Search results for: microbial nitrogen
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1889

Search results for: microbial nitrogen

1739 Short-Term Impact of a Return to Conventional Tillage on Soil Microbial Attributes

Authors: Promil Mehra, Nanthi Bolan, Jack Desbiolles, Risha Gupta

Abstract:

Agricultural practices affect the soil physical and chemical properties, which in turn influence the soil microorganisms as a function of the soil biological environment. On the return to conventional tillage (CT) from continuing no-till (NT) cropping system, a very little information is available from the impact caused by the intermittent tillage on the soil biochemical properties from a short-term (2-year) study period. Therefore, the contribution made by different microorganisms (fungal, bacteria) was also investigated in order to find out the effective changes in the soil microbial activity under a South Australian dryland faring system. This study was conducted to understand the impact of microbial dynamics on the soil organic carbon (SOC) under NT and CT systems when treated with different levels of mulching (0, 2.5 and 5 t/ha). Our results demonstrated that from the incubation experiment the cumulative CO2 emitted from CT system was 34.5% higher than NT system. Relatively, the respiration from surface layer (0-10 cm) was significantly (P<0.05) higher by 8.5% and 15.8 from CT; 8% and 18.9% from NT system w.r.t 10-20 and 20-30 cm respectively. Further, the dehydrogenase enzyme activity (DHA) and microbial biomass carbon (MBC) were both significantly lower (P<0.05) under CT, i.e., 7.4%, 7.2%, 6.0% (DHA) and 19.7%, 15.7%, 4% (MBC) across the different mulching levels (0, 2.5, 5 t/ha) respectively. In general, it was found that from both the tillage system the enzyme activity and MBC decreased with the increase in depth (0-10, 10-20 and 20-30 cm) and with the increase in mulching rate (0, 2.5 and 5 t/ha). From the perspective of microbial stress, there was 28.6% higher stress under CT system compared to NT system. Whereas, the microbial activity of different microorganisms like fungal and bacterial activities were determined by substrate-induced inhibition respiration using antibiotics like cycloheximide (16 mg/gm of soil) and streptomycin sulphate (14 mg/gm of soil), by trapping the CO2 using an alkali (0.5 M NaOH) solution. The microbial activities were confirmed through platting technique, where it was that found bacterial activities were 46.2% and 38.9% higher than fungal activity under CT and NT system. In conclusion, it was expected that changes in the relative abundance and activity of different microorganisms (bacteria and fungi) under different tillage systems could significantly affect the C cycling and storage due to its unique structures and differential interactions with the soil physical properties.

Keywords: tillage, soil respiration, MBC, fungal-bacterial activity

Procedia PDF Downloads 233
1738 First-Principles Density Functional Study of Nitrogen-Doped P-Type ZnO

Authors: Abdusalam Gsiea, Ramadan Al-habashi, Mohamed Atumi, Khaled Atmimi

Abstract:

We present a theoretical investigation on the structural, electronic properties and vibrational mode of nitrogen impurities in ZnO. The atomic structures, formation and transition energies and vibrational modes of (NO3)i interstitial or NO4 substituting on an oxygen site ZnO were computed using ab initio total energy methods. Based on Local density functional theory, our calculations are in agreement with one interpretation of bound-excition photoluminescence for N-doped ZnO. First-principles calculations show that (NO3)i defects interstitial or NO4 substituting on an Oxygen site in ZnO are important suitable impurity for p-type doping in ZnO. However, many experimental efforts have not resulted in reproducible p-type material with N2 and N2O doping. by means of first-principle pseudo-potential calculation we find that the use of NO or NO2 with O gas might help the experimental research to resolve the challenge of achieving p-type ZnO.

Keywords: DFF, nitrogen, p-type, ZnO

Procedia PDF Downloads 437
1737 Polyhydroxybutyrate Production in Bacteria Isolated from Estuaries along the Eastern Coast of India

Authors: Shubhashree Mahalik, Dhanesh Kumar, Jatin Kumar Pradhan

Abstract:

Odisha is one of the coastal states situated on the eastern part of India with 480 km long coastline. The coastal Odisha is referred to as "Gift of Six Rivers". Balasore, a major coastal district of Odisha is bounded by Bay of Bengal in the East having 26 km long seashore. It is lined with several estuaries rich in biodiversity.Several studies have been carried out on the macro flora and fauna of this area but very few documented information are available regarding microbial biodiversity. In the present study, an attempt has been made to isolate and identify bacteria found along the estuaries of Balasore.Many marine microorganisms are sources of natural products which makes them potential industrial organisms. So the ability of the isolated bacteria to secrete one such industrially significant product, PHB (Polyhydroxybutyrate) has been elucidated. Several rounds of sampling, pure culture, morphological, biochemical and phylogenetic screening led to the identification of two PHB producing strains. Isolate 5 was identified to be Brevibacillus sp. and has maximum similarity to Brevibacillus parabrevis (KX83268). The isolate was named as Brevibacillus sp.KEI-5. Isolate 8 was identified asLysinibacillus sp. having closest similarity withLysinibacillus boroni-tolerance (KP314269) and named as Lysinibacillus sp. KEI-8.Media, temperature, carbon, nitrogen and salinity requirement were optimized for both isolates. Submerged fermentation of both isolates in Terrific Broth media supplemented with optimized carbon and nitrogen source at 37°C led to significant accumulation of PHB as detected by colorimetric method.

Keywords: Bacillus, estuary, marine, Odisha, polyhydroxy butyrate

Procedia PDF Downloads 324
1736 Fructooligosaccharide Prebiotics: Optimization of Different Cultivation Parameters on Their Microbial Production

Authors: Elsayed Ahmed Elsayed, Azza Noor El-Deen, Mohamed A. Farid, Mohamed A. Wadaan

Abstract:

Recently, a great attention has been paid to the use of dietary carbohydrates as prebiotic functional foods. Among the new commercially available products, fructooligosaccharides (FOS), which are microbial produced from sucrose, have attracted special interest due to their valuable properties and, thus, have a great economic potential for the sugar industrial branch. They are non-cariogenic sweeteners of low caloric value, as they are not hydrolyzed by the gastro-intestinal enzymes, promoting selectively the growth of the bifidobacteria in the colon, helping to eliminate the harmful microbial species to human and animal health and preventing colon cancer. FOS has been also found to reduce cholesterol, phospholipids and triglyceride levels in blood. FOS has been mainly produced by microbial fructosyltransferase (FTase) enzymes. The present work outlines bioprocess optimization for different cultivation parameters affecting the production of FTase by Penicillium aurantiogriseum AUMC 5605. The optimization involves both traditional as well as fractional factorial design approaches. Additionally, the production process will be compared under batch and fed-batch conditions. Finally, the optimized process conditions will be applied to 5-L stirred tank bioreactor cultivations.

Keywords: prebiotics, fructooligosaccharides, optimization, cultivation

Procedia PDF Downloads 359
1735 The Optimal Production of Long-Beans in the Swamp Land by Application of Rhizobium and Rice Husk Ash

Authors: Hasan Basri Jumin

Abstract:

The swamp land contains high iron, aluminum, and low pH. Calcium and magnesium in the rice husk ash can reduce plant poisoning so that plant growth increases in fertility. The first factor was the doze of rice husk, and the second factor was 0.0 g rhizobium inoculant /kg seed, 4.0 g rhizobium inoculant/kg seed, 8 g rhizobium inoculant /kg seed, and 12 g l rhizobium inoculant /kg seed. The plants were maintained under light conditions with a + 11.45 – 12.15 hour photoperiod. The combination between rhizobium inoculant and rice husk ash has been an interacting effect on the production of long bean pod fresh weight. The mean relative growth rate, net assimilation rate, and pod fresh weight are increased by a combination of husk rice ash and rhizobium inoculant. Rice husk ash affected increases the availability of nitrogen in the land, albeit in poor condition of nutrition. Rhizobium is active in creating a fixation of nitrogen in the atmosphere because rhizobium increases the abilities of intercellular and symbiotic nitrogen in the long beans. The combination of rice husk ash and rhizobium could be effected to create a thriving in the land.

Keywords: aluminium, calcium, fixation, iron, nitrogen

Procedia PDF Downloads 79
1734 Simultaneous Nitrification and Denitrification in Suspended Activated Sludge Process Augmented with Immobilized Biomass: A Pilot Study

Authors: Haon-Yao Chen, Cheng-Fang Lin, Pui-Kwan Andy Hong, Ping-Yi Yang, Kok Kwang Ng, Sheng-Fu Yang

Abstract:

Simultaneous nitrification and denitrification (SND) are a natural phenomenon in the soil environment that can be applied in wastewater treatment. At a domestic wastewater treatment plant, we performed a pilot test of installing bioplates with entrapped biomass into a conventional aeration basin for SND, and investigated the effects of bioplate packing ratio, hydraulic retention time, dissolved oxygen level, on/off aeration mode, and supplemental carbon and alkalinity on nitrogen removal. With the pilot aeration basin of 1.3 m3 loaded with mixed liquor suspended solids of 1500-2500 mg/L and bioplates at PR of 3.2% (3.2% basin volume) operated at HRT of 6 h and DO of 4-6 mg/L without supplemental carbon or alkalinity, nitrogen in the wastewater was removed to an effluent total nitrogen (TN) of 7.3 mg/L from an influent TN of 28 mg/L. The bioplate robust cellulose triacetate structure carrying the biomass shows promise in retrofitting conventional aeration basins for enhanced nutrient removal.

Keywords: immobilization, nitrification/denitrification, nutrient removal, total nitrogen

Procedia PDF Downloads 618
1733 Impact of Climatic Parameters on Soil's Nutritional and Enzymatic Properties

Authors: Kanchan Vishwakarma, Shivesh Sharma, Nitin Kumar

Abstract:

Soil is incoherent matter on Earth’s surface having organic and mineral content. The spatial variation of 4 soil enzyme activities and microbial biomass were assessed for two seasons’ viz. monsoon and winter along the latitudinal gradient in North-central India as the area of this study is fettered with respect to national status. The study was facilitated to encompass the effect of climate change, enzyme activity and biomass on nutrient cycling. Top soils were sampled from 4 sites in North-India. There were significant correlations found between organic C, N & P wrt to latitude gradient in two seasons. This distribution of enzyme activities and microbial biomass was consequence of alterations in temperature and moisture of soil because of which soil properties change along the latitude transect.

Keywords: latitude gradient, microbial biomass, moisture, soil, organic carbon, temperature

Procedia PDF Downloads 364
1732 Time-Course Lipid Accumulation and Transcript Analyses of Lipid Biosynthesis Gene of Chlorella sp.3 under Nitrogen Limited Condition

Authors: Jyoti Singh, Swati Dubey, Mukta Singh, R. P. Singh

Abstract:

The freshwater microalgae Chlorella sp. is alluring considerable interest as a source for biofuel production due to its fast growth rate and high lipid content. Under nitrogen limited conditions, they can accumulate significant amounts of lipids. Thus, it is important to gain insight into the molecular mechanism of their lipid metabolism. In this study under nitrogen limited conditions, regular pattern of growth characteristics lipid accumulation and gene expression analysis of key regulatory genes of lipid biosynthetic pathway were carried out in microalgae Chlorella sp 3. Our results indicated that under nitrogen limited conditions there is a significant increase in the lipid content and lipid productivity, achieving 44.21±2.64 % and 39.34±0.66 mg/l/d at the end of the cultivation, respectively. Time-course transcript patterns of lipid biosynthesis genes i.e. acetyl coA carboxylase (accD) and diacylglycerol acyltransferase (dgat) showed that during late log phase of microalgae Chlorella sp.3 both the genes were significantly up regulated as compared to early log phase. Moreover, the transcript level of the dgat gene is two-fold higher than the accD gene. The results suggested that both the genes responded sensitively to the nitrogen limited conditions during the late log stage, which proposed their close relevance to lipid biosynthesis. Further, this transcriptome data will be useful for engineering microalgae species by targeting these genes for genetic modification to improve microalgal biofuel quality and production.

Keywords: biofuel, gene, lipid, microalgae

Procedia PDF Downloads 272
1731 A Proteomic Approach for Discovery of Microbial Cellulolytic Enzymes

Authors: M. S. Matlala, I. Ignatious

Abstract:

Environmental sustainability has taken the center stage in human life all over the world. Energy is the most essential component of our life. The conventional sources of energy are non-renewable and have a detrimental environmental impact. Therefore, there is a need to move from conventional to non-conventional renewable energy sources to satisfy the world’s energy demands. The study aimed at screening for microbial cellulolytic enzymes using a proteomic approach. The objectives were to screen for microbial cellulases with high specific activity and separate the cellulolytic enzymes using a combination of zymography and two-dimensional (2-D) gel electrophoresis followed by tryptic digestion, Matrix-assisted Laser Desorption Ionisation-Time of Flight (MALDI-TOF) and bioinformatics analysis. Fungal and bacterial isolates were cultured in M9 minimal and Mandel media for a period of 168 hours at 60°C and 30°C with cellobiose and Avicel as carbon sources. Microbial cells were separated from supernatants through centrifugation, and the crude enzyme from the cultures was used for the determination of cellulase activity, zymography, SDS-PAGE, and two-dimensional gel electrophoresis. Five isolates, with lytic action on carbon sources studied, were a bacterial strain (BARK) and fungal strains (VCFF1, VCFF14, VCFF17, and VCFF18). Peak cellulase production by the selected isolates was found to be 3.8U/ml, 2.09U/ml, 3.38U/ml, 3.18U/ml, and 1.95U/ml, respectively. Two-dimensional gel protein maps resulted in the separation and quantitative expression of different proteins by the microbial isolates. MALDI-TOF analysis and database search showed that the expressed proteins in this study closely relate to different glycoside hydrolases produced by other microbial species with an acceptable confidence level of 100%.

Keywords: cellulases, energy, two-dimensional gel electrophoresis, matrix-assisted laser desorption ionisation-time of flight, MALDI-TOF MS

Procedia PDF Downloads 104
1730 Rumen Metabolites and Microbial Load in Fattening Yankasa Rams Fed Urea and Lime Treated Groundnut (Arachis Hypogeae) Shell in a Complete Diet

Authors: Bello Muhammad Dogon Kade

Abstract:

The study was conducted to determine the effect of a treated groundnut (Arachis hypogaea) shell in a complete diet on blood metabolites and microbial load in fattening Yankasa rams. The study was conducted at the Teaching and Research Farm (Small Ruminants Unit of Animal Science Department, Faculty of Agriculture, Ahmadu Bello University, Zaria. Each kilogram of groundnut shell was treated with 5% urea and 5% lime for treatments 2 (UTGNS) and 3 (LTGNS), respectively. For treatment 4 (ULTGNS), 1 kg of groundnut shell was treated with 2.5% urea and 2.5% lime, but the shell in treatment 1 was not treated (UNTGNS). Sixteen Yankasa rams were used and randomly assigned to the four treatment diets with four animals per treatment in a completely randomized design (CRD). The diet was formulated to have 14% crude protein (CP) content. Rumen fluid was collected from each ram at the end of the experiment at 0 and 4 hours post-feeding. The samples were then put in a 30 ml bottle and acidified with 5 drops of concentrated sulphuric (0.1N H₂SO4) acid to trap ammonia. The results of the blood metabolites showed that the mean values of NH₃-N differed significantly (P<0.05) among the treatment groups, with rams in the ULTGNS diet having the highest significant value (31.96 mg/L). TVFs were significantly (P<0.05) higher in rams fed UNTGNS diet and higher in total nitrogen; the effect of sampling periods revealed that NH3N, TVFs and TP were significantly (P<0.05) higher in rumen fluid collected 4hrs post feeding among the rams across the treatment groups, but rumen fluid pH was significantly (p<0.05) higher in 0-hour post-feeding in all the rams in the treatment diets. In the treatment and sampling period’s interaction effects, animals on the ULTGNS diet had the highest mean values of NH3N in both 0 and 4 hours post-feeding and were significantly (P<0.5) higher compared to rams on the other treatment diets. Rams on the UTGNS diet had the highest bacteria load of 4.96X105/ml, which was significantly (P<0.05) higher than a microbial load of animals fed UNTGNS, LTGNS and ULTGNS diets. However, protozoa counts were significantly (P<0.05) higher in rams fed the UTGNS diet than those followed by the ULTGNS diet. The results showed that there was no significant difference (P>0.05) in the bacteria count of the animals at both 0 and 4 hours post-feeding. But rumen fungi and protozoa load at 0 hours were significantly (P<0.05) higher than at 4 hours post-feeding. The use of untreated ground groundnut shells in the diet of fattening Yankasa ram is therefore recommended.

Keywords: blood metabolites, microbial load, volatile fatty acid, ammonia, total protein

Procedia PDF Downloads 21
1729 Process Performance and Nitrogen Removal Kinetics in Anammox Hybrid Reactor

Authors: Swati Tomar, Sunil Kumar Gupta

Abstract:

Anammox is a promising and cost effective alternative to conventional treatment systems that facilitates direct oxidation of ammonium nitrogen under anaerobic conditions with nitrite as an electron acceptor without addition of any external carbon sources. The present study investigates the process kinetics of laboratory scale anammox hybrid reactor (AHR) which combines the dual advantages of attached and suspended growth. The performance & behaviour of AHR was studied under varying hydraulic retention time (HRTs) and nitrogen loading rate (NLRs). The experimental unit consisted of 4 numbers of 5L capacity anammox hybrid reactor inoculated with mixed seed culture containing anoxic and activated sludge. Pseudo steady state (PSS) ammonium and nitrite removal efficiencies of 90.6% and 95.6%, respectively, were achieved during acclimation phase. After establishment of PSS, the performance of AHR was monitored at seven different HRTs of 3.0, 2.5, 2.0, 1.5, 1.0, 0.5 and 0.25 d with increasing NLR from 0.4 to 4.8 kg N/m3d. The results showed that with increase in NLR and decrease in HRT (3.0 to 0.25 d), AHR registered appreciable decline in nitrogen removal efficiency from 92.9% to 67.4 %, respectively. The HRT of 2.0 d was considered optimal to achieve substantial nitrogen removal of 89%, because on further decrease in HRT below 1.5 days, remarkable decline in the values of nitrogen removal efficiency were observed. Analysis of data indicated that attached growth system contributes an additional 15.4 % ammonium removal and reduced the sludge washout rate (additional 29% reduction). This enhanced performance may be attributed to 25% increase in sludge retention time due to the attached growth media. Three kinetic models, namely, first order, Monod and Modified Stover-Kincannon model were applied to assess the substrate removal kinetics of nitrogen removal in AHR. Validation of the models were carried out by comparing experimental set of data with the predicted values obtained from the respective models. For substrate removal kinetics, model validation revealed that Modified Stover-Kincannon is most precise (R2=0.943) and can be suitably applied to predict the kinetics of nitrogen removal in AHR. Lawrence and McCarty model described the kinetics of bacterial growth. The predicted value of yield coefficient and decay constant were in line with the experimentally observed values.

Keywords: anammox, kinetics, modelling, nitrogen removal, sludge wash out rate, AHR

Procedia PDF Downloads 288
1728 The Taxonomic and Functional Diversity in Edaphic Microbial Communities from Antarctic Dry Valleys

Authors: Sean T. S. Wei, Joy D. Van Nostrand, Annapoorna Maitrayee Ganeshram, Stephen B. Pointing

Abstract:

McMurdo Dry Valleys are a largely ice-free polar desert protected by international treaty as an Antarctic special managed area. The terrestrial landscape is dominated by oligotrophic mineral soil with extensive rocky outcrops. Several environmental stresses: low temperature, lack of liquid water, UV exposure and oligotrophic substrates, restrict the major biotic component to microorganisms. The bacterial diversity and the putative physiological capacity of microbial communities of quartz rocks (hypoliths) and soil of a maritime-influenced Dry Valleys were interrogated by two metagenomic approaches: 454 pyro-sequencing and Geochp DNA microarray. The most abundant phylum in hypoliths was Cyanobacteria (46%), whereas in solils Actinobacteria (31%) were most abundant. The Proteobacteria and Bacteriodetes were the only other phyla to comprise >10% of both communities. Carbon fixation was indicated by photoautotrophic and chemoautotrophic pathways for both hypolith and soil communities. The fungi accounted for polymer carbon transformations, particularly for aromatic compounds. The complete nitrogen cycling was observed in both communities. The fungi in particular displayed pathways related to ammonification. Environmental stress response pathways were common among bacteria, whereas the nutrient stress response pathways were more widely present in bacteria, archaea and fungi. The diversity of bacterialphage was also surveyed by Geochip. Data suggested that different substrates supported different viral families: Leviviridae, Myoviridae, Podoviridae and Siphoviridiae were ubiquitous. However, Corticoviridae and Microviridae only occurred in wetter soils.

Keywords: Antarctica, hypolith, soil, dry valleys, geochip, functional diversity, stress response

Procedia PDF Downloads 422
1727 The Effect of Heating-Liquid Nitrogen Cooling on Fracture Toughness of Anisotropic Rock

Authors: A. Kavandi, K. Goshtasbi, M. R. Hadei, H. Nejati

Abstract:

In geothermal energy production, the method of liquid nitrogen (LN₂) fracturing in hot, dry rock is one of the most effective methods to increase the permeability of the reservoir. The geothermal reservoirs mainly consist of hard rocks such as granites and metamorphic rocks like gneiss with high temperatures. Gneiss, as a metamorphic rock, experiences a high level of inherent anisotropy. This type of anisotropy is considered as the nature of rocks, which affects the mechanical behavior of rocks. The aim of this study is to investigate the effects of heating-liquid nitrogen (LN₂) cooling treatment and rock anisotropy on the fracture toughness of gneiss. For this aim, a series of semi-circular bend (SCB) tests were carried out on specimens of gneiss with different anisotropy plane angles (0°, 30°, 60°, and 90°). In this study, gneiss specimens were exposed to heating–cooling treatment through gradual heating to 100°C followed by LN₂ cooling. Results indicate that the fracture toughness of treated samples is lower than that of untreated samples, and with increasing the anisotropy plane angle, the fracture toughness increases. The scanning electron microscope (SEM) technique is also implemented to evaluate the fracture process zone (FPZ) ahead of the crack tip.

Keywords: heating-cooling, anisotropic rock, fracture toughness, liquid nitrogen

Procedia PDF Downloads 37
1726 Growth and Biochemical Composition of Tetraselmis sp. and Chlorella sp. under Varied Growth Conditions

Authors: M. Alsull

Abstract:

In this study, Tetraselmis sp. and Chlorella sp. isolated from Penang National Park coastal waters, Malaysia, and cultivated under combined various laboratory conditions (temperature, light and nitrogen limitation and starvation). Growth rate, dry weight, chlorophyll a content, total lipids content and total carbohydrates content were estimated at mid-exponential growth phase. Tetraselmis sp. and Chlorella sp. showed remarkably decrease in growth rate, chlorophyll a content and dry weight when maintained under nitrogen limitation and starvation conditions, as well as when grown under 12:12 h light, dark regime conditions. Chlorella sp. showed ability to counter the fluctuation in temperature with no significant effects on the measured parameters; in contrast, Tetraselmis sp. showed a decrease in growth rate, chlorophyll a content and dry weight when grown under 15±1˚C temperature. Cultures maintained under nitrogen full concentration, and 24 h light regime showed decrease in total lipids content, compared with 12:12 h light, dark cycle regime, in the two tested species.

Keywords: microalgae, biochemical composition, temperature, light, nitrogen limitation

Procedia PDF Downloads 265
1725 Harnessing the Power of Mixed Ligand Complexes: Enhancing Antimicrobial Activities with Thiosemicarbazones

Authors: Sakshi Gupta, Seema Joshi

Abstract:

Thiosemicarbazones (TSCs) have garnered significant attention in coordination chemistry due to their versatile coordination modes and pharmacological properties. Mixed ligand complexes of TSCs represent a promising area of research, offering enhanced antimicrobial activities compared to their parent compounds. This review provides an overview of the synthesis, characterization, and antimicrobial properties of mixed ligand complexes incorporating thiosemicarbazones. The synthesis of mixed ligand complexes typically involves the reaction of a metal salt with TSC ligands and additional ligands, such as nitrogen- or oxygen-based ligands. Various transition metals, including copper, nickel, and cobalt, have been employed to form mixed ligand complexes with TSCs. Characterization techniques such as spectroscopy, X-ray crystallography, and elemental analysis are commonly utilized to confirm the structures of these complexes. One of the key advantages of mixed ligand complexes is their enhanced antimicrobial activity compared to pure TSC compounds. The synergistic effect between the TSC ligands and additional ligands contributes to increased efficacy, possibly through improved metal-ligand interactions or enhanced membrane permeability. Furthermore, mixed ligand complexes offer the potential for selective targeting of microbial species while minimizing toxicity to mammalian cells. This selectivity arises from the specific interactions between the metal center, TSC ligands, and biological targets within microbial cells. Such targeted antimicrobial activity is crucial for developing effective treatments with minimal side effects. Moreover, the versatility of mixed ligand complexes allows for the design of tailored antimicrobial agents with optimized properties. By varying the metal ion, TSC ligands, and additional ligands, researchers can fine-tune the physicochemical properties and biological activities of these complexes. This tunability opens avenues for the development of novel antimicrobial agents with improved efficacy and reduced resistance. In conclusion, mixed ligand complexes of thiosemicarbazones represent a promising class of compounds with potent antimicrobial activities. Further research in this field holds great potential for the development of novel therapeutic agents to combat microbial infections effectively.

Keywords: metal complex, thiosemicarbazones, mixed ligand, selective targeting, antimicrobial activity

Procedia PDF Downloads 23
1724 Enhancement in Bactericidal Activity of Hydantoin Based Microsphere from Smooth to Rough

Authors: Rajani Kant Rai, Jayakrishnan Athipet

Abstract:

There have been several attempts to prepare polymers with antimicrobial properties by doping with various N-halamines. Hydantoins (Cyclic N-halamine) is of importance due to their stability rechargeable chloroamide function, broad-spectrum anti-microbial action and ability to prevent resistance to the organisms. Polymerizable hydantoins are synthesized by tethering vinyl moieties to 5,5,-dialkyl hydantoin sacrificing the imide hydrogen in the molecule thereby restricting the halogen capture only to the amide nitrogen that results in compromised antibacterial activity. In order to increase the activity of the antimicrobial polymer, we have developed a scheme to maximize the attachment of chlorine to the amide and the imide moieties of hydantoin. Vinyl hydantoin monomer, (Z)-5-(4-((3-methylbuta-1,3-dien-2-yl)oxy)benzylidene)imidazolidine-2,4-dione (MBBID) was synthesized and copolymerized with a commercially available monomer, methyl methacrylate, by free radical polymerization. The antimicrobial activity of hydantoin is strongly dependent on their surface area and hence their microbial activity increases when incorporated in microspheres or nanoparticles as compared to their bulk counterpart. In this regard, smooth and rough surface microsphere of the vinyl monomer (MBBID) with commercial monomer was synthesized. The oxidative chlorine content of the copolymer ranged from 1.5 to 2.45 %. Further, to demonstrate the water purification potential, the thin column was packed with smooth or rough microspheres and challenged with simulated contaminated water that exhibited 6 log kill (total kill) of the bacteria in 20 minutes of exposure with smooth (25 mg/ml) and rough microsphere (15.0 mg/ml).

Keywords: cyclic N-halamine, vinyl hydantoin monomer, rough surface microsphere, simulated contaminated water

Procedia PDF Downloads 120
1723 Estimation of Microbial-N Supply to Small Intestine in Angora Goats Fed by Different Roughage Sources

Authors: Nurcan Cetinkaya

Abstract:

The aim of the study was to estimate the microbial-N flow to small intestine based on daily urinary purine derivatives(PD) mainly xanthine, hypoxanthine, uric acid and allantoin excretion in Angora goats fed by grass hay and concentrate (Period I); barley straw and concentrate (Period II). Daily urine samples were collected during last 3 days of each period from 10 individually penned Angora bucks( LW 30-35 Kg, 2-3 years old) receiving ad libitum grass hay or barley straw and 300 g/d concentrate. Fresh water was always available. 4N H2SO4 was added to collected daily urine .samples to keep pH under 3 to avoid of uric acid precipitation. Diluted urine samples were stored at -20°C until analysis. Urine samples were analyzed for xanthine, hypoxanthine, uric acid, allantoin and creatinine by High-Performance Liquid Chromatographic Method (HPLC). Urine was diluted 1:15 in ratio with water and duplicate samples were prepared for HPLC analysis. Calculated mean levels (n=60) for urinary xanthine, hypoxanthine, uric acid, allantoin, total PD and creatinine excretion were 0.39±0.02 , 0.26±0.03, 0.59±0.06, 5.91±0.50, 7.15±0.57 and 3.75±0.40 mmol/L for Period I respectively; 0.35±0.03, 0.21±0.02, 0.55±0.05, 5.60±0.47, 6.71±0.46 and 3.73±0.41 mmol/L for Period II respectively.Mean values of Period I and II were significantly different (P< 0.05) except creatinine excretion. Estimated mean microbial-N supply to the small intestine for Period I and II in Angora goats were 5.72±0.46 and 5.41±0.61 g N/d respectively. The effects of grass hay and barley straw feeding on microbial-N supply to small intestine were found significantly different (P< 0.05). In conclusion, grass hay showed a better effect on the ruminal microbial protein synthesis compared to barley straw, therefore; grass hay is suggested as roughage source in Angora goat feeding.

Keywords: angora goat, HPLC method, microbial-N supply to small intestine, urinary purine derivatives

Procedia PDF Downloads 195
1722 Nitrogen and Potassium Fertilizer Response on Growth and Yield of Hybrid Luffa –Naga F1 Variety

Authors: D. R. T. N. K. Dissanayake, H. M. S. K. Herath, H. K. S. G. Gunadasa, P. Weerasinghe

Abstract:

Luffa is a tropical and subtropical vegetable, belongs to family Cucurbiteceae. It is predominantly monoecious in sex expression and provides an ample scope for utilization of hybrid vigor. Hybrid varieties develop through open pollination, produce higher yields due to its hybrid vigor. Naga F1 hybrid variety consists number of desirable traits other than higher yield such as strong and vigorous plants, fruits with long deep ridges, attractive green color fruits ,better fruit weight, length and early maturity compared to the local Luffa cultivars. Unavailability of fertilizer recommendations for hybrid cucurbit vegetables leads to an excess fertilizer application causing a vital environmental issue that creates undesirable impacts on nature and the human health. Main Objective of this research is to determine effect of different nitrogen and potassium fertilizer rates on growth and yield of Naga F1 Variety. Other objectives are, to evaluate specific growth parameters and yield, to identify the optimum nitrogen and potassium fertilizer levels based on growth and yield of hybrid Luffa variety. As well as to formulate the general fertilizer recommendation for hybrid Luffa -Naga F1 variety.

Keywords: hybrid, nitrogen, phosphorous, potassium

Procedia PDF Downloads 558
1721 Microbial Fuel Cells and Their Applications in Electricity Generating and Wastewater Treatment

Authors: Shima Fasahat

Abstract:

This research is an experimental research which was done about microbial fuel cells in order to study them for electricity generating and wastewater treatment. These days, it is very important to find new, clean and sustainable ways for energy supplying. Because of this reason there are many researchers around the world who are studying about new and sustainable energies. There are different ways to produce these kind of energies like: solar cells, wind turbines, geothermal energy, fuel cells and many other ways. Fuel cells have different types one of these types is microbial fuel cell. In this research, an MFC was built in order to study how it can be used for electricity generating and wastewater treatment. The microbial fuel cell which was used in this research is a reactor that has two tanks with a catalyst solution. The chemical reaction in microbial fuel cells is a redox reaction. The microbial fuel cell in this research is a two chamber MFC. Anode chamber is an anaerobic one (ABR reactor) and the other chamber is a cathode chamber. Anode chamber consists of stabilized sludge which is the source of microorganisms that do redox reaction. The main microorganisms here are: Propionibacterium and Clostridium. The electrodes of anode chamber are graphite pages. Cathode chamber consists of graphite page electrodes and catalysts like: O2, KMnO4 and C6N6FeK4. The membrane which separates the chambers is Nafion117. The reason of choosing this membrane is explained in the complete paper. The main goal of this research is to generate electricity and treating wastewater. It was found that when you use electron receptor compounds like: O2, MnO4, C6N6FeK4 the velocity of electron receiving speeds up and in a less time more current will be achieved. It was found that the best compounds for this purpose are compounds which have iron in their chemical formula. It is also important to pay attention to the amount of nutrients which enters to bacteria chamber. By adding extra nutrients in some cases the result will be reverse.  By using ABR the amount of chemical oxidation demand reduces per day till it arrives to a stable amount.

Keywords: anaerobic baffled reactor, bioenergy, electrode, energy efficient, microbial fuel cell, renewable chemicals, sustainable

Procedia PDF Downloads 196
1720 Mechanical Behavior of Hybrid Hemp/Jute Fibers Reinforced Polymer Composites at Liquid Nitrogen Temperature

Authors: B. Vinod, L. Jsudev

Abstract:

Natural fibers as reinforcement in polymer matrix material is gaining lot of attention in recent years, as they are light in weight, less in cost, and ecologically advanced surrogate material to glass and carbon fibers in composites. Natural fibers like jute, sisal, coir, hemp, banana etc. have attracted substantial importance as a potential structural material because of its attractive features along with its good mechanical properties. Cryogenic applications of natural fiber reinforced polymer composites like cryogenic wind tunnels, cryogenic transport vessels, support structures in space shuttles and rockets are gaining importance. In these unique cryogenic applications, the requirements of polymer composites are extremely severe and complicated. These materials need to possess good mechanical and physical properties at cryogenic temperatures such as liquid helium (4.2 K), liquid hydrogen (20 K), liquid nitrogen (77 K), and liquid oxygen (90 K) temperatures, etc., to meet the high requirements by the cryogenic engineering applications. The objective of this work is to investigate the mechanical behavior of hybrid hemp/jute fibers reinforced epoxy composite material at liquid nitrogen temperature. Hemp and Jute fibers are used as reinforcement material as they have high specific strength, stiffness and good adhering property and has the potential to replace the synthetic fibers. Hybrid hemp/jute fibers reinforced polymer composite is prepared by hand lay-up method and test specimens are cut according to ASTM standards. These test specimens are dipped in liquid nitrogen for different time durations. The tensile properties, flexural properties and impact strength of the specimen are tested immediately after the specimens are removed from liquid nitrogen container. The experimental results indicate that the cryogenic treatment of the polymer composite has a significant effect on the mechanical properties of this material. The tensile properties and flexural properties of the hybrid hemp/jute fibers epoxy composite at liquid nitrogen temperature is higher than at room temperature. The impact strength of the material decreased after subjecting it to liquid nitrogen temperature.

Keywords: liquid nitrogen temperature, polymer composite, tensile properties, flexural properties

Procedia PDF Downloads 317
1719 Impact of Nitrogen Fertilization on Soil Respiration and Net Ecosystem Production in Maize

Authors: Shirley Lamptey, Lingling Li, Junhong Xie

Abstract:

Agriculture in the semi-arid is often challenged by overuse of N, inadequate soil water, and heavy carbon emissions thereby threatening sustainability. Field experiments were conducted to investigate the effect of nitrogen fertilization levels (0-N₀, 100-N₁₀₀, 200-N₂₀₀, and 300 kg ha⁻¹-N₃₀₀) on soil water dynamics, soil respiration (Rs), net ecosystem production (NEP), and biomass yield. Zero nitrogen soils decreased Rs by 23% and 16% compared to N₃₀₀ and N₂₀₀ soils, respectively. However, biomass yield was greatest under N₃₀₀ compared with N₀, which therefore translated into increased net primary production (NPP) by 89% and NEP by 101% compared to N₀. To a lesser extent, N₂₀₀ increased net primary production by 69% and net ecosystem production by 79% compared to N₀. Grain yields were greatest under N₃₀₀ compared with N₁₀₀ and N₀, which therefore translated into increased carbon emission efficiency (CEE) by 53%, 39% and 3% under N₃₀₀ compared to N₀, N₁₀₀, and N₂₀₀ treatments respectively. Under the conditions of this study, crop yield and CEE may be optimized at nitrogen application rates in the range of 200-300 kg ha⁻¹. Based on these results, there appears potential for 200 kg N ha⁻¹ to be used to improve yield and increase CEE in the context of the rainfall-limiting environment.

Keywords: carbon emission, carbon emission efficiency, C sequestration, N rates, semi-arid

Procedia PDF Downloads 208
1718 Microbial Resource Research Infrastructure: A Large-Scale Research Infrastructure for Microbiological Services

Authors: R. Hurtado-Ortiz, D. Clermont, M. Schüngel, C. Bizet, D. Smith, E. Stackebrandt

Abstract:

Microbiological resources and their derivatives are the essential raw material for the advancement of human health, agro-food, food security, biotechnology, research and development in all life sciences. Microbial resources, and their genetic and metabolic products, are utilised in many areas such as production of healthy and functional food, identification of new antimicrobials against emerging and resistant pathogens, fighting agricultural disease, identifying novel energy sources on the basis of microbial biomass and screening for new active molecules for the bio-industries. The complexity of public collections, distribution and use of living biological material (not only living but also DNA, services, training, consultation, etc.) and service offer, demands the coordination and sharing of policies, processes and procedures. The Microbial Resource Research Infrastructure (MIRRI) is an initiative within the European Strategy Forum Infrastructures (ESFRI), bring together 16 partners including 13 European public microbial culture collections and biological resource centres (BRCs), supported by several European and non-European associated partners. The objective of MIRRI is to support innovation in microbiology by provision of a one-stop shop for well-characterized microbial resources and high quality services on a not-for-profit basis for biotechnology in support of microbiological research. In addition, MIRRI contributes to the structuring of microbial resources capacity both at the national and European levels. This will facilitate access to microorganisms for biotechnology for the enhancement of the bio-economy in Europe. MIRRI will overcome the fragmentation of access to current resources and services, develop harmonised strategies for delivery of associated information, ensure bio-security and other regulatory conditions to bring access and promote the uptake of these resources into European research. Data mining of the landscape of current information is needed to discover potential and drive innovation, to ensure the uptake of high quality microbial resources into research. MIRRI is in its Preparatory Phase focusing on governance and structure including technical, legal governance and financial issues. MIRRI will help the Biological Resources Centres to work more closely with policy makers, stakeholders, funders and researchers, to deliver resources and services needed for innovation.

Keywords: culture collections, microbiology, infrastructure, microbial resources, biotechnology

Procedia PDF Downloads 417
1717 Microbial Diversity Assessment in Household Point-of-Use Water Sources Using Spectroscopic Approach

Authors: Syahidah N. Zulkifli, Herlina A. Rahim, Nurul A. M. Subha

Abstract:

Sustaining water quality is critical in order to avoid any harmful health consequences for end-user consumers. The detection of microbial impurities at the household level is the foundation of water security. Water quality is now monitored only at water utilities or infrastructure, such as water treatment facilities or reservoirs. This research provides a first-hand scientific understanding of microbial composition presence in Malaysia’s household point-of-use (POUs) water supply influenced by seasonal fluctuations, standstill periods, and flow dynamics by using the NIR-Raman spectroscopic technique. According to the findings, 20% of water samples were contaminated by pathogenic bacteria, which are Legionella and Salmonella cells. A comparison of the spectra reveals significant signature peaks (420 cm⁻¹ to 1800 cm⁻¹), including species-specific bands. This demonstrates the importance of regularly monitoring POUs water quality to provide a safe and clean water supply to homeowners. Conventional Raman spectroscopy, up-to-date, is no longer suited for real-time monitoring. Therefore, this study introduced an alternative micro-spectrometer to give a rapid and sustainable way of monitoring POUs water quality. Assessing microbiological threats in water supply becomes more reliable and efficient by leveraging IoT protocol.

Keywords: microbial contaminants, water quality, water monitoring, Raman spectroscopy

Procedia PDF Downloads 65
1716 Influence of Applied Inorganic and Organic Nitrogen Fertilizers on Nitrogen Forms in Biochar-Treated Soil

Authors: Eman H. El-Gamal, Maher E. Saleh, Mohamed Rashad, Ibrahim Elsokkary, Mona M. Abd El-Latif

Abstract:

Biochar application to calcareous soils could potentially influence the nitrogen dynamics that affect the bioavailability of plants. This study was carried out to investigate the effect of incubation periods on the changes of nitrogen levels (total nitrogen TN and exchangeable ammonium NH₄⁺ and nitrate NO₃⁻) in biochar-treated calcareous soil. The incubation course was extended to 144 days at 30 ± 3 ℃ and at 50% of soil water holding capacity (WHC). Two types of biochars were obtained by pyrolysis at 500 ℃ from rice husk (RHB) and sugarcane bagasse (SCBB). The experiment was planned in a factorial experimental design with three factors (6 periods '24 days for each period' × 3 biochar types 'un-amended, RHB and SCBB' × 3 nitrogen fertilizers 'control, ammonium nitrate; AN and animal manure; AM') in a completely randomized design. The results obtained showed that the highest level of TN was found in the first 24 days of the incubation period in all treatments. However, the amount of TN was decreased with proceeding incubation period up to 144 days and reached to the lowest level at the end of incubation with values of change rate was 17.5, 16.6, and 14.6 g kg⁻¹ day⁻¹ for the un-amended, RHB and SCBB treated soil, respectively. The values of change rate in biochar-soils treated with nitrogen fertilizers were decreased gradually through the whole incubation time from 127.22 to 12.45 g kg⁻¹ day⁻¹ and from 65.00 to 13.43 g kg⁻¹ day⁻¹ for AN and AM respectively, in the case of RHB-soil. While in SCBB-soil, these values were decreased from 70.83 to 12.13 g kg⁻¹ day⁻¹ and from 59.17 to 11.48 g kg⁻¹ day⁻¹ for AN and AM treatments, respectively. The lowest concentration of exchangeable NH₄⁺ was generally found through the period from 24-48 days of incubation. However, the addition of nitrogen fertilizers, enhanced NH₄⁺ production through incubation periods. In the case of RHB-soil, the value of change rate in NH₄⁺ level in the first 24 days of incubation was 0.43 mg kg⁻¹ day⁻¹ and with the addition of AN and AM this value increased to 1.54 and 4.38 mg kg⁻¹ day⁻¹, respectively. In the case of SCBB-soil, the value of change rate in NH₄⁺ level was 0.29 mg kg⁻¹ day⁻¹ which increased to 1.04 mg kg⁻¹ day⁻¹ at the end of incubation, and due to the addition of AN and AM this value increased to 2.78 and 1.90 mg kg⁻¹ day⁻¹ in the first 24 days of incubation period, respectively. However, as compared to the control treatment, the lowest rate of change in NH₄⁺ level was found at the end of incubation. On the other hand, incubation of all biochars-amended soil and treated with AN and AM decreased the concentration levels of NO₃⁻, especially through the first 24-72 days of incubation period. As a result, the values of change rate in NO₃⁻ concentrations in all treatments were almost negative.

Keywords: ammonium nitrate, animal manure, biochar, rice husk, sugarcane bagasse

Procedia PDF Downloads 100
1715 Nutrition Intervention for Spinal Cord Injury in Critical Care

Authors: Dina Muharib

Abstract:

Specific metabolic challenges are present following spinal cord injury. The acute stage is characterized by a reduction in metabolic activity, as well as a negative nitrogen balance that cannot be corrected, even with aggressive nutritional support. Metabolic demands need to be accurately monitored to avoid overfeeding. Enteral feeding is the optimal route following SCI. When oral feeding is not possible, nasogastric, followed by nasojejunal, then by percutaneous endoscopic gastrostomy, if necessary, is suggested.

Keywords: SCI, energy, protein, nutrition assessment, eneral feeding, nitrogen balance

Procedia PDF Downloads 429
1714 Diversity of Microbial Ground Improvements

Authors: V. Ivanov, J. Chu, V. Stabnikov

Abstract:

Low cost, sustainable, and environmentally friendly microbial cements, grouts, polysaccharides and bioplastics are useful in construction and geotechnical engineering. Construction-related biotechnologies are based on activity of different microorganisms: urease-producing, acidogenic, halophilic, alkaliphilic, denitrifying, iron- and sulphate-reducing bacteria, cyanobacteria, algae, microscopic fungi. The bio-related materials and processes can be used for the bioaggregation, soil biogrouting and bioclogging, biocementation, biodesaturation of water-satured soil, bioencapsulation of soft clay, biocoating, and biorepair of the concrete surface. Altogether with the most popular calcium- and urea based biocementation, there are possible and often are more effective such methods of ground improvement as calcium- and magnesium based biocementation, calcium phosphate strengthening of soil, calcium bicarbonate biocementation, and iron- or polysaccharide based bioclogging. The construction-related microbial biotechnologies have a lot of advantages over conventional construction materials and processes.

Keywords: ground improvement, biocementation, biogrouting, microorganisms

Procedia PDF Downloads 197
1713 Significant Influence of Land Use Type on Earthworm Communities but Not on Soil Microbial Respiration in Selected Soils of Hungary

Authors: Tsedekech Gebremeskel Weldmichael, Tamas Szegi, Lubangakene Denish, Ravi Kumar Gangwar, Erika Micheli, Barbara Simon

Abstract:

Following the 1992 Earth Summit in Rio de Janeiro, soil biodiversity has been recognized globally as a crucial player in guaranteeing the functioning of soil and a provider of several ecosystem services essential for human well-being. The microbial fraction of the soil is a vital component of soil fertility as soil microbes play key roles in soil aggregate formation, nutrient cycling, humification, and degradation of pollutants. Soil fauna, such as earthworms, have huge impacts on soil organic matter dynamics, nutrient cycling, and infiltration and distribution of water in the soil. Currently, land-use change has been a global concern as evidence accumulates that it adversely affects soil biodiversity and the associated ecosystem goods and services. In this study, we examined the patterns of soil microbial respiration (SMR) and earthworm (abundance, biomass, and species richness) across three land-use types (grassland, arable land, and forest) in Hungary. The objectives were i) to investigate whether there is a significant difference in SMR and earthworm (abundance, biomass, and species richness) among land-use types. ii) to determine the key soil properties that best predict the variation in SMR and earthworm communities. Soil samples, to a depth of 25 cm, were collected from the surrounding areas of seven soil profiles. For physicochemical parameters, soil organic matter (SOM), pH, CaCO₃, E₄/E₆, available nitrogen (NH₄⁺-N and NO₃⁻-N), potassium (K₂O), phosphorus (P₂O₅), exchangeable Ca²⁺, Mg²⁺, soil moisture content (MC) and bulk density were measured. The analysis of SMR was determined by basal respiration method, and the extraction of earthworms was carried out by hand sorting method as described by ISO guideline. The results showed that there was no statistically significant difference among land-use types in SMR (p > 0.05). However, the highest SMR was observed in grassland soils (11.77 mgCO₂ 50g⁻¹ soil 10 days⁻¹) and lowest in forest soils (8.61 mgCO₂ 50g⁻¹ soil 10 days⁻¹). SMR had strong positive correlations with exchangeable Ca²⁺ (r = 0.80), MC (r = 0.72), and exchangeable Mg²⁺(r = 0.69). We found a pronounced variation in SMR among soil texture classes (p < 0.001), where the highest value in silty clay loam soils and the lowest in sandy soils. This study provides evidence that agricultural activities can negatively influence earthworm communities, in which the arable land had significantly lower earthworm communities compared to forest and grassland respectively. Overall, in our study, land use type had minimal effects on SMR whereas, earthworm communities were profoundly influenced by land-use type particularly agricultural activities related to tillage. Exchangeable Ca²⁺, MC, and texture were found to be the key drivers of the variation in SMR.

Keywords: earthworm community, land use, soil biodiversity, soil microbial respiration, soil property

Procedia PDF Downloads 105
1712 Passive Attenuation of Nitrogen Species at Northern Mine Sites

Authors: Patrick Mueller, Alan Martin, Justin Stockwell, Robert Goldblatt

Abstract:

Elevated concentrations of inorganic nitrogen (N) compounds (nitrate, nitrite, and ammonia) are a ubiquitous feature to mine-influenced drainages due to the leaching of blasting residues and use of cyanide in the milling of gold ores. For many mines, the management of N is a focus for environmental protection, therefore understanding the factors controlling the speciation and behavior of N is central to effective decision making. In this paper, the passive attenuation of ammonia and nitrite is described for three northern water bodies (two lakes and a tailings pond) influenced by mining activities. In two of the water bodies, inorganic N compounds originate from explosives residues in mine water and waste rock. The third water body is a decommissioned tailings impoundment, with N compounds largely originating from the breakdown of cyanide compounds used in the processing of gold ores. Empirical observations from water quality monitoring indicate nitrification (the oxidation of ammonia to nitrate) occurs in all three waterbodies, where enrichment of nitrate occurs commensurately with ammonia depletion. The N species conversions in these systems occurred more rapidly than chemical oxidation kinetics permit, indicating that microbial mediated conversion was occurring, despite the cool water temperatures. While nitrification of ammonia and nitrite to nitrate was the primary process, in all three waterbodies nitrite was consistently present at approximately 0.5 to 2.0 % of total N, even following ammonia depletion. The persistence of trace amounts of nitrite under these conditions suggests the co-occurrence denitrification processes in the water column and/or underlying substrates. The implications for N management in mine waters are discussed.

Keywords: explosives, mining, nitrification, water

Procedia PDF Downloads 285
1711 Nitrogen, Phosphorus, Potassium (NPK) Hydroxyapatite Nano-Hybrid Slow Release Fertilizer

Authors: Tinomuvonga Manenji Zhou, Eubert Mahofa, Tatenda Crispen Madzokere

Abstract:

The nanostructured formulation can increase fertilizer efficacy and uptake ratio of the soil nutrients in agriculture production and save fertilizer resources. Controlled release modes have properties of both release rate and release pattern of nutrients, for fertilizers that are soluble in water might be correctly controlled. Nanoparticles can reduce the rate at which fertilizer nutrients are in the soil by leaching. A slow release NPK-hydroxyapatite nano hybrid fertilizer was synthesized using exfoliated bentonite as filler material. A simple, scalable method was used to synthesize the nitrogen-phosphorus hydroxyapatite nano fertilizer, where calcium hydroxide, phosphoric acid, and urea were used as precursor material, followed by the incorporation of potassium through a liquid grinding method. The product obtained was an NPK-hydroxyapatite nano hybrid fertilizer. A quantitative analysis was done to determine the percentage of nitrogen, phosphorus, and potassium in the hybrid fertilizer. AAS was used to determine the percentage of potassium in the fertilizer. An accelerated water test was conducted to compare the nutrient release behavior of nutrients between the synthesized NPK-hydroxyapatite nano hybrid fertilizer and commercial NPK fertilizer. The rate of release of Nitrogen, phosphorus, and potassium was significantly lower in the synthesized NPK hydroxyapatite nano hybrid fertilizer than in the convectional NPK fertilizer. The synthesized fertilizer was characterized using XRD. NPK hydroxyapatite nano hybrid fertilizer encapsulated in exfoliated bentonite thus prepared can be used as an environmentally friendly fertilizer formulation which could be extended to solve one of the major problems faced in the global fertilization of low nitrogen, phosphorus, and potassium use efficiency in agriculture.

Keywords: NPK hydroxyapatite nano hybrid fertilizer, bentonite, encapsulation, low release

Procedia PDF Downloads 69
1710 Clustered Regularly Interspaced Short Palindromic Repeats Interference (CRISPRi): An Approach to Inhibit Microbial Biofilm

Authors: Azna Zuberi

Abstract:

Biofilm is a sessile bacterial accretion in which bacteria adapts different physiological and morphological behavior from planktonic form. It is the root cause of about 80% microbial infections in human. Among them, E. coli biofilms are most prevalent in medical devices associated nosocomial infections. The objective of this study was to inhibit biofilm formation by targeting LuxS gene, involved in quorum sensing using CRISPRi. luxS is a synthase, involved in the synthesis of Autoinducer-2(AI-2), which in turn guides the initial stage of biofilm formation. To implement CRISPRi system, we have synthesized complementary sgRNA to target gene sequence and co-expressed with dCas9. Suppression of luxS was confirmed through qRT-PCR. The effect of luxS gene on biofilm inhibition was studied through crystal violet assay, XTT reduction assay and scanning electron microscopy. We conclude that CRISPRi system could be a potential strategy to inhibit bacterial biofilm through mechanism base approach.

Keywords: biofilm, CRISPRi, luxS, microbial

Procedia PDF Downloads 155