Search results for: maximum dry density
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7073

Search results for: maximum dry density

6983 High-Pressure Calculations of the Elastic Properties of ZnSx Se 1−x Alloy in the Virtual-Crystal Approximation

Authors: N. Lebga, Kh. Bouamama, K. Kassali

Abstract:

We report first-principles calculation results on the structural and elastic properties of ZnS x Se1−x alloy for which we employed the virtual crystal approximation provided with the ABINIT program. The calculations done using density functional theory within the local density approximation and employing the virtual-crystal approximation, we made a comparative study between the numerical results obtained from ab-initio calculation using ABINIT or Wien2k within the Density Functional Theory framework with either Local Density Approximation or Generalized Gradient approximation and the pseudo-potential plane-wave method with the Hartwigzen Goedecker Hutter scheme potentials. It is found that the lattice parameter, the phase transition pressure, and the elastic constants (and their derivative with respect to the pressure) follow a quadratic law in x. The variation of the elastic constants is also numerically studied and the phase transformations are discussed in relation to the mechanical stability criteria.

Keywords: density functional theory, elastic properties, ZnS, ZnSe,

Procedia PDF Downloads 546
6982 A Semi-Markov Chain-Based Model for the Prediction of Deterioration of Concrete Bridges in Quebec

Authors: Eslam Mohammed Abdelkader, Mohamed Marzouk, Tarek Zayed

Abstract:

Infrastructure systems are crucial to every aspect of life on Earth. Existing Infrastructure is subjected to degradation while the demands are growing for a better infrastructure system in response to the high standards of safety, health, population growth, and environmental protection. Bridges play a crucial role in urban transportation networks. Moreover, they are subjected to high level of deterioration because of the variable traffic loading, extreme weather conditions, cycles of freeze and thaw, etc. The development of Bridge Management Systems (BMSs) has become a fundamental imperative nowadays especially in the large transportation networks due to the huge variance between the need for maintenance actions, and the available funds to perform such actions. Deterioration models represent a very important aspect for the effective use of BMSs. This paper presents a probabilistic time-based model that is capable of predicting the condition ratings of the concrete bridge decks along its service life. The deterioration process of the concrete bridge decks is modeled using semi-Markov process. One of the main challenges of the Markov Chain Decision Process (MCDP) is the construction of the transition probability matrix. Yet, the proposed model overcomes this issue by modeling the sojourn times based on some probability density functions. The sojourn times of each condition state are fitted to probability density functions based on some goodness of fit tests such as Kolmogorov-Smirnov test, Anderson Darling, and chi-squared test. The parameters of the probability density functions are obtained using maximum likelihood estimation (MLE). The condition ratings obtained from the Ministry of Transportation in Quebec (MTQ) are utilized as a database to construct the deterioration model. Finally, a comparison is conducted between the Markov Chain and semi-Markov chain to select the most feasible prediction model.

Keywords: bridge management system, bridge decks, deterioration model, Semi-Markov chain, sojourn times, maximum likelihood estimation

Procedia PDF Downloads 180
6981 The Structural, Elastic, Thermal, Electronic, and Magnetic Properties of Intermetallic rmn₂ge₂ (R=CA, Y, ND)

Authors: I. Benkaddour, Y. Benkaddour, A. Benk Addour

Abstract:

The structural, elastic, Thermal, electronic, and magnetic properties of intermetallic RMn₂Ge₂ (R= Ca, Y, Nd) are investigated by density functional theory (DFT), using the full potential –linearised augmented plane wave method (FP-LAPW). In this approach, the local-density approximation (LDA) is used for the exchange-correlation (XC) potential. The equilibrium lattice constant and magnetic moment agree well with the experiment. The density of states shows that these phases are conductors, with contribution predominantly from the R and Mn d states. We have determined the elastic constants C₁₁, C₁₂, C₁₃, C₄₄, C₃₃, andC₆₆ at ambient conditions in, which have not been established neither experimentally nor theoretically. Thermal properties, including the relative expansion coefficients and the heat capacity, have been estimated using a quasi-harmonic Debye model.

Keywords: RMn₂Ge₂, intermetallic, first-principles, density of states, mechanical properties

Procedia PDF Downloads 59
6980 Evaluation of Dry Matter Yield of Panicum maximum Intercropped with Pigeonpea and Sesbania Sesban

Authors: Misheck Musokwa, Paramu Mafongoya, Simon Lorentz

Abstract:

Seasonal shortages of fodder during the dry season is a major constraint to smallholder livestock farmers in South Africa. To mitigate the shortage of fodder, legume trees can be intercropped with pastures which can diversify the sources of feed and increase the amount of protein for grazing animals. The objective was to evaluate dry matter yield of Panicum maximum and land productivity under different fodder production systems during 2016/17-2017/18 seasons at Empangeni (28.6391° S and 31.9400° E). A randomized complete block design, replicated three times was used, the treatments were sole Panicum maximum, Panicum maximum + Sesbania sesban, Panicum maximum + pigeonpea, sole Sesbania sesban, Sole pigeonpea. Three months S.sesbania seedlings were transplanted whilst pigeonpea was direct seeded at spacing of 1m x 1m. P. maximum seeds were drilled at a respective rate of 7.5 kg/ha having an inter-row spacing of 0.25 m apart. In between rows of trees P. maximum seeds were drilled. The dry matter yield harvesting times were separated by six months’ timeframe. A 0.25 m² quadrant randomly placed on 3 points on the plot was used as sampling area during harvesting P. maximum. There was significant difference P < 0.05 across 3 harvests and total dry matter. P. maximum had higher dry matter yield as compared to both intercrops at first harvest and total. The second and third harvest had no significant difference with pigeonpea intercrop. The results was in this order for all 3 harvest: P. maximum (541.2c, 1209.3b and 1557b) kg ha¹ ≥ P. maximum + pigeonpea (157.2b, 926.7b and 1129b) kg ha¹ > P. maximum + S. sesban (36.3a, 282a and 555a) kg ha¹. Total accumulation of dry matter yield of P. maximum (3307c kg ha¹) > P. maximum + pigeonpea (2212 kg ha¹) ≥ P. maximum + S. sesban (874 kg ha¹). There was a significant difference (P< 0.05) on seed yield for trees. Pigeonpea (1240.3 kg ha¹) ≥ Pigeonpea + P. maximum (862.7 kg ha¹) > S.sesbania (391.9 kg ha¹) ≥ S.sesbania + P. maximum. The Land Equivalent Ratio (LER) was in the following order P. maximum + pigeonpea (1.37) > P. maximum + S. sesban (0.84) > Pigeonpea (0.59) ≥ S. Sesbania (0.57) > P. maximum (0.26). Results indicates that it is beneficial to have P. maximum intercropped with pigeonpea because of higher land productivity. Planting grass with pigeonpea was more beneficial than S. sesban with grass or sole cropping in terms of saving the shortage of arable land. P. maximum + pigeonpea saves a substantial (37%) land which can be subsequently be used for other crop production. Pigeonpea is recommended as an intercrop with P. maximum due to its higher LER and combined production of livestock feed, human food, and firewood. Panicum grass is low in crude protein though high in carbohydrates, there is a need for intercropping it with legume trees. A farmer who buys concentrates can reduce costs by combining P. maximum with pigeonpea this will provide a balanced diet at low cost.

Keywords: fodder, livestock, productivity, smallholder farmers

Procedia PDF Downloads 123
6979 Crop Genotype and Inoculum Density Influences Plant Growth and Endophytic Colonization Potential of Plant Growth-Promoting Bacterium Burkholderia phytofirmans PsJN

Authors: Muhammad Naveed, Sohail Yousaf, Zahir Ahmad Zahir, Birgit Mitter, Angela Sessitsch

Abstract:

Most bacterial endophytes originate from the soil and enter plants via the roots followed by further spread through the inner tissues. The mechanisms allowing bacteria to colonize plants endophytically are still poorly understood for most bacterial and plant species. Specific bacterial functions are required for plant colonization, but also the plant itself is a determining factor as bacterial ability to establish endophytic populations is very often dependent on the plant genotype (cultivar) and inoculums density. The effect of inoculum density (107, 108, 109 CFU mL-1) of Burkholderia phytofirmans strain PsJN was evaluated on growth and endophytic colonization of different maize and potato cultivars under axenic and natural soil conditions. PsJN inoculation significantly increased maize seedling growth and tuber yield of potato at all inoculum density compared to uninoculated control. Under axenic condition, PsJN inoculation (108 CFU mL-1) significantly improved the germination, root/shoot length and biomass up to 62, 115, 98 and 135% of maize seedling compared to uninoculated control. In case of potato, PsJN inoculation (109 CFU mL-1) showed maximum response and significantly increased root/shoot biomass and tuber yield under natural soil condition. We confirmed that PsJN is able to colonize the rhizosphere, roots and shoots of maize and potato cultivars. The endophytic colonization increased linearly with increasing inoculum density (within a range of 8 x 104 – 3 x 107 CFU mL-1) and were highest for maize (Morignon) and potato (Romina) as compared to other cultivars. Efficient colonization of cv. Morignon and Romina by strain PsJN indicates the specific cultivar colonizing capacity of the bacteria. The findings of the study indicate the non-significant relationship between colonization and plant growth promotion in maize under axenic conditions. However, the inoculum level (109 CFU mL-1) that promoted colonization of rhizosphere and plant interior (endophytic) also best promoted growth and tuber yield of potato under natural soil conditions.

Keywords: crop genotype, inoculum density, Burkholderia phytofirmans PsJN, colonization, growth, potato

Procedia PDF Downloads 447
6978 Two-Dimensional Nanostack Based On Chip Wiring

Authors: Nikhil Jain, Bin Yu

Abstract:

The material behavior of graphene, a single layer of carbon lattice, is extremely sensitive to its dielectric environment. We demonstrate improvement in electronic performance of graphene nanowire interconnects with full encapsulation by lattice-matching, chemically inert, 2D layered insulator hexagonal boron nitride (h-BN). A novel layer-based transfer technique is developed to construct the h-BN/MLG/h-BN heterostructures. The encapsulated graphene wires are characterized and compared with that on SiO2 or h-BN substrate without passivating h-BN layer. Significant improvements in maximum current-carrying density, breakdown threshold, and power density in encapsulated graphene wires are observed. These critical improvements are achieved without compromising the carrier transport characteristics in graphene. Furthermore, graphene wires exhibit electrical behavior less insensitive to ambient conditions, as compared with the non-passivated ones. Overall, h-BN/graphene/h-BN heterostructure presents a robust material platform towards the implementation of high-speed carbon-based interconnects.

Keywords: two-dimensional nanosheet, graphene, hexagonal boron nitride, heterostructure, interconnects

Procedia PDF Downloads 421
6977 Cybernetic Model-Based Optimization of a Fed-Batch Process for High Cell Density Cultivation of E. Coli In Shake Flasks

Authors: Snehal D. Ganjave, Hardik Dodia, Avinash V. Sunder, Swati Madhu, Pramod P. Wangikar

Abstract:

Batch cultivation of recombinant bacteria in shake flasks results in low cell density due to nutrient depletion. Previous protocols on high cell density cultivation in shake flasks have relied mainly on controlled release mechanisms and extended cultivation protocols. In the present work, we report an optimized fed-batch process for high cell density cultivation of recombinant E. coli BL21(DE3) for protein production. A cybernetic model-based, multi-objective optimization strategy was implemented to obtain the optimum operating variables to achieve maximum biomass and minimized substrate feed rate. A syringe pump was used to feed a mixture of glycerol and yeast extract into the shake flask. Preliminary experiments were conducted with online monitoring of dissolved oxygen (DO) and offline measurements of biomass and glycerol to estimate the model parameters. Multi-objective optimization was performed to obtain the pareto front surface. The selected optimized recipe was tested for a range of proteins that show different extent soluble expression in E. coli. These included eYFP and LkADH, which are largely expressed in soluble fractions, CbFDH and GcanADH , which are partially soluble, and human PDGF, which forms inclusion bodies. The biomass concentrations achieved in 24 h were in the range 19.9-21.5 g/L, while the model predicted value was 19.44 g/L. The process was successfully reproduced in a standard laboratory shake flask without online monitoring of DO and pH. The optimized fed-batch process showed significant improvement in both the biomass and protein production of the tested recombinant proteins compared to batch cultivation. The proposed process will have significant implications in the routine cultivation of E. coli for various applications.

Keywords: cybernetic model, E. coli, high cell density cultivation, multi-objective optimization

Procedia PDF Downloads 205
6976 Mesoporous RGO@(Co,Mn)3O4 Nanocomposite Prepared by Microwave Method and Its Electrochemical Performance

Authors: Charmaine Lamiel, Van Hoa Nguyen, Jae-Jin Shim

Abstract:

Supercapacitors are energy storage devices capable of storing more energy than conventional capacitors and have higher power density than batteries. The advantages of this method include the non-use of reducing agents and acidic medium, and no further use of a post-heat treatment unlike the conventional processes, in which calcination is generally employed after obtaining the initial product. Furthermore, it also offers a shorter reaction time at low temperatures and low power requirements, which allows low fabrication and energy cost. In this study, microwave irradiation was used for the facile and rapid synthesis of mesoporous RGO@(Co,Mn)3O4 nanosheets as an electrode material. The as-prepared electrode exhibited a high capacitance of 953 F•g^−1 at 1 A•g^−1 in a 6 M KOH electrolyte solution. Moreover, the electrode exhibited a high energy density of 76.2 Wh•kg^−1 at a power density of 720 W•kg^−1, and a high power density of 7200 W•kg^−1 at an energy density of 38 Wh•kg^−1. The successful methodology was considered to be efficient and cost-effective, thereby providing an active electrode material with very promising electrochemical performance.

Keywords: cobalt-manganese oxide, electrochemical, graphene, microwave synthesis, supercapacitor

Procedia PDF Downloads 186
6975 Characters of Developing Commercial Employment Sub-Centres and Employment Density in Ahmedabad City

Authors: Bhaumik Patel, Amit Gotecha

Abstract:

Commercial centres of different hierarchy and sizes play a vital role in the growth and development of the city. Economic uncertainty and demand for space leads to more urban sprawl and emerging more commercial spaces. The study was focused on the understanding of various indicators affecting the commercial development that can help to solve many issues related to commercial urban development and can guide for future employment growth centre development, Accessibility, Infrastructure, Planning and development regulations and Market forces. The aim of the study was to review characteristics and identifying employment density of Commercial Employment Sub-centres by achieving objectives Understanding various employment sub-centres, Identifying characteristics and deriving behaviour of employment densities and Evaluating and comparing employment sub-centres for the Ahmedabad city. Commercial employment sub-centres one in old city (Kalupur), second in highly developed commercial (C.G.road-Ashram road) and third in the latest developing commercial area (Prahladnagar) were identified by distance from city centre, Land use diversity, Access to Major roads and Public transport, Population density in proximity, Complimentary land uses in proximity and Land price. Commercial activities were categorised into retail, wholesale and service sector and sub categorised into various activities. From the study, Time period of establishment of the unit is a critical parameter for commercial activity, building height, and land-use diversity. Employment diversity is also one parameter for the commercial centre. The old city has retail, wholesale and trading and higher commercial density concerning units and employment both. Prahladnagar area functioned as commercial due to market pressure and developed as more units rather than a requirement. Employment density is higher in the centre of the city, as far as distance increases from city centre employment density and unit density decreases. Characters of influencing employment density and unit density are distance from city centre, development type, establishment time period, building density, unit density, public transport accessibility and road connectivity.

Keywords: commercial employment sub-centres, employment density, employment diversity, unit density

Procedia PDF Downloads 111
6974 Design and Development of Mucoadhesive Buccal Film Bearing Itraconazole

Authors: Yuvraj Singh Dangi, Kamta Prasad Namdeo, Surendra Bodhake

Abstract:

The purpose of this research was to develop and evaluate mucoadhesive films for buccal administration of itraconazole using film-forming and mucoashesive polymers. Buccal films of chitosan bearing Itraconazole were prepared by solvent casting technique. The films have been evaluated in terms of film weight, thickness, density, surface pH, FTIR, X-ray diffraction analysis, bioadhesion, swelling properties, and in vitro drug release studies. It was found that film formulations of 2 cm2 size having weight in the range of 204 ± 0.76 to 223 ± 2.09 mg and film thickness were in the range of 0.44 ± 0.11 to 0.57 ± 0.19 mm. Density of the films was found to be 0.102 to 0.126 g/ml. Drug content was found to be uniform in the range of 8.23 ± 0.07 to 8.73 ± 0.09 mg/cm2 for formulation A1 to A4. Maximum bioadhesion force was recorded for HPMC buccal films (A2) i.e. 0.57 ± 0.47 as compared to other films. In vitro residence time was in range of 1.7 ± 0.12 to 7.65 ± 0.15 h. The drug release studies show that formulations follow non-fickian diffusion. These mucoadhesive formulations could offer many advantages in comparison to traditional treatments.

Keywords: biovariability, buccal patches, itraconazole, Mucoadhesion

Procedia PDF Downloads 485
6973 Strength Performance and Microstructure Characteristics of Natural Bonded Fiber Composites from Malaysian Bamboo

Authors: Shahril Anuar Bahari, Mohd Azrie Mohd Kepli, Mohd Ariff Jamaludin, Kamarulzaman Nordin, Mohamad Jani Saad

Abstract:

Formaldehyde release from wood-based panel composites can be very toxicity and may increase the risk of human health as well as environmental problems. A new bio-composites product without synthetic adhesive or resin is possible to be developed in order to reduce these problems. Apart from formaldehyde release, adhesive is also considered to be expensive, especially in the manufacturing of composite products. Natural bonded composites can be termed as a panel product composed with any type of cellulosic materials without the addition of synthetic resins. It is composed with chemical content activation in the cellulosic materials. Pulp and paper making method (chemical pulping) was used as a general guide in the composites manufacturing. This method will also generally reduce the manufacturing cost and the risk of formaldehyde emission and has potential to be used as an alternative technology in fiber composites industries. In this study, the natural bonded bamboo fiber composite was produced from virgin Malaysian bamboo fiber (Bambusa vulgaris). The bamboo culms were chipped and digested into fiber using this pulping method. The black liquor collected from the pulping process was used as a natural binding agent in the composition. Then the fibers were mixed and blended with black liquor without any resin addition. The amount of black liquor used per composite board was 20%, with approximately 37% solid content. The composites were fabricated using a hot press machine at two different board densities, 850 and 950 kg/m³, with two sets of hot pressing time, 25 and 35 minutes. Samples of the composites from different densities and hot pressing times were tested in flexural strength and internal bonding (IB) for strength performance according to British Standard. Modulus of elasticity (MOE) and modulus of rupture (MOR) was determined in flexural test, while tensile force perpendicular to the surface was recorded in IB test. Results show that the strength performance of the composites with 850 kg/m³ density were significantly higher than 950 kg/m³ density, especially for samples from 25 minutes hot pressing time. Strength performance of composites from 25 minutes hot pressing time were generally greater than 35 minutes. Results show that the maximum mean values of strength performance were recorded from composites with 850 kg/m³ density and 25 minutes pressing time. The maximum mean values for MOE, MOR and IB were 3251.84, 16.88 and 0.27 MPa, respectively. Only MOE result has conformed to high density fiberboard (HDF) standard (2700 MPa) in British Standard for Fiberboard Specification, BS EN 622-5: 2006. Microstructure characteristics of composites can also be related to the strength performance of the composites, in which, the observed fiber damage in composites from 950 kg/m³ density and overheat of black liquor led to the low strength properties, especially in IB test.

Keywords: bamboo fiber, natural bonded, black liquor, mechanical tests, microstructure observations

Procedia PDF Downloads 223
6972 Maximum Entropy Based Image Segmentation of Human Skin Lesion

Authors: Sheema Shuja Khattak, Gule Saman, Imran Khan, Abdus Salam

Abstract:

Image segmentation plays an important role in medical imaging applications. Therefore, accurate methods are needed for the successful segmentation of medical images for diagnosis and detection of various diseases. In this paper, we have used maximum entropy to achieve image segmentation. Maximum entropy has been calculated using Shannon, Renyi, and Tsallis entropies. This work has novelty based on the detection of skin lesion caused by the bite of a parasite called Sand Fly causing the disease is called Cutaneous Leishmaniasis.

Keywords: shannon, maximum entropy, Renyi, Tsallis entropy

Procedia PDF Downloads 428
6971 The Reach of Shopping Center Layout Form on Subway Based on Kernel Density Estimate

Authors: Wen Liu

Abstract:

With the rapid progress of modern cities, the railway construction must be developing quickly in China. As a typical high-density country, shopping center on the subway should be one important factor during the process of urban development. The paper discusses the influence of the layout of shopping center on the subway, and put it in the time and space’s axis of Shanghai urban development. We use the digital technology to establish the database of relevant information. And then get the change role about shopping center on subway in Shanghaiby the Kernel density estimate. The result shows the development of shopping center on subway has a relationship with local economic strength, population size, policy support, and city construction. And the suburbanization trend of shopping center would be increasingly significant. By this case research, we could see the Kernel density estimate is an efficient analysis method on the spatial layout. It could reveal the characters of layout form of shopping center on subway in essence. And it can also be applied to the other research of space form.

Keywords: Shanghai, shopping center on the subway, layout form, Kernel density estimate

Procedia PDF Downloads 282
6970 Explore Urban Spatial Density with Boltzmann Statistical Distribution

Authors: Jianjia Wang, Tong Yu, Haoran Zhu, Kun Liu, Jinwei Hao

Abstract:

The underlying pattern in the modern city is agglomeration. To some degree, the distribution of urban spatial density can be used to describe the status of this assemblage. There are three intrinsic characteristics to measure urban spatial density, namely, Floor Area Ratio (FAR), Building Coverage Ratio (BCR), and Average Storeys (AS). But the underlying mechanism that contributes to these quantities is still vague in the statistical urban study. In this paper, we explore the corresponding extrinsic factors related to spatial density. These factors can further provide the potential influence on the intrinsic quantities. Here, we take Shanghai Inner Ring Area and Manhattan in New York as examples to analyse the potential impacts on urban spatial density with six selected extrinsic elements. Ebery single factor presents the correlation to the spatial distribution, but the overall global impact of all is still implicit. To handle this issue, we attempt to develop the Boltzmann statistical model to explicitly explain the mechanism behind that. We derive a corresponding novel quantity, called capacity, to measure the global effects of all other extrinsic factors to the three intrinsic characteristics. The distribution of capacity presents a similar pattern to real measurements. This reveals the nonlinear influence on the multi-factor relations to the urban spatial density in agglomeration.

Keywords: urban spatial density, Boltzmann statistics, multi-factor correlation, spatial distribution

Procedia PDF Downloads 96
6969 Parameter Estimation for the Mixture of Generalized Gamma Model

Authors: Wikanda Phaphan

Abstract:

Mixture generalized gamma distribution is a combination of two distributions: generalized gamma distribution and length biased generalized gamma distribution. These two distributions were presented by Suksaengrakcharoen and Bodhisuwan in 2014. The findings showed that probability density function (pdf) had fairly complexities, so it made problems in estimating parameters. The problem occurred in parameter estimation was that we were unable to calculate estimators in the form of critical expression. Thus, we will use numerical estimation to find the estimators. In this study, we presented a new method of the parameter estimation by using the expectation – maximization algorithm (EM), the conjugate gradient method, and the quasi-Newton method. The data was generated by acceptance-rejection method which is used for estimating α, β, λ and p. λ is the scale parameter, p is the weight parameter, α and β are the shape parameters. We will use Monte Carlo technique to find the estimator's performance. Determining the size of sample equals 10, 30, 100; the simulations were repeated 20 times in each case. We evaluated the effectiveness of the estimators which was introduced by considering values of the mean squared errors and the bias. The findings revealed that the EM-algorithm had proximity to the actual values determined. Also, the maximum likelihood estimators via the conjugate gradient and the quasi-Newton method are less precision than the maximum likelihood estimators via the EM-algorithm.

Keywords: conjugate gradient method, quasi-Newton method, EM-algorithm, generalized gamma distribution, length biased generalized gamma distribution, maximum likelihood method

Procedia PDF Downloads 197
6968 Low Density Lipoprotein: The Culprit in the Development of Obesity

Authors: Ojiegbe Ikenna Nathan

Abstract:

Obesity is a medical condition in which excess body fat has accumulated to the extent that it leads to reduced life expectancy and or increased health problems. Obesity as a worldwide problem is seen clustered in the families and it moves from generation to generation. It causes some disabilities, mortality and morbidity if left unattended to. The predisposing factors to obesity are either genetic or environment in origin. Nevertheless, the main predisposing factor to obesity is the excessive consumption of food rich in low-density lipoprotein (LDL) such as organ meats, saturated fats etc. This low-density lipoprotein causes an increase in adipose tissue and complicates to obesity. There are varieties of obesity which one needs to take appropriate measures to avoid; such as android, gynoid and morbid obesity. Nonetheless, studies have shown that there is hope for the obese individuals, despite the cause, type and degree of their obesity. This is through the use of the different available treatment measures which increase in physical activities, caloric restrictions, drug therapy and surgical intervention.

Keywords: low-density, lipoprotein, culprit, obesity

Procedia PDF Downloads 373
6967 The Contribution of Density Fluctuations in Ultrasound Scattering in Cancellous Bone

Authors: A. Elsariti, T. Evans

Abstract:

An understanding of the interaction between acoustic waves and cancellous bone is needed in order to realize the full clinical potential of ultrasonic bone measurements. Scattering is likely to be of central importance but has received little attention to date. Few theoretical approaches have been described to explain scattering of ultrasound from bone. In this study, a scattering model based on velocity and density fluctuations in a binary mixture (marrow fat and cortical matrix) was used to estimate the ultrasonic attenuation in cancellous bone as a function of volume fraction. Predicted attenuation and backscatter coefficient were obtained for a range of porosities and scatterer size. At 600 kHZ and for different scatterer size the effect of velocity and density fluctuations in the predicted attenuation was approximately 60% higher than velocity fluctuations.

Keywords: ultrasound scattering, sound speed, density fluctuations, attenuation coefficient

Procedia PDF Downloads 296
6966 Applying the Crystal Model Approach on Light Nuclei for Calculating Radii and Density Distribution

Authors: A. Amar

Abstract:

A new model, namely the crystal model, has been modified to calculate the radius and density distribution of light nuclei up to ⁸Be. The crystal model has been modified according to solid-state physics, which uses the analogy between nucleon distribution and atoms distribution in the crystal. The model has analytical analysis to calculate the radius where the density distribution of light nuclei has obtained from analogy of crystal lattice. The distribution of nucleons over crystal has been discussed in a general form. The equation that has been used to calculate binding energy was taken from the solid-state model of repulsive and attractive force. The numbers of the protons were taken to control repulsive force, where the atomic number was responsible for the attractive force. The parameter has been calculated from the crystal model was found to be proportional to the radius of the nucleus. The density distribution of light nuclei was taken as a summation of two clusters distribution as in ⁶Li=alpha+deuteron configuration. A test has been done on the data obtained for radius and density distribution using double folding for d+⁶,⁷Li with M3Y nucleon-nucleon interaction. Good agreement has been obtained for both the radius and density distribution of light nuclei. The model failed to calculate the radius of ⁹Be, so modifications should be done to overcome discrepancy.

Keywords: nuclear physics, nuclear lattice, study nucleus as crystal, light nuclei till to ⁸Be

Procedia PDF Downloads 142
6965 Soil Stress State under Tractive Tire and Compaction Model

Authors: Prathuang Usaborisut, Dithaporn Thungsotanon

Abstract:

Soil compaction induced by a tractor towing trailer becomes a major problem associated to sugarcane productivity. Soil beneath the tractor’s tire is not only under compressing stress but also shearing stress. Therefore, in order to help to understand such effects on soil, this research aimed to determine stress state in soil and predict compaction of soil under a tractive tire. The octahedral stress ratios under the tires were higher than one and much higher under higher draft forces. Moreover, the ratio was increasing with increase of number of tire’s passage. Soil compaction model was developed using data acquired from triaxial tests. The model was then used to predict soil bulk density under tractive tire. The maximum error was about 4% at 15 cm depth under lower draft force and tended to increase with depth and draft force. At depth of 30 cm and under higher draft force, the maximum error was about 16%.

Keywords: draft force, soil compaction model, stress state, tractive tire

Procedia PDF Downloads 320
6964 Effect the Use of Steel Fibers (Dramix) on Reinforced Concrete Slab

Authors: Faisal Ananda, Junaidi Al-Husein, Oni Febriani, Juli Ardita, N. Indra, Syaari Al-Husein, A. Bukri

Abstract:

Currently, concrete technology continues to grow and continue to innovate one of them using fibers. Fiber concrete has advantages over non-fiber concrete, among others, strong against the effect of shrinkage, ability to reduce crack, fire resistance, etc. In this study, concrete mix design using the procedures listed on SNI 03-2834-2000. The sample used is a cylinder with a height of 30 cm and a width of 15cm in diameter, which is used for compression and tensile testing, while the slab is 400cm x 100cm x 15cm. The fiber used is steel fiber (dramix), with the addition of 2/3 of the thickness of the slabs. The charging is done using a two-point loading. From the result of the research, it is found that the loading of non-fiber slab (0%) of the initial crack is the maximum crack that has passed the maximum crack allowed with a crack width of 1.3 mm with a loading of 1160 kg. The initial crack with the largest load is found on the 1% fiber mixed slab, with the initial crack also being a maximum crack of 0.5mm which also has exceeded the required maximum crack. In the 4% slab the initial crack of 0.1 mm is a minimal initial crack with a load greater than the load of a non-fiber (0%) slab by load1200 kg. While the maximum load on the maximum crack according to the applicable maximum crack conditions, on the 5% fiber mixed slab with a crack width of 0.32mm by loading 1250 kg.

Keywords: crack, dramix, fiber, load, slab

Procedia PDF Downloads 474
6963 Improved Small-Signal Characteristics of Infrared 850 nm Top-Emitting Vertical-Cavity Lasers

Authors: Ahmad Al-Omari, Osama Khreis, Ahmad M. K. Dagamseh, Abdullah Ababneh, Kevin Lear

Abstract:

High-speed infrared vertical-cavity surface-emitting laser diodes (VCSELs) with Cu-plated heat sinks were fabricated and tested. VCSELs with 10 mm aperture diameter and 4 mm of electroplated copper demonstrated a -3dB modulation bandwidth (f-3dB) of 14 GHz and a resonance frequency (fR) of 9.5 GHz at a bias current density (Jbias) of only 4.3 kA/cm2, which corresponds to an improved f-3dB2/Jbias ratio of 44 GHz2/kA/cm2. At higher and lower bias current densities, the f-3dB2/ Jbias ratio decreased to about 30 GHz2/kA/cm2 and 18 GHz2/kA/cm2, respectively. Examination of the analogue modulation response demonstrated that the presented VCSELs displayed a steady f-3dB/ fR ratio of 1.41±10% over the whole range of the bias current (1.3Ith to 6.2Ith). The devices also demonstrated a maximum modulation bandwidth (f-3dB max) of more than 16 GHz at a bias current less than the industrial bias current standard for reliability by 25%.

Keywords: current density, high-speed VCSELs, modulation bandwidth, small-signal characteristics, thermal impedance, vertical-cavity surface-emitting lasers

Procedia PDF Downloads 531
6962 Evaluation of Natural Waste Materials for Ammonia Removal in Biofilters

Authors: R. F. Vieira, D. Lopes, I. Baptista, S. A. Figueiredo, V. F. Domingues, R. Jorge, C. Delerue-matos, O. M. Freitas

Abstract:

Odours are generated in municipal solid wastes management plants as a result of decomposition of organic matter, especially when anaerobic degradation occurs. Information was collected about the substances and respective concentration in the surrounding atmosphere of some management plants. The main components which are associated with these unpleasant odours were identified: ammonia, hydrogen sulfide and mercaptans. The first is the most common and the one that presents the highest concentrations, reaching values of 700 mg/m3. Biofiltration, which involves simultaneously biodegradation, absorption and adsorption processes, is a sustainable technology for the treatment of these odour emissions when a natural packing material is used. The packing material should ideally be cheap, durable, and allow the maximum microbiological activity and adsorption/absorption. The presence of nutrients and water is required for biodegradation processes. Adsorption and absorption are enhanced by high specific surface area, high porosity and low density. The main purpose of this work is the exploitation of natural waste materials, locally available, as packing media: heather (Erica lusitanica), chestnut bur (from Castanea sativa), peach pits (from Prunus persica) and eucalyptus bark (from Eucalyptus globulus). Preliminary batch tests of ammonia removal were performed in order to select the most interesting materials for biofiltration, which were then characterized. The following physical and chemical parameters were evaluated: density, moisture, pH, buffer and water retention capacity. The determination of equilibrium isotherms and the adjustment to Langmuir and Freundlich models was also performed. Both models can fit the experimental results. Based both in the material performance as adsorbent and in its physical and chemical characteristics, eucalyptus bark was considered the best material. It presents a maximum adsorption capacity of 0.78±0.45 mol/kg for ammonia. The results from its characterization are: 121 kg/m3 density, 9.8% moisture, pH equal to 5.7, buffer capacity of 0.370 mmol H+/kg of dry matter and water retention capacity of 1.4 g H2O/g of dry matter. The application of natural materials locally available, with little processing, in biofiltration is an economic and sustainable alternative that should be explored.

Keywords: ammonia removal, biofiltration, natural materials, odour control

Procedia PDF Downloads 343
6961 Evaluating Models Through Feature Selection Methods Using Data Driven Approach

Authors: Shital Patil, Surendra Bhosale

Abstract:

Cardiac diseases are the leading causes of mortality and morbidity in the world, from recent few decades accounting for a large number of deaths have emerged as the most life-threatening disorder globally. Machine learning and Artificial intelligence have been playing key role in predicting the heart diseases. A relevant set of feature can be very helpful in predicting the disease accurately. In this study, we proposed a comparative analysis of 4 different features selection methods and evaluated their performance with both raw (Unbalanced dataset) and sampled (Balanced) dataset. The publicly available Z-Alizadeh Sani dataset have been used for this study. Four feature selection methods: Data Analysis, minimum Redundancy maximum Relevance (mRMR), Recursive Feature Elimination (RFE), Chi-squared are used in this study. These methods are tested with 8 different classification models to get the best accuracy possible. Using balanced and unbalanced dataset, the study shows promising results in terms of various performance metrics in accurately predicting heart disease. Experimental results obtained by the proposed method with the raw data obtains maximum AUC of 100%, maximum F1 score of 94%, maximum Recall of 98%, maximum Precision of 93%. While with the balanced dataset obtained results are, maximum AUC of 100%, F1-score 95%, maximum Recall of 95%, maximum Precision of 97%.

Keywords: cardio vascular diseases, machine learning, feature selection, SMOTE

Procedia PDF Downloads 82
6960 Leading Edge Vortex Development for a 65° Delta Wing with Varying Thickness and Maximum Thickness Locations

Authors: Jana Stucke, Sean Tuling, Chris Toomer

Abstract:

This study focuses on the numerical investigation of the leading edge vortex (LEV) development over a 65° swept delta wing with varying thickness and maximum thickness location and their impact on its overall performance. The tested configurations are defined by a 6% and 12 % thick biconvex aerofoil with maximum thickness location at 30% and 50% of the root chord. The results are compared to a flat plate delta wing configuration of 3.4% thickness. The largest differences are observed for the aerofoils of 12% thickness and are used to demonstrate the trends and aerodynamic characteristics from here on. It was found that the vortex structure changes with change with maximum thickness and overall thickness. This change leads to not only a reduction in lift but also in drag, especially when the maximum thickness is moved forward. The reduction in drag, however, outweighs the loss in lift thus increasing the overall performance of the configuration.

Keywords: aerodynamics, CFD, delta wing, leading edge vortices

Procedia PDF Downloads 192
6959 Analyses and Optimization of Physical and Mechanical Properties of Direct Recycled Aluminium Alloy (AA6061) Wastes by ANOVA Approach

Authors: Mohammed H. Rady, Mohd Sukri Mustapa, S Shamsudin, M. A. Lajis, A. Wagiman

Abstract:

The present study is aimed at investigating microhardness and density of aluminium alloy chips when subjected to various settings of preheating temperature and preheating time. Three values of preheating temperature were taken as 450 °C, 500 °C, and 550 °C. On the other hand, three values of preheating time were chosen (1, 2, 3) hours. The influences of the process parameters (preheating temperature and time) were analyzed using Design of Experiments (DOE) approach whereby full factorial design with center point analysis was adopted. The total runs were 11 and they comprise of two factors of full factorial design with 3 center points. The responses were microhardness and density. The results showed that the density and microhardness increased with decreasing the preheating temperature. The results also found that the preheating temperature is more important to be controlled rather than the preheating time in microhardness analysis while both the preheating temperature and preheating time are important in density analysis. It can be concluded that setting temperature at 450 °C for 1 hour resulted in the optimum responses.

Keywords: AA6061, density, DOE, hot extrusion, microhardness

Procedia PDF Downloads 311
6958 Mechanical Behavior of Banana Peel Reinforced Polymer Composites

Authors: A. Lakshumu Naidu, K. Krishna Kishor

Abstract:

This paper examines the results of an experimental study based on the engineering properties of banana peel reinforced epoxy composites. Experiments are carried out to study the effect of weight fraction on mechanical behavior of epoxy based polymer composites. The composites were made by varying the weight fraction of banana peel from 0 to 30% and banana peel were made using hand layup method. The fabricated composite samples were cut according to the ASTM standards for different experiments. Hardness test and density test were carried out at the samples. The maximum hardness, density, tensile strength, flexural strength and ILSS are getting for the material prepared with the 20 % reinforced banana peel epoxy composite. The detailed test results and observations are discussed sequentially in the paper.

Keywords: engineering properties, polymer, composite, mechanical behavior of banana peel

Procedia PDF Downloads 341
6957 Monitoring Synthesis of Biodiesel through Online Density Measurements

Authors: Arnaldo G. de Oliveira, Jr, Matthieu Tubino

Abstract:

The transesterification process of triglycerides with alcohols that occurs during the biodiesel synthesis causes continuous changes in several physical properties of the reaction mixture, such as refractive index, viscosity and density. Amongst them, density can be an useful parameter to monitor the reaction, in order to predict the composition of the reacting mixture and to verify the conversion of the oil into biodiesel. In this context, a system was constructed in order to continuously determine changes in the density of the reacting mixture containing soybean oil, methanol and sodium methoxide (30 % w/w solution in methanol), stirred at 620 rpm at room temperature (about 27 °C). A polyethylene pipe network connected to a peristaltic pump was used in order to collect the mixture and pump it through a coil fixed on the plate of an analytical balance. The collected mass values were used to trace a curve correlating the mass of the system to the reaction time. The density variation profile versus the time clearly shows three different steps: 1) the dispersion of methanol in oil causes a decrease in the system mass due to the lower alcohol density followed by stabilization; 2) the addition of the catalyst (sodium methoxide) causes a larger decrease in mass compared to the first step (dispersion of methanol in oil) because of the oil conversion into biodiesel; 3) the final stabilization, denoting the end of the reaction. This density variation profile provides information that was used to predict the composition of the mixture over the time and the reaction rate. The precise knowledge of the duration of the synthesis means saving time and resources on a scale production system. This kind of monitoring provides several interesting features such as continuous measurements without collecting aliquots.

Keywords: biodiesel, density measurements, online continuous monitoring, synthesis

Procedia PDF Downloads 549
6956 3D Estimation of Synaptic Vesicle Distributions in Serial Section Transmission Electron Microscopy

Authors: Mahdieh Khanmohammadi, Sune Darkner, Nicoletta Nava, Jens Randel Nyengaard, Jon Sporring

Abstract:

We study the effect of stress on nervous system and we use two experimental groups of rats: sham rats and rats subjected to acute foot-shock stress. We investigate the synaptic vesicles density as a function of distance to the active zone in serial section transmission electron microscope images in 2 and 3 dimensions. By estimating the density in 2D and 3D we compare two groups of rats.

Keywords: stress, 3-dimensional synaptic vesicle density, image registration, bioinformatics

Procedia PDF Downloads 250
6955 A Computational Diagnostics for Dielectric Barrier Discharge Plasma

Authors: Zainab D. Abd Ali, Thamir H. Khalaf

Abstract:

In this paper, the characteristics of electric discharge in gap between two (parallel-plate) dielectric plates are studies, the gap filled with Argon gas in atm pressure at ambient temperature, the thickness of gap typically less than 1 mm and dielectric may be up 10 cm in diameter. One of dielectric plates a sinusoidal voltage is applied with Rf frequency, the other plates is electrically grounded. The simulation in this work depending on Boltzmann equation solver in first few moments, fluid model and plasma chemistry, in one dimensional modeling. This modeling have insight into characteristics of Dielectric Barrier Discharge through studying properties of breakdown of gas, electric field, electric potential, and calculating electron density, mean electron energy, electron current density ,ion current density, total plasma current density. The investigation also include: 1. The influence of change in thickness of gap between two plates if we doubled or reduced gap to half. 2. The effect of thickness of dielectric plates. 3. The influence of change in type and properties of dielectric material (gass, silicon, Teflon).

Keywords: computational diagnostics, Boltzmann equation, electric discharge, electron density

Procedia PDF Downloads 737
6954 On Modeling Data Sets by Means of a Modified Saddlepoint Approximation

Authors: Serge B. Provost, Yishan Zhang

Abstract:

A moment-based adjustment to the saddlepoint approximation is introduced in the context of density estimation. First applied to univariate distributions, this methodology is extended to the bivariate case. It then entails estimating the density function associated with each marginal distribution by means of the saddlepoint approximation and applying a bivariate adjustment to the product of the resulting density estimates. The connection to the distribution of empirical copulas will be pointed out. As well, a novel approach is proposed for estimating the support of distribution. As these results solely rely on sample moments and empirical cumulant-generating functions, they are particularly well suited for modeling massive data sets. Several illustrative applications will be presented.

Keywords: empirical cumulant-generating function, endpoints identification, saddlepoint approximation, sample moments, density estimation

Procedia PDF Downloads 125