Search results for: low dose CT techniques
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7690

Search results for: low dose CT techniques

7690 Monte Carlo Simulations of LSO/YSO for Dose Evaluation in Photon Beam Radiotherapy

Authors: H. Donya

Abstract:

Monte Carlo (MC) techniques play a fundamental role in radiotherapy. A two non-water-equivalent of different media were used to evaluate the dose in water. For such purpose, Lu2SiO5 (LSO) and Y2SiO5 (YSO) orthosilicates scintillators are chosen for MC simulation using Penelope code. To get higher efficiency in dose calculation, variance reduction techniques are discussed. Overall results of this investigation ensured that the LSO/YSO bi-media a good combination to tackle over-response issue in dynamic photon radiotherapy.

Keywords: Lu2SiO5 (LSO) and Y2SiO5 (YSO) orthosilicates, Monte Carlo, correlated sampling, radiotherapy

Procedia PDF Downloads 377
7689 Evaluating the Radiation Dose Involved in Interventional Radiology Procedures

Authors: Kholood Baron

Abstract:

Radiologic interventional studies use fluoroscopy imaging guidance to perform both diagnostic and therapeutic procedures. These could result in high radiation doses being delivered to the patients and also to the radiology team. This is due to the prolonged fluoroscopy time and the large number of images taken, even when dose-minimizing techniques and modern fluoroscopic tools are applied. Hence, these procedures are part of the everyday routine of interventional radiology doctors, assistant nurses, and radiographers. Thus, it is important to estimate the radiation exposure dose they received in order to give objective advice and reduce both patient and radiology team radiation exposure dose. The aim of this study was to find out the total radiation dose reaching the radiologist and the patient during an interventional procedure and to determine the impact of certain parameters on the patient dose. Method: The radiation dose was measured by TLD devices (thermoluminescent dosimeter; radiation dosimeter device). Physicians, patients, nurses, and radiographers wore TLDs during 12 interventional radiology procedures performed in two hospitals, Mubarak and Chest Hospital. This study highlights the need for interventional radiologists to be mindful of the radiation doses received by both patients and medical staff during interventional radiology procedures. The findings emphasize the impact of factors such as fluoroscopy duration and the number of images taken on the patient dose. By raising awareness and providing insights into optimizing techniques and protective measures, this research contributes to the overall goal of reducing radiation doses and ensuring the safety of patients and medical staff.

Keywords: dosimetry, radiation dose, interventional radiology procedures, patient radiation dose

Procedia PDF Downloads 75
7688 The Use of the Matlab Software as the Best Way to Recognize Penumbra Region in Radiotherapy

Authors: Alireza Shayegan, Morteza Amirabadi

Abstract:

The y tool was developed to quantitatively compare dose distributions, either measured or calculated. Before computing ɣ, the dose and distance scales of the two distributions, referred to as evaluated and reference, are re-normalized by dose and distance criteria, respectively. The re-normalization allows the dose distribution comparison to be conducted simultaneously along dose and distance axes. Several two-dimensional images were acquired using a Scanning Liquid Ionization Chamber EPID and Extended Dose Range (EDR2) films for regular and irregular radiation fields. The raw images were then converted into two-dimensional dose maps. Transitional and rotational manipulations were performed for images using Matlab software. As evaluated dose distribution maps, they were then compared with the corresponding original dose maps as the reference dose maps.

Keywords: energetic electron, gamma function, penumbra, Matlab software

Procedia PDF Downloads 274
7687 Evaluation of Dynamic Log Files for Different Dose Rates in IMRT Plans

Authors: Saad Bin Saeed, Fayzan Ahmed, Shahbaz Ahmed, Amjad Hussain

Abstract:

The aim of this study is to evaluate dynamic log files (Dynalogs) at different dose rates by dose-volume histograms (DVH) and used as a (QA) procedure of IMRT. Seven patients of phase one head and neck cancer with similar OAR`s are selected randomly. Reference plans of dose rate 300 and 600 MU/Min with prescribed dose of 50Gy in 25 fractions for each patient is made. Dynalogs produced by delivery of reference plans processed by in-house MATLAB program which produces new field files contain actual positions of multi-leaf collimators (MLC`s) instead of planned positions in reference plans. Copies of reference plans are used to import new field files generated by MATLAB program and renamed as Dyn.plan. After dose calculations of Dyn.plans for different dose rates, DVH, and multiple linear regression tools are used to evaluate reference and Dyn.plans. The results indicate good agreement of correlation between different dose rate plans. The maximum dose difference among PTV and OAR`s are found to be less than 5% and 9% respectively. The study indicates the potential of dynalogs to be used as patient-specific QA of IMRT at different dose rate.

Keywords: IMRT, dynalogs, dose rate, DVH

Procedia PDF Downloads 508
7686 CT Doses Pre and Post SAFIRE: Sinogram Affirmed Iterative Reconstruction

Authors: N. Noroozian, M. Halim, B. Holloway

Abstract:

Computed Tomography (CT) has become the largest source of radiation exposure in modern countries however, recent technological advances have created new methods to reduce dose without negatively affecting image quality. SAFIRE has emerged as a new software package which utilizes full raw data projections for iterative reconstruction, thereby allowing for lower CT dose to be used. this audit was performed to compare CT doses in certain examinations before and after the introduction of SAFIRE at our Radiology department which showed CT doses were significantly lower using SAFIRE compared with pre-SAFIRE software at SAFIRE 3 setting for the following studies:CSKUH Unenhanced brain scans (-20.9%), CABPEC Abdomen and pelvis with contrast (-21.5%), CCHAPC Chest with contrast (-24.4%), CCHAPC Abdomen and pelvis with contrast (-16.1%), CCHAPC Total chest, abdomen and pelvis (-18.7%).

Keywords: dose reduction, iterative reconstruction, low dose CT techniques, SAFIRE

Procedia PDF Downloads 257
7685 Organ Dose Calculator for Fetus Undergoing Computed Tomography

Authors: Choonsik Lee, Les Folio

Abstract:

Pregnant patients may undergo CT in emergencies unrelated with pregnancy, and potential risk to the developing fetus is of concern. It is critical to accurately estimate fetal organ doses in CT scans. We developed a fetal organ dose calculation tool using pregnancy-specific computational phantoms combined with Monte Carlo radiation transport techniques. We adopted a series of pregnancy computational phantoms developed at the University of Florida at the gestational ages of 8, 10, 15, 20, 25, 30, 35, and 38 weeks (Maynard et al. 2011). More than 30 organs and tissues and 20 skeletal sites are defined in each fetus model. We calculated fetal organ dose-normalized by CTDIvol to derive organ dose conversion coefficients (mGy/mGy) for the eight fetuses for consequential slice locations ranging from the top to the bottom of the pregnancy phantoms with 1 cm slice thickness. Organ dose from helical scans was approximated by the summation of doses from multiple axial slices included in the given scan range of interest. We then compared dose conversion coefficients for major fetal organs in the abdominal-pelvis CT scan of pregnancy phantoms with the uterine dose of a non-pregnant adult female computational phantom. A comprehensive library of organ conversion coefficients was established for the eight developing fetuses undergoing CT. They were implemented into an in-house graphical user interface-based computer program for convenient estimation of fetal organ doses by inputting CT technical parameters as well as the age of the fetus. We found that the esophagus received the least dose, whereas the kidneys received the greatest dose in all fetuses in AP scans of the pregnancy phantoms. We also found that when the uterine dose of a non-pregnant adult female phantom is used as a surrogate for fetal organ doses, root-mean-square-error ranged from 0.08 mGy (8 weeks) to 0.38 mGy (38 weeks). The uterine dose was up to 1.7-fold greater than the esophagus dose of the 38-week fetus model. The calculation tool should be useful in cases requiring fetal organ dose in emergency CT scans as well as patient dose monitoring.

Keywords: computed tomography, fetal dose, pregnant women, radiation dose

Procedia PDF Downloads 111
7684 Standardization Of Miniature Neutron Research Reactor And Occupational Safety Analysis

Authors: Raymond Limen Njinga

Abstract:

The comparator factors (Fc) for miniature research reactors are of great importance in the field of nuclear physics as it provide accurate bases for the evaluation of elements in all form of samples via ko-NAA techniques. The Fc was initially simulated theoretically thereafter, series of experiments were performed to validate the results. In this situation, the experimental values were obtained using the alloy of Au(0.1%) - Al monitor foil and a neutron flux setting of 5.00E+11 cm-2.s-1. As was observed in the inner irradiation position, the average experimental value of 7.120E+05 was reported against the theoretical value of 7.330E+05. In comparison, a percentage deviation of 2.86 (from theoretical value) was observed. In the large case of the outer irradiation position, the experimental value of 1.170E+06 was recorded against the theoretical value of 1.210E+06 with a percentage deviation of 3.310 (from the theoretical value). The estimation of equivalent dose rate at 5m from neutron flux of 5.00E+11 cm-2.s-1 within the neutron energies of 1KeV, 10KeV, 100KeV, 500KeV, 1MeV, 5MeV and 10MeV were calculated to be 0.01 Sv/h, 0.01 Sv/h, 0.03 Sv/h, 0.15 Sv/h, 0.21Sv/h and 0.25 Sv/h respectively with a total dose within a period of an hour was obtained to be 0.66 Sv.

Keywords: neutron flux, comparator factor, NAA techniques, neutron energy, equivalent dose

Procedia PDF Downloads 151
7683 Comparative Study between the Absorbed Dose of 67ga-Ecc and 68ga-Ecc

Authors: H. Yousefnia, S. Zolghadri, S. Shanesazzadeh, A.Lahooti, A. R. Jalilian

Abstract:

In this study, 68Ga-ECC and 67Ga-ECC were both prepared with the radiochemical purity of higher than 97% in less than 30 min. The biodistribution data for 68Ga-ECC showed the extraction of the most of the activity from the urinary tract. The absorbed dose was estimated based on biodistribution data in mice by the medical internal radiation dose (MIRD) method. Comparison between human absorbed dose estimation for these two agents indicated the values of approximately ten-fold higher after injection of 67Ga-ECC than 68Ga-ECC in the most organs. The results showed that 68Ga-ECC can be considered as a more potential agent for renal imaging compared to 67Ga-ECC.

Keywords: effective absorbed dose, ethylenecysteamine cysteine, Ga-67, Ga-68

Procedia PDF Downloads 445
7682 A Varicella Outbreak in a Highly Vaccinated School Population in Voluntary 2-Dose Era in Beijing, China

Authors: Chengbin Wang, Li Lu, Luodan Suo, Qinghai Wang, Fan Yang, Xu Wang, Mona Marin

Abstract:

Background: Two-dose varicella vaccination has been recommended in Beijing since November 2012. We investigated a varicella outbreak in a highly vaccinated elementary school population to examine transmission patterns and risk factors for vaccine failure. Methods: A varicella case was defined as an acute generalized maculopapulovesicular rash without other apparent cause in a student attending the school from March 28 to May 17, 2015. Breakthrough varicella was defined as varicella >42 days after last vaccine dose. Vaccination information was collected from immunization records. Information on prior disease and clinical presentation was collected via survey of students’ parents. Results: Of the 1056 school students, 1028 (97.3%) reported no varicella history, of whom 364 (35.4%) had received 1-dose and 650 (63.2%) had received 2-dose varicella vaccine, for 98.6% school-wide vaccination coverage with ≥ 1 dose before the outbreak. A total of 20 cases were identified for an overall attack rate of 1.9%. The index case was in a 2-dose vaccinated student who was not isolated. The majority of cases were breakthrough (19/20, 95%) with attack rates of 7.1% (1/14), 1.6% (6/364) and 2.0% (13/650) among unvaccinated, 1-dose, and 2-dose students, respectively. Most cases had < 50 lesions (18/20, 90%). No difference was found between 1-dose and 2-dose breakthrough cases in disease severity or sociodemographic factors. Conclusion: Moderate 2-dose varicella vaccine coverage was insufficient to prevent a varicella outbreak. Two-dose breakthrough varicella is still contagious. High 2-dose varicella vaccine coverage and timely isolation of ill persons might be needed for varicella outbreak control in the 2-dose era.

Keywords: varicella, outbreak, breakthrough varicella, vaccination

Procedia PDF Downloads 300
7681 Investigation of Factors Affecting the Total Ionizing Dose Threshold of Electrically Erasable Read Only Memories for Use in Dose Rate Measurement

Authors: Liqian Li, Yu Liu, Karen Colins

Abstract:

The dose rate present in a seriously contaminated area can be indirectly determined by monitoring radiation damage to inexpensive commercial electronics, instead of deploying expensive radiation hardened sensors. EEPROMs (Electrically Erasable Read Only Memories) are a good candidate for this purpose because they are inexpensive and are sensitive to radiation exposure. When the total ionizing dose threshold is reached, an EEPROM chip will show signs of damage that can be monitored and transmitted by less susceptible electronics. The dose rate can then be determined from the known threshold dose and the exposure time, assuming the radiation field remains constant with time. Therefore, the threshold dose needs to be well understood before this method can be used. There are many factors affecting the threshold dose, such as the gamma ray energy spectrum, the operating voltage, etc. The purpose of this study was to experimentally determine how the threshold dose depends on dose rate, temperature, voltage, and duty factor. It was found that the duty factor has the strongest effect on the total ionizing dose threshold, while the effect of the other three factors that were investigated is less significant. The effect of temperature was found to be opposite to that expected to result from annealing and is yet to be understood.

Keywords: EEPROM, ionizing radiation, radiation effects on electronics, total ionizing dose, wireless sensor networks

Procedia PDF Downloads 151
7680 Calculation of Secondary Neutron Dose Equivalent in Proton Therapy of Thyroid Gland Using FLUKA Code

Authors: M. R. Akbari, M. Sadeghi, R. Faghihi, M. A. Mosleh-Shirazi, A. R. Khorrami-Moghadam

Abstract:

Proton radiotherapy (PRT) is becoming an established treatment modality for cancer. The localized tumors, the same as undifferentiated thyroid tumors are insufficiently handled by conventional radiotherapy, while protons would propose the prospect of increasing the tumor dose without exceeding the tolerance of the surrounding healthy tissues. In spite of relatively high advantages in giving localized radiation dose to the tumor region, in proton therapy, secondary neutron production can have significant contribution on integral dose and lessen advantages of this modality contrast to conventional radiotherapy techniques. Furthermore, neutrons have high quality factor, therefore, even a small physical dose can cause considerable biological effects. Measuring of this neutron dose is a very critical step in prediction of secondary cancer incidence. It has been found that FLUKA Monte Carlo code simulations have been used to evaluate dose due to secondaries in proton therapy. In this study, first, by validating simulated proton beam range in water phantom with CSDA range from NIST for the studied proton energy range (34-54 MeV), a proton therapy in thyroid gland cancer was simulated using FLUKA code. Secondary neutron dose equivalent of some organs and tissues after the target volume caused by 34 and 54 MeV proton interactions were calculated in order to evaluate secondary cancer incidence. A multilayer cylindrical neck phantom considering all the layers of neck tissues and a proton beam impinging normally on the phantom were also simulated. Trachea (accompanied by Larynx) had the greatest dose equivalent (1.24×10-1 and 1.45 pSv per primary 34 and 54 MeV protons, respectively) among the simulated tissues after the target volume in the neck region.

Keywords: FLUKA code, neutron dose equivalent, proton therapy, thyroid gland

Procedia PDF Downloads 392
7679 Monte Carlo Simulation Study on Improving the Flatting Filter-Free Radiotherapy Beam Quality Using Filters from Low- z Material

Authors: H. M. Alfrihidi, H.A. Albarakaty

Abstract:

Flattening filter-free (FFF) photon beam radiotherapy has increased in the last decade, which is enabled by advancements in treatment planning systems and radiation delivery techniques like multi-leave collimators. FFF beams have higher dose rates, which reduces treatment time. On the other hand, FFF beams have a higher surface dose, which is due to the loss of beam hardening effect caused by the presence of the flatting filter (FF). The possibility of improving FFF beam quality using filters from low-z materials such as steel and aluminium (Al) was investigated using Monte Carlo (MC) simulations. The attenuation coefficient of low-z materials for low-energy photons is higher than that of high-energy photons, which leads to the hardening of the FFF beam and, consequently, a reduction in the surface dose. BEAMnrc user code, based on Electron Gamma Shower (EGSnrc) MC code, is used to simulate the beam of a 6 MV True-Beam linac. A phase-space (phosphor) file provided by Varian Medical Systems was used as a radiation source in the simulation. This phosphor file was scored just above the jaws at 27.88 cm from the target. The linac from the jaw downward was constructed, and radiation passing was simulated and scored at 100 cm from the target. To study the effect of low-z filters, steel and Al filters with a thickness of 1 cm were added below the jaws, and the phosphor file was scored at 100 cm from the target. For comparison, the FF beam was simulated using a similar setup. (BEAM Data Processor (BEAMdp) is used to analyse the energy spectrum in the phosphorus files. Then, the dose distribution resulting from these beams was simulated in a homogeneous water phantom using DOSXYZnrc. The dose profile was evaluated according to the surface dose, the lateral dose distribution, and the percentage depth dose (PDD). The energy spectra of the beams show that the FFF beam is softer than the FF beam. The energy peaks for the FFF and FF beams are 0.525 MeV and 1.52 MeV, respectively. The FFF beam's energy peak becomes 1.1 MeV using a steel filter, while the Al filter does not affect the peak position. Steel and Al's filters reduced the surface dose by 5% and 1.7%, respectively. The dose at a depth of 10 cm (D10) rises by around 2% and 0.5% due to using a steel and Al filter, respectively. On the other hand, steel and Al filters reduce the dose rate of the FFF beam by 34% and 14%, respectively. However, their effect on the dose rate is less than that of the tungsten FF, which reduces the dose rate by about 60%. In conclusion, filters from low-z material decrease the surface dose and increase the D10 dose, allowing for a high-dose delivery to deep tumors with a low skin dose. Although using these filters affects the dose rate, this effect is much lower than the effect of the FF.

Keywords: flattening filter free, monte carlo, radiotherapy, surface dose

Procedia PDF Downloads 49
7678 Dynamic Conformal Arc versus Intensity Modulated Radiotherapy for Image Guided Stereotactic Radiotherapy of Cranial Lesion

Authors: Chor Yi Ng, Christine Kong, Loretta Teo, Stephen Yau, FC Cheung, TL Poon, Francis Lee

Abstract:

Purpose: Dynamic conformal arc (DCA) and intensity modulated radiotherapy (IMRT) are two treatment techniques commonly used for stereotactic radiosurgery/radiotherapy of cranial lesions. IMRT plans usually give better dose conformity while DCA plans have better dose fall off. Rapid dose fall off is preferred for radiotherapy of cranial lesions, but dose conformity is also important. For certain lesions, DCA plans have good conformity, while for some lesions, the conformity is just unacceptable with DCA plans, and IMRT has to be used. The choice between the two may not be apparent until each plan is prepared and dose indices compared. We described a deviation index (DI) which is a measurement of the deviation of the target shape from a sphere, and test its functionality to choose between the two techniques. Method and Materials: From May 2015 to May 2017, our institute has performed stereotactic radiotherapy for 105 patients treating a total of 115 lesions (64 DCA plans and 51 IMRT plans). Patients were treated with the Varian Clinac iX with HDMLC. Brainlab Exactrac system was used for patient setup. Treatment planning was done with Brainlab iPlan RT Dose (Version 4.5.4). DCA plans were found to give better dose fall off in terms of R50% (R50% (DCA) = 4.75 Vs R50% (IMRT) = 5.242) while IMRT plans have better conformity in terms of treatment volume ratio (TVR) (TVR(DCA) = 1.273 Vs TVR(IMRT) = 1.222). Deviation Index (DI) is proposed to better facilitate the choice between the two techniques. DI is the ratio of the volume of a 1 mm shell of the PTV and the volume of a 1 mm shell of a sphere of identical volume. DI will be close to 1 for a near spherical PTV while a large DI will imply a more irregular PTV. To study the functionality of DI, 23 cases were chosen with PTV volume ranged from 1.149 cc to 29.83 cc, and DI ranged from 1.059 to 3.202. For each case, we did a nine field IMRT plan with one pass optimization and a five arc DCA plan. Then the TVR and R50% of each case were compared and correlated with the DI. Results: For the 23 cases, TVRs and R50% of the DCA and IMRT plans were examined. The conformity for IMRT plans are better than DCA plans, with majority of the TVR(DCA)/TVR(IMRT) ratios > 1, values ranging from 0.877 to1.538. While the dose fall off is better for DCA plans, with majority of the R50%(DCA)/ R50%(IMRT) ratios < 1. Their correlations with DI were also studied. A strong positive correlation was found between the ratio of TVRs and DI (correlation coefficient = 0.839), while the correlation between the ratio of R50%s and DI was insignificant (correlation coefficient = -0.190). Conclusion: The results suggest DI can be used as a guide for choosing the planning technique. For DI greater than a certain value, we can expect the conformity for DCA plans to become unacceptably great, and IMRT will be the technique of choice.

Keywords: cranial lesions, dynamic conformal arc, IMRT, image guided radiotherapy, stereotactic radiotherapy

Procedia PDF Downloads 210
7677 Human Absorbed Dose Assessment of 68Ga-Dotatoc Based on Biodistribution Data in Syrian Rats

Authors: S. Zolghadri, M. Naderi, H. Yousefnia, A. Ramazani, A. R. Jalilian

Abstract:

The aim of this work was to evaluate the values of absorbed dose of 68Ga-DOTATOC in numerous human organs. 68Ga-DOTATOC was prepared with the radiochemical purity of higher than 98% and by specific activity of 39.6 MBq/nmol. The complex demonstrated great stability at room temperature and in human serum at 37° C at least 2 h after preparation. Significant uptake was observed in somatostatin receptor-positive tissues such as pancreas and adrenal. The absorbed dose received by human organs was evaluated based on biodistribution studies in Syrian rats by the radiation absorbed dose assessment resource (RADAR) method. Maximum absorbed dose was obtained in the pancreas, kidneys, and adrenal with 0.105, 0.074, and 0.010 mGy/MBq, respectively. The effective absorbed dose was 0.026 mSv/MBq for 68Ga-DOTATOC. The results showed that 68Ga-DOTATOC can be considered as a safe and effective agent for clinically PET imaging applications.

Keywords: effective absorbed dose, Ga-68, octreotide, MIRD

Procedia PDF Downloads 496
7676 Enhancing Skills of Mothers of Asthmatic Children in Techniques of Drug Administration

Authors: Erna Judith Roach, Nalini Bhaskaranand

Abstract:

Background & Significance: Asthma is the most common chronic disease among children. Education is the cornerstone of management of asthma to help the affected children. In India there are about 1.5- 3.0 million asthmatic children in the age group of 5-11 years. Many parents face management dilemmas in administration of medications to their children. Mothers being primary caregivers of children are often responsible for administering medications to them. The purpose of the study was to develop an educational package on techniques of drug administration for mothers of asthmatic children and determine its effectiveness in terms of improvement in skill in drug administration. Methodology: A quasi- experimental time series pre-test post -test control group design was used. Mothers of asthmatic children attending paediatric outpatient departments of selected hospitals along with their children between 5 and 12 years were included. Sample size consisted of 40 mothers in the experimental and 40 mothers in the control groups. Block randomization was used to assign samples to both the groups. The data collection instruments used were Baseline Proforma, Clinical Proforma, Daily asthma drug intake and symptoms diary and Observation Rating Scales on technique of using a metered dose inhaler with spacer; metered dose inhaler with facemask; metered dose inhaler alone and dry powder inhaler. The educational package consisted of a video and booklet on techniques of drug administration. Data were collected at baseline, 1, 3 and 6 months. Findings: The mean post-test scores in techniques of drug administration were higher than the mean pre-test scores in the experimental group in all techniques. The Friedman test (p < 0.01), Wilcoxon Signed Rank test (p < 0.008) and Mann Whitney U (p < 0.01) showed statistically significant difference in the experimental group than the control group. There was significant decrease in the average number of symptom days (11 Vs. 4 days/ month) and hospital visits (5 to 1 per month) in the experimental group when compared to the control group. Conclusion: The educational package was found to be effective in improving the skill of mothers in drug administration in all the techniques, especially with using the metered dose inhaler with spacer.

Keywords: childhood asthma, drug administration, mothers of children, inhaler

Procedia PDF Downloads 397
7675 Comparison of the Response of TLD-100 and TLD-100H Dosimeters in Diagnostic Radiology

Authors: S. Sina, B. Zeinali, M. Karimipourfard, F. Lotfalizadeh, M. Sadeghi, E. Zamani, M. Zehtabian, R. Faghihi

Abstract:

Proper dosimetery is very essential in diagnostic radiology. The goal of this study is to verify the application of LiF:Mg, Cu, P (TLD100H) in obtaining the entrance skin dose (ESD) of patients undergoing diagnostic radiology. The results of dosimetry performed by TLD-100H were compared with those obtained by TLD100, which is a common dosimeter in diagnostic radiology. The results show a close agreement between the dose measured by the two dosimeters. According to the results of this study, the TLD-100H dosimeters have higher sensitivities (i.e. signal(nc)/dose) than TLD-100. Therefore, it is suggested that the TLD-100H are effective dosimeters for dosimetry in low dose fields.

Keywords: entrance skin dose, TLD, diagnostic radiology, dosimeter

Procedia PDF Downloads 440
7674 Comparison of Breast Surface Doses for Full-Field Digital Mammography and Digital Breast Tomosynthesis Using Breast Phantoms

Authors: Chia-Hui Chen, Chien-Kuo Wang

Abstract:

Background: Full field digital mammography (FFDM) is widely used in diagnosis of breast cancer. Digital breast tomosynthesis (DBT) has recently been introduced into the clinic and is being used for screening for breast cancer in the general population. Hence, the radiation dose delivered to the patients involved in an imaging protocol is of utmost concern. Aim: To compare the surface radiation dose (ESD) of digital breast tomosynthesis (DBT) and full-field digital mammography (FFDM) by using breast phantoms. Method: We analyzed the average entrance surface dose (ESD) of FFDM and DBT by using breast phantoms. Optically Stimulated luminescent Dosimeters (OSLD) were placed in a tissue-equivalent Breast phantom at difference sites of interest. Absorbed dose measurements were obtained after digital breast tomosynthesis (DBT) and full-field digital mammography (FFDM) exposures. Results: An automatic exposure control (AEC) is proposed for surface dose measurement during DBT and FFDM. The mean ESD values for DBT and FFDM were 6.37 mGy and 3.51mGy, respectively. Using of OSLD measured for surface dose during DBT and FFDM. There were 19.87 mGy and 11.36 mGy, respectively. The surface exposure dose of DBT could possibly be increased by two times with FFDM. Conclusion: The radiation dose from DBT was higher than that of FFDM and the difference in dose between AEC and OSLD measurements at phantom surface.

Keywords: full-field digital mammography, digital breast tomosynthesis, optically stimulated luminescent dosimeters, surface dose

Procedia PDF Downloads 393
7673 The Study of γ- Radiolysis of 1.2.4-Trichlorobenzene in Methanol Solution

Authors: Samir Karimov, Elshad Abdullayev, Muslum Gurbanov

Abstract:

As one of the γ-radiolysis products of hexachlorocyclohexane and hexachlorobenzene, the study of 1.4 g/L concentrated 1,2,4-trichlorobenzene (TCB) in methanol solution has been irradiated at 0-209.3 kGy dose of γ-radiation and the results have been studied via GC-MS. At maximum radiation dose of 209.3 kGy 91.38% of TCB has converted into different organic compounds, such as 1,4-, 1,3- and 1,2- dichlorobenzenes (DCB), chlorobenzene, toluene, benzene and other chlorinated and non-chlorinated compounds. The variation of compounds formed by γ-radiolysis depends on the nature of solvent and radiation dose. One of the frequently identified radiolysis products of TCB in different organic solvents - 1,4-DCB studied quantitatively with external standard. The concentration of DCB increases by increasing absorbed radiation dose to approximately 131.8 kGy, then at higher doses with its conversion into chlorobenzene, it decreases.

Keywords: γ-radiolysis, chlorinated pesticides, radiation dose, dechlorination

Procedia PDF Downloads 80
7672 Estimation of Adult Patient Doses for Chest X-Ray Diagnostic Examinations in a Tertiary Institution Health Centre

Authors: G. E. Okungbowa, H. O. Adams, S. E. Eze

Abstract:

This study is on the estimation of adult patient doses for Chest X-ray diagnostic examinations of new admitted undergraduate students attending a tertiary institution health centre as part of their routine clearance and check up on admitted into the institution. A total of 531 newly admitted undergraduate students were recruited for this survey in the first quarter of 2016 (January to March, 2016). CALDOSE_X 5.0 software was used to compute the Entrance Surface Dose (ESD) and Effective Dose (ED); while the Statistical Package for Social Sciences (SPSS) version 21.0 was used to carry out the statistical analyses. The basic patients' data and exposure parameters required for the software are age, sex, examination type, projection posture, tube potential and current-time product. The mean Entrance Surface Dose and Effective Doses of the undergraduate students were calculated using the software, and the values were compared with existing literature and internationally established diagnostic reference levels. The mean ESD calculated is 0.29 mGy, and the mean effective dose is 0.04 mSv. The values of ESD and ED obtained are below the internationally established diagnostic reference levels, which could be attributed to good radiographic techniques employed during the chest X-ray procedure for these students.

Keywords: x-ray, dose, examination, chest

Procedia PDF Downloads 156
7671 Characterization of Gamma Irradiated PVDF and PVDF/Graphene Oxide Composites by Spectroscopic Techniques

Authors: Juliana V. Pereira, Adriana S. M. Batista, Jefferson P. Nascimento, Clascídia A. Furtado, Luiz O. Faria

Abstract:

The combination of the properties of graphene oxide (OG) and PVDF homopolymer makes their combined composite materials as multifunctional systems with great potential. Knowledge of the molecular structure is essential for better use. In this work, the degradation of PVDF polymer exposed to gamma irradiation in oxygen atmosphere in high dose rate has been studied and compared to degradation of PVDF/OG composites. The samples were irradiated with a Co-60 source at constant dose rate, with doses ranging from 100 kGy to 1,000 kGy. In FTIR data shown that the formation of oxidation products was at the both samples with formation of carbonyl and hydroxyl groups amongst the most prevalent products in the pure PVDF samples. In the other hand, the composites samples exhibit less presence of degradation products with predominant formation of carbonyl groups, these results also seen in the UV-Vis analysis. The results show that the samples of composites may have greater resistance to the irradiation process, since they have less degradation products than pure PVDF samples seen by spectroscopic techniques.

Keywords: gamma irradiation, PVDF, PVDF/OG composites, spectroscopic techniques

Procedia PDF Downloads 541
7670 Optical Properties of N-(Hydroxymethyl) Acrylamide Polymer Gel Dosimeters for Radiation Therapy

Authors: Khalid A. Rabaeh, Belal Moftah, Ahmed A. Basfar, Akram A. Almousa

Abstract:

Polymer gel dosimeters are tissue equivalent martial that fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of absorbed radiation dose. Polymer gel dosimeters can uniquely record the radiation dose distribution in three-dimensions (3D). A novel composition of normoxic polymer gel dosimeters based on radiation-induced polymerization of N-(Hydroxymethyl)acrylamide (NHMA) is introduced in this study for radiotherapy treatment planning. The dosimeters were irradiated by 10 MV photon beam of a medical linear accelerator at a constant dose rate of 600 cGy/min with doses up to 30 Gy. The polymerization degree is directly proportional to absorbed dose received by the polymer gel. UV/Vis spectrophotometer was used to investigate the degree of white color of irradiated NHMA gel which is associated to the degree of polymerization of polymer gel dosimeters. The absorbance increases with absorbed dose for all gel dosimeters in the dose range between 0 and 30 Gy. Dose rate , energy of radiation and the stability of the polymerization after irradiation were investigated. No appreciable effects of these parameters on the performance of the novel gel dosimeters were observed.

Keywords: dosimeter, gel, spectrophotometer, N-(Hydroxymethyl)acrylamide

Procedia PDF Downloads 432
7669 Dosimetric Comparison among Different Head and Neck Radiotherapy Techniques Using PRESAGE™ Dosimeter

Authors: Jalil ur Rehman, Ramesh C. Tailor, Muhammad Isa Khan, Jahnzeeb Ashraf, Muhammad Afzal, Geofferry S. Ibbott

Abstract:

Purpose: The purpose of this analysis was to investigate dose distribution of different techniques (3D-CRT, IMRT and VMAT) of head and neck cancer using 3-dimensional dosimeter called PRESAGETM Dosimeter. Materials and Methods: Computer tomography (CT) scans of radiological physics center (RPC) head and neck anthropomorphic phantom with both RPC standard insert and PRESAGETM insert were acquired separated with Philipp’s CT scanner and both CT scans were exported via DICOM to the Pinnacle version 9.4 treatment planning system (TPS). Each plan was delivered twice to the RPC phantom first containing the RPC standard insert having TLD and film dosimeters and then again containing the Presage insert having 3-D dosimeter (PRESAGETM) by using a Varian True Beam linear accelerator. After irradiation, the standard insert including point dose measurements (TLD) and planar Gafchromic® EBT film measurement were read using RPC standard procedure. The 3D dose distribution from PRESAGETM was read out with the Duke Midsized optical scanner dedicated to RPC (DMOS-RPC). Dose volume histogram (DVH), mean and maximal doses for organs at risk were calculated and compared among each head and neck technique. The prescription dose was same for all head and neck radiotherapy techniques which was 6.60 Gy/friction. Beam profile comparison and gamma analysis were used to quantify agreements among film measurement, PRESAGETM measurement and calculated dose distribution. Quality assurances of all plans were performed by using ArcCHECK method. Results: VMAT delivered the lowest mean and maximum doses to organ at risk (spinal cord, parotid) than IMRT and 3DCRT. Such dose distribution was verified by absolute dose distribution using thermoluminescent dosimeter (TLD) system. The central axial, sagittal and coronal planes were evaluated using 2D gamma map criteria(± 5%/3 mm) and results were 99.82% (axial), 99.78% (sagital), 98.38% (coronal) for VMAT plan and found the agreement between PRESAGE and pinnacle was better than IMRT and 3D-CRT plan excludes a 7 mm rim at the edge of the dosimeter. Profile showed good agreement for all plans between film, PRESAGE and pinnacle and 3D gamma was performed for PTV and OARs, VMAT and 3DCRT endow with better agreement than IMRT. Conclusion: VMAT delivered lowered mean and maximal doses to organs at risk and better PTV coverage during head and neck radiotherapy. TLD, EBT film and PRESAGETM dosimeters suggest that VMAT was better for the treatment of head and neck cancer than IMRT and 3D-CRT.

Keywords: RPC, 3DCRT, IMRT, VMAT, EBT2 film, TLD, PRESAGETM

Procedia PDF Downloads 362
7668 Application of Nonlinear Model to Optimize the Coagulant Dose in Drinking Water Treatment

Authors: M. Derraz, M.Farhaoui

Abstract:

In the water treatment processes, the determination of the optimal dose of the coagulant is an issue of particular concern. Coagulant dosing is correlated to raw water quality which depends on some parameters (turbidity, ph, temperature, conductivity…). The objective of this study is to provide water treatment operators with a tool that enables to predict and replace, sometimes, the manual method (jar testing) used in this plant to predict the optimum coagulant dose. The model is constructed using actual process data for a water treatment plant located in the middle of Morocco (Meknes).

Keywords: coagulation process, aluminum sulfate, model, coagulant dose

Procedia PDF Downloads 245
7667 Estimation of Effective Radiation Dose Following Computed Tomography Urography at Aminu Kano Teaching Hospital, Kano Nigeria

Authors: Idris Garba, Aisha Rabiu Abdullahi, Mansur Yahuza, Akintade Dare

Abstract:

Background: CT urography (CTU) is efficient radiological examination for the evaluation of the urinary system disorders. However, patients are exposed to a significant radiation dose which is in a way associated with increased cancer risks. Objectives: To determine Computed Tomography Dose Index following CTU, and to evaluate organs equivalent doses. Materials and Methods: A prospective cohort study was carried at a tertiary institution located in Kano northwestern. Ethical clearance was sought and obtained from the research ethics board of the institution. Demographic, scan parameters and CT radiation dose data were obtained from patients that had CTU procedure. Effective dose, organ equivalent doses, and cancer risks were estimated using SPSS statistical software version 16 and CT dose calculator software. Result: A total of 56 patients were included in the study, consisting of 29 males and 27 females. The common indication for CTU examination was found to be renal cyst seen commonly among young adults (15-44yrs). CT radiation dose values in DLP, CTDI and effective dose for CTU were 2320 mGy cm, CTDIw 9.67 mGy and 35.04 mSv respectively. The probability of cancer risks was estimated to be 600 per a million CTU examinations. Conclusion: In this study, the radiation dose for CTU is considered significantly high, with increase in cancer risks probability. Wide radiation dose variations between patient doses suggest that optimization is not fulfilled yet. Patient radiation dose estimate should be taken into consideration when imaging protocols are established for CT urography.

Keywords: CT urography, cancer risks, effective dose, radiation exposure

Procedia PDF Downloads 305
7666 Comparative Study of Dose Calculation Accuracy in Bone Marrow Using Monte Carlo Method

Authors: Marzieh Jafarzadeh, Fatemeh Rezaee

Abstract:

Introduction: The effect of ionizing radiation on human health can be effective for genomic integrity and cell viability. It also increases the risk of cancer and malignancy. Therefore, X-ray behavior and absorption dose calculation are considered. One of the applicable tools for calculating and evaluating the absorption dose in human tissues is Monte Carlo simulation. Monte Carlo offers a straightforward way to simulate and integrate, and because it is simple and straightforward, Monte Carlo is easy to use. The Monte Carlo BEAMnrc code is one of the most common diagnostic X-ray simulation codes used in this study. Method: In one of the understudy hospitals, a certain number of CT scan images of patients who had previously been imaged were extracted from the hospital database. BEAMnrc software was used for simulation. The simulation of the head of the device with the energy of 0.09 MeV with 500 million particles was performed, and the output data obtained from the simulation was applied for phantom construction using CT CREATE software. The percentage of depth dose (PDD) was calculated using STATE DOSE was then compared with international standard values. Results and Discussion: The ratio of surface dose to depth dose (D/Ds) in the measured energy was estimated to be about 4% to 8% for bone and 3% to 7% for bone marrow. Conclusion: MC simulation is an efficient and accurate method for simulating bone marrow and calculating the absorbed dose.

Keywords: Monte Carlo, absorption dose, BEAMnrc, bone marrow

Procedia PDF Downloads 186
7665 Comparison of Computed Tomography Dose Index, Dose Length Product and Effective Dose Among Male and Female Patients From Contrast Enhanced Computed Tomography Pancreatitis Protocol

Authors: Babina Aryal

Abstract:

Background: The diagnosis of pancreatitis is generally based on clinical and laboratory findings; however, Computed Tomography (CT) is an imaging technique of choice specially Contrast Enhanced Computed Tomography (CECT) shows morphological characteristic findings that allow for establishing the diagnosis of pancreatitis and determining the extent of disease severity which is done along with the administration of appropriate contrast medium. The purpose of this study was to compare Computed Tomography Dose Index (CTDI), Dose Length Product (DLP) and Effective Dose (ED) among male and female patients from Contrast Enhanced Computed Tomography (CECT) Pancreatitis Protocol. Methods: This retrospective study involved data collection based on clinical/laboratory/ultrasonography diagnosis of Pancreatitis and has undergone CECT Abdomen pancreatitis protocol. data collection involved detailed information about a patient's Age and Gender, Clinical history, Individual Computed Tomography Dose Index and Dose Length Product and effective dose. Results: We have retrospectively collected dose data from 150 among which 127 were males and 23 were females. The values obtained from the display of the CT screen were measured, calculated and compared to determine whether the CTDI, DLP and ED values were similar or not. CTDI for females was more as compared to males. The differences in CTDI values for females and males were 32.2087 and 37.1609 respectively. DLP values and Effective dose for both the genders did not show significant differences. Conclusion: This study concluded that there were no more significant changes in the DLP and ED values among both the genders however we noticed that female patients had more CTDI than males.

Keywords: computed tomography, contrast enhanced computed tomography, computed tomography dose index, dose length product, effective dose

Procedia PDF Downloads 74
7664 Using SNAP and RADTRAD to Establish the Analysis Model for Maanshan PWR Plant

Authors: J. R. Wang, H. C. Chen, C. Shih, S. W. Chen, J. H. Yang, Y. Chiang

Abstract:

In this study, we focus on the establishment of the analysis model for Maanshan PWR nuclear power plant (NPP) by using RADTRAD and SNAP codes with the FSAR, manuals, and other data. In order to evaluate the cumulative dose at the Exclusion Area Boundary (EAB) and Low Population Zone (LPZ) outer boundary, Maanshan NPP RADTRAD/SNAP model was used to perform the analysis of the DBA LOCA case. The analysis results of RADTRAD were similar to FSAR data. These analysis results were lower than the failure criteria of 10 CFR 100.11 (a total radiation dose to the whole body, 250 mSv; a total radiation dose to the thyroid from iodine exposure, 3000 mSv).

Keywords: RADionuclide, transport, removal, and dose estimation (RADTRAD), symbolic nuclear analysis package (SNAP), dose, PWR

Procedia PDF Downloads 431
7663 Results of EPR Dosimetry Study of Population Residing in the Vicinity of the Uranium Mines and Uranium Processing Plant

Authors: K. Zhumadilov, P. Kazymbet, A. Ivannikov, M. Bakhtin, A. Akylbekov, K. Kadyrzhanov, A. Morzabayev, M. Hoshi

Abstract:

The aim of the study is to evaluate the possible excess of dose received by uranium processing plant workers. The possible excess of dose of workers was evaluated with comparison with population pool (Stepnogorsk) and control pool (Astana city). The measured teeth samples were extracted according to medical indications. In total, twenty-seven tooth enamel samples were analyzed from the residents of Stepnogorsk city (180 km from Astana city, Kazakhstan). About 6 tooth samples were collected from the workers of uranium processing plant. The results of tooth enamel dose estimation show us small influence of working conditions to workers, the maximum excess dose is less than 100 mGy. This is pilot study of EPR dose estimation and for a final conclusion additional sample is required.

Keywords: EPR dose, workers, uranium mines, tooth samples

Procedia PDF Downloads 376
7662 Design, Construction and Performance Evaluation of a HPGe Detector Shield

Authors: M. Sharifi, M. Mirzaii, F. Bolourinovin, H. Yousefnia, M. Akbari, K. Yousefi-Mojir

Abstract:

A multilayer passive shield composed of low-activity lead (Pb), copper (Cu), tin (Sn) and iron (Fe) was designed and manufactured for a coaxial HPGe detector placed at a surface laboratory for reducing background radiation and radiation dose to the personnel. The performance of the shield was evaluated and efficiency curves of the detector were plotted by using of the various standard sources in different distances. Monte Carlo simulations and a set of TLD chips were used for dose estimation in two distances of 20 and 40 cm. The results show that the shield reduced background spectrum and the personnel dose more than 95%.

Keywords: HPGe shield, background count, personnel dose, efficiency curve

Procedia PDF Downloads 422
7661 Calculation of Organs Radiation Dose in Cervical Carcinoma External Irradiation Beam Using Day’s Methods

Authors: Yousif M. Yousif Abdallah, Mohamed E. Gar-Elnabi, Abdoelrahman H. A. Bakary, Alaa M. H. Eltoum, Abdelazeem K. M. Ali

Abstract:

The study was established to measure the amount of radiation outside the treatment field in external beam radiation therapy using day method of dose calculation, the data was collected from 89 patients of cervical carcinoma in order to determine if the dose outside side the irradiation treatment field for spleen, liver, both kidneys, small bowel, large colon, skin within the acceptable limit or not. The cervical field included mainly 4 organs which are bladder, rectum part of small bowel and hip joint these organ received mean dose of (4781.987±281.321), (4736.91±331.8), (4647.64±387.1) and (4745.91±321.11) respectively. The mean dose received by outfield organs was (77.69±15.24cGy) to large colon, (93.079±12.31cGy) to right kidney (80.688±12.644cGy) to skin, (155.86±17.69cGy) to small bowel. This was more significant value noted.

Keywords: radiation dose, cervical carcinoma, day’s methods, radiation medicine

Procedia PDF Downloads 382