Search results for: methane low temperature total oxidation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15292

Search results for: methane low temperature total oxidation

15022 Catalytic Activity of CU(II) Complex on C(SP3)-H Oxidation Reactions

Authors: Yalçın Kılıç, İbrahim Kani

Abstract:

In recent years, interest in the synthesis of coordination compounds has greatly increased due to various application areas (such as catalysis, gas storage, luminescence). Dicarboxylic acids are often used in the synthesis of metal complexes. Bis-thiosalicylate derivative ligands contribute to the synthesis of structures of crystal engineering interest, as they can have both rigid and flexible properties. In addition, these ligands have great potential in terms of catalytic applications with the sulfur and oxygen donor atoms in their structures. In this study, we synthesized a Cu(II) complex [Cu(tsaxyl)(phen)2]•CH3OH (where tsaxyl = 2,2'-(1,2-phylenebis(methylene))bis(sulfanedyl)dibenzoate, phen = 1,10-phenantroline) and characterized through X-ray crystallography. The catalytic activities of Cu(II) complex on oxidation of ethylbenzene, cyclohexane, diphenylmethane, p-xylene were performed in acetonitrile with t-BuOOH as the source of oxygen.

Keywords: complex, crystallography, catalysis, oxidation

Procedia PDF Downloads 72
15021 Effects of Microwave Heating Rate on the Color, Total Anthocyanin Content and Total Phenolics of Elderberry Juice during Come-up-Time

Authors: Balunkeswar Nayak, Hanjun Cao, Xinruo Zhang

Abstract:

Elderberry could protect human health from oxidative stress, and reduce aging and certain cardiovascular diseases due to the presence of bioactive phytochemicals with high antioxidant capacity. However, these bioactive phytochemicals, such as anthocyanins and other phenolic acids, are susceptible to degradation during processing of elderberries to juice, jam, and powder due to intensity and duration of thermal exposure. The effects of microwave heating rate during come-up-times, using a domestic 2450 MHz microwave, on the color, total anthocyanin content and total phenolics on elderberry juice was studied. With a variation of come-up-time from 30 sec to 15 min at different power levels (10–50 % of total wattage), the temperature of elderberry juice vary from 40.6 °C to 91.5 °C. However, the color parameters (L, A, and B), total anthocyanin content (using pH differential method) and total phenolics did not vary significantly when compared to the control samples.

Keywords: elderberry, microwave, color, thermal exposure

Procedia PDF Downloads 576
15020 Effect of Microstructure on Transition Temperature of Austempered Ductile Iron (ADI)

Authors: A. Ozel

Abstract:

The ductile to brittle transition temperature is a very important criterion that is used for selection of materials in some applications, especially in low-temperature conditions. For that reason, in this study transition temperature of as-cast and austempered unalloyed ductile iron in the temperature interval from -60 to +100 degrees C have been investigated. The microstructures of samples were examined by light microscope. The impact energy values obtained from the experiments were found to depend on the austempering time and temperature.

Keywords: Austempered Ductile Iron (ADI), Charpy test, microstructure, transition temperature

Procedia PDF Downloads 472
15019 Impacts of the Mineralogical Composition on the Petrophysical Behavior of the Amygdaloidal and Vesicular Basalts of Wadi Wizr, Eastern Desert, Egypt

Authors: Nadia A. Wassif, Bassem S. Nabawy

Abstract:

This paper gives an account of the petrophysical characteristics and the petrographical descriptions of Tertiary vesicular and amygdaloidal olivine basalt samples from Wadi Wizr in the central Eastern Desert of Egypt. The petrographical studies indicated that the studied vesicular basalt is rich in calcic-plagioclase, augite and olivine in addition to numerous amounts of fine opaque minerals and vesicules filled with carbonate and quartz amygdales. The degree of oxidation and alteration of magnetite and ilmenite were discussed in details. Petrophysically, the studied samples can be grouped into two main groups; the first group of samples is amygdaloidal basalt as the second group is vesicular. The vesicular group (the permeable one) is characterized by fair to very good porosity ‘Φ’, good to very good permeability ‘k’, very low true formation factor ‘F’ and micro to ultra micropores. On the other hand, the amygdaloidal basalt group (impermeable group) is characterized by very low storage capacity properties, fair porosity, negligible permeability, medium to high true formation factor and ultra micorpores. It has been found that; the petrophysical behavior is strongly dependent on the degree of oxidation and alteration; and in particular on the rate of cooling and oxidation of the ore minerals which caused filling in the primarily produced vesicules by low temperature secondary minerals.

Keywords: vesicular, amygdaloidal, basalt, petrophysics, Egypt

Procedia PDF Downloads 325
15018 Transition Metal Carbodiimide vs. Spinel Matrices for Photocatalytic Water Oxidation

Authors: Karla Lienau, Rafael Müller, René Moré, Debora Ressnig, Dan Cook, Richard Walton, Greta R. Patzke

Abstract:

The increasing demand for renewable energy sources and storable fuels underscores the high potential of artificial photosynthesis. The four electron transfer process of water oxidation remains the bottleneck of water splitting, so that special emphasis is placed on the development of economic, stable and efficient water oxidation catalysts (WOCs). Our investigations introduced cobalt carbodiimide CoNCN and its transition metal analogues as WOC types, and further studies are focused on the interaction of different transition metals in the convenient all-nitrogen/carbon matrix. This provides further insights into the nature of the ‘true catalyst’ for cobalt centers in this non-oxide environment. Water oxidation activity is evaluated with complementary methods, namely photocatalytically using a Ru-dye sensitized standard setup as well as electrocatalytically, via immobilization of the WOCs on glassy carbon electrodes. To further explore the tuning potential of transition metal combinations, complementary investigations were carried out in oxidic spinel WOC matrices with more versatile host options than the carbodiimide framework. The influence of the preparative history on the WOC performance was evaluated with different synthetic methods (e.g. hydrothermally or microwave assisted). Moreover, the growth mechanism of nanoscale Co3O4-spinel as a benchmark WOC was investigated with in-situ PXRD techniques.

Keywords: carbodiimide, photocatalysis, spinels, water oxidation

Procedia PDF Downloads 256
15017 Visible-Light-Driven OVs-BiOCl Nanoplates with Enhanced Photocatalytic Activity toward NO Oxidation

Authors: Jiazhen Liao, Xiaolan Zeng

Abstract:

A series of BiOCl nanoplates with different oxygen vacancies (OVs) concentrations were successfully synthesized via a facile solvothermal method. The concentration of OVs of BiOCl can be tuned by the ratios of water/ethylene glycol. Such nanoplates containing oxygen vacancies served as an efficient visible-light-driven photocatalyst for NO oxidation. Compared with pure BiOCl, the enhanced photocatalytic performance was mainly attributed to the introduction of OVs, which greatly enhanced light absorption, promoted electron transfer, activated oxygen molecules. The present work could provide insights into the understanding of the role of OVs in photocatalysts for reference. Combined with characterization analysis, such as XRD(X-ray diffraction), XPS(X-ray photoelectron spectroscopy), TEM(Transmission Electron Microscopy), PL(Fluorescence Spectroscopy), and DFT (Density Functional Theory) calculations, the effect of vacancies on photoelectrochemical properties of BiOCl photocatalysts are shown. Furthermore, the possible reaction mechanisms of photocatalytic NO oxidation were also revealed. According to the results of in situ DRIFTS ( Diffused Reflectance Infrared Fourier Transform Spectroscopy), various intermediates were produced during different time intervals of NO photodegradation. The possible pathways are summarized below. First, visible light irradiation induces electron-hole pairs on the surface of OV-BOC (BiOCl with oxygen vacancies). Second, photogenerated electrons form superoxide radical with the contacted oxygen. Then, the NO molecules adsorbed on the surface of OV-BOC are attacked by superoxide radical and form nitrate instead of NO₂ (by-products). Oxygen vacancies greatly improve the photocatalytic oxidation activity of NO and effectively inhibit the production of harmful by-products during the oxidation of NO.

Keywords: OVs-BiOCl nanoplate, oxygen vacancies, NO oxidation, photocatalysis

Procedia PDF Downloads 98
15016 Analyses and Optimization of Physical and Mechanical Properties of Direct Recycled Aluminium Alloy (AA6061) Wastes by ANOVA Approach

Authors: Mohammed H. Rady, Mohd Sukri Mustapa, S Shamsudin, M. A. Lajis, A. Wagiman

Abstract:

The present study is aimed at investigating microhardness and density of aluminium alloy chips when subjected to various settings of preheating temperature and preheating time. Three values of preheating temperature were taken as 450 °C, 500 °C, and 550 °C. On the other hand, three values of preheating time were chosen (1, 2, 3) hours. The influences of the process parameters (preheating temperature and time) were analyzed using Design of Experiments (DOE) approach whereby full factorial design with center point analysis was adopted. The total runs were 11 and they comprise of two factors of full factorial design with 3 center points. The responses were microhardness and density. The results showed that the density and microhardness increased with decreasing the preheating temperature. The results also found that the preheating temperature is more important to be controlled rather than the preheating time in microhardness analysis while both the preheating temperature and preheating time are important in density analysis. It can be concluded that setting temperature at 450 °C for 1 hour resulted in the optimum responses.

Keywords: AA6061, density, DOE, hot extrusion, microhardness

Procedia PDF Downloads 306
15015 Effects of Garlic (Allium sativum) Juice on Semen Oxidation in Male Rats

Authors: Jamshid Ghiasi Ghalehkandi, Naser Maheri Sis, Yahya Ebrahimnezhad, Shahin Hassanpour

Abstract:

The objective of present study was to examine the effects of fresh garlic juice on semen malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPx) and total antioxidant status (TAS) in male rats. Fifty-four male rats (230-250 g) were allocated into 3 treatment groups (each include 3 groups and 6 replicate). Group 1 served as water control. In group 2, rats were gavaged with 60 mg/kg garlic juice. In group 3, rats were offered 120 mg/kg garlic juice. Animals received treatments orally and ad libitum access to chow pellets and fresh water. After 4 weeks, animals were killed, testes were taken out and semen samples were used to determine MDA, SOD, GPx and TAS activity. According to the results, garlic juice (120 mg/kg) significantly declined semen MDA activity compared to control group (P<0.05). These results suggest that presumably garlic juice protects semen oxidation in rat testes.

Keywords: garlic juice, chromium chloride, semen, rat

Procedia PDF Downloads 735
15014 Effect of the Nature of the Precursor on the Performance of Cu-Mn Catalysts for CO and VOCs Oxidation

Authors: Elitsa Kolentsova, Dimitar Dimitrov, Krasimir Ivanov

Abstract:

The catalytic oxidation of methanol to formaldehyde is an important industrial process in which the waste gas in addition to CO contains methanol and dimethyl ether (DME). Evaluation of the possibility of removing the harmful components from the exhaust gasses needs a more complex investigation. Our previous work indicates that supported Cu-Mn oxide catalysts are promising for effective deep oxidation of these compounds. This work relates to the catalyst, comprising copper-manganese spinel, coated on carrier γ-Al₂O₃. The effect of preparation conditions on the active component composition and activity behavior of the catalysts is discussed. Different organometallic compounds on the base of four natural amino acids (Glycine, Alanine, Valine, Leucine) as precursors were used for the preparation of catalysts with Cu/Mn molar ratio 1:5. X-Ray and TEM analysis were performed on the catalyst’s bulk, and surface composition and the specific surface area was determined by BET method. The results obtained show that the activity of the catalysts increase up to 40% although there are some specific features, depending on the nature of the amino acid and the oxidized compound.

Keywords: Cu-Mn/γ-Al₂O₃, CO and VOCs oxidation, heterogeneous catalysis, amino acids

Procedia PDF Downloads 215
15013 Supplementation of Leucahena leucochepala on Rice Straw Ammoniated Complete Feed on Fiber Digestibility and in vitro Rumen Fermentation Characteristics

Authors: Mardiati Zain, W. S. N. Rusmana, Erpomen, Malik Makmur, Ezi Masdia Putri

Abstract:

Background and Aim: The leaves of the Leucaenaleucocephala tree have potential as a nitrogen source for ruminants. Leucaena leaf meal as protein supplement has been shown to improve the feed quality of ruminants. The effects of different levels of Leucaena leucocephala supplementation as substitute of concentrate on fiber digestibility and in vitro rumen fermentation characteristics were investigated. This research was conducted in vitro. The study used a randomized block design consisting of 3 treatments and 5 replications. The treatments were A. 40% rice straw ammoniated + 60% concentrate, B. 40% rice straw ammoniated + 50% concentrate + 10% Leucaena leuchephala, C. 40% rice straw ammoniated + 40% concentrate + 20% Leucaena leuchephala, Result: The results showed that the addition of Leucaena leucocephala increased the digestibility of Neutral detergent Fiber NDF and Acid Detergent Fiber (ADF) (p < 0.05). In this study, rumen NH3, propionate, amount of escape protein and total Volatyl Fatty Acid (VFA) were found increased significantly at treatment B. No significant difference was observed in acetate and butyrate production. The populations of total protozoa and methane production had significantly decreased (P < .05) in supplemented group. Conclusion: Supplementation of leuchaena leucochepala on completed feed based on ammoniated rice straw in vitro can increase fiber digestibility, VFA production and decreased protozoa pupulataion and methane production. Supplementation of 10% and 20% L. leucochepala were suitable to be used for further studies, therefore in vivo experiment is required to study the effects on animal production.

Keywords: digestibility, Leucaena leucocephala, complete feed, rice straw ammoniated

Procedia PDF Downloads 124
15012 Study of the Kinetics of Formation of Carboxylic Acids Using Ion Chromatography during Oxidation Induced by Rancimat of the Oleic Acid, Linoleic Acid, Linolenic Acid, and Biodiesel

Authors: Patrícia T. Souza, Marina Ansolin, Eduardo A. C. Batista, Antonio J. A. Meirelles, Matthieu Tubino

Abstract:

Lipid oxidation is a major cause of the deterioration of the quality of the biodiesel, because the waste generated damages the engines. Among the main undesirable effects are the increase of viscosity and acidity, leading to the formation of insoluble gums and sediments which cause the blockage of fuel filters. The auto-oxidation is defined as the spontaneous reaction of atmospheric oxygen with lipids. Unsaturated fatty acids are usually the components affected by such reactions. They are present as free fatty acids, fatty esters and glycerides. To determine the oxidative stability of biodiesels, through the induction period, IP, the Rancimat method is used, which allows continuous monitoring of the induced oxidation process of the samples. During the oxidation of the lipids, volatile organic acids are produced as byproducts, in addition, other byproducts, including alcohols and carbonyl compounds, may be further oxidized to carboxylic acids. By the methodology developed in this work using ion chromatography, IC, analyzing the water contained in the conductimetric vessel, were quantified organic anions of carboxylic acids in samples subjected to oxidation induced by Rancimat. The optimized chromatographic conditions were: eluent water:acetone (80:20 v/v) with 0.5 mM sulfuric acid; flow rate 0.4 mL min-1; injection volume 20 µL; eluent suppressor 20 mM LiCl; analytical curve from 1 to 400 ppm. The samples studied were methyl biodiesel from soybean oil and unsaturated fatty acids standards: oleic, linoleic and linolenic. The induced oxidation kinetics curves were constructed by analyzing the water contained in the conductimetric vessels which were removed, each one, from the Rancimat apparatus at prefixed intervals of time. About 3 g of sample were used under the conditions of 110 °C and air flow rate of 10 L h-1. The water of each conductimetric Rancimat measuring vessel, where the volatile compounds were collected, was filtered through a 0.45 µm filter and analyzed by IC. Through the kinetic data of the formation of the organic anions of carboxylic acids, the formation rates of the same were calculated. The observed order of the rates of formation of the anions was: formate >>> acetate > hexanoate > valerate for the oleic acid; formate > hexanoate > acetate > valerate for the linoleic acid; formate >>> valerate > acetate > propionate > butyrate for the linolenic acid. It is possible to suppose that propionate and butyrate are obtained mainly from linolenic acid and that hexanoate is originated from oleic and linoleic acid. For the methyl biodiesel the order of formation of anions was: formate >>> acetate > valerate > hexanoate > propionate. According to the total rate of formation these anions produced during the induced degradation of the fatty acids can be assigned the order of reactivity: linolenic acid > linoleic acid >>> oleic acid.

Keywords: anions of carboxylic acids, biodiesel, ion chromatography, oxidation

Procedia PDF Downloads 438
15011 Study on the Influence of Different Lengths of Tunnel High Temperature Zones on Train Aerodynamic Resistance

Authors: Chong Hu, Tiantian Wang, Zhe Li, Ourui Huang, Yichen Pan

Abstract:

When the train is running in a high geothermal tunnel, changes in the temperature field will cause disturbances in the propagation and superposition of pressure waves in the tunnel, which in turn have an effect on the aerodynamic resistance of the train. The aim of this paper is to investigate the effect of the changes in the lengths of the high-temperature zone of the tunnel on the aerodynamic resistance of the train, clarifying the evolution mechanism of aerodynamic resistance of trains in tunnels with high ground temperatures. Firstly, moving model tests of trains passing through wall-heated tunnels were conducted to verify the reliability of the numerical method in this paper. Subsequently, based on the three-dimensional unsteady compressible RANS method and the standard k-ε two-equation turbulence model, the change laws of the average aerodynamic resistance under different high-temperature zone lengths were analyzed, and the influence of frictional resistance and pressure difference resistance on total resistance at different times was discussed. The results show that as the length of the high-temperature zone LH increases, the average aerodynamic resistance of a train running in a tunnel gradually decreases; when LH = 330 m, the aerodynamic resistance can be reduced by 5.7%. At the moment of maximum resistance, the total resistance, differential pressure resistance, and friction resistance all decrease gradually with the increase of LH and then remain basically unchanged. At the moment of the minimum value of resistance, with the increase of LH, the total resistance first increases and then slowly decreases; the differential pressure resistance first increases and then remains unchanged, while the friction resistance first remains unchanged and then gradually decreases, and the ratio of the differential pressure resistance to the total resistance gradually increases with the increase of LH. The results of this paper can provide guidance for scholars who need to investigate the mechanism of aerodynamic resistance change of trains in high geothermal environments, as well as provide a new way of thinking for resistance reduction in non-high geothermal tunnels.

Keywords: high-speed trains, aerodynamic resistance, high-ground temperature, tunnel

Procedia PDF Downloads 34
15010 The Effect of Microwave Radiation on Biogas Production Efficiency Using Different Plant Substrates

Authors: Marcin Zieliński, Marcin Dębowski, Mirosław Krzemieniewski

Abstract:

The purpose of the present work was to assess the impact of using electromagnetic microwave radiation as a means of stimulating the thermal conditions in anaerobic reactors on biomethanation efficiency of different plant substrates, as measured by the quantity and quality of the resultant biogas. Using electromagnetic microwave radiation to maintain optimal thermal conditions during biomethanation allows for achievement of much higher technological effects in comparison with a conventional heating system. After subjecting different plant substrates to fermentation in the model fermentation chambers, the largest improvements in regard to biogas production efficiency and biogas quality were recorded in the series with corn silage and grass silage. In the first case, the quantity of methane produced in the microwave-stimulated technological system exceeded by 15.26% the quantities produced in reactors heated conventionally. When grass silage was utilized as the organic substrate in the process of biomethanation, anaerobic reactors treated with microwave radiation produced 12.62% more methane.

Keywords: microwave radiation, biogas, methane fermentation, biomass

Procedia PDF Downloads 491
15009 Correlation Analysis of Reactivity in the Oxidation of Para and Meta-Substituted Benzyl Alcohols by Benzimidazolium Dichromate in Non-Aqueous Media: A Kinetic and Mechanistic Aspects

Authors: Seema Kothari, Dinesh Panday

Abstract:

An observed correlation of the reaction rates with the changes in the nature of substituent present on one of the reactants often reveals the nature of transition state. Selective oxidation of organic compounds under non-aqueous media is an important transformation in synthetic organic chemistry. Inorganic chromates and dichromates being drastic oxidant and are generally insoluble in most organic solvents, a number of different chromium (VI) derivatives have been synthesized. Benzimidazolium dichromate (BIDC) is one of the recently reported Cr(VI) reagents which is neither hygroscopic nor light sensitive being, therefore, much stable. Not many reports on the kinetics of the oxidations by BIDC are seemed to be available in the literature. In the present investigation, the kinetics and mechanism of benzyl alcohol (BA) and a number of para- and meta-substituted benzyl alcohols by benzimidazolium dichromate (BIDC), in dimethyl sulphoxide, is reported. The reactions were followed spectrophotometrically at 364 nm by monitoring the decrease in [BIDC] for up to 85-90% reaction, the temperature being constant. The observed oxidation product is the corresponding benzaldehyde. The reactions were of first order with respect to each the alcohol and BIDC. The reactions are catalyzed by proton, and the dependence is of the form: kobs = a + b[H+]. The reactions thus follow both, an acid-dependent and acid-independent paths. The oxidation of [1,1 2H2]benzyl alcohol exhibited the presence of a substantial kinetic isotope effect ( kH/kD = 6.20 at 298 K ). This indicated the cleavage of a α-C-H bond in the rate-determining step. An analysis of the temperature dependence of the deuterium isotope effect showed that the loss of hydrogen proceeds through a concerted cyclic process. The rate of oxidation of BA was determined in 19 organic solvents. An analysis of the solvent effect by Swain’s equation indicated that though both the anion and cation-solvating powers of the solvent contribute to the observed solvent effect, the role of cation-solvation is major. The rates of the para and meta compounds, at 298 K, failed to exhibit a significant correlation in terms of Hammett or Brown's substituent constants. The rates were then subjected to analyses in terms of dual substituent parameter (DSP) equations. The rates of oxidation of the para-substituted benzyl alcohols show an excellent correlation with Taft's σI and σRBA values. However, the rates for the meta-substituted benzyl alcohols show an excellent correlation with σI and σR0. The polar reaction constants are negative indicating an electron-deficient transition state. Hence the overall mechanism is proposed to involve the formation of a chromate ester in a fast pre-equilibrium and then a decomposition of the ester in a subsequent slow step via a cyclic concerted symmetrical transition state, involving hydride-ion transfer, leading to the product. The first order dependence on alcohol may be accounted in terms of the small value of the formation constant of the ester intermediate. An another reaction mechanism accounting the acid-catalysis involve the formation of a protonated BIDC prior to formation of an ester intermediate which subsequently decomposes in a slow step leading to the product.

Keywords: benzimidazolium dichromate, benzyl alcohols, correlation analysis, kinetics, oxidation

Procedia PDF Downloads 302
15008 Synthesis of High-Pressure Performance Adsorbent from Coconut Shells Polyetheretherketone for Methane Adsorption

Authors: Umar Hayatu Sidik

Abstract:

Application of liquid base petroleum fuel (petrol and diesel) for transportation fuel causes emissions of greenhouse gases (GHGs), while natural gas (NG) reduces the emissions of greenhouse gases (GHGs). At present, compression and liquefaction are the most matured technology used for transportation system. For transportation use, compression requires high pressure (200–300 bar) while liquefaction is impractical. A relatively low pressure of 30-40 bar is achievable by adsorbed natural gas (ANG) to store nearly compressed natural gas (CNG). In this study, adsorbents for high-pressure adsorption of methane (CH4) was prepared from coconut shells and polyetheretherketone (PEEK) using potassium hydroxide (KOH) and microwave-assisted activation. Design expert software version 7.1.6 was used for optimization and prediction of preparation conditions of the adsorbents for CH₄ adsorption. Effects of microwave power, activation time and quantity of PEEK on the adsorbents performance toward CH₄ adsorption was investigated. The adsorbents were characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric (TG) and derivative thermogravimetric (DTG) and scanning electron microscopy (SEM). The ideal CH4 adsorption capacities of adsorbents were determined using volumetric method at pressures of 5, 17, and 35 bar at an ambient temperature and 5 oC respectively. Isotherm and kinetics models were used to validate the experimental results. The optimum preparation conditions were found to be 15 wt% amount of PEEK, 3 minutes activation time and 300 W microwave power. The highest CH4 uptake of 9.7045 mmol CH4 adsorbed/g adsorbent was recorded by M33P15 (300 W of microwave power, 3 min activation time and 15 wt% amount of PEEK) among the sorbents at an ambient temperature and 35 bar. The CH4 equilibrium data is well correlated with Sips, Toth, Freundlich and Langmuir. Isotherms revealed that the Sips isotherm has the best fit, while the kinetics studies revealed that the pseudo-second-order kinetic model best describes the adsorption process. In all scenarios studied, a decrease in temperature led to an increase in adsorption of both gases. The adsorbent (M33P15) maintained its stability even after seven adsorption/desorption cycles. The findings revealed the potential of coconut shell-PEEK as CH₄ adsorbents.

Keywords: adsorption, desorption, activated carbon, coconut shells, polyetheretherketone

Procedia PDF Downloads 26
15007 Photocatalysis with Fe/Ti-Pillared Clays for the Oxofunctionalization of Alkylaromatics by O2

Authors: Houria Rezala, Jose Luis Valverde, Amaya Romero, Alessandra Molinari, Andrea Maldotti

Abstract:

A pillared montmorillonite containing iron doped titania (Fe/Ti-PILC) has been prepared from a natural clay. This material has been characterized by X-ray diffraction, nitrogen adsorption, temperature programmed desorption of ammonia, inductively coupled plasma atomic emission spectroscopy, atomic absorption, and diffuse reflectance UV-VIS spectroscopy. The layer structure of Fe/Ti-PILC resulted to be ordered with an insertion of pillars, which caused a slight increase in the basal spacing of the clay. Its specific surface area was about three times larger than that of the parent Na-montmorillonite due principally to the creation of a remarkable microporous network. The doped material was a robust photocatalyst able to oxidize liquid alkyl aromatics to the corresponding carbonylic derivatives, using O2 as the oxidizing species, at mild pressure and temperature conditions. Accumulation of valuable carbonylic derivatives was possible since their over-oxidation to carbon dioxide was negligible. Fe/Ti-PILC was able to discriminate between toluene and cyclohexane in favor of the aromatic compound with an efficiency that is about three times higher than that of titanium pillared clays (Ti-PILC). It is likely that the addition of iron favored the formation of new acid sites able to interact with the aromatic substrate. Iron doping caused a significant TiO2 visible light-induced activity (wavelength > 400 nm) with only minor negative effects on its performance under UV-light irradiation (wavelength > 290 nm).

Keywords: alkyl aromatics oxidation, heterogeneous photocatalysis, iron doping, pillared clays

Procedia PDF Downloads 417
15006 Thermodynamic Modeling of Methane Injection in Gas-Condensate Reservoir Core: A Case Study

Authors: F. S. Alavi, D. Mowla, F. Esmaeilzadeh

Abstract:

In this paper, the core of Sarkhoon Gas Condensate Reservoir located in the south of Iran was thermodynamically modeled in order to study the natural depletion process and methane injection phenomena for enhanced gas-condensate recovery using the Eclipse 300 compositional simulator. Modeling was performed for three different core lengths with different production and injection flow rates in both vertical and horizontal cases. According to the results, the final condensate in place value in the natural depletion process is approximately independent of the production rate for a given pressure drop. The final condensate in place value is lower in vertical cases compared to horizontal cases. An increase in the injection flow rate leads to a decrease in the percentage of gascondensate recovery. In cores of equal length, gas condensate recovery percent is higher in vertical cases in comparison to horizontal cases. For a constant injection rate, decreasing the core length leads to a decrease in gas condensate recovery.

Keywords: reservoir simulation, methane injection, enhanced condensate recovery, reservoir core, modeling

Procedia PDF Downloads 63
15005 Normal Spectral Emissivity of Roughened Aluminum Alloy AL 6061 Surfaces at High Temperature

Authors: Sumeet Kumar, C. V. Krishnamurthy, Krishnan Balasubramaniam

Abstract:

Normal spectral emissivity of Al 6061 alloys with different surface finishes was experimentally measured at 833°K. Four different samples were prepared by polishing the surfaces of the alloy by 80, 220, 600 grit sizes of SiC abrasive papers and diamond paste. The samples were heated in air for 6 h at 833°K, and the emissivity was measured during the process from pyrometers operating at wavelengths of 3.9, 5.14 and 7.8 μm. The results indicated that the emissivity was increasing with heating time and the rate of increase was rapid during the initial stage of heating in comparison with the later stage. This appears to be because of the parabolic rate law followed by the process of oxidation. Further, it is found that the increase in emissivity with heating time was higher for rough surfaces than that for polished surfaces. Both the results were analyzed at all the three wavelengths, and qualitatively similar results were obtained for all of them. In this way emissivity of the alloy can be increased by roughening the surfaces and heating it at high temperature until the surfaces are oxidized.

Keywords: aluminum alloy, high temperature, normal spectral emissivity, surface roughness

Procedia PDF Downloads 180
15004 Prediction of Phonon Thermal Conductivity of F.C.C. Al by Molecular Dynamics Simulation

Authors: Leila Momenzadeh, Alexander V. Evteev, Elena V. Levchenko, Tanvir Ahmed, Irina Belova, Graeme Murch

Abstract:

In this work, the phonon thermal conductivity of f.c.c. Al is investigated in detail in the temperature range 100 – 900 K within the framework of equilibrium molecular dynamics simulations making use of the Green-Kubo formalism and one of the most reliable embedded-atom method potentials. It is found that the heat current auto-correlation function of the f.c.c. Al model demonstrates a two-stage temporal decay similar to the previously observed for f.c.c Cu model. After the first stage of decay, the heat current auto-correlation function of the f.c.c. Al model demonstrates a peak in the temperature range 100-800 K. The intensity of the peak decreases as the temperature increases. At 900 K, it transforms to a shoulder. To describe the observed two-stage decay of the heat current auto-correlation function of the f.c.c. Al model, we employ decomposition model recently developed for phonon-mediated thermal transport in a monoatomic lattice. We found that the electronic contribution to the total thermal conductivity of f.c.c. Al dominates over the whole studied temperature range. However, the phonon contribution to the total thermal conductivity of f.c.c. Al increases as temperature decreases. It is about 1.05% at 900 K and about 12.5% at 100 K.

Keywords: aluminum, gGreen-Kubo formalism, molecular dynamics, phonon thermal conductivity

Procedia PDF Downloads 383
15003 Inventory of Local Forages in Indonesia That Potentially Reduce Methane (CH4) Emissions and Increase Productivity in Ruminants

Authors: Amriana Hifizah, Philip Edward Vercoe, Graeme Bruce Martin, Teuku Reza Ferasy, Muhammad Hambal

Abstract:

Many native forage plant species have been used in Indonesia as feed for ruminants. However, less information is available about how these plants affect productivity, let alone methane emissions. In the province of Aceh, where the traditional practice is to feed local forages to small ruminants, the farmers are not satisfied with the productivity of their livestock, and they attribute this problem to poor availability and too few options for good quality forages. Forage quality is reduced by high environmental temperatures which increase the amount of lignification. In addition to reducing productivity, these factors also increase enteric methane production. A preliminary survey about potential forage species was completed in three different districts, two of low elevation and one of high elevation: Syiah Kuala (05°30’5.08” N to 095°24’7.35” E), elevation 29 m MSL; Kajhu (05°32’34.6” N to 095°21’17.7” E), elevation 30 m MSL; Lembah Seulawah (05°28'06.4" N to 095°43' 14.2" E), elevation 254 m MSL. Information about local plants was collected in a semi-structured interview with scientists, government field officers and local farmers, in the city of Banda Aceh and in those three districts. The outcome was a list 40 species that could be useful, of which 21 were selected for further study. The selection process was based on several criteria: high availability, high protein content, low toxicity, and evidence of secondary metabolites (eg, history of medicinal plants for both human and animals). For some of the selected medicinal plants, there is experimental evidence of effects on methane production during rumen fermentation. Subsequently, the selected forages were tested for their effects on rumen fermentation in vitro, using batch culture. The data produced will be used to identify forages with the potential to reduce CH4 emissions. These candidates will then be assessed for their benefits (fermentability and productivity) and potential deleterious side-effects.

Keywords: batch culture, forage, methane, rumen

Procedia PDF Downloads 298
15002 Antioxidant Potential of Sunflower Seed Cake Extract in Stabilization of Soybean Oil

Authors: Ivanor Zardo, Fernanda Walper Da Cunha, Júlia Sarkis, Ligia Damasceno Ferreira Marczak

Abstract:

Lipid oxidation is one of the most important deteriorating processes in oil industry, resulting in the losses of nutritional value of oils as well as changes in color, flavor and other physiological properties. Autoxidation of lipids occurs naturally between molecular oxygen and the unsaturation of fatty acids, forming fat-free radicals, peroxide free radicals and hydroperoxides. In order to avoid the lipid oxidation in vegetable oils, synthetic antioxidants such as butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT) and tertiary butyl hydro-quinone (TBHQ) are commonly used. However, the use of synthetic antioxidants has been associated with several health side effects and toxicity. The use of natural antioxidants as stabilizers of vegetable oils is being suggested as a sustainable alternative to synthetic antioxidants. The alternative that has been studied is the use of natural extracts obtained mainly from fruits, vegetables and seeds, which have a well-known antioxidant activity related mainly to the presence of phenolic compounds. The sunflower seed cake is rich in phenolic compounds (1 4% of the total mass), being the chlorogenic acid the major constituent. The aim of this study was to evaluate the in vitro application of the phenolic extract obtained from the sunflower seed cake as a retarder of the lipid oxidation reaction in soybean oil and to compare the results with a synthetic antioxidant. For this, the soybean oil, provided from the industry without any addition of antioxidants, was subjected to an accelerated storage test for 17 days at 65 °C. Six samples with different treatments were submitted to the test: control sample, without any addition of antioxidants; 100 ppm of synthetic antioxidant BHT; mixture of 50 ppm of BHT and 50 ppm of phenolic compounds; and 100, 500 and 1200 ppm of phenolic compounds. The phenolic compounds concentration in the extract was expressed in gallic acid equivalents. To evaluate the oxidative changes of the samples, aliquots were collected after 0, 3, 6, 10 and 17 days and analyzed for the peroxide, diene and triene conjugate values. The soybean oil sample initially had a peroxide content of 2.01 ± 0.27 meq of oxygen/kg of oil. On the third day of the treatment, only the samples treated with 100, 500 and 1200 ppm of phenolic compounds showed a considerable oxidation retard compared to the control sample. On the sixth day of the treatment, the samples presented a considerable increase in the peroxide value (higher than 13.57 meq/kg), and the higher the concentration of phenolic compounds, the lower the peroxide value verified. From the tenth day on, the samples had a very high peroxide value (higher than 55.39 meq/kg), where only the sample containing 1200 ppm of phenolic compounds presented significant oxidation retard. The samples containing the phenolic extract were more efficient to avoid the formation of the primary oxidation products, indicating effectiveness to retard the reaction. Similar results were observed for dienes and trienes. Based on the results, phenolic compounds, especially chlorogenic acid (the major phenolic compound of sunflower seed cake), can be considered as a potential partial or even total substitute for synthetic antioxidants.

Keywords: chlorogenic acid, natural antioxidant, vegetables oil deterioration, waste valorization

Procedia PDF Downloads 232
15001 CO₂ Conversion by Low-Temperature Fischer-Tropsch

Authors: Pauline Bredy, Yves Schuurman, David Farrusseng

Abstract:

To fulfill climate objectives, the production of synthetic e-fuels using CO₂ as a raw material appears as part of the solution. In particular, Power-to-Liquid (PtL) concept combines CO₂ with hydrogen supplied from water electrolysis, powered by renewable sources, which is currently gaining interest as it allows the production of sustainable fossil-free liquid fuels. The proposed process discussed here is an upgrading of the well-known Fischer-Tropsch synthesis. The concept deals with two cascade reactions in one pot, with first the conversion of CO₂ into CO via the reverse water gas shift (RWGS) reaction, which is then followed by the Fischer-Tropsch Synthesis (FTS). Instead of using a Fe-based catalyst, which can carry out both reactions, we have chosen the strategy to decouple the two functions (RWGS and FT) on two different catalysts within the same reactor. The FTS shall shift the equilibrium of the RWGS reaction (which alone would be limited to 15-20% of conversion at 250°C) by converting the CO into hydrocarbons. This strategy shall enable optimization of the catalyst pair and thus lower the temperature of the reaction thanks to the equilibrium shift to gain selectivity in the liquid fraction. The challenge lies in maximizing the activity of the RWGS catalyst but also in the ability of the FT catalyst to be highly selective. Methane production is the main concern as the energetic barrier of CH₄ formation is generally lower than that of the RWGS reaction, so the goal will be to minimize methane selectivity. Here we report the study of different combinations of copper-based RWGS catalysts with different cobalt-based FTS catalysts. We investigated their behaviors under mild process conditions by the use of high-throughput experimentation. Our results show that at 250°C and 20 bars, Cobalt catalysts mainly act as methanation catalysts. Indeed, CH₄ selectivity never drops under 80% despite the addition of various protomers (Nb, K, Pt, Cu) on the catalyst and its coupling with active RWGS catalysts. However, we show that the activity of the RWGS catalyst has an impact and can lead to longer hydrocarbons chains selectivities (C₂⁺) of about 10%. We studied the influence of the reduction temperature on the activity and selectivity of the tandem catalyst system. Similar selectivity and conversion were obtained at reduction temperatures between 250-400°C. This leads to the question of the active phase of the cobalt catalysts, which is currently investigated by magnetic measurements and DRIFTS. Thus, in coupling it with a more selective FT catalyst, better results are expected. This was achieved using a cobalt/iron FTS catalyst. The CH₄ selectivity dropped to 62% at 265°C, 20 bars, and a GHSV of 2500ml/h/gcat. We propose that the conditions used for the cobalt catalysts could have generated this methanation because these catalysts are known to have their best performance around 210°C in classical FTS, whereas the iron catalysts are more flexible but are also known to have an RWGS activity.

Keywords: cobalt-copper catalytic systems, CO₂-hydrogenation, Fischer-Tropsch synthesis, hydrocarbons, low-temperature process

Procedia PDF Downloads 31
15000 Copper (II) Complex of New Tetradentate Asymmetrical Schiff Base Ligand: Synthesis, Characterization, and Catecholase-Mimetic Activity

Authors: Cahit Demetgul, Sahin Bayraktar, Neslihan Beyazit

Abstract:

Metalloenzymes are enzyme proteins containing metal ions, which are directly bound to the protein or to enzyme-bound nonprotein components. One of the major metalloenzymes that play a key role in oxidation reactions is catechol oxidase, which shows catecholase activity i.e. oxidation of a broad range of catechols to quinones through the four-electron reduction of molecular oxygen to water. Studies on the model compounds mimicking the catecholase activity are very useful and promising for the development of new, more efficient bioinspired catalysts, for in vitro oxidation reactions. In this study, a new tetradentate asymmetrical Schiff-base and its Cu(II) complex were synthesized by condensation of 4-nitro-1,2-phenylenediamine with 6-formyl-7-hydroxy-5-methoxy-2-methylbenzopyran-4-one and by using an appropriate Cu(II) salt, respectively. The prepared compounds were characterized by elemental analysis, FT-IR, NMR, UV-Vis and magnetic susceptibility. The catecholase-mimicking activity of the new Schiff Base Cu(II) complex was performed for the oxidation of 3,5-di-tert-butylcatechol (3,5-DTBC) in methanol at 25 °C, where the electronic spectra were recorded at different time intervals. The yield of the quinone (3,5-DTBQ) was determined from the measured absorbance at 400 nm of the resulting solution. The compatibility of catalytic reaction with Michaelis-Menten kinetics was also investigated. In conclusion, we have found that our new Schiff Base Cu(II) complex presents a significant capacity to catalyze the oxidation reaction of the catechol to o-quinone.

Keywords: catecholase activity, Michaelis-Menten kinetics, Schiff base, transition metals

Procedia PDF Downloads 282
14999 Anaerobic Co-digestion of the Halophyte Salicornia Ramosissima and Pig Manure in Lab-Scale Batch and Semi-continuous Stirred Tank Reactors: Biomethane Production and Reactor Performance

Authors: Aadila Cayenne, Hinrich Uellendahl

Abstract:

Optimization of the anaerobic digestion (AD) process of halophytic plants is essential as the biomass contains a high salt content that can inhibit the AD process. Anaerobic co-digestion, together with manure, can resolve the inhibitory effects of saline biomass in order to dilute the salt concentration and establish favorable conditions for the microbial consortia of the AD process. The present laboratory study investigated the co-digestion of S. ramosissima (Sram), and pig manure (PM) in batch and semi-continuous stirred tank reactors (CSTR) under mesophilic (38oC) conditions. The 0.5L batch reactor experiments were in mono- and co-digestion of Sram: PM using different percent volatile solid (VS) based ratios (0:100, 15:85, 25:75, 35:65, 50:50, 100:0) with an inoculum to substate (I/R) ratio of 2. Two 5L CSTR systems (R1 and R2) were operated for 133 days with a feed of PM in a control reactor (R1) and with a co-digestion feed in an increasing Sram VS ratio of Sram: PM of 15:85, 25:75, 35:65 in reactor R2 at an organic loading rate (OLR) of 2 gVS/L/d and hydraulic retention time (HRT) of 20 days. After a start-up phase of 8 weeks for both reactors R1 and R2 with PM feed alone, the halophyte biomass Sram was added to the feed of R2 in an increasing ratio of 15 – 35 %VS Sram over an 11-week period. The process performance was monitored by pH, total solid (TS), VS, total nitrogen (TN), ammonium-nitrogen (NH4 – N), volatile fatty acids (VFA), and biomethane production. In the batch experiments, biomethane yields of 423, 418, 392, 365, 315, and 214 mL-CH4/gVS were achieved for mixtures of 0:100, 15:85, 25:75, 35:65, 50:50, 100:0 %VS Sram: PM, respectively. In the semi-continuous reactor processes, the average biomethane yields were 235, 387, and 365 mL-CH4/gVS for the phase of a co-digestion feed ratio in R2 of 15:85, 25:75, and 35:65 %VS Sram: PM, respectively. The methane yield of PM alone in R1 was in the corresponding phases on average 260, 388, and 446 mL-CH4/gVS. Accordingly, in the continuous AD process, the methane yield of the halophyte Sram was highest at 386 mL-CH4/gVS in the co-digestion ratio of 25:75%VS Sram: PM and significantly lower at 15:85 %VS Sram: PM (100 mL-CH4/gVS) and at 35:65 %VS Sram (214 mL-CH4/gVS). The co-digestion process showed no signs of inhibition at 2 – 4 g/L NH4 – N, 3.5 – 4.5 g/L TN, and total VFA of 0.45 – 2.6 g/L (based on Acetic, Propionic, Butyric and Valeric acid). This study demonstrates that a stable co-digestion process of S. ramosissima and pig manure can be achieved with a feed of 25%VS Sram at HRT of 20 d and OLR of 2 gVS/L/d.

Keywords: anaerobic co-digestion, biomethane production, halophytes, pig manure, salicornia ramosissima

Procedia PDF Downloads 99
14998 Enhancing of Biogas Production from Slaughterhouse and Dairy Farm Waste with Pasteurization

Authors: Mahmoud Hassan Onsa, Saadelnour Abdueljabbar Adam

Abstract:

Wastes from slaughterhouses in most towns in Sudan are often poorly managed and sometimes discharged into adjoining streams due to poor implementation of standards, thus causing environmental and public health hazards and also there is a large amount of manure from dairy farms. This paper presents solution of organic waste from cow dairy farms and slaughterhouse the anaerobic digestion and biogas production. The paper presents the findings of experimental investigation of biogas production with and without pasteurization using cow manure, blood and rumen content were mixed at two proportions, 72.3% manure, 21.7%, rumen content and 6% blood for bio digester1with 62% dry matter at the beginning and without pasteurization and 72.3% manure, 21.7%, rumen content and 6% blood for bio-digester2 with 10% dry matter and pasteurization. The paper analyses the quantitative and qualitative composition of biogas: gas content, the concentration of methane. The highest biogas output 2.9 mL/g dry matter/day (from bio-digester2) together with a high quality biogas of 87.4% methane content which is useful for combustion and energy production and healthy bio-fertilizer but biodigester1 gave 1.68 mL/g dry matter/day with methane content 85% which is useful for combustion, energy production and can be considered as new technology of dryer bio-digesters.

Keywords: anaerobic digestion, bio-digester, blood, cow manure, rumen content

Procedia PDF Downloads 690
14997 Reliability of Cores Test Result at Elevated Temperature in Case of High Strength Concrete (HSC)

Authors: Waqas Ali

Abstract:

Concrete is broadly used as a structural material in the construction of buildings. When the concrete is exposed to elevated temperature, its strength evaluation is very necessary in the existing structure. In this study, the effect of temperature and the reliability of the core test has been evaluated. For this purpose, the cylindrical cores were extracted from High strength concrete (HSC) specimens that were exposed to the temperature ranging from 300 ℃ to 900 ℃ with a constant duration of 4 hr. This study compares the difference between the standard heated cylinders and the cores taken from them after curing of 90 days. The difference of cylindrical control and binary mix samples and extracted cores revealed that there is 12.19 and 12.38% difference at 300℃, while this difference was found to increase up to 12.89%, 13.03% at 500 ℃. Furthermore, this value is recorded as 12.99%, 13.57% and 14.40%, 14.38% at 700 ℃ and 900 ℃, respectively. A total of four equations were developed through a regression model for the prediction of the strength of concrete for both standard cylinders and extracted cores whose R square values were 0.9733, 0.9627 and 0.9473, 0.9452, respectively.

Keywords: high strength, temperature, core, reliability

Procedia PDF Downloads 39
14996 Half-Metallic Ferromagnetism in Ternary Zinc Blende Fe/In0.5Ga0.5 as/in Psuperlattice: First-Principles Study

Authors: N. Berrouachedi, M. Bouslama, S. Rioual, B. Lescop, J. Langlois

Abstract:

Using first-principles calculations within the LSDA (Local Spin Density Approximation) method based on density functional theory (DFT), the electronic structure and magnetic properties of zinc blende Fe/In0.5Ga0.5As/InPsuperlattice are investigated. This compound are found to be half -metallic ferromagnets with a total magnetic moment of 2.25μB per Fe. In addition to this, we reported the DRX measurements of the thick iron sample before and after annealing. One should note, after the annealing treatment at a higher temperature, the disappearance of the peak associated to the Fe(001) plane. In contrast to this report, we observed after the annealing at low temperature the additional peaks attributed to the presence of indium and Fe2As. This suggests a subsequent process consisting in a strong migration of atoms followed with crystallization at the higher temperature.To investigate the origin of magnetism and electronic structure in these zb compounds, we calculated the total and partial DOS of FeInP.One can see that µtotal=4.24µBand µFe=3.27µB in contrast µIn=0.021µB and µP=0.049µB.These results predicted that FeInP compound do belong to the class of zb half metallic HM ferromagnetswith a pseudo gap= 0.93 eVare more promising materials for spintronics devices.

Keywords: zincblend structure, half metallic ferromagnet, spin moments, total and partial DOS, DRX, Wien2k

Procedia PDF Downloads 242
14995 Carbon-Encapsulated Iron Nanoparticles for Hydrogen Sulfide Removal

Authors: Meriem Abid, Erika Oliveria-Jardim, Andres Fullana, Joaquin Silvestre-Albero

Abstract:

The rapid industrial development associated with the increase of volatile organic compounds (VOCs) has seriously impacted the environment. Among VOCs, hydrogen sulfide (H₂S) is known as a highly toxic, malodorous, flammable, and corrosive gas, which is emitted from diverse chemical processes, including industrial waste-gas streams, natural gas processing, and biogas purification. The high toxicity, corrosively, and very characteristic odor threshold of H2S call for urgent development of efficient desulfurization processes from the viewpoint of environmental protection and resource regeneration. In order to reduce H₂S emissions, effective technologies for have been performed. The general method of H₂S removal included amine aqueous solution, adsorption process, biological methods, and fixed-bed solid catalytic oxidation processes. Ecologically and economically, low-temperature direct oxidation of H₂S to elemental sulfur using catalytic oxidation is the preferred approach for removing H₂S-containing gas streams. A large number of catalysts made from carbon, metal oxides, clay, and others, have been studied extensively for this application. In this sense, activated carbon (AC) is an attractive catalyst for H₂S removal because it features a high specific surface area, diverse functional groups, low cost, durability, and high efficiency. It is interesting to stand out that AC is modified using metal oxides to promote the efficiency of H₂S removal and to enhance the catalytic performance. Based on these premises, the main goal of the present study is the evaluation of the H₂S adsorption performance in carbon-encapsulated iron nanoparticles obtained from an olive mill, thermally treated at 600, 800 and 1000 ºC temperatures under anaerobic conditions. These results anticipate that carbon-encapsulated iron nanoparticles exhibit a promising performance for the H₂S removal up to 360 mg/g.

Keywords: H₂S removal, catalytic oxidation, carbon encapsulated iron, olive mill wastewater

Procedia PDF Downloads 55
14994 Enhancement in Digester Efficiency and Numerical Analysis for Optimal Design Parameters of Biogas Plant Using Design of Experiment Approach

Authors: Rajneesh, Priyanka Singh

Abstract:

Biomass resources have been one of the main energy sources for mankind since the dawn of civilization. There is a vast scope to convert these energy sources into biogas which is a clean, low carbon technology for efficient management and conversion of fermentable organic wastes into a cheap and versatile fuel and bio/organic manure. Thus, in order to enhance the performance of anaerobic digester, an optimizing analysis of resultant parameters (organic dry matter (oDM) content, methane percentage, and biogas yield) has been done for a plug flow anaerobic digester having mesophilic conditions (20-40°C) with the wet fermentation process. Based on the analysis, correlations for oDM, methane percentage, and biogas yield are derived using multiple regression analysis. A statistical model is developed to correlate the operating variables using the design of experiment approach by selecting central composite design (CCD) of a response surface methodology. Results shown in the paper indicates that as the operating temperature increases the efficiency of digester gets improved provided that the pH and hydraulic retention time (HRT) remains constant. Working in an optimized range of carbon-nitrogen ratio for the plug flow digester, the output parameters show a positive change with the variation of dry matter content (DM).

Keywords: biogas, digester efficiency, design of experiment, plug flow digester

Procedia PDF Downloads 346
14993 Oxidovanadium(IV) and Dioxidovanadium(V) Complexes: Efficient Catalyst for Peroxidase Mimetic Activity and Oxidation

Authors: Mannar R. Maurya, Bithika Sarkar, Fernando Avecilla

Abstract:

Peroxidase activity is possibly successfully used for different industrial processes in medicine, chemical industry, food processing and agriculture. However, they bear some intrinsic drawback associated with denaturation by proteases, their special storage requisite and cost factor also. Now a day’s artificial enzyme mimics are becoming a research interest because of their significant applications over conventional organic enzymes for ease of their preparation, low price and good stability in activity and overcome the drawbacks of natural enzymes e.g serine proteases. At present, a large number of artificial enzymes have been synthesized by assimilating a catalytic center into a variety of schiff base complexes, ligand-anchoring, supramolecular complexes, hematin, porphyrin, nanoparticles to mimic natural enzymes. Although in recent years a several number of vanadium complexes have been reported by a continuing increase in interest in bioinorganic chemistry. To our best of knowledge, the investigation of artificial enzyme mimics of vanadium complexes is very less explored. Recently, our group has reported synthetic vanadium schiff base complexes capable of mimicking peroxidases. Herein, we have synthesized monoidovanadium(IV) and dioxidovanadium(V) complexes of pyrazoleone derivateis ( extensively studied on account of their broad range of pharmacological appication). All these complexes are characterized by various spectroscopic techniques like FT-IR, UV-Visible, NMR (1H, 13C and 51V), Elemental analysis, thermal studies and single crystal analysis. The peroxidase mimic activity has been studied towards oxidation of pyrogallol to purpurogallin with hydrogen peroxide at pH 7 followed by measuring kinetic parameters. The Michaelis-Menten behavior shows an excellent catalytic activity over its natural counterparts, e.g. V-HPO and HRP. The obtained kinetic parameters (Vmax, Kcat) were also compared with peroxidase and haloperoxidase enzymes making it a promising mimic of peroxidase catalyst. Also, the catalytic activity has been studied towards the oxidation of 1-phenylethanol in presence of H2O2 as an oxidant. Various parameters such as amount of catalyst and oxidant, reaction time, reaction temperature and solvent have been taken into consideration to get maximum oxidative products of 1-phenylethanol.

Keywords: oxovanadium(IV)/dioxidovanadium(V) complexes, NMR spectroscopy, Crystal structure, peroxidase mimic activity towards oxidation of pyrogallol, Oxidation of 1-phenylethanol

Procedia PDF Downloads 314