Search results for: localized surface plasmon resonance effect
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19746

Search results for: localized surface plasmon resonance effect

19506 Carbon Nanotubes (CNTs) as Multiplex Surface Enhanced Raman Scattering Sensing Platforms

Authors: Pola Goldberg Oppenheimer, Stephan Hofmann, Sumeet Mahajan

Abstract:

Owing to its fingerprint molecular specificity and high sensitivity, surface-enhanced Raman scattering (SERS) is an established analytical tool for chemical and biological sensing capable of single-molecule detection. A strong Raman signal can be generated from SERS-active platforms given the analyte is within the enhanced plasmon field generated near a noble-metal nanostructured substrate. The key requirement for generating strong plasmon resonances to provide this electromagnetic enhancement is an appropriate metal surface roughness. Controlling nanoscale features for generating these regions of high electromagnetic enhancement, the so-called SERS ‘hot-spots’, is still a challenge. Significant advances have been made in SERS research, with wide-ranging techniques to generate substrates with tunable size and shape of the nanoscale roughness features. Nevertheless, the development and application of SERS has been inhibited by the irreproducibility and complexity of fabrication routes. The ability to generate straightforward, cost-effective, multiplex-able and addressable SERS substrates with high enhancements is of profound interest for miniaturised sensing devices. Carbon nanotubes (CNTs) have been concurrently, a topic of extensive research however, their applications for plasmonics has been only recently beginning to gain interest. CNTs can provide low-cost, large-active-area patternable substrates which, coupled with appropriate functionalization capable to provide advanced SERS-platforms. Herein, advanced methods to generate CNT-based SERS active detection platforms will be discussed. First, a novel electrohydrodynamic (EHD) lithographic technique will be introduced for patterning CNT-polymer composites, providing a straightforward, single-step approach for generating high-fidelity sub-micron-sized nanocomposite structures within which anisotropic CNTs are vertically aligned. The created structures are readily fine-tuned, which is an important requirement for optimizing SERS to obtain the highest enhancements with each of the EHD-CNTs individual structural units functioning as an isolated sensor. Further, gold-functionalized VACNTFs are fabricated as SERS micro-platforms. The dependence on the VACNTs’ diameters and density play an important role in the Raman signal strength, thus highlighting the importance of structural parameters, previously overlooked in designing and fabricating optimized CNTs-based SERS nanoprobes. VACNTs forests patterned into predesigned pillar structures are further utilized for multiplex detection of bio-analytes. Since CNTs exhibit electrical conductivity and unique adsorption properties, these are further harnessed in the development of novel chemical and bio-sensing platforms.

Keywords: carbon nanotubes (CNTs), EHD patterning, SERS, vertically aligned carbon nanotube forests (VACNTF)

Procedia PDF Downloads 302
19505 Nonstationary Increments and Casualty in the Aluminum Market

Authors: Andrew Clark

Abstract:

McCauley, Bassler, and Gunaratne show that integration I(d) processes as used in economics and finance do not necessarily produce stationary increments, which are required to determine causality in both the short term and the long term. This paper follows their lead and shows I(d) aluminum cash and futures log prices at daily and weekly intervals do not have stationary increments, which means prior causality studies using I(d) processes need to be re-examined. Wavelets based on undifferenced cash and futures log prices do have stationary increments and are used along with transfer entropy (versus cointegration) to measure causality. Wavelets exhibit causality at most daily time scales out to 1 year, and weekly time scales out to 1 year and more. To determine stationarity, localized stationary wavelets are used. LSWs have the benefit, versus other means of testing for stationarity, of using multiple hypothesis tests to determine stationarity. As informational flows exist between cash and futures at daily and weekly intervals, the aluminum market is efficient. Therefore, hedges used by producers and consumers of aluminum need not have a big concern in terms of the underestimation of hedge ratios. Questions about arbitrage given efficiency are addressed in the paper.

Keywords: transfer entropy, nonstationary increments, wavelets, localized stationary wavelets, localized stationary wavelets

Procedia PDF Downloads 175
19504 On the Role of Cutting Conditions on Surface Roughness in High-Speed Thread Milling of Brass C3600

Authors: Amir Mahyar Khorasani, Ian Gibson, Moshe Goldberg, Mohammad Masoud Movahedi, Guy Littlefair

Abstract:

One of the important factors in manufacturing processes especially machining operations is surface quality. Improving this parameter results in improving fatigue strength, corrosion resistance, creep life and surface friction. The reliability and clearance of removable joints such as thread and nuts are highly related to the surface roughness. In this work, the effect of different cutting parameters such as cutting fluid pressure, feed rate and cutting speed on the surface quality of the crest of thread in the high-speed milling of Brass C3600 have been determined. Two popular neural networks containing MLP and RBF coupling with Taguchi L32 have been used to model surface roughness which was shown to be highly adept for such tasks. The contribution of this work is modelling surface roughness on the crest of the thread by using precise profilometer with nanoscale resolution. Experimental tests have been carried out for validation and approved suitable accuracy of the proposed model. Also analysing the interaction of parameters two by two showed that the most effective cutting parameter on the surface value is feed rate followed by cutting speed and cutting fluid pressure.

Keywords: artificial neural networks, cutting conditions, high-speed machining, surface roughness, thread milling

Procedia PDF Downloads 350
19503 Surface Nanocrystalline and Hardening Effects of Ti–Al–V Alloy by Electropulsing Ultrasonic Shock

Authors: Xiaoxin Ye, Guoyi Tang

Abstract:

The effect of electropulsing ultrasonic shock (EUS) on the surface hardening and microstructure of Ti6Al4V alloy was studied. It was found that electropulsing improved the microhardness dramatically both in the influential depth and maximum value, compared with the only ultrasonic-shocked sample. It’s indicated that refined surface layer with nanocrystalline and improved microhardness were obtained on account of surface severe plastic deformation, dynamic recrystallization (DRX) and phase change, which was implemented at relative low temperature and high strain rate/capacity due to the coupling of the thermal and athermal effects of EUS. It’s different from conventional experiments and theory. It’s discussed that the positive contributions of EPT in the thermodynamics and kinetics of microstructure and properties change were attributed to the reduction of nucleation energy barrier and acceleration of atomic diffusion. Therefore, it’s supposed that EUS is an energy-saving and high-efficiency method of surface treatment technique with the help of high-energy electropulses, which is promising in cost reduction of the surface engineering and energy management.

Keywords: titanium alloys, electropulsing, ultrasonic shock, microhardness, nanocrystalline

Procedia PDF Downloads 266
19502 Study of Electron Cyclotron Resonance Acceleration by Cylindrical TE₀₁₁ Mode

Authors: Oswaldo Otero, Eduardo A. Orozco, Ana M. Herrera

Abstract:

In this work, we present results from analytical and numerical studies of the electron acceleration by a TE₀₁₁ cylindrical microwave mode in a static homogeneous magnetic field under electron cyclotron resonance (ECR) condition. The stability of the orbits is analyzed using the particle orbit theory. In order to get a better understanding of the interaction wave-particle, we decompose the azimuthally electric field component as the superposition of right and left-hand circular polarization standing waves. The trajectory, energy and phase-shift of the electron are found through a numerical solution of the relativistic Newton-Lorentz equation in a finite difference method by the Boris method. It is shown that an electron longitudinally injected with an energy of 7 keV in a radial position r=Rc/2, being Rc the cavity radius, is accelerated up to energy of 90 keV by an electric field strength of 14 kV/cm and frequency of 2.45 GHz. This energy can be used to produce X-ray for medical imaging. These results can be used as a starting point for study the acceleration of electrons in a magnetic field changing slowly in time (GYRAC), which has some important applications as the electron cyclotron resonance ion proton accelerator (ECR-IPAC) for cancer therapy and to control plasma bunches with relativistic electrons.

Keywords: Boris method, electron cyclotron resonance, finite difference method, particle orbit theory, X-ray

Procedia PDF Downloads 134
19501 Electron Density Discrepancy Analysis of Energy Metabolism Coenzymes

Authors: Alan Luo, Hunter N. B. Moseley

Abstract:

Many macromolecular structure entries in the Protein Data Bank (PDB) have a range of regional (localized) quality issues, be it derived from x-ray crystallography, Nuclear Magnetic Resonance (NMR) spectroscopy, or other experimental approaches. However, most PDB entries are judged by global quality metrics like R-factor, R-free, and resolution for x-ray crystallography or backbone phi-psi distribution statistics and average restraint violations for NMR. Regional quality is often ignored when PDB entries are re-used for a variety of structurally based analyses. The binding of ligands, especially ligands involved in energy metabolism, is of particular interest in many structurally focused protein studies. Using a regional quality metric that provides chemically interpretable information from electron density maps, a significant number of outliers in regional structural quality was detected across x-ray crystallographic PDB entries for proteins bound to biochemically critical ligands. In this study, a series of analyses was performed to evaluate both specific and general potential factors that could promote these outliers. In particular, these potential factors were the minimum distance to a metal ion, the minimum distance to a crystal contact, and the isotropic atomic b-factor. To evaluate these potential factors, Fisher’s exact tests were performed, using regional quality criteria of outlier (top 1%, 2.5%, 5%, or 10%) versus non-outlier compared to a potential factor metric above versus below a certain outlier cutoff. The results revealed a consistent general effect from region-specific normalized b-factors but no specific effect from metal ion contact distances and only a very weak effect from crystal contact distance as compared to the b-factor results. These findings indicate that no single specific potential factor explains a majority of the outlier ligand-bound regions, implying that human error is likely as important as these other factors. Thus, all factors, including human error, should be considered when regions of low structural quality are detected. Also, the downstream re-use of protein structures for studying ligand-bound conformations should screen the regional quality of the binding sites. Doing so prevents misinterpretation due to the presence of structural uncertainty or flaws in regions of interest.

Keywords: biomacromolecular structure, coenzyme, electron density discrepancy analysis, x-ray crystallography

Procedia PDF Downloads 97
19500 A Comparison between TM: TM Co Doped and TM: RE Co Doped ZnO Based Advanced Materials for Spintronics Applications; Structural, Optical and Magnetic Property Analysis

Authors: V. V. Srinivasu, Jayashree Das

Abstract:

Owing to the industrial and technological importance, transition metal (TM) doped ZnO has been widely chosen for many practical applications in electronics and optoelectronics. Besides, though still a controversial issue, the reported room temperature ferromagnetism in transition metal doped ZnO has added a feather to its excellence and importance in current semiconductor research for prospective application in Spintronics. Anticipating non controversial and improved optical and magnetic properties, we adopted co doping method to synthesise polycrystalline Mn:TM (Fe,Ni) and Mn:RE(Gd,Sm) co doped ZnO samples by solid state sintering route with compositions Zn1-x (Mn:Fe/Ni)xO and Zn1-x(Mn:Gd/Sm)xO and sintered at two different temperatures. The structure, composition and optical changes induced in ZnO due to co doping and sintering were investigated by XRD, FTIR, UV, PL and ESR studies. X-ray peak profile analysis (XPPA) and Williamson-Hall analysis carried out shows changes in the values of stress, strain, FWHM and the crystallite size in both the co doped systems. FTIR spectra also show the effect of both type of co doping on the stretching and bending bonds of ZnO compound. UV-Vis study demonstrates changes in the absorption band edge as well as the significant change in the optical band gap due to exchange interactions inside the system after co doping. PL studies reveal effect of co doping on UV and visible emission bands in the co doped systems at two different sintering temperatures, indicating the existence of defects in the form of oxygen vacancies. While the TM: TM co doped samples of ZnO exhibit ferromagnetism at room temperature, the TM: RE co doped samples show paramagnetic behaviour. The magnetic behaviours observed are supported by results from Electron Spin resonance (ESR) study; which shows sharp resonance peaks with considerable line width (∆H) and g values more than 2. Such values are usually found due to the presence of an internal field inside the system giving rise to the shift of resonance field towards the lower field. The g values in this range are assigned to the unpaired electrons trapped in oxygen vacancies. TM: TM co doped ZnO samples exhibit low field absorption peaks in their ESR spectra, which is a new interesting observation. We emphasize that the interesting observations reported in this paper may be considered for the improved futuristic applications of ZnO based materials.

Keywords: co-doping, electro spin resonance, microwave absorption, spintronics

Procedia PDF Downloads 309
19499 Graphene Transistor Employing Multilayer Hexagonal Boron Nitride as Substrate and Gate Insulator

Authors: Nikhil Jain, Bin Yu

Abstract:

We explore the potential of using ultra-thin hexagonal boron nitride (h-BN) as both supporting substrate and gate dielectric for graphene-channel field effect transistors (GFETs). Different from commonly used oxide-based dielectric materials which are typically amorphous, very rough in surface, and rich with surface traps, h-BN is layered insulator free of dangling bonds and surface states, featuring atomically smooth surface. In a graphene-channel-last device structure with local buried metal gate electrode (TiN), thin h-BN multilayer is employed as both supporting “substrate” and gate dielectric for graphene active channel. We observed superior carrier mobility and electrical conduction, significantly improved from that in GFETs with SiO2 as substrate/gate insulator. In addition, we report excellent dielectric behavior of layered h-BN, including ultra-low leakage current and high critical electric field for breakdown.

Keywords: graphene, field-effect transistors, hexagonal boron nitride, dielectric strength, tunneling

Procedia PDF Downloads 402
19498 The Effect of Fixing Kinesiology Tape onto the Plantar Surface during Loading Phase of Gait

Authors: Albert K. Chong, Jasim Ahmed Ali Al-Baghdadi, Peter B. Milburn

Abstract:

Precise capture of plantar 3D surface of the foot at the loading gait phases on rigid substrate was found to be valuable for the assessment of the physiology, health and problems of the feet. Photogrammetry, a precision 3D spatial data capture technique is suitable for this type of dynamic application. In this research, the technique is utilised to study of the effect on the plantar deformation for having a strip of kinesiology tape on the plantar surface while going through the loading phase of gait. For this pilot study, one healthy adult male subject was recruited under the USQ University human research ethics guidelines for this preliminary study. The 3D plantar deformation data of both with and without applying the tape were analysed. The results and analyses are presented together with the detail of the findings.

Keywords: gait, human plantar, plantar loading, photogrammetry, kinesiology tape

Procedia PDF Downloads 470
19497 Hybrid Bimodal Magnetic Force Microscopy

Authors: Fernández-Brito David, Lopez-Medina Javier Alonso, Murillo-Bracamontes Eduardo Antonio, Palomino-Ovando Martha Alicia, Gervacio-Arciniega José Juan

Abstract:

Magnetic Force Microscopy (MFM) is an Atomic Force Microscopy (AFM) technique that characterizes, at a nanometric scale, the magnetic properties of ferromagnetic materials. Conventional MFM works by scanning in two different AFM modes. The first one is tapping mode, in which the cantilever has short-range force interactions with the sample, with the purpose to obtain the topography. Then, the lift AFM mode starts, raising the cantilever to maintain a fixed distance between the tip and the surface of the sample, only interacting with the magnetic field forces of the sample, which are long-ranged. In recent years, there have been attempts to improve the MFM technique. Bimodal MFM was first theoretically developed and later experimentally proven. In bimodal MFM, the AFM internal piezoelectric is used to cause the cantilever oscillations in two resonance modes simultaneously, the first mode detects the topography, while the second is more sensitive to the magnetic forces between the tip and the sample. However, it has been proven that the cantilever vibrations induced by the internal AFM piezoelectric ceramic are not optimal, affecting the bimodal MFM characterizations. Moreover, the Secondary Resonance Magnetic Force Microscopy (SR-MFM) was developed. In this technique, a coil located below the sample generates an external magnetic field. This alternating magnetic field excites the cantilever at a second frequency to apply the Bimodal MFM mode. Nonetheless, for ferromagnetic materials with a low coercive field, the external field used in SR-MFM technique can modify the magnetic domains of the sample. In this work, a Hybrid Bimodal MFM (HB-MFM) technique is proposed. In HB-MFM, the bimodal MFM is used, but the first resonance frequency of the cantilever is induced by the magnetic field of the ferromagnetic sample due to its vibrations caused by a piezoelectric element placed under the sample. The advantages of this new technique are demonstrated through the preliminary results obtained by HB-MFM on a hard disk sample. Additionally, traditional two pass MFM and HB-MFM measurements were compared.

Keywords: magnetic force microscopy, atomic force microscopy, magnetism, bimodal MFM

Procedia PDF Downloads 47
19496 New Approaches to the Determination of the Time Costs of Movements

Authors: Dana Kristalova

Abstract:

This article deals with geographical conditions in terrain and their effect on the movement of vehicles, their effect on speed and safety of movement of people and vehicles. Finding of the optimal routes outside the communication is studied in the army environment, but it occur in civilian as well, primarily in crisis situation, or by the provision of assistance when natural disasters such as floods, fires, storms, etc. have happened. These movements require the optimization of routes when effects of geographical factors should be included. The most important factor is surface of the terrain. It is based on several geographical factors as are slopes, soil conditions, micro-relief, a type of surface and meteorological conditions. Their mutual impact has been given by coefficient of deceleration. This coefficient can be used for commander´s decision. New approaches and methods of terrain testing, mathematical computing, mathematical statistics or cartometric investigation are necessary parts of this evaluation.

Keywords: surface of a terrain, movement of vehicles, geographical factor, optimization of routes

Procedia PDF Downloads 435
19495 Colloid-Based Biodetection at Aqueous Electrical Interfaces Using Fluidic Dielectrophoresis

Authors: Francesca Crivellari, Nicholas Mavrogiannis, Zachary Gagnon

Abstract:

Portable diagnostic methods have become increasingly important for a number of different purposes: point-of-care screening in developing nations, environmental contamination studies, bio/chemical warfare agent detection, and end-user use for commercial health monitoring. The cheapest and most portable methods currently available are paper-based – lateral flow and dipstick methods are widely available in drug stores for use in pregnancy detection and blood glucose monitoring. These tests are successful because they are cheap to produce, easy to use, and require minimally invasive sampling. While adequate for their intended uses, in the realm of blood-borne pathogens and numerous cancers, these paper-based methods become unreliable, as they lack the nM/pM sensitivity currently achieved by clinical diagnostic methods. Clinical diagnostics, however, utilize techniques involving surface plasmon resonance (SPR) and enzyme-linked immunosorbent assays (ELISAs), which are expensive and unfeasible in terms of portability. To develop a better, competitive biosensor, we must reduce the cost of one, or increase the sensitivity of the other. Electric fields are commonly utilized in microfluidic devices to manipulate particles, biomolecules, and cells. Applications in this area, however, are primarily limited to interfaces formed between immiscible interfaces. Miscible, liquid-liquid interfaces are common in microfluidic devices, and are easily reproduced with simple geometries. Here, we demonstrate the use of electrical fields at liquid-liquid electrical interfaces, known as fluidic dielectrophoresis, (fDEP) for biodetection in a microfluidic device. In this work, we apply an AC electric field across concurrent laminar streams with differing conductivities and permittivities to polarize the interface and induce a discernible, near-immediate, frequency-dependent interfacial tilt. We design this aqueous electrical interface, which becomes the biosensing “substrate,” to be intelligent – it “moves” only when a target of interest is present. This motion requires neither labels nor expensive electrical equipment, so the biosensor is inexpensive and portable, yet still capable of sensitive detection. Nanoparticles, due to their high surface-area-to-volume ratio, are often incorporated to enhance detection capabilities of schemes like SPR and fluorimetric assays. Most studies currently investigate binding at an immobilized solid-liquid or solid-gas interface, where particles are adsorbed onto a planar surface, functionalized with a receptor to create a reactive substrate, and subsequently flushed with a fluid or gas with the relevant analyte. These typically involve many preparation and rinsing steps, and are susceptible to surface fouling. Our microfluidic device is continuously flowing and renewing the “substrate,” and is thus not subject to fouling. In this work, we demonstrate the ability to electrokinetically detect biomolecules binding to functionalized nanoparticles at liquid-liquid interfaces using fDEP. In biotin-streptavidin experiments, we report binding detection limits on the order of 1-10 pM, without amplifying signals or concentrating samples. We also demonstrate the ability to detect this interfacial motion, and thus the presence of binding, using impedance spectroscopy, allowing this scheme to become non-optical, in addition to being label-free.

Keywords: biodetection, dielectrophoresis, microfluidics, nanoparticles

Procedia PDF Downloads 361
19494 Glyco-Biosensing as a Novel Tool for Prostate Cancer Early-Stage Diagnosis

Authors: Pavel Damborsky, Martina Zamorova, Jaroslav Katrlik

Abstract:

Prostate cancer is annually the most common newly diagnosed cancer among men. An extensive number of evidence suggests that traditional serum Prostate-specific antigen (PSA) assay still suffers from a lack of sufficient specificity and sensitivity resulting in vast over-diagnosis and overtreatment. Thus, the early-stage detection of prostate cancer (PCa) plays undisputedly a critical role for successful treatment and improved quality of life. Over the last decade, particular altered glycans have been described that are associated with a range of chronic diseases, including cancer and inflammation. These glycans differences enable a distinction to be made between physiological and pathological state and suggest a valuable biosensing tool for diagnosis and follow-up purposes. Aberrant glycosylation is one of the major characteristics of disease progression. Consequently, the aim of this study was to develop a more reliable tool for early-stage PCa diagnosis employing lectins as glyco-recognition elements. Biosensor and biochip technology putting to use lectin-based glyco-profiling is one of the most promising strategies aimed at providing fast and efficient analysis of glycoproteins. The proof-of-concept experiments based on sandwich assay employing anti-PSA antibody and an aptamer as a capture molecules followed by lectin glycoprofiling were performed. We present a lectin-based biosensing assay for glycoprofiling of serum biomarker PSA using different biosensor and biochip platforms such as label-free surface plasmon resonance (SPR) and microarray with fluorescent label. The results suggest significant differences in interaction of particular lectins with PSA. The antibody-based assay is frequently associated with the sensitivity, reproducibility, and cross-reactivity issues. Aptamers provide remarkable advantages over antibodies due to the nucleic acid origin, stability and no glycosylation. All these data are further step for construction of highly selective, sensitive and reliable sensors for early-stage diagnosis. The experimental set-up also holds promise for the development of comparable assays with other glycosylated disease biomarkers.

Keywords: biomarker, glycosylation, lectin, prostate cancer

Procedia PDF Downloads 379
19493 Mathematical Properties of the Resonance of the Inner Waves in Rotating Stratified Three-Dimensional Fluids

Authors: A. Giniatoulline

Abstract:

We consider the internal oscillations of the ocean which are caused by the gravity force and the Coriolis force, for different models with changeable density, heat transfer, and salinity. Traditionally, the mathematical description of the resonance effect is related to the growing amplitude as a result of input vibrations. We offer a different approach: the study of the relation between the spectrum of the internal oscillations and the properties of the limiting amplitude of the solution for the harmonic input vibrations of the external forces. Using the results of the spectral theory of self-adjoint operators in Hilbert functional spaces, we prove that there exists an explicit relation between the localization of the frequency of the external input vibrations with respect to the essential spectrum of proper inner oscillations and the non-uniqueness of the limiting amplitude. The results may find their application in various problems concerning mathematical modeling of turbulent flows in the ocean.

Keywords: computational fluid dynamics, essential spectrum, limiting amplitude, rotating fluid, spectral theory, stratified fluid, the uniqueness of solutions of PDE equations

Procedia PDF Downloads 229
19492 Multi-Objective Optimization and Effect of Surface Conditions on Fatigue Performance of Burnished Components Made of AISI 52100 Steel

Authors: Ouahiba Taamallah, Tarek Litim

Abstract:

The study deals with the burnishing effect of AISI 52100 steel and parameters influence (Py, i and f on surface integrity. The results show that the optimal effects are closely related to the treatment parameters. With a 92% improvement in roughness, SB can be defined as a finishing operation within the machining range. Due to 85% gain in consolidation rate, this treatment constitutes an efficient process for work-hardening of material. In addition, a statistical study based on regression and Taguchi's design has made it possible to develop mathematical models to predict output responses according to the studied burnishing parameters. Response Surface Methodology RSM showed a simultaneous influence of the burnishing parameters and to observe the optimal parameters of the treatment. ANOVA Analysis of results led to validate the prediction model with a determination coefficient R2=94.60% and R2=93.41% for surface roughness and micro-hardness, respectively. Furthermore, a multi-objective optimization allowed to identify a regime characterized by P=20 Kgf, i=5 passes and f=0.08 mm.rev-1, which favors minimum surface roughness and a maximum of micro-hardness. The result was validated by a composite desirability D_i=1 for both surface roughness and microhardness, respectively. Applying optimal parameters, burnishing showed its beneficial effects in fatigue resistance, especially for imposed loading in the low cycle fatigue of the material where the lifespan increased by 90%.

Keywords: AISI 52100 steel, burnishing, Taguchi, fatigue

Procedia PDF Downloads 165
19491 A Kinetic Study on Recovery of High-Purity Rutile TiO₂ Nanoparticles from Titanium Slag Using Sulfuric Acid under Sonochemical Procedure

Authors: Alireza Bahramian

Abstract:

High-purity TiO₂ nanoparticles (NPs) with size ranging between 50 nm and 100 nm are synthesized from titanium slag through sulphate route under sonochemical procedure. The effect of dissolution parameters such as the sulfuric acid/slag weight ratio, caustic soda concentration, digestion temperature and time, and initial particle size of the dried slag on the extraction efficiency of TiO₂ and removal of iron are examined. By optimizing the digestion conditions, a rutile TiO₂ powder with surface area of 42 m²/g and mean pore diameter of 22.4 nm were prepared. A thermo-kinetic analysis showed that the digestion temperature has an important effect, while the acid/slag weight ratio and initial size of the slag has a moderate effect on the dissolution rate. The shrinking-core model including both chemical surface reaction and surface diffusion is used to describe the leaching process. A low value of activation energy, 38.12 kJ/mol, indicates the surface chemical reaction model is a rate-controlling step. The kinetic analysis suggested a first order reaction mechanism with respect to the acid concentrations.

Keywords: TiO₂ nanoparticles, titanium slag, dissolution rate, sonochemical method, thermo-kinetic study

Procedia PDF Downloads 231
19490 Evaluation of Longitudinal Relaxation Time (T1) of Bone Marrow in Lumbar Vertebrae of Leukaemia Patients Undergoing Magnetic Resonance Imaging

Authors: M. G. R. S. Perera, B. S. Weerakoon, L. P. G. Sherminie, M. L. Jayatilake, R. D. Jayasinghe, W. Huang

Abstract:

The aim of this study was to measure and evaluate the Longitudinal Relaxation Times (T1) in bone marrow of an Acute Myeloid Leukaemia (AML) patient in order to explore the potential for a prognostic biomarker using Magnetic Resonance Imaging (MRI) which will be a non-invasive prognostic approach to AML. MR image data were collected in the DICOM format and MATLAB Simulink software was used in the image processing and data analysis. For quantitative MRI data analysis, Region of Interests (ROI) on multiple image slices were drawn encompassing vertebral bodies of L3, L4, and L5. T1 was evaluated using the T1 maps obtained. The estimated bone marrow mean value of T1 was 790.1 (ms) at 3T. However, the reported T1 value of healthy subjects is significantly (946.0 ms) higher than the present finding. This suggests that the T1 for bone marrow can be considered as a potential prognostic biomarker for AML patients.

Keywords: acute myeloid leukaemia, longitudinal relaxation time, magnetic resonance imaging, prognostic biomarker.

Procedia PDF Downloads 497
19489 Silicon Surface Treatment Effect on the Structural, Optical, and Optoelectronic Properties for Solar Cell Applications

Authors: Lotfi Hedi Khezami, Mohamed Ben Rabha, N. Sboui, Mounir Gaidi, B. Bessais

Abstract:

Metal-nano particle-assisted Chemical Etching is an extraordinary developed wet etching method of producing uniform semiconductor nano structure (nano wires) from patterned metallic film on crystalline silicon surface. The metal films facilitate the etching in HF and H2O2 solution and produce silicon nanowires (SiNWs). Creation of different SiNWs morphologies by changing the etching time and its effects on optical and opto electronic properties was investigated. Combination effect of formed SiNWs and stain etching treatment in acid (HF/HNO3/H2O) solution on the surface morphology of Si wafers as well as on the optical and opto electronic properties are presented in this paper.

Keywords: stain etching, porous silicon, silicon nanowires, reflectivity, lifetime, solar cells

Procedia PDF Downloads 416
19488 Surface Activation of Carbon Nanotubes Generating a Chemical Interaction in Epoxy Nanocomposite

Authors: Mohamed Eldessouki, Ebraheem Shady, Yasser Gowayed

Abstract:

Carbon nanotubes (CNTs) are known for having high elastic properties with high surface area that promote them as good candidates for reinforcing polymeric matrices. In composite materials, CNTs lack chemical bonding with the surrounding matrix which decreases the possibility of better stress transfer between the components. In this work, a chemical treatment for activating the surface of the multi-wall carbon nanotubes (MWCNT) was applied and the effect of this functionalization on the elastic properties of the epoxy nanocomposites was studied. Functional amino-groups were added to the surface of the CNTs and it was evaluated to be about 34% of the total weight of the CNTs. Elastic modulus was found to increase by about 40% of the neat epoxy resin at CNTs’ weight fraction of 0.5%. The elastic modulus was found to decrease after reaching a certain concentration of CNTs which was found to be 1% wt. The scanning electron microscopic pictures showed the effect of the CNTs on the crack propagation through the sample by forming stress concentrated spots at the nanocomposite samples.

Keywords: carbon nanotubes functionalization, crack propagation, elastic modulus, epoxy nanocomposites

Procedia PDF Downloads 377
19487 Rock Thickness Measurement by Using Self-Excited Acoustical System

Authors: Janusz Kwaśniewski, Ireneusz Dominik, Krzysztof Lalik

Abstract:

The knowledge about rock layers thickness, especially above drilled mining pavements are crucial for workers safety. The measuring systems used nowadays are generally imperfect and there is a strong demand for improvement. The application of a new type of a measurement system called Self-Excited Acoustical System is presented in the paper. The system was applied until now to monitor stress changes in metal and concrete constructions. The change in measurement methodology resulted in possibility of measuring the thickness of the rocks above the tunnels as well as thickness of a singular rock layer. The idea is to find two resonance frequencies of the self-exited system, which consists of a vibration exciter and vibration receiver placed at a distance, which are coupled with a proper power amplifier, and which operate in a closed loop with a positive feedback. The resonance with the higher amplitude determines thickness of the whole rock, whereas the lower amplitude resonance indicates thickness of a singular layer. The results of the laboratory tests conducted on a group of different rock materials are also presented.

Keywords: auto-oscillator, non-destructive testing, rock thickness measurement, geotechnic

Procedia PDF Downloads 350
19486 Rising of Single and Double Bubbles during Boiling and Effect of Electric Field in This Process

Authors: Masoud Gholam Ale Mohammad, Mojtaba Hafezi Birgani

Abstract:

An experimental study of saturated pool boiling on a single artificial nucleation site without and with the application of an electric field on the boiling surface has been conducted. N-pentane is boiling on a copper surface and is recorded with a high speed camera providing high quality pictures and movies. The accuracy of the visualization allowed establishing an experimental bubble growth law from a large number of experiments. This law shows that the evaporation rate is decreasing during the bubble growth, and underlines the importance of liquid motion induced by the preceding bubble. Bubble rise is therefore studied: once detached, bubbles accelerate vertically until reaching a maximum velocity in good agreement with a correlation from literature. The bubbles then turn to another direction. The effect of applying an electric field on the boiling surface in finally studied. In addition to changes in the bubble shape, changes are also shown in the liquid plume and the convective structures above the surface. Lower maximum rising velocities were measured in the presence of electric fields, especially with a negative polarity.

Keywords: single and double bubbles, electric field, boiling, rising

Procedia PDF Downloads 197
19485 On-The-Fly Cross Sections Generation in Neutron Transport with Wide Energy Region

Authors: Rui Chen, Shu-min Zhou, Xiong-jie Zhang, Ren-bo Wang, Fan Huang, Bin Tang

Abstract:

During the temperature changes in reactor core, the nuclide cross section in reactor can vary with temperature, which eventually causes the changes of reactivity. To simulate the interaction between incident neutron and various materials at different temperatures on the nose, it is necessary to generate all the relevant reaction temperature-dependent cross section. Traditionally, the real time cross section generation method is used to avoid storing huge data but contains severe problems of low efficiency and adaptability for narrow energy region. Focused on the research on multi-temperature cross sections generation in real time during in neutron transport, this paper investigated the on-the-fly cross section generation method for resolved resonance region, thermal region and unresolved resonance region, and proposed the real time multi-temperature cross sections generation method based on double-exponential formula for resolved resonance region, as well as the Neville interpolation for thermal and unresolved resonance region. To prove the correctness and validity of multi-temperature cross sections generation based on wide energy region of incident neutron, the proposed method was applied in critical safety benchmark tests, which showed the capability for application in reactor multi-physical coupling simulation.

Keywords: cross section, neutron transport, numerical simulation, on-the-fly

Procedia PDF Downloads 173
19484 The Effect of Tool Path Strategy on Surface and Dimension in High Speed Milling

Authors: A. Razavykia, A. Esmaeilzadeh, S. Iranmanesh

Abstract:

Many orthopedic implants like proximal humerus cases require lower surface roughness and almost immediate/short lead time surgery. Thus, rapid response from the manufacturer is very crucial. Tool path strategy of milling process has a direct influence on the surface roughness and lead time of medical implant. High-speed milling as promised process would improve the machined surface quality, but conventional or super-abrasive grinding still required which imposes some drawbacks such as additional costs and time. Currently, many CAD/CAM software offers some different tool path strategies to milling free form surfaces. Nevertheless, the users must identify how to choose the strategies according to cutting tool geometry, geometry complexity, and their effects on the machined surface. This study investigates the effect of different tool path strategies for milling a proximal humerus head during finishing operation on stainless steel 316L. Experiments have been performed using MAHO MH700 S vertical milling machine and four machining strategies, namely, spiral outward, spiral inward, and radial as well as zig-zag. In all cases, the obtained surfaces were analyzed in terms of roughness and dimension accuracy compared with those obtained by simulation. The findings provide evidence that surface roughness, dimensional accuracy, and machining time have been affected by the considered tool path strategy.

Keywords: CAD/CAM software, milling, orthopedic implants, tool path strategy

Procedia PDF Downloads 192
19483 FRP Bars Spacing Effect on Numerical Thermal Deformations in Concrete Beams under High Temperatures

Authors: A. Zaidi, F. Khelifi, R. Masmoudi, M. Bouhicha

Abstract:

5 In order to eradicate the degradation of reinforced concrete structures due to the steel corrosion, professionals in constructions suggest using fiber reinforced polymers (FRP) for their excellent properties. Nevertheless, high temperatures may affect the bond between FRP bar and concrete, and consequently the serviceability of FRP-reinforced concrete structures. This paper presents a nonlinear numerical investigation using ADINA software to investigate the effect of the spacing between glass FRP (GFRP) bars embedded in concrete on circumferential thermal deformations and the distribution of radial thermal cracks in reinforced concrete beams submitted to high temperature variations up to 60 °C for asymmetrical problems. The thermal deformations predicted from nonlinear finite elements model, at the FRP bar/concrete interface and at the external surface of concrete cover, were established as a function of the ratio of concrete cover thickness to FRP bar diameter (c/db) and the ratio of spacing between FRP bars in concrete to FRP bar diameter (e/db). Numerical results show that the circumferential thermal deformations at the external surface of concrete cover are linear until cracking thermal load varied from 32 to 55 °C corresponding to the ratio of e/db varied from 1.3 to 2.3, respectively. However, for ratios e/db >2.3 and c/db >1.6, the thermal deformations at the external surface of concrete cover exhibit linear behavior without any cracks observed on the specified surface. The numerical results are compared to those obtained from analytical models validated by experimental tests.

Keywords: concrete beam, FRP bars, spacing effect, thermal deformation

Procedia PDF Downloads 180
19482 Research on Localized Operations of Multinational Companies in China

Authors: Zheng Ruoyuan

Abstract:

With the rapid development of economic globalization and increasingly fierce international competition, multinational companies have carried out investment strategy shifts and innovations, and actively promoted localization strategies. Localization strategies have become the main trend in the development of multinational companies. Large-scale entry of multinational companies China has a history of more than 20 years. With the sustained and steady growth of China's economy and the optimization of the investment environment, multinational companies' investment in China has expanded rapidly, which has also had an important impact on the Chinese economy: promoting employment, foreign exchange reserves, and improving the system. etc., has brought a lot of high-tech and advanced management experience; but it has also brought challenges and survival pressure to China's local enterprises. In recent years, multinational companies have gradually regarded China as an important part of their global strategies and began to invest in China. Actively promote localization strategies, including production, marketing, scientific research and development, etc. Many multinational companies have achieved good results in localized operations in China. Not only have their benefits continued to improve, but they have also established a good corporate image and brand in China. image, which has greatly improved their competitiveness in the international market. However, there are also some multinational companies that have difficulties in localized operations in China. This article will closely follow the background of economic globalization and comprehensively use the theory of multinational companies and strategic management theory and business management theory, using data and facts as the entry point, combined with typical cases of representative significance for analysis, to conduct a systematic study of the localized operations of multinational companies in China. At the same time, for each specific link of the operation of multinational companies, we provide multinational enterprises with some inspirations and references.

Keywords: localization, business management, multinational, marketing

Procedia PDF Downloads 22
19481 The Effect of Micro/Nano Structure of Poly (ε-caprolactone) (PCL) Film Using a Two-Step Process (Casting/Plasma) on Cellular Responses

Authors: JaeYoon Lee, Gi-Hoon Yang, JongHan Ha, MyungGu Yeo, SeungHyun Ahn, Hyeongjin Lee, HoJun Jeon, YongBok Kim, Minseong Kim, GeunHyung Kim

Abstract:

One of the important factors in tissue engineering is to design optimal biomedical scaffolds, which can be governed by topographical surface characteristics, such as size, shape, and direction. Of these properties, we focused on the effects of nano- to micro-sized hierarchical surface. To fabricate the hierarchical surface structure on poly(ε-caprolactone) (PCL) film, we employed a micro-casting technique by pressing the mold and nano-etching technique using a modified plasma process. The micro-sized topography of PCL film was controlled by sizes of the micro structures on lotus leaf. Also, the nano-sized topography and hydrophilicity of PCL film were controlled by a modified plasma process. After the plasma treatment, the hydrophobic property of the PCL film was significantly changed into hydrophilic property, and the nano-sized structure was well developed. The surface properties of the modified PCL film were investigated in terms of initial cell morphology, attachment, and proliferation using osteoblast-like-cells (MG63). In particular, initial cell attachment, proliferation and osteogenic differentiation in the hierarchical structure were enhanced dramatically compared to those of the smooth surface. We believe that these results are because of a synergistic effect between the hierarchical structure and the reactive functional groups due to the plasma process. Based on the results presented here, we propose a new biomimetic surface model that maybe useful for effectively regenerating hard tissues.

Keywords: hierarchical surface, lotus leaf, nano-etching, plasma treatment

Procedia PDF Downloads 354
19480 Investigating The Effect Of Convection On The Rating Of Buried Cables Using The Finite Element Method

Authors: Sandy J. M. Balla, Jerry J. Walker, Isaac K. Kyere

Abstract:

The heat transfer coefficient at the soil–air interface is important in calculating underground cable ampacity when convection occurs. Calculating the heat transfer coefficient accurately is complex because of the temperature variations at the earth's surface. This paper presents the effect of convection heat flow across the ground surface on the rating of three single-core, 132kV, XLPE cables buried underground. The Finite element method (FEM) is a numerical analysis technique used to determine the cable rating of buried cables under installation conditions that are difficult to support when using the analytical method. This study demonstrates the use of FEM to investigate the effect of convection on the rating ofburied cables in flat formation using QuickField finite element simulation software. As a result, developing a model to simulate this type of situation necessitates important considerations such as the following boundary conditions: burial depth, soil thermal resistivity, and soil temperature, which play an important role in the simulation's accuracy and reliability. The results show that when the ground surface is taken as a convection interface, the conductor temperature rises and may exceed the maximum permissible temperature when rated current flows. This is because the ground surface acts as a convection interface between the soil and the air (fluid). This result correlates and is compared with the rating obtained using the IEC60287 analytical method, which is based on the condition that the ground surface is an isotherm.

Keywords: finite element method, convection, buried cables, steady-state rating

Procedia PDF Downloads 108
19479 Self-Supervised Pretraining on Sequences of Functional Magnetic Resonance Imaging Data for Transfer Learning to Brain Decoding Tasks

Authors: Sean Paulsen, Michael Casey

Abstract:

In this work we present a self-supervised pretraining framework for transformers on functional Magnetic Resonance Imaging (fMRI) data. First, we pretrain our architecture on two self-supervised tasks simultaneously to teach the model a general understanding of the temporal and spatial dynamics of human auditory cortex during music listening. Our pretraining results are the first to suggest a synergistic effect of multitask training on fMRI data. Second, we finetune the pretrained models and train additional fresh models on a supervised fMRI classification task. We observe significantly improved accuracy on held-out runs with the finetuned models, which demonstrates the ability of our pretraining tasks to facilitate transfer learning. This work contributes to the growing body of literature on transformer architectures for pretraining and transfer learning with fMRI data, and serves as a proof of concept for our pretraining tasks and multitask pretraining on fMRI data.

Keywords: transfer learning, fMRI, self-supervised, brain decoding, transformer, multitask training

Procedia PDF Downloads 61
19478 Optimization of Process Parameters using Response Surface Methodology for the Removal of Zinc(II) by Solvent Extraction

Authors: B. Guezzen, M.A. Didi, B. Medjahed

Abstract:

A factorial design of experiments and a response surface methodology were implemented to investigate the liquid-liquid extraction process of zinc (II) from acetate medium using the 1-Butyl-imidazolium di(2-ethylhexyl) phosphate [BIm+][D2EHP-]. The optimization process of extraction parameters such as the initial pH effect (2.5, 4.5, and 6.6), ionic liquid concentration (1, 5.5, and 10 mM) and salt effect (0.01, 5, and 10 mM) was carried out using a three-level full factorial design (33). The results of the factorial design demonstrate that all these factors are statistically significant, including the square effects of pH and ionic liquid concentration. The results showed that the order of significance: IL concentration > salt effect > initial pH. Analysis of variance (ANOVA) showing high coefficient of determination (R2 = 0.91) and low probability values (P < 0.05) signifies the validity of the predicted second-order quadratic model for Zn (II) extraction. The optimum conditions for the extraction of zinc (II) at the constant temperature (20 °C), initial Zn (II) concentration (1mM) and A/O ratio of unity were: initial pH (4.8), extractant concentration (9.9 mM), and NaCl concentration (8.2 mM). At the optimized condition, the metal ion could be quantitatively extracted.

Keywords: ionic liquid, response surface methodology, solvent extraction, zinc acetate

Procedia PDF Downloads 346
19477 The Utilization of Tea Residues for Activated Carbon Preparation

Authors: Jiazhen Zhou, Youcai Zhao

Abstract:

Waste tea is commonly generated in certain areas of China and its utilization has drawn a lot of concern nowadays. In this paper, highly microporous and mesoporous activated carbons were produced from waste tea by physical activation in the presence of water vapor in a tubular furnace. The effect of activation temperature on yield and pore properties of produced activated carbon are studied. The yield decreased with the increase of activation temperature. According to the Nitrogen adsorption isotherms, the micropore and mesopore are both developed in the activated carbon. The specific surface area and the mesopore volume fractions of the activated carbon increased with the raise of activation temperature. The maximum specific surface area attained 756 m²/g produced at activation temperature 900°C. The results showed that the activation temperature had a significant effect on the micro and mesopore volumes as well as the specific surface area.

Keywords: activated carbon, nitrogen adsorption isotherm, physical activation, waste tea

Procedia PDF Downloads 302