Search results for: materials characterization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8623

Search results for: materials characterization

8323 Characterization of the Viscoelastic Behavior of Polymeric Composites

Authors: Abir Abdessalem, Sahbi Tamboura, J. Fitoussi, Hachmi Ben Daly, Abbas Tcharkhtchi

Abstract:

Dynamic mechanical analysis (DMA) is one of the most used experimental techniques to investigate the temperature and frequency dependence of the mechanical behavior of viscoelastic materials. The measured data are generally shifted by the application of the principle of the time– temperature superposition (TTS) to obtain the viscoelastic system’s master curve. The aim of this work is to show the methodology to define the horizontal shift factor to be applied to the storage modulus measured in order to indicate the validity of (TTS) principle for this material system. This principle was successfully used to determine the long-term properties of the Sheet Moulding Compound (SMC) composites.

Keywords: composite material, dynamic mechanical analysis, SMC composites, viscoelastic behavior, modeling

Procedia PDF Downloads 201
8322 Synthesis and Characterization of Magnesium and Strontium Doped Sulphate-Hydroxyapatite

Authors: Ammar Z. Alshemary, Yi-Fan Goh, Rafaqat Hussain

Abstract:

Magnesium (Mg2+), strontium (Sr2+) and sulphate ions (SO42-) were successfully substituted into hydroxyapatite (Ca10-x-y MgxSry(PO4)6-z(SO4)zOH2-z) structure through ion exchange process at cationic and anionic sites. Mg2+and Sr2+ ions concentrations were varied between (0.00-0.10), keeping concentration of SO42- ions at z=0.05. [Mg (NO3)2], [Sr (NO3)2] and (Na2SO4) were used as Mg2+, Sr2+, and SO42- sources respectively. The synthesized white precipitate were subjected to heat treatment at 500ºC and finally characterized by X-ray diffraction (XRD) and Fourier Transform infra-red spectroscopy (FTIR). The results showed that the substitution of Mg2+, Sr2+ and SO42- ions into the HA lattice resulted in an increase in the broadness and reduction of XRD peaks. This confirmed that the crystallinity was reduced due to the substitution of ions. Similarly, FTIR result showed the effect of substitution on phosphate bands as well as exchange of hydroxyl group by SO42- ions to balance the charges on HA surface.

Keywords: hydroxyapatite, substitution, characterization, XRD, FTIR

Procedia PDF Downloads 417
8321 Synthesis and Characterization of New Polyesters Based on Diarylidene-1-Methyl-4-Piperidone

Authors: Tareg M. Elsunaki, Suleiman A. Arafa, Mohamed A. Abd-Alla

Abstract:

New interesting thermal stable polyesters containing 1-methyl-4-piperidone moiety in the main chain have been synthesized. These polyesters were synthesized by interfacial polycondensation technique of 3,5-bis(4-hydroxybenzylidene)-1-methyl-4-piperidone (I) and 3,5-bis(4-hydroxy-3-methoxy benzyli-dene)-1-methyl-4-piperidone (II) with terphthaloyl, isophthaloyl, 4,4'-diphenic, adipoyl and sebacoyl dichlorides. The yield and the values of the reduced viscosity of the produced polyesters were found to be affected by the type of an organic phase. In order to characterize these polymers, the necessary model compounds (A), (B) were prepared from (I), (II) respectively and benzoyl chloride. The structure of monomers (I), (II), model compounds and resulting polyesters were confirmed by IR, elemental analysis and 1HNMR spectroscopy. The various characteristic of the resulting polymers including solubility, thermal properties, viscosity and X-ray analysis were also studied.

Keywords: synthesis, characterization, new polyesters, chemistry

Procedia PDF Downloads 436
8320 Purification and Characterization of Phycoerythrin from a Mesophilic Cyanobacterium Nostoc piscinale PUPCCC 405.17

Authors: Sandeep Kaur

Abstract:

Phycoerythrin (PE) from the mesophilic filamentous cyanobacterium Nostoc piscinale PUPCCC 405.17, a good producer of phycobiliproteins, has been characterized in terms of their unit assembly and stability. The phycoerythrin was extracted by freeze-thawing the cells in water, concentrated by ammonium sulphate fractionation and purified by anion exchange chromatography. The purification process resulted in 2.90 fold increase in phycoerythrin purity reaching to 1.54. Sodium Dodecyl Sulphate- Polyacrylamide Gel Electrophoresis of purified PE demonstrated three protein bands of 14.3, 27.54 and 39.81 kDa. The native PE also showed one band of 125.87 kDa, assumed to be a dimer (αβ)2γ based on results of non-denaturing PAGE. Lyophilized powder PE was more stable compared to phycoerythrin in the solution. The half-life of dry PE is 80 days when stored at 4 °C under dark. The phycoerythrin from this organism has potential applications in food as natural colour and as a fluorescent marker.

Keywords: characterization, Nostoc piscinale, phycoerythrin, purification

Procedia PDF Downloads 109
8319 Fully Instrumented Small-Scale Fire Resistance Benches for Aeronautical Composites Assessment

Authors: Fabienne Samyn, Pauline Tranchard, Sophie Duquesne, Emilie Goncalves, Bruno Estebe, Serge Boubigot

Abstract:

Stringent fire safety regulations are enforced in the aeronautical industry due to the consequences that potential fire event on an aircraft might imply. This is so much true that the fire issue is considered right from the design of the aircraft structure. Due to the incorporation of an increasing amount of polymer matrix composites in replacement of more conventional materials like metals, the nature of the fire risks is changing. The choice of materials used is consequently of prime importance as well as the evaluation of its resistance to fire. The fire testing is mostly done using the so-called certification tests according to standards such as the ISO2685:1998(E). The latter describes a protocol to evaluate the fire resistance of structures located in fire zone (ability to withstand fire for 5min). The test consists in exposing an at least 300x300mm² sample to an 1100°C propane flame with a calibrated heat flux of 116kW/m². This type of test is time-consuming, expensive and gives access to limited information in terms of fire behavior of the materials (pass or fail test). Consequently, it can barely be used for material development purposes. In this context, the laboratory UMET in collaboration with industrial partners has developed a horizontal and a vertical small-scale instrumented fire benches for the characterization of the fire behavior of composites. The benches using smaller samples (no more than 150x150mm²) enables to cut downs costs and hence to increase sampling throughput. However, the main added value of our benches is the instrumentation used to collect useful information to understand the behavior of the materials. Indeed, measurements of the sample backside temperature are performed using IR camera in both configurations. In addition, for the vertical set up, a complete characterization of the degradation process, can be achieved via mass loss measurements and quantification of the gasses released during the tests. These benches have been used to characterize and study the fire behavior of aeronautical carbon/epoxy composites. The horizontal set up has been used in particular to study the performances and durability of protective intumescent coating on 2mm thick 2D laminates. The efficiency of this approach has been validated, and the optimized coating thickness has been determined as well as the performances after aging. Reductions of the performances after aging were attributed to the migration of some of the coating additives. The vertical set up has enabled to investigate the degradation process of composites under fire. An isotropic and a unidirectional 4mm thick laminates have been characterized using the bench and post-fire analyses. The mass loss measurements and the gas phase analyses of both composites do not present significant differences unlike the temperature profiles in the thickness of the samples. The differences have been attributed to differences of thermal conductivity as well as delamination that is much more pronounced for the isotropic composite (observed on the IR-images). This has been confirmed by X-ray microtomography. The developed benches have proven to be valuable tools to develop fire safe composites.

Keywords: aeronautical carbon/epoxy composite, durability, intumescent coating, small-scale ‘ISO 2685 like’ fire resistance test, X-ray microtomography

Procedia PDF Downloads 248
8318 Obtaining of Nanocrystalline Ferrites and Other Complex Oxides by Sol-Gel Method with Participation of Auto-Combustion

Authors: V. S. Bushkova

Abstract:

It is well known that in recent years magnetic materials have received increased attention due to their properties. For this reason a significant number of patents that were published during the last decade are oriented towards synthesis and study of such materials. The aim of this work is to create and study ferrite nanocrystalline materials with spinel structure, using sol-gel technology with participation of auto-combustion. This method is perspective in that it is a cheap and low-temperature technique that allows for the fine control on the product’s chemical composition.

Keywords: magnetic materials, ferrites, sol-gel technology, nanocrystalline powders

Procedia PDF Downloads 382
8317 Direct Synthesis of Composite Materials Type MCM-41/ZSM-5 by Hydrothermal at Atmospheric Pressure in Sealed Pyrex Tubes

Authors: Zoubida Lounis, Naouel Boumesla, Abd El Kader Bengueddach

Abstract:

The main objective of this study is to synthesize a composite materials by direct synthesis at atmospheric pression having the MFI structure and MCM-41 by using double structuring. In the first part of this work we are interested in the study of the synthesis parameters, in addition to temperature, the crystallization time and pH. The second part of this work is to vary the ratio of the concentrations of both structuring C9 [C9H19(CH3)3NBr] and C16 [C16H33(CH3)3NBr] and determining the area of formation of the two materials (microporous and mesoporous at same time), for this reason we performed a battery of experiments ranging from 0 to 100% for both structural. To enhance the economic purposes of this study, the experiments were carried out by using very cheap and simple process, the pyrex tubes were used instead of the reactors, and the synthesis were done at atmospheric pressure and moderate temperature. The final products (composite materials) were obtained at high and pure quality.

Keywords: composite materials, syntheisis, catalysts, mesoporous materials, microporous materials

Procedia PDF Downloads 359
8316 Improvement of the Mechanical Behavior of an Environmental Concrete Based on Demolished

Authors: Larbi Belagraa

Abstract:

The universal need to conserve resources, protect the environment and use energy efficiently must necessarily be felt in the field of concrete technology. The recycling of construction and demolition waste as a source of aggregates for the production of concrete has attracted growing interest from the construction industry. In Algeria, the depletion of natural deposits of aggregates and the difficulties in setting up new quarries; makes it necessary to seek new sources of supply, to meet the need for aggregates for the major projects launched by the Algerian government in the last decades. In this context, this work is a part of the approach to provide answers to concerns about the lack of aggregates for concrete. It also aims to develop the inert fraction of demolition materials and mainly concrete construction demolition waste(C&D) as a source of aggregates for the manufacture of new hydraulic concretes based on recycled aggregates. This experimental study presents the results of physical and mechanical characterizations of natural and recycled aggregates, as well as their influence on the properties of fresh and hardened concrete. The characterization of the materials used has shown that the recycled aggregates have heterogeneity, a high water absorption capacity, and a medium quality hardness. However, the limits prescribed by the standards in force do not disqualify these materials of use for application as recycled aggregate concrete type (RAC). The results obtained from the present study show that acceptable mechanical, compressive, and flexural strengths of RACs are obtained using Superplasticizer SP 45 and 5% replacement of cement with silica fume based on recycled aggregates, compared to those of natural concretes. These mechanical performances demonstrate a characteristic resistance at 28 days in compression within the limits of 30 to 40 MPa without any particular suitable technology .to be adapted in the case.

Keywords: recycled aggregates, concrete(RAC), superplasticizer, silica fume, compressive strength

Procedia PDF Downloads 149
8315 Structural Elucidation of Intact Rough-Type Lipopolysaccharides using Field Asymmetric Ion Mobility Spectrometry and Kendrick Mass Defect Plots

Authors: Abanoub Mikhael, Darryl Hardie, Derek Smith, Helena Petrosova, Robert Ernst, David Goodlett

Abstract:

Lipopolysaccharide (LPS) is a hallmark virulence factor of Gram-negative bacteria. It is a complex, structurally het- erogeneous mixture due to variations in number, type, and position of its simplest units: fatty acids and monosaccharides. Thus, LPS structural characterization by traditional mass spectrometry (MS) methods is challenging. Here, we describe the benefits of field asymmetric ion mobility spectrometry (FAIMS) for analysis of intact R-type lipopolysaccharide complex mixture (lipooligo- saccharide; LOS). Structural characterization was performed using Escherichia coli J5 (Rc mutant) LOS, a TLR4 agonist widely used in glycoconjugate vaccine research. FAIMS gas phase fractionation improved the (S/N) ratio and number of detected LOS species. Additionally, FAIMS allowed the separation of overlapping isobars facilitating their tandem MS characterization and un- equivocal structural assignments. In addition to FAIMS gas phase fractionation benefits, extra sorting of the structurally related LOS molecules was further accomplished using Kendrick mass defect (KMD) plots. Notably, a custom KMD base unit of [Na-H] created a highly organized KMD plot that allowed identification of interesting and novel structural differences across the different LOS ion families, i.e., ions with different acylation degrees, oligosaccharides composition, and chemical modifications. Defining the composition of a single LOS ion by tandem MS along with the organized KMD plot structural network was sufficient to deduce the composition of 181 LOS species out of 321 species present in the mixture. The combination of FAIMS and KMD plots allowed in-depth characterization of the complex LOS mixture and uncovered a wealth of novel information about its structural variations.

Keywords: lipopolysaccharide, ion mobility MS, Kendrick mass defect, Tandem mass spectrometry

Procedia PDF Downloads 36
8314 Process Optimization for Albanian Crude Oil Characterization

Authors: Xhaklina Cani, Ilirjan Malollari, Ismet Beqiraj, Lorina Lici

Abstract:

Oil characterization is an essential step in the design, simulation, and optimization of refining facilities. To achieve optimal crude selection and processing decisions, a refiner must have exact information refer to crude oil quality. This includes crude oil TBP-curve as the main data for correct operation of refinery crude oil atmospheric distillation plants. Crude oil is typically characterized based on a distillation assay. This procedure is reasonably well-defined and is based on the representation of the mixture of actual components that boil within a boiling point interval by hypothetical components that boil at the average boiling temperature of the interval. The crude oil assay typically includes TBP distillation according to ASTM D-2892, which can characterize this part of oil that boils up to 400 C atmospheric equivalent boiling point. To model the yield curves obtained by physical distillation is necessary to compare the differences between the modelling and the experimental data. Most commercial use a different number of components and pseudo-components to represent crude oil. Laboratory tests include distillations, vapor pressures, flash points, pour points, cetane numbers, octane numbers, densities, and viscosities. The aim of the study is the drawing of true boiling curves for different crude oil resources in Albania and to compare the differences between the modeling and the experimental data for optimal characterization of crude oil.

Keywords: TBP distillation curves, crude oil, optimization, simulation

Procedia PDF Downloads 283
8313 Influence of Pine Wood Ash as Pozzolanic Material on Compressive Strength of a Concrete

Authors: M. I. Nicolas, J. C. Cruz, Ysmael Verde, A.Yeladaqui-Tello

Abstract:

The manufacture of Portland cement has revolutionized the construction industry since the nineteenth century; however, the high cost and large amount of energy required on its manufacturing encouraged, from the seventies, the search of alternative materials to replace it partially or completely. Among the materials studied to replace the cement are the ashes. In the city of Chetumal, south of the Yucatan Peninsula in Mexico, there are no natural sources of pozzolanic ash. In the present study, the cementitious properties of artificial ash resulting from the combustion of waste pine wood were analyzed. The ash obtained was sieved through the screen and No.200 a fraction was analyzed using the technique of X-ray diffraction; with the aim of identifying the crystalline phases and particle sizes of pozzolanic material by the Debye-Scherrer equation. From the characterization of materials, mixtures for a concrete of f'c = 250 kg / cm2 were designed with the method ACI 211.1; for the pattern mixture and for partial replacements of Portland cement by 5%, 10% and 12% pine wood ash mixture. Simple resistance to axial compression of specimens prepared with each concrete mixture, at 3, 14 and 28 days of curing was evaluated. Pozzolanic activity was observed in the ash obtained, checking the presence of crystalline silica (SiO2 of 40.24 nm) and alumina (Al2O3 of 35.08 nm). At 28 days of curing, the specimens prepared with a 5% ash, reached a compression resistance 63% higher than design; for specimens with 10% ash, was 45%; and for specimens with 12% ash, only 36%. Compared to Pattern mixture, which after 28 days showed a f'c = 423.13 kg/cm2, the specimens reached only 97%, 86% and 82% of the compression resistance, for mixtures containing 5%, 10% ash and 12% respectively. The pozzolanic activity of pine wood ash influences the compression resistance, which indicates that it can replace up to 12% of Portland cement by ash without compromising its design strength, however, there is a decrease in strength compared to the pattern concrete.

Keywords: concrete, pine wood ash, pozzolanic activity, X-ray

Procedia PDF Downloads 430
8312 Bismuth Telluride Topological Insulator: Physical Vapor Transport vs Molecular Beam Epitaxy

Authors: Omar Concepcion, Osvaldo De Melo, Arturo Escobosa

Abstract:

Topological insulator (TI) materials are insulating in the bulk and conducting in the surface. The unique electronic properties associated with these surface states make them strong candidates for exploring innovative quantum phenomena and as practical applications for quantum computing, spintronic and nanodevices. Many materials, including Bi₂Te₃, have been proposed as TIs and, in some cases, it has been demonstrated experimentally by angle-resolved photoemission spectroscopy (ARPES), scanning tunneling spectroscopy (STM) and/or magnetotransport measurements. A clean surface is necessary in order to make any of this measurements. Several techniques have been used to produce films and different kinds of nanostructures. Growth and characterization in situ is usually the best option although cleaving the films can be an alternative to have a suitable surface. In the present work, we report a comparison of Bi₂Te₃ grown by physical vapor transport (PVT) and molecular beam epitaxy (MBE). The samples were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and ARPES. The Bi₂Te₃ samples grown by PVT, were cleaved in the ultra-high vacuum in order to obtain a surface free of contaminants. In both cases, the XRD shows a c-axis orientation and the pole diagrams proved the epitaxial relationship between film and substrate. The ARPES image shows the linear dispersion characteristic of the surface states of the TI materials. The samples grown by PVT, a relatively simple and cost-effective technique shows the same high quality and TI properties than the grown by MBE.

Keywords: Bismuth telluride, molecular beam epitaxy, physical vapor transport, topological insulator

Procedia PDF Downloads 164
8311 Characterization of Mycoplasma Pneumoniae Causing Exacerbation of Asthma: A Prototypical Finding from Sri Lanka

Authors: Lakmini Wijesooriya, Vicki Chalker, Jessica Day, Priyantha Perera, N. P. Sunil-Chandra

Abstract:

M. pneumoniae has been identified as an etiology for exacerbation of asthma (EQA), although viruses play a major role in EOA. M. pneumoniae infection is treated empirically with macrolides, and its antibiotic sensitivity is not detected routinely. Characterization of the organism by genotyping and determination of macrolide resistance is important epidemiologically as it guides the empiric antibiotic treatment. To date, there is no such characterization of M. pneumoniae performed in Sri Lanka. The present study describes the characterization of M. pneumoniae detected from a child with EOA following a screening of 100 children with EOA. Of the hundred children with EOA, M. pneumoniae was identified only in one child by Real-Time polymerase chain reaction (PCR) test for identifying the community-acquired respiratory distress syndrome (CARDS) toxin nucleotide sequences. The M. pneumoniae identified from this patient underwent detection of macrolide resistance via conventional PCR, amplifying and sequencing the region of the 23S rDNA gene that contains single nucleotide polymorphisms that confer resistance. Genotyping of the isolate was performed via nested Multilocus Sequence Typing (MLST) in which eight (8) housekeeping genes (ppa, pgm, gyrB, gmk, glyA, atpA, arcC, and adk) were amplified via nested PCR followed by gene sequencing and analysis. As per MLST analysis, the M. pneumoniae was identified as sequence type 14 (ST14), and no mutations that confer resistance were detected. Resistance to macrolides in M. pneumoniae is an increasing problem globally. Establishing surveillance systems is the key to informing local prescriptions. In the absence of local surveillance data, antibiotics are started empirically. If the relevant microbiological samples are not obtained before antibiotic therapy, as in most occasions in children, the course of antibiotic is completed without a microbiological diagnosis. This happens more frequently in therapy for M. pneumoniae which is treated with a macrolide in most patients. Hence, it is important to understand the macrolide sensitivity of M. pneumoniae in the setting. The M. pneumoniae detected in the present study was macrolide sensitive. Further studies are needed to examine a larger dataset in Sri Lanka to determine macrolide resistance levels to inform the use of macrolides in children with EOA. The MLST type varies in different geographical settings, and it also provides a clue to the existence of macrolide resistance. The present study enhances the database of the global distribution of different genotypes of M. pneumoniae as this is the first such characterization performed with the increased number of samples to determine macrolide resistance level in Sri Lanka. M. pneumoniae detected from a child with exacerbation of asthma in Sri Lanka was characterized as ST14 by MLST and no mutations that confer resistance were detected.

Keywords: mycoplasma pneumoniae, Sri Lanka, characterization, macrolide resistance

Procedia PDF Downloads 157
8310 Development of Metal-Organic Frameworks-Type Hybrid Functionalized Materials for Selective Uranium Extraction

Authors: Damien Rinsant, Eugen Andreiadis, Michael Carboni, Daniel Meyer

Abstract:

Different types of materials have been developed for the solid/liquid uranium extraction processes, such as functionalized organic polymers, hybrid silica or inorganic adsorbents. In general, these materials exhibit a moderate affinity for uranyl ions and poor selectivity against impurities like iron, vanadium or molybdenum. Moreover, the structural organization deficiency of these materials generates ion diffusion issues inside the material. Therefore, the aim of our study is to developed efficient and organized materials, stable in the acid media encountered in uranium extraction processes. Metal organic frameworks (MOFs) are hybrid crystalline materials consisting of an inorganic part (cluster or metal ions) and tailored organic linkers connected via coordination bonds. These hierarchical materials have exceptional surface area, thermal stability and a large variety of tunable structures. However, due to the reversibility of constitutive coordination bonds, MOFs have moderate stability in strongly complexing or acidic media. Only few of them are known to be stable in aqueous media and only one example is described in strong acidic media. However, these conditions are very often encountered in the environmental pollution remediation of mine wastewaters. To tackle the challenge of developing MOFs adapted for uranium extraction from acid mine waters, we have investigated the stability of several materials. To ensure a good stability we have synthetized and characterized different materials based on highly coordinated metal clusters, such as LnOFs and Zirconium based materials. Among the latter, the UiO family shows a great stability in sulfuric acid media even in the presence of 1.4 M sodium sulfate at pH 2. However, the stability in phosphoric media is reduced due to the high affinity between zirconium and phosphate ligand. Based on these results, we have developed a tertiary amine functionalized MOF denoted UiO-68-NMe2 particularly adapted for the extraction of anionic uranyl (VI) sulfate complexes mainly present in the acid mine solutions. The adsorption capacity of the material has been determined upon varying total sulfate concentration, contact time and uranium concentration. The extraction tests put in evidence different phenomena due to the complexity of the extraction media and the interaction between the MOF and sulfate anion. Finally, the extraction mechanisms and the interaction between uranyl and the MOF structure have been investigated. The functionalized material UiO-68-NMe2 has been characterized in the presence and absence of uranium by FT-IR, UV and Raman techniques. Moreover, the stability of the protonated amino functionalized MOF has been evaluated. The synthesis, characterization and evaluation of this type of hybrid material, particularly adapted for uranium extraction in sulfuric acid media by an anionic exchange mechanism, paved the way for the development of metal organic frameworks functionalized by different other chelating motifs, such as bifunctional ligands showing an enhanced affinity and selectivity for uranium in acid and complexing media. Work in this direction is currently in progress.

Keywords: extraction, MOF, ligand, uranium

Procedia PDF Downloads 129
8309 Characterization of the Microorganisms Associated with Pleurotus ostractus and Pleurotus tuber-Regium Spent Mushroom Substrate

Authors: Samuel E. Okere, Anthony E. Ataga

Abstract:

Introduction: The microbial ecology of Pleurotus osteratus and Pleurotus tuber–regium spent mushroom substrate (SMS) were characterized to determine other ways of its utilization. Materials and Methods: The microbiological properties of the spent mushroom substrate were determined using standard methods. This study was carried out at the Microbiology Laboratory University of Port Harcourt, Rivers State, Nigeria. Results: Quantitative microbiological analysis revealed that Pleurotus osteratus spent mushroom substrate (POSMS) contained 7.9x10⁵ and 1.2 x10³ cfu/g of total heterotrophic bacteria and total fungi count respectively while Pleurotus tuber-regium spent mushroom substrate (PTSMS) contained 1.38x10⁶ and 9.0 x10² cfu/g of total heterotrophic bacteria count and total fungi count respectively. The fungi species encountered from Pleurotus tuber-regium spent mushroom substrate (PTSMS) include Aspergillus and Cladosporum species, while Aspergillus and Penicillium species were encountered from Pleurotus osteratus spent mushroom substrate (POSMS). However, the bacteria species encountered from Pleurotus tuber-regium spent mushroom substrate include Bacillus, Acinetobacter, Alcaligenes, Actinobacter, and Pseudomonas species while Bacillus, Actinobacteria, Aeromonas, Lactobacillus and Aerococcus species were encountered from Pleurotus osteratus spent mushroom substrate (POSMS). Conclusion: Therefore based on the findings from this study, it can be concluded that spent mushroom substrate contain microorganisms that can be utilized both in bioremediation of oil-polluted soils as they contain important hydrocarbon utilizing microorganisms such as Penicillium, Aspergillus and Bacillus species and also as sources of plant growth-promoting rhizobacteria (PGPR) such as Pseudomonas and Bacillus species which can induce resistance on plants. However, further studies are recommended, especially to molecularly characterize these microorganisms.

Keywords: characterization, microorganisms, mushroom, spent substrate

Procedia PDF Downloads 131
8308 The Role of Nano-Science in Construction of Civil Engineering and Environment

Authors: Mehrdad Abkenari, Naghmeh Pournayeb, Mohsen Ramezan Shirazi

Abstract:

Nano-science has been widely used in different engineering sciences. Generally, materials’ application can be determined through their chemical and physical properties. Nano-science has introduced as a new way in production systems that not only turns the materials into very small particles but also, gives them new and considerable properties. Like other fields of study, civil engineering has not been ignorant of benefits and characteristics of new nanotechnology and has used it in the construction industry and environmental engineering. Therefore, considering such chemical properties as elemental analysis and molecular or atomic structure, the present article is aimed at studying the effects of Nano-materials on different branches of civil engineering. Finally, by identifying new Nano-materials, this study attempts to introduce advantages of using these materials for increasing the strength of materials during construction as well as finding new approaches to prevent or reduce the entrance of chemical pollutants during or after construction to the environment.

Keywords: civil, nano-science, construction, environment

Procedia PDF Downloads 385
8307 Introduction of the Harmfulness of the Seismic Signal in the Assessment of the Performance of Reinforced Concrete Frame Structures

Authors: Kahil Amar, Boukais Said, Kezmane Ali, Hannachi Naceur Eddine, Hamizi Mohand

Abstract:

The principle of the seismic performance evaluation methods is to provide a measure of capability for a building or set of buildings to be damaged by an earthquake. The common objective of many of these methods is to supply classification criteria. The purpose of this study is to present a method for assessing the seismic performance of structures, based on Pushover method, we are particularly interested in reinforced concrete frame structures, which represent a significant percentage of damaged structures after a seismic event. The work is based on the characterization of seismic movement of the various earthquake zones in terms of PGA and PGD that is obtained by means of SIMQK_GR and PRISM software and the correlation between the points of performance and the scalar characterizing the earthquakes will be developed.

Keywords: seismic performance, pushover method, characterization of seismic motion, harmfulness of the seismic

Procedia PDF Downloads 355
8306 The Place of Instructional Materials in Quality Education at Primary School Level in Katsina State, Nigeria

Authors: Murtala Sale

Abstract:

The use of instructional materials is an indispensable tool that enhances qualitative teaching and learning especially at the primary level. Instructional materials are used to facilitate comprehension of ideas in the learners as well as ensure long term retention of ideas and topics taught to pupils. This study examined the relevance of using instructional materials in primary schools in Katsina State, Nigeria. It employed survey design using cluster sampling technique. The questionnaire was used to gather data for analysis, and statistical and frequency tables were used to analyze the data gathered. The results show that teachers and students alike have realized the effectiveness of modern instructional materials in teaching and learning for the attainment of set objectives in the basic primary education policy. It also discovered that reluctance in the use of instructional materials will hamper the achievement of qualitative primary education. The study therefore suggests that there should be the provision of adequate and up-to-date instructional materials to all primary schools in Katsina State for effective teaching and learning process.

Keywords: instructional materials, effective teaching, learning quality, indispensable aspect

Procedia PDF Downloads 227
8305 Evaluation of Gasoline Engine Piston with Various Coating Materials Using Finite Element Method

Authors: Nouby Ghazaly, Gamal Fouad, Ali Abd-El-Tawwab, K. A. Abd El-Gwwad

Abstract:

The purpose of this paper is to examine the piston stress distribution using several thicknesses of the coating materials to achieve higher gasoline engine performance. First of all, finite element structure analysis is used to uncoated petrol piston made of aluminum alloy. Then, steel and cast-iron piston materials are conducted and compared with the aluminum piston. After that, investigation of four coating materials namely, yttria-stabilized zirconia, magnesia-stabilized zirconia, alumina, and mullite are studied for each piston materials. Next, influence of various thickness coating layers on the structure stresses of the top surfaces is examined. Comparison between simulated results for aluminum, steel, and cast-iron materials is reported. Moreover, the influences of different coating thickness on the Von Mises stresses of four coating materials are investigated. From the simulation results, it can report that the maximum Von Mises stresses and deformations for the piston materials are decreasing with increasing the coating thickness for magnesia-stabilized zirconia, yttria-stabilized zirconia, mullite and alumina coated materials.

Keywords: structure analysis, aluminum piston, MgZrO₃, YTZ, mullite and alumina

Procedia PDF Downloads 123
8304 Mechanical Characterization and CNC Rotary Ultrasonic Grinding of Crystal Glass

Authors: Ricardo Torcato, Helder Morais

Abstract:

The manufacture of crystal glass parts is based on obtaining the rough geometry by blowing and/or injection, generally followed by a set of manual finishing operations using cutting and grinding tools. The forming techniques used do not allow the obtainment, with repeatability, of parts with complex shapes and the finishing operations use intensive specialized labor resulting in high cycle times and production costs. This work aims to explore the digital manufacture of crystal glass parts by investigating new subtractive techniques for the automated, flexible finishing of these parts. Finishing operations are essential to respond to customer demands in terms of crystal feel and shine. It is intended to investigate the applicability of different computerized finishing technologies, namely milling and grinding in a CNC machining center with or without ultrasonic assistance, to crystal processing. Research in the field of grinding hard and brittle materials, despite not being extensive, has increased in recent years, and scientific knowledge about the machinability of crystal glass is still very limited. However, it can be said that the unique properties of glass, such as high hardness and very low toughness, make any glass machining technology a very challenging process. This work will measure the performance improvement brought about by the use of ultrasound compared to conventional crystal grinding. This presentation is focused on the mechanical characterization and analysis of the cutting forces in CNC machining of superior crystal glass (Pb ≥ 30%). For the mechanical characterization, the Vickers hardness test provides an estimate of the material hardness (Hv) and the fracture toughness based on cracks that appear in the indentation. Mechanical impulse excitation test estimates the Young’s Modulus, shear modulus and Poisson ratio of the material. For the cutting forces, it a dynamometer was used to measure the forces in the face grinding process. The tests were made based on the Taguchi method to correlate the input parameters (feed rate, tool rotation speed and depth of cut) with the output parameters (surface roughness and cutting forces) to optimize the process (better roughness using the cutting forces that do not compromise the material structure and the tool life) using ANOVA. This study was conducted for conventional grinding and for the ultrasonic grinding process with the same cutting tools. It was possible to determine the optimum cutting parameters for minimum cutting forces and for minimum surface roughness in both grinding processes. Ultrasonic-assisted grinding provides a better surface roughness than conventional grinding.

Keywords: CNC machining, crystal glass, cutting forces, hardness

Procedia PDF Downloads 126
8303 Effect of thermal aging on Low Cycle Fatigue of Alloy 690

Authors: Kushal Gowda Jayaram, Joseph Huret, Jonathan Quibel, Walter-John Chitty, Gilbert Henaff

Abstract:

Thermal aging is one of the concerns for the long-term operation of nuclear power plants. Indeed, components in the primary circuit undergo thermal aging while exposed to the chemically active environment of Pressurized Water Reactors (PWRs) over time. Among the materials used in the reactor components, Alloy 690 can be found in some critical components for nuclear safety. Despite its importance, research on the effect of thermal aging on the microstructural changes and low cycle fatigue (LCF) behavior of Alloy 690 remains limited. This study aims to assess the impact of thermal aging on the fatigue life of Alloy 690. The as-received sample underwent aging at 420°C for 4000 hours, representing the equivalent aging of 60 years in reactor working conditions. First, the characterization of the area and density of intergranular and intragranular precipitates was performed to understand the microstructural changes in the aged specimen. Then, low cycle fatigue tests were conducted on the as received and aged samples at varying strain amplitudes. To investigate the influence of thermal aging on the fatigue behavior of Alloy 690, fracture surfaces were analyzed to estimate fatigue crack growth rates based on striation spacing measurements. Additionally, the axially cut fractured samples have undergone analysis using Electron Backscatter Diffraction (EBSD) to understand the effect of aging on strain localization near the crack path. Results indicate that while the characterization of the area and density of intergranular precipitates in the aged specimen (for 2000 hours, approximately 30 years) showed no significant changes, there was a slight increase in the area and density of intragranular precipitates under the same conditions.

Keywords: alloy 690, thermal aging, low cycle fatigue, precipitates

Procedia PDF Downloads 16
8302 Electronic Waste Analysis And Characterization Study: Management Input For Highly Urbanized Cities

Authors: Jilbert Novelero, Oliver Mariano

Abstract:

In a world where technological evolution and competition to create innovative products are at its peak, problems on Electronic Waste (E-Waste) are now becoming a global concern. E-waste is said to be any electrical or electronic devices that have reached the terminal of its useful life. The major issue are the volume and the raw materials used in crafting E-waste which is non-biodegradable and contains hazardous substances that are toxic to human health and the environment. The objective of this study is to gather baseline data in terms of the composition of E-waste in the solid waste stream and to determine the top 5 E-waste categories in a highly urbanized city. Recommendations in managing these wastes for its reduction were provided which may serve as a guide for acceptance and implementation in the locality. Pasig City was the chosen beneficiary of the research output and through the collaboration of the City Government of Pasig and its Solid Waste Management Office (SWMO); the researcher successfully conducted the Electronic Waste Analysis and Characterization Study (E-WACS) to achieve the objectives. E-WACS that was conducted on April 2019 showed that E-waste ranked 4th which comprises the 10.39% of the overall solid waste volume. Out of 345, 127.24kg which is the total daily domestic waste generation in the city, E-waste covers 35,858.72kg. Moreover, an average of 40 grams was determined to be the E-waste generation per person per day. The top 5 E-waste categories were then classified after the analysis. The category which ranked first is the office and telecommunications equipment that contained the 63.18% of the total generated E-waste. Second in ranking was the household appliances category with 21.13% composition. Third was the lighting devices category with 8.17%. Fourth on ranking was the consumer electronics and batteries category which was composed of 5.97% and fifth was the wires and cables category where it comprised the 1.41% of the average generated E-waste samples. One of the recommendations provided in this research is the implementation of the Pasig City Waste Advantage Card. The card can be used as a privilege card and earned points can be converted to avail of and enjoy services such as haircut, massage, dental services, medical check-up, and etc. Another recommendation raised is for the LGU to encourage a communication or dialogue with the technology and electronics manufacturers and distributors and international and local companies to plan the retrieval and disposal of the E-wastes in accordance with the Extended Producer Responsibility (EPR) policy where producers are given significant responsibilities for the treatment and disposal of post-consumer products.

Keywords: E-waste, E-WACS, E-waste characterization, electronic waste, electronic waste analysis

Procedia PDF Downloads 96
8301 Elaboration and Physico-Chemical Characterization of Edible Films Made from Chitosan and Spray Dried Ethanolic Extracts of Propolis

Authors: David Guillermo Piedrahita Marquez, Hector Suarez Mahecha, Jairo Humberto Lopez

Abstract:

It was necessary to establish which formulation is suitable for the preservation of aquaculture products, that why edible films were made. These were to a characterization in order to meet their morphology physicochemical and mechanical properties, optical. Six Formulations of chitosan and propolis ethanolic extract encapsulated were developed because of their activity against pathogens and due to their properties, which allows the creation waterproof polymer networks against gasses, vapor, and physical damage. In the six Formulations, the concentration of comparison material (1% w/v, 2% pv) and the bioactive concentrations (0.5% w/v, 1% w/v, 1.5% pv) were changed and the results obtained were compared with statistical and multivariate analysis methods. It was observed that the matrices showed a mayor impermeability and thickness control samples and the samples reported in the literature. Also, these films showed a notorious uniformity of the films and a bigger resistance to the physical damage compared with other edible films made of other biopolymers. However the action of some compounds had a negative effect on the mechanical properties and changed drastically the optical properties, the bioactive has an effect on Polymer Matrix and it was determined that the films with 2% w / v of chitosan and 1.5% w/v encapsulated, exhibited the best properties and suffered to a lesser extent the negative impact of immiscible substances.

Keywords: chitosan, edible films, ethanolic extract of propolis, mechanical properties, optical properties, physical characterization, scanning electron microscopy (SEM)

Procedia PDF Downloads 418
8300 Development of Soft 3D Printing Materials for Textile Applications

Authors: Chi-Chung Marven Chick, Chu-Po Ho, Sau-Chuen Joe Au, Wing-Fai Sidney Wong, Chi-Wai Kan

Abstract:

Recently, 3D printing becomes popular process for manufacturing, especially has special attention in textile applications. However, there are various types of 3D printing materials, including plastic, resin, rubber, ceramics, gold, platinum, silver, iron, titanium but not all these materials are suitable for textile application. Generally speaking, 3D printing of textile mainly uses thermoplastic polymers such as acrylonitrile butadiene styrene (ABS), polylactide (PLA), polycaprolactone (PCL), thermoplastic polyurethane (TPU), polyethylene terephthalate glycol-modified (PETG), polystyrene (PS), polypropylene (PP). Due to the characteristics of the polymers, 3D printed textiles usually have low air permeability and poor comfortable. Therefore, in this paper, we will review the possible materials suitable for textile application with desired physical and mechanical properties.

Keywords: 3D printing, 3D printing materials, textile, properties

Procedia PDF Downloads 25
8299 GIS Technology for Environmentally Polluted Sites with Innovative Process to Improve the Quality and Assesses the Environmental Impact Assessment (EIA)

Authors: Hamad Almebayedh, Chuxia Lin, Yu wang

Abstract:

The environmental impact assessment (EIA) must be improved, assessed, and quality checked for human and environmental health and safety. Soil contamination is expanding, and sites and soil remediation activities proceeding around the word which simplifies the answer “quality soil characterization” will lead to “quality EIA” to illuminate the contamination level and extent and reveal the unknown for the way forward to remediate, countifying, containing, minimizing and eliminating the environmental damage. Spatial interpolation methods play a significant role in decision making, planning remediation strategies, environmental management, and risk assessment, as it provides essential elements towards site characterization, which need to be informed into the EIA. The Innovative 3D soil mapping and soil characterization technology presented in this research paper reveal the unknown information and the extent of the contaminated soil in specific and enhance soil characterization information in general which will be reflected in improving the information provided in developing the EIA related to specific sites. The foremost aims of this research paper are to present novel 3D mapping technology to quality and cost-effectively characterize and estimate the distribution of key soil characteristics in contaminated sites and develop Innovative process/procedure “assessment measures” for EIA quality and assessment. The contaminated site and field investigation was conducted by innovative 3D mapping technology to characterize the composition of petroleum hydrocarbons contaminated soils in a decommissioned oilfield waste pit in Kuwait. The results show the depth and extent of the contamination, which has been interred into a developed assessment process and procedure for the EIA quality review checklist to enhance the EIA and drive remediation and risk assessment strategies. We have concluded that to minimize the possible adverse environmental impacts on the investigated site in Kuwait, the soil-capping approach may be sufficient and may represent a cost-effective management option as the environmental risk from the contaminated soils is considered to be relatively low. This research paper adopts a multi-method approach involving reviewing the existing literature related to the research area, case studies, and computer simulation.

Keywords: quality EIA, spatial interpolation, soil characterization, contaminated site

Procedia PDF Downloads 63
8298 Preparation and Characterization of Organic Silver Precursors for Conductive Ink

Authors: Wendong Yang, Changhai Wang, Valeria Arrighi

Abstract:

Low ink sintering temperature is desired for flexible electronics, as it would widen the application of the ink on temperature-sensitive substrates where the selection of silver precursor is very critical. In this paper, four types of organic silver precursors, silver carbonate, silver oxalate, silver tartrate and silver itaconate, were synthesized using an ion exchange method, firstly. Various characterization methods were employed to investigate their physical phase, chemical composition, morphologies and thermal decomposition behavior. It was found that silver oxalate had the ideal thermal property and showed the lowest decomposition temperature. An ink was then formulated by complexing the as-prepared silver oxalate with ethylenediamine in organic solvents. Results show that a favorable conductive film with a uniform surface structure consisting of silver nanoparticles and few voids could be produced from the ink at a sintering temperature of 150 °C.

Keywords: conductive ink, electrical property, film, organic silver

Procedia PDF Downloads 304
8297 Nanostructure Formation and Characterization of Eco-Friendly Banana Peels Nanosorbent

Authors: Opeyemi Atiba-Oyewo, Maurice S. Onya, Christian Wolkersdorfer

Abstract:

Nanostructure formation and characterization of eco-friendly banana peels nanosorbent are thoroughly described in this paper. The transformation of material during mechanical milling to enhance certain properties such as changes in microstructure and surface area to solve the current problems involving water pollution and water quality were studied. The mechanical milling was employed using planetary continuous milling machine and ethanol as process control agent, the sample were taken at time interval between 10 h to 30 h to examine the structural changes. The samples were characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infra-red (FTIR), Transmission electron microscopy (TEM) and Brunauer Emmett and teller (BET). Results revealed that the three typical structures with different grain-size, lattice strain and shapes were observed, and the deformation mechanisms in these structures were found to be different, further particles fracturing results to surface area increment which was confirmed by Brunauer Emmett and teller (BET) analysis. X-ray diffraction (XRD) shows high densities of dislocations in large crystallites, implying that dislocation slip is the dominant deformation mechanism. Scanning electron microscopy revealed the morphological properties of the materials at different milling time, nanostructure of the particles and fibres were confirmed by Transmission electron microscopy and FT-IR identified the functional groups responsible for its capacity to coordinate and remove metal ions, such as the carboxylic and amine groups at absorption bands of 1730 and 889 cm-1, respectively. However, the choice of this sorbent material for the sorption of any contaminants will depend on the composition of the effluent to be treated.

Keywords: banana peels, eco-friendly, mechanical milling, nanosorbent, nanostructure water quality

Procedia PDF Downloads 229
8296 Analytical and Statistical Study of the Parameters of Expansive Soil

Authors: A. Medjnoun, R. Bahar

Abstract:

The disorders caused by the shrinking-swelling phenomenon are prevalent in arid and semi-arid in the presence of swelling clay. This soil has the characteristic of changing state under the effect of water solicitation (wetting and drying). A set of geotechnical parameters is necessary for the characterization of this soil type, such as state parameters, physical and chemical parameters and mechanical parameters. Some of these tests are very long and some are very expensive, hence the use or methods of predictions. The complexity of this phenomenon and the difficulty of its characterization have prompted researchers to use several identification parameters in the prediction of swelling potential. This document is an analytical and statistical study of geotechnical parameters affecting the potential of swelling clays. This work is performing on a database obtained from investigations swelling Algerian soil. The obtained observations have helped us to understand the soil swelling structure and its behavior.

Keywords: analysis, estimated model, parameter identification, swelling of clay

Procedia PDF Downloads 381
8295 Biogas Production from Lake Bottom Biomass from Forest Management Areas

Authors: Dessie Tegegne Tibebu, Kirsi Mononen, Ari Pappinen

Abstract:

In areas with forest management, agricultural, and industrial activity, sediments and biomass are accumulated in lakes through drainage system, which might be a cause for biodiversity loss and health problems. One possible solution can be utilization of lake bottom biomass and sediments for biogas production. The main objective of this study was to investigate the potentials of lake bottom materials for production of biogas by anaerobic digestion and to study the effect of pretreatment methods for feed materials on biogas yield. In order to study the potentials of biogas production lake bottom materials were collected from two sites, Likokanta and Kutunjärvi lake. Lake bottom materials were mixed with straw-horse manure to produce biogas in a laboratory scale reactor. The results indicated that highest yields of biogas values were observed when feeds were composed of 50% lake bottom materials with 50% straw horse manure mixture-while with above 50% lake bottom materials in the feed biogas production decreased. CH4 content from Likokanta lake materials with straw-horse manure and Kutunjärvi lake materials with straw-horse manure were similar values when feed consisted of 50% lake bottom materials with 50% straw horse manure mixtures. However, feeds with lake bottom materials above 50%, the CH4 concentration started to decrease, impairing gas process. Pretreatment applied on Kutunjärvi lake materials showed a slight negative effect on the biogas production and lowest CH4 concentration throughout the experiment. The average CH4 production (ml g-1 VS) from pretreated Kutunjärvi lake materials with straw horse manure (208.9 ml g-1 VS) and untreated Kutunjärvi lake materials with straw horse manure (182.2 ml g-1 VS) were markedly higher than from Likokanta lake materials with straw horse manure (157.8 ml g-1 VS). According to the experimental results, utilization of 100% lake bottom materials for biogas production is likely to be impaired negatively. In the future, further analyses to improve the biogas yields, assessment of costs and benefits is needed before utilizing lake bottom materials for the production of biogas.

Keywords: anaerobic digestion, biogas, lake bottom materials, sediments, pretreatment

Procedia PDF Downloads 295
8294 Performance of Segmented Thermoelectric Materials Using 'Open-Short Circuit' Technique under Different Polarity

Authors: N. H. S. Mustafa, N. M. Yatim

Abstract:

Thermoelectric materials arrange in segmented design could increase the conversion of heat to electricity performance. This is due to the properties of materials that perform peak at narrow temperature range. Performance of the materials determines by dimensionless figure-of-merit, ZT which consist of thermoelectric properties namely Seebeck coefficient, electrical resistivity, and thermal conductivity. Since different materials were arrange in segmented, determination of ZT cannot be measured using the conventional approach. Therefore, this research used 'open-short circuit' technique to measure the segmented performance. Segmented thermoelectric materials consist of bismuth telluride, and lead telluride was segmented together under cold press technique. The results show thermoelectric properties measured is comparable with calculated based on commercially available of individual material. Performances of segmented sample under different polarity also indicate dependability of material with position and temperature. Segmented materials successfully measured under real condition and optimization of the segmented can be designed from the study of polarity change.

Keywords: thermoelectric, segmented, ZT, polarity, performance

Procedia PDF Downloads 170