrobial efficacy, it is widely used in personal health and skin care products, such as soaps, detergents, hand cleansers, cosmetics, toothpastes, etc. However, it has been considered to disrupt the endocrine system, for instance, thyroid hormone homeostasis and possibly the reproductive system. Considering the widespread use of triclosan, it is expected that environmental and food safety problems regarding triclosan will increase dramatically. Triclosan has been found in river water samples in both North America and Europe and is likely widely distributed wherever triclosan-containing products are used. Although significant amounts are removed in sewage plants, considerable quantities remain in the sewage effluent, initiating widespread environmental contamination. Triclosan undergoes bioconversion to methyl-triclosan, which has been demonstrated to bio accumulate in fish. In addition, triclosan has been found in human urine samples from persons with no known industrial exposure and in significant amounts in samples of mother's milk, demonstrating its presence in humans. The action of sunlight in river water is known to turn triclosan into dioxin derivatives and raises the possibility of pharmacological dangers not envisioned when the compound was originally utilized. The aim of this work is to detect low concentrations of triclosan in an aqueous complex matrix through the use of a sensor array system, following the electronic tongue concept based on impedance spectroscopy. To achieve this goal, we selected the appropriate molecules to the sensor so that there is a high affinity for triclosan and whose sensitivity ensures the detection of concentrations of at least nano-molar. Thin films of organic molecules and oxides have been produced by the layer-by-layer (LbL) technique and sputtered onto glass solid supports already covered by gold interdigitated electrodes. By submerging the films in complex aqueous solutions with different concentrations of triclosan, resistance and capacitance values were obtained at different frequencies. The preliminary results showed that an array of interdigitated electrodes sensor coated or uncoated with different LbL and films, can be used to detect TCS traces in aqueous solutions in a wide range concentration, from 10⁻¹² to 10⁻⁶ M. The PCA method was applied to the measured data, in order to differentiate the solutions with different concentrations of TCS. Moreover, was also possible to trace a curve, the plot of the logarithm of resistance versus the logarithm of concentration, which allowed us to fit the plotted data points with a decreasing straight line with a slope of 0.022 ± 0.006 which corresponds to the best sensitivity of our sensor. To find the sensor resolution near of the smallest concentration (Cs) used, 1pM, the minimum measured value which can be measured with resolution is 0.006, so the ∆logC =0.006/0.022=0.273, and, therefore, C-Cs~0.9 pM. This leads to a sensor resolution of 0.9 pM for the smallest concentration used, 1pM. This attained detection limit is lower than the values obtained in the literature.

Keywords: triclosan, layer-by-layer, impedance spectroscopy, electronic tongue

Procedia PDF Downloads 225
585 Improvement of Artemisinin Production by P. indica in Hairy Root Cultures of A. annua L.

Authors: Seema Ahlawat, Parul Saxena, Malik Zainul Abdin

Abstract:

Malaria is a major health problem in many developing countries. The parasite responsible for the vast majority of fatal malaria infections is Plasmodium falciparum. Unfortunately, most Plasmodium strains including P. falciparum have become resistant to most of the antimalarials including chloroquine, mefloquine, etc. To combat this problem, WHO has recommended the use of artemisinin and its derivatives in artemisinin based combination therapy (ACT). Due to its current use in artemisinin based-combination therapy (ACT), its global demand is increasing continuously. But, the relatively low yield of artemisinin in A. annua L. plants and unavailability of economically viable synthetic protocols are the major bottlenecks for its commercial production and clinical use. Chemical synthesis of artemisinin is also very complex and uneconomical. The hairy root system, using the Agrobacterium rhizogenes LBA 9402 strain to enhance the production of artemisinin in A. annua L., is developed in our laboratory. The transgenic nature of hairy root lines and the copy number of trans gene (rol B) were confirmed using PCR and Southern Blot analyses, respectively. The effect of different concentrations of Piriformospora indica on artemisinin production in hairy root cultures were evaluated. 3% P. indica has resulted 1.97 times increase in artemisinin production in comparison to control cultures. The effects of P. indica on artemisinin production was positively correlated with regulatory genes of MVA, MEP and artemisinin biosynthetic pathways, viz. hmgr, ads, cyp71av1, aldh1, dxs, dxr and dbr2 in hairy root cultures of A. annua L. Mass scale cultivation of A. annua L. hairy roots by plant tissue culture technology may be an alternative route for production of artemisinin. A comprehensive investigation of the hairy root system of A. annua L. would help in developing a viable process for the production of artemisinin. The efficiency of the scaling up systems still needs optimization before industrial exploitation becomes viable.

Keywords: A. annua L., artemisinin, hairy root cultures, malaria

Procedia PDF Downloads 392
584 Management of Insect Pests Using Baculovirus Based Biopesticides in India

Authors: Mudasir Gani, Rakesh Kumar Gupta, Kamlesh Bali, Abdul Rouf Wani

Abstract:

The gypsy moth (Lymantria obfuscata) and tent caterpillar (Malacosoma indicum) are serious pests that attack a wide range of fruit and forest trees in Jammu & Kashmir range of North-Western Himalayas in India. Investigations were carried out to isolate and bioprospect naturally occurring nucleopolyhedroviruses (NPVs) as potent biopesticides against these pests. The biological and molecular characterization of NPV isolates from different ecosystems was conducted, and the polh, lef-8 and lef-9 genes were sequenced and subjected to phylogenetic analysis. The L. obfuscata NPV was more closely related to the L. dispar NPV, whereas M. indicum NPV was more closely related to the M. californicum NPV in the NCBI taxonomy database. Among different isolates, Bhaderwah isolates exhibited highest virus activity (LD₅₀ = 250 POBs/larvae) and speed of kill (ST₅₀ = 6.80 days) against L. obfuscata whereas Mahor isolates proved most virulent against M. indicum, with lowest LD₅₀ (257 POBs/larva) and ST₅₀ (6.80 days). The in vivo mass production for highest productivity and quality revealed that the optimum yield was obtained when 3rd instar larvae were inoculated with a viral dose of 1.44 × 105 POBs/larva and allowed to incubate for nine days for L. obfuscata. However, for M. indicum larvae, a viral dose of 2.88 × 10⁶ POBs/larva and incubation period of 10 days were found optimum. It was found that harvesting of moribund larvae yields good quality NPV. The field application of L. obfuscata NPV and M. indicum NPV against the respective host populations on apple and willow with the pre-standardized dosage of 1 × 10¹² POBs/acre reduced the larval population density up to 25-63%.

Keywords: baculoviruses, biopesticides, Lymantria obfuscata, Malacosoma indicum

Procedia PDF Downloads 88
583 The Application of Enzymes on Pharmaceutical Products and Process Development

Authors: Reginald Anyanwu

Abstract:

Enzymes are biological molecules that significantly regulate the rate of almost all of the chemical reactions that take place within cells, and have been widely used for products’ innovations. They are vital for life and serve a wide range of important functions in the body, such as aiding in digestion and metabolism. The present study was aimed at finding out the extent to which biological molecules have been utilized by pharmaceutical, food and beverage, and biofuel industries in commercial and scale up applications. Taking into account the escalating business opportunities in this vertical, biotech firms have also been penetrating enzymes industry especially that of food. The aim of the study therefore was to find out how biocatalysis can be successfully deployed; how enzyme application can improve industrial processes. To achieve the purpose of the study, the researcher focused on the analytical tools that are critical for the scale up implementation of enzyme immobilization to ascertain the extent of increased product yield at minimum logistical burden and maximum market profitability on the environment and user. The researcher collected data from four pharmaceutical companies located at Anambra state and Imo state of Nigeria. Questionnaire items were distributed to these companies. The researcher equally made a personal observation on the applicability of these biological molecules on innovative Products since there is now shifting trends toward the consumption of healthy and quality food. In conclusion, it was discovered that enzymes have been widely used for products’ innovations but there are however variations on their applications. It was also found out that pivotal contenders of enzymes market have lately been making heavy investments in the development of innovative product solutions. It was recommended that the applications of enzymes on innovative products should be widely practiced.

Keywords: enzymes, pharmaceuticals, process development, quality food consumption, scale-up applications

Procedia PDF Downloads 114
582 Experimental Evaluation of 10 Ecotypes of Toxic and Non-Toxic Jatropha curcas as Raw Material to Produce Biodiesel in Morelos State, Mexico

Authors: Guadalupe Pérez, Jorge Islas, Mirna Guevara, Raúl Suárez

Abstract:

Jatropha curcas is a perennial oleaginous plant that is currently considered an energy crop with high potential as an environmentally sustainable biofuel. During the last decades, research in biofuels has grown in tropical and subtropical regions in Latin America. However, as far we know, there are no reports on the growth and yield patterns of Jatropha curcas under the specific agro climatic scenarios of the State of Morelos, Mexico. This study presents the results of 52 months monitoring of 10 toxic and non-toxic ecotypes of Jatropha curcas (E1M, E2M, E3M, E4M, E5M, E6O, E7O, E8O, E9C, E10C) in an experimental plantation with minimum watering and fertilization resources. The main objective is to identify the ecotypes with the highest potential as biodiesel raw material in the select region, by developing experimental information. Specifically, we monitored biophysical and growth parameters, including plant survival and seed production (at the end of month 52), to study the performance of each ecotype and to establish differences among the variables of morphological growth, net seed oil content, and toxicity. To analyze the morphological growth, a statistical approach to the biophysical parameters was used; the net seed oil content -80 to 192 kg/ha- was estimated with the first harvest; and the toxicity was evaluated by examining the phorbol ester concentration (µg/L) in the oil extracted from the seeds. The comparison and selection of ecotypes was performed through a methodology developed based on the normalization of results. We identified four outstanding ecotypes (E1M, E2M, E3M, and E4M) that can be used to establish Jatropha curcas as energy crops in the state of Morelos for feasible agro-industrial production of biodiesel and other products related to the use of biomass.

Keywords: biodiesel production, Jatropha curcas, seed oil content, toxic and non-toxic ecotypes

Procedia PDF Downloads 107
581 Comparative Study of Electronic and Optical Properties of Ammonium and Potassium Dinitramide Salts through Ab-Initio Calculations

Authors: J. Prathap Kumar, G. Vaitheeswaran

Abstract:

The present study investigates the role of ammonium and potassium ion in the electronic, bonding and optical properties of dinitramide salts due to their stability and non-toxic nature. A detailed analysis of bonding between NH₄ and K with dinitramide, optical transitions from the valence band to the conduction band, absorption spectra, refractive indices, reflectivity, loss function are reported. These materials are well known as oxidizers in solid rocket propellants. In the present work, we use full potential linear augmented plane wave (FP-LAPW) method which is implemented in the Wien2k package within the framework of density functional theory. The standard DFT functional local density approximation (LDA) and generalized gradient approximation (GGA) always underestimate the band gap by 30-40% due to the lack of derivative discontinuities of the exchange-correlation potential with respect to an occupation number. In order to get reliable results, one must use hybrid functional (HSE-PBE), GW calculations and Tran-Blaha modified Becke-Johnson (TB-mBJ) potential. It is very well known that hybrid functionals GW calculations are very expensive, the later methods are computationally cheap. The new developed TB-mBJ functionals use information kinetic energy density along with the charge density employed in DFT. The TB-mBJ functionals cannot be used for total energy calculations but instead yield very much improved band gap. The obtained electronic band gap at gamma point for both the ammonium dinitramide and potassium dinitramide are found to be 2.78 eV and 3.014 eV with GGA functional, respectively. After the inclusion of TB-mBJ, the band gap improved by 4.162 eV for potassium dinitramide and 4.378 eV for ammonium dinitramide. The nature of the band gap is direct in ADN and indirect in KDN. The optical constants such as dielectric constant, absorption, and refractive indices, birefringence values are presented. Overall as there are no experimental studies we present the improved band gap with TB-mBJ functional following with optical properties.

Keywords: ammonium dinitramide, potassium dinitramide, DFT, propellants

Procedia PDF Downloads 132