Search results for: iterative%20method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 350

Search results for: iterative%20method

140 Low Complexity Carrier Frequency Offset Estimation for Cooperative Orthogonal Frequency Division Multiplexing Communication Systems without Cyclic Prefix

Authors: Tsui-Tsai Lin

Abstract:

Cooperative orthogonal frequency division multiplexing (OFDM) transmission, which possesses the advantages of better connectivity, expanded coverage, and resistance to frequency selective fading, has been a more powerful solution for the physical layer in wireless communications. However, such a hybrid scheme suffers from the carrier frequency offset (CFO) effects inherited from the OFDM-based systems, which lead to a significant degradation in performance. In addition, insertion of a cyclic prefix (CP) at each symbol block head for combating inter-symbol interference will lead to a reduction in spectral efficiency. The design on the CFO estimation for the cooperative OFDM system without CP is a suspended problem. This motivates us to develop a low complexity CFO estimator for the cooperative OFDM decode-and-forward (DF) communication system without CP over the multipath fading channel. Especially, using a block-type pilot, the CFO estimation is first derived in accordance with the least square criterion. A reliable performance can be obtained through an exhaustive two-dimensional (2D) search with a penalty of heavy computational complexity. As a remedy, an alternative solution realized with an iteration approach is proposed for the CFO estimation. In contrast to the 2D-search estimator, the iterative method enjoys the advantage of the substantially reduced implementation complexity without sacrificing the estimate performance. Computer simulations have been presented to demonstrate the efficacy of the proposed CFO estimation.

Keywords: cooperative transmission, orthogonal frequency division multiplexing (OFDM), carrier frequency offset, iteration

Procedia PDF Downloads 242
139 Accelerating Quantum Chemistry Calculations: Machine Learning for Efficient Evaluation of Electron-Repulsion Integrals

Authors: Nishant Rodrigues, Nicole Spanedda, Chilukuri K. Mohan, Arindam Chakraborty

Abstract:

A crucial objective in quantum chemistry is the computation of the energy levels of chemical systems. This task requires electron-repulsion integrals as inputs, and the steep computational cost of evaluating these integrals poses a major numerical challenge in efficient implementation of quantum chemical software. This work presents a moment-based machine-learning approach for the efficient evaluation of electron-repulsion integrals. These integrals were approximated using linear combinations of a small number of moments. Machine learning algorithms were applied to estimate the coefficients in the linear combination. A random forest approach was used to identify promising features using a recursive feature elimination approach, which performed best for learning the sign of each coefficient but not the magnitude. A neural network with two hidden layers were then used to learn the coefficient magnitudes along with an iterative feature masking approach to perform input vector compression, identifying a small subset of orbitals whose coefficients are sufficient for the quantum state energy computation. Finally, a small ensemble of neural networks (with a median rule for decision fusion) was shown to improve results when compared to a single network.

Keywords: quantum energy calculations, atomic orbitals, electron-repulsion integrals, ensemble machine learning, random forests, neural networks, feature extraction

Procedia PDF Downloads 70
138 Modeling Battery Degradation for Electric Buses: Assessment of Lifespan Reduction from In-Depot Charging

Authors: Anaissia Franca, Julian Fernandez, Curran Crawford, Ned Djilali

Abstract:

A methodology to estimate the state-of-charge (SOC) of battery electric buses, including degradation effects, for a given driving cycle is presented to support long-term techno-economic analysis integrating electric buses and charging infrastructure. The degradation mechanisms, characterized by both capacity and power fade with time, have been modeled using an electrochemical model for Li-ion batteries. Iterative changes in the negative electrode film resistance and decrease in available lithium as a function of utilization is simulated for every cycle. The cycles are formulated to follow typical transit bus driving patterns. The power and capacity decay resulting from the degradation model are introduced as inputs to a longitudinal chassis dynamic analysis that calculates the power consumption of the bus for a given driving cycle to find the state-of-charge of the battery as a function of time. The method is applied to an in-depot charging scenario, for which the bus is charged exclusively at the depot, overnight and to its full capacity. This scenario is run both with and without including degradation effects over time to illustrate the significant impact of degradation mechanisms on bus performance when doing feasibility studies for a fleet of electric buses. The impact of battery degradation on battery lifetime is also assessed. The modeling tool can be further used to optimize component sizing and charging locations for electric bus deployment projects.

Keywords: battery electric bus, E-bus, in-depot charging, lithium-ion battery, battery degradation, capacity fade, power fade, electric vehicle, SEI, electrochemical models

Procedia PDF Downloads 292
137 Iterative Method for Lung Tumor Localization in 4D CT

Authors: Sarah K. Hagi, Majdi Alnowaimi

Abstract:

In the last decade, there were immense advancements in the medical imaging modalities. These advancements can scan a whole volume of the lung organ in high resolution images within a short time. According to this performance, the physicians can clearly identify the complicated anatomical and pathological structures of lung. Therefore, these advancements give large opportunities for more advance of all types of lung cancer treatment available and will increase the survival rate. However, lung cancer is still one of the major causes of death with around 19% of all the cancer patients. Several factors may affect survival rate. One of the serious effects is the breathing process, which can affect the accuracy of diagnosis and lung tumor treatment plan. We have therefore developed a semi automated algorithm to localize the 3D lung tumor positions across all respiratory data during respiratory motion. The algorithm can be divided into two stages. First, a lung tumor segmentation for the first phase of the 4D computed tomography (CT). Lung tumor segmentation is performed using an active contours method. Then, localize the tumor 3D position across all next phases using a 12 degrees of freedom of an affine transformation. Two data set where used in this study, a compute simulate for 4D CT using extended cardiac-torso (XCAT) phantom and 4D CT clinical data sets. The result and error calculation is presented as root mean square error (RMSE). The average error in data sets is 0.94 mm ± 0.36. Finally, evaluation and quantitative comparison of the results with a state-of-the-art registration algorithm was introduced. The results obtained from the proposed localization algorithm show a promising result to localize alung tumor in 4D CT data.

Keywords: automated algorithm , computed tomography, lung tumor, tumor localization

Procedia PDF Downloads 575
136 Image Ranking to Assist Object Labeling for Training Detection Models

Authors: Tonislav Ivanov, Oleksii Nedashkivskyi, Denis Babeshko, Vadim Pinskiy, Matthew Putman

Abstract:

Training a machine learning model for object detection that generalizes well is known to benefit from a training dataset with diverse examples. However, training datasets usually contain many repeats of common examples of a class and lack rarely seen examples. This is due to the process commonly used during human annotation where a person would proceed sequentially through a list of images labeling a sufficiently high total number of examples. Instead, the method presented involves an active process where, after the initial labeling of several images is completed, the next subset of images for labeling is selected by an algorithm. This process of algorithmic image selection and manual labeling continues in an iterative fashion. The algorithm used for the image selection is a deep learning algorithm, based on the U-shaped architecture, which quantifies the presence of unseen data in each image in order to find images that contain the most novel examples. Moreover, the location of the unseen data in each image is highlighted, aiding the labeler in spotting these examples. Experiments performed using semiconductor wafer data show that labeling a subset of the data, curated by this algorithm, resulted in a model with a better performance than a model produced from sequentially labeling the same amount of data. Also, similar performance is achieved compared to a model trained on exhaustive labeling of the whole dataset. Overall, the proposed approach results in a dataset that has a diverse set of examples per class as well as more balanced classes, which proves beneficial when training a deep learning model.

Keywords: computer vision, deep learning, object detection, semiconductor

Procedia PDF Downloads 107
135 Artificial Neural Network Approach for Modeling Very Short-Term Wind Speed Prediction

Authors: Joselito Medina-Marin, Maria G. Serna-Diaz, Juan C. Seck-Tuoh-Mora, Norberto Hernandez-Romero, Irving Barragán-Vite

Abstract:

Wind speed forecasting is an important issue for planning wind power generation facilities. The accuracy in the wind speed prediction allows a good performance of wind turbines for electricity generation. A model based on artificial neural networks is presented in this work. A dataset with atmospheric information about air temperature, atmospheric pressure, wind direction, and wind speed in Pachuca, Hidalgo, México, was used to train the artificial neural network. The data was downloaded from the web page of the National Meteorological Service of the Mexican government. The records were gathered for three months, with time intervals of ten minutes. This dataset was used to develop an iterative algorithm to create 1,110 ANNs, with different configurations, starting from one to three hidden layers and every hidden layer with a number of neurons from 1 to 10. Each ANN was trained with the Levenberg-Marquardt backpropagation algorithm, which is used to learn the relationship between input and output values. The model with the best performance contains three hidden layers and 9, 6, and 5 neurons, respectively; and the coefficient of determination obtained was r²=0.9414, and the Root Mean Squared Error is 1.0559. In summary, the ANN approach is suitable to predict the wind speed in Pachuca City because the r² value denotes a good fitting of gathered records, and the obtained ANN model can be used in the planning of wind power generation grids.

Keywords: wind power generation, artificial neural networks, wind speed, coefficient of determination

Procedia PDF Downloads 84
134 TimeTune: Personalized Study Plans Generation with Google Calendar Integration

Authors: Chevon Fernando, Banuka Athuraliya

Abstract:

The purpose of this research is to provide a solution to the students’ time management, which usually becomes an issue because students must study and manage their personal commitments. "TimeTune," an AI-based study planner that provides an opportunity to maneuver study timeframes by incorporating modern machine learning algorithms with calendar applications, is unveiled as the ideal solution. The research is focused on the development of LSTM models that connect to the Google Calendar API in the process of developing learning paths that would be fit for a unique student's daily life experience and study history. A key finding of this research is the success in building the LSTM model to predict optimal study times, which, integrating with the real-time data of Google Calendar, will generate the timetables automatically in a personalized and customized manner. The methodology encompasses Agile development practices and Object-Oriented Analysis and Design (OOAD) principles, focusing on user-centric design and iterative development. By adopting this method, students can significantly reduce the tension associated with poor study habits and time management. In conclusion, "TimeTune" displays an advanced step in personalized education technology. The fact that its application of ML algorithms and calendar integration is quite innovative is slowly and steadily revolutionizing the lives of students. The excellence of maintaining a balanced academic and personal life is stress reduction, which the applications promise to provide for students when it comes to managing their studies.

Keywords: personalized learning, study planner, time management, calendar integration

Procedia PDF Downloads 12
133 An Interactive Voice Response Storytelling Model for Learning Entrepreneurial Mindsets in Media Dark Zones

Authors: Vineesh Amin, Ananya Agrawal

Abstract:

In a prolonged period of uncertainty and disruptions in the pre-said normal order, non-cognitive skills, especially entrepreneurial mindsets, have become a pillar that can reform the educational models to inform the economy. Dreamverse Learning Lab’s IVR-based storytelling program -Call-a-Kahaani- is an evolving experiment with an aim to kindle entrepreneurial mindsets in the remotest locations of India in an accessible and engaging manner. At the heart of this experiment is the belief that at every phase in our life’s story, we have a choice which brings us closer to achieving our true potential. This interactive program is thus designed using real-time storytelling principles to empower learners, ages 24 and below, to make choices and take decisions as they become more self-aware, practice grit, try new things through stories, guided activities, and interactions, simply over a phone call. This research paper highlights the framework behind an ongoing scalable, data-oriented, low-tech program to kindle entrepreneurial mindsets in media dark zones supported by iterative design and prototyping to reach 13700+ unique learners who made 59000+ calls for 183900+min listening duration to listen to content pieces of around 3 to 4 min, with the last monitored (March 2022) record of 34% serious listenership, within one and a half years of its inception. The paper provides an in-depth account of the technical development, content creation, learning, and assessment frameworks, as well as mobilization models which have been leveraged to build this end-to-end system.

Keywords: non-cognitive skills, entrepreneurial mindsets, speech interface, remote learning, storytelling

Procedia PDF Downloads 169
132 Fault Tolerant Control of the Dynamical Systems Based on Internal Structure Systems

Authors: Seyed Mohammad Hashemi, Shahrokh Barati

Abstract:

The problem of fault-tolerant control (FTC) by accommodation method has been studied in this paper. The fault occurs in any system components such as actuators, sensors or internal structure of the system and leads to loss of performance and instability of the system. When a fault occurs, the purpose of the fault-tolerant control is designate strategy that can keep the control loop stable and system performance as much as possible perform it without shutting down the system. Here, the section of fault detection and isolation (FDI) system has been evaluated with regard to actuator's fault. Designing a fault detection and isolation system for a multi input-multi output (MIMO) is done by an unknown input observer, so the system is divided to several subsystems as the effect of other inputs such as disturbing given system state equations. In this observer design method, the effect of these disturbances will weaken and the only fault is detected on specific input. The results of this approach simulation can confirm the ability of the fault detection and isolation system design. After fault detection and isolation, it is necessary to redesign controller based on a suitable modification. In this regard after the use of unknown input observer theory and obtain residual signal and evaluate it, PID controller parameters redesigned for iterative. Stability of the closed loop system has proved in the presence of this method. Also, In order to soften the volatility caused by Annie variations of the PID controller parameters, modifying Sigma as a way acceptable solution used. Finally, the simulation results of three tank popular example confirm the accuracy of performance.

Keywords: fault tolerant control, fault detection and isolation, actuator fault, unknown input observer

Procedia PDF Downloads 423
131 The Impact of Academic Support Practices on Two-Year College Students’ Achievement in Science, Technology, Engineering, and Math Education: An Exploration of Factors

Authors: Gisele Ragusa, Lilian Leung

Abstract:

There are essential needs for science, technology, engineering, and math (STEM) workforces nationally. This important need underscores the necessity of increasing numbers of students attending both two-year community colleges and universities, thereby enabling and supporting a larger pool of students to enter the workforce. The greatest number of students in STEM programs attend public higher education institutions, with an even larger majority beginning their academic experiences enrolled in two-year public colleges. Accordingly, this research explores the impact of experiences and academic support practices on two-year (community) college students’ academic achievement in STEM majors with a focus on supporting students who are the first in their families to attend college. This research is a result of three years of iterative trials of differing supports to improve such students’ academic success with a cross-student comparative research methodological structure involving peer-to-peer and faculty academic supports. Results of this research indicate that background experiences and a combination of peer-to-peer and faculty-led academic support practices, including supplementary instruction, peer mentoring, and study skills support, significantly improve students’ academic success in STEM majors. These results confirm the needs that first-generation students have in navigating their college careers and what can be effective in supporting them.

Keywords: higher education policy, student support, two-year colleges, STEM achievement

Procedia PDF Downloads 50
130 Integration of STEM Education in Quebec, Canada – Challenges and Opportunities

Authors: B. El Fadil, R. Najar

Abstract:

STEM education is promoted by many scholars and curricula around the world, but it is not yet well established in the province of Quebec in Canada. In addition, effective instructional STEM activities and design methods are required to ensure that students and teachers' needs are being met. One potential method is the Engineering Design Process (EDP), a methodology that emphasizes the importance of creativity and collaboration in problem-solving strategies. This article reports on a case study that focused on using the EDP to develop instructional materials by means of making a technological artifact to teach mathematical variables and functions at the secondary level. The five iterative stages of the EDP (design, make, test, infer, and iterate) were integrated into the development of the course materials. Data was collected from different sources: pre- and post-questionnaires, as well as a working document dealing with pupils' understanding based on designing, making, testing, and simulating. Twenty-four grade seven (13 years old) students in Northern Quebec participated in the study. The findings of this study indicate that STEM activities have a positive impact not only on students' engagement in classroom activities but also on learning new mathematical concepts. Furthermore, STEM-focused activities have a significant effect on problem-solving skills development in an interdisciplinary approach. Based on the study's results, we can conclude, inter alia, that teachers should integrate STEM activities into their teaching practices to increase learning outcomes and attach more importance to STEM-focused activities to develop students' reflective thinking and hands-on skills.

Keywords: engineering design process, motivation, stem, integration, variables, functions

Procedia PDF Downloads 65
129 A Deep Learning Approach to Detect Complete Safety Equipment for Construction Workers Based on YOLOv7

Authors: Shariful Islam, Sharun Akter Khushbu, S. M. Shaqib, Shahriar Sultan Ramit

Abstract:

In the construction sector, ensuring worker safety is of the utmost significance. In this study, a deep learning-based technique is presented for identifying safety gear worn by construction workers, such as helmets, goggles, jackets, gloves, and footwear. The suggested method precisely locates these safety items by using the YOLO v7 (You Only Look Once) object detection algorithm. The dataset utilized in this work consists of labeled images split into training, testing and validation sets. Each image has bounding box labels that indicate where the safety equipment is located within the image. The model is trained to identify and categorize the safety equipment based on the labeled dataset through an iterative training approach. We used custom dataset to train this model. Our trained model performed admirably well, with good precision, recall, and F1-score for safety equipment recognition. Also, the model's evaluation produced encouraging results, with a [email protected] score of 87.7%. The model performs effectively, making it possible to quickly identify safety equipment violations on building sites. A thorough evaluation of the outcomes reveals the model's advantages and points up potential areas for development. By offering an automatic and trustworthy method for safety equipment detection, this research contributes to the fields of computer vision and workplace safety. The proposed deep learning-based approach will increase safety compliance and reduce the risk of accidents in the construction industry.

Keywords: deep learning, safety equipment detection, YOLOv7, computer vision, workplace safety

Procedia PDF Downloads 38
128 Resource Allocation and Task Scheduling with Skill Level and Time Bound Constraints

Authors: Salam Saudagar, Ankit Kamboj, Niraj Mohan, Satgounda Patil, Nilesh Powar

Abstract:

Task Assignment and Scheduling is a challenging Operations Research problem when there is a limited number of resources and comparatively higher number of tasks. The Cost Management team at Cummins needs to assign tasks based on a deadline and must prioritize some of the tasks as per business requirements. Moreover, there is a constraint on the resources that assignment of tasks should be done based on an individual skill level, that may vary for different tasks. Another constraint is for scheduling the tasks that should be evenly distributed in terms of number of working hours, which adds further complexity to this problem. The proposed greedy approach to solve assignment and scheduling problem first assigns the task based on management priority and then by the closest deadline. This is followed by an iterative selection of an available resource with the least allocated total working hours for a task, i.e. finding the local optimal choice for each task with the goal of determining the global optimum. The greedy approach task allocation is compared with a variant of Hungarian Algorithm, and it is observed that the proposed approach gives an equal allocation of working hours among the resources. The comparative study of the proposed approach is also done with manual task allocation and it is noted that the visibility of the task timeline has increased from 2 months to 6 months. An interactive dashboard app is created for the greedy assignment and scheduling approach and the tasks with more than 2 months horizon that were waiting in a queue without a delivery date initially are now analyzed effectively by the business with expected timelines for completion.

Keywords: assignment, deadline, greedy approach, Hungarian algorithm, operations research, scheduling

Procedia PDF Downloads 116
127 The Analysis of Personalized Low-Dose Computed Tomography Protocol Based on Cumulative Effective Radiation Dose and Cumulative Organ Dose for Patients with Breast Cancer with Regular Chest Computed Tomography Follow up

Authors: Okhee Woo

Abstract:

Purpose: The aim of this study is to evaluate 2-year cumulative effective radiation dose and cumulative organ dose on regular follow-up computed tomography (CT) scans in patients with breast cancer and to establish personalized low-dose CT protocol. Methods and Materials: A retrospective study was performed on the patients with breast cancer who were diagnosed and managed consistently on the basis of routine breast cancer follow-up protocol between 2012-01 and 2016-06. Based on ICRP (International Commission on Radiological Protection) 103, the cumulative effective radiation doses of each patient for 2-year follow-up were analyzed using the commercial radiation management software (Radimetrics, Bayer healthcare). The personalized effective doses on each organ were analyzed in detail by the software-providing Monte Carlo simulation. Results: A total of 3822 CT scans on 490 patients was evaluated (age: 52.32±10.69). The mean scan number for each patient was 7.8±4.54. Each patient was exposed 95.54±63.24 mSv of radiation for 2 years. The cumulative CT radiation dose was significantly higher in patients with lymph node metastasis (p = 0.00). The HER-2 positive patients were more exposed to radiation compared to estrogen or progesterone receptor positive patient (p = 0.00). There was no difference in the cumulative effective radiation dose with different age groups. Conclusion: To acknowledge how much radiation exposed to a patient is a starting point of management of radiation exposure for patients with long-term CT follow-up. The precise and personalized protocol, as well as iterative reconstruction, may reduce hazard from unnecessary radiation exposure.

Keywords: computed tomography, breast cancer, effective radiation dose, cumulative organ dose

Procedia PDF Downloads 161
126 Impact of Climate Change on Sea Level Rise along the Coastline of Mumbai City, India

Authors: Chakraborty Sudipta, A. R. Kambekar, Sarma Arnab

Abstract:

Sea-level rise being one of the most important impacts of anthropogenic induced climate change resulting from global warming and melting of icebergs at Arctic and Antarctic, the investigations done by various researchers both on Indian Coast and elsewhere during the last decade has been reviewed in this paper. The paper aims to ascertain the propensity of consistency of different suggested methods to predict the near-accurate future sea level rise along the coast of Mumbai. Case studies at East Coast, Southern Tip and West and South West coast of India have been reviewed. Coastal Vulnerability Index of several important international places has been compared, which matched with Intergovernmental Panel on Climate Change forecasts. The application of Geographic Information System mapping, use of remote sensing technology, both Multi Spectral Scanner and Thematic Mapping data from Landsat classified through Iterative Self-Organizing Data Analysis Technique for arriving at high, moderate and low Coastal Vulnerability Index at various important coastal cities have been observed. Instead of data driven, hindcast based forecast for Significant Wave Height, additional impact of sea level rise has been suggested. Efficacy and limitations of numerical methods vis-à-vis Artificial Neural Network has been assessed, importance of Root Mean Square error on numerical results is mentioned. Comparing between various computerized methods on forecast results obtained from MIKE 21 has been opined to be more reliable than Delft 3D model.

Keywords: climate change, Coastal Vulnerability Index, global warming, sea level rise

Procedia PDF Downloads 107
125 Evaluating the Impact of Expansion on Urban Thermal Surroundings: A Case Study of Lahore Metropolitan City, Pakistan

Authors: Usman Ahmed Khan

Abstract:

Urbanization directly affects the existing infrastructure, landscape modification, environmental contamination, and traffic pollution, especially if there is a lack of urban planning. Recently, the rapid urban sprawl has resulted in less developed green areas and has devastating environmental consequences. This study was aimed to study the past urban expansion rates and measure LST from satellite data. The land use land cover (LULC) maps of years 1996, 2010, 2013, and 2017 were generated using landsat satellite images. Four main classes, i.e., water, urban, bare land, and vegetation, were identified using unsupervised classification with iterative self-organizing data analysis (isodata) technique. The LST from satellite thermal data can be derived from different procedures: atmospheric, radiometric calibrations and surface emissivity corrections, classification of spatial changeability in land-cover. Different methods and formulas were used in the algorithm that successfully retrieves the land surface temperature to help us study the thermal environment of the ground surface. To verify the algorithm, the land surface temperature and the near-air temperature were compared. The results showed that, From 1996-2017, urban areas increased to about a considerable increase of about 48%. Few areas of the city also shown in a reduction in LST from the year 1996-2017 that actually began their transitional phase from rural to urban LULC. The mean temperature of the city increased averagely about 1ºC each year in the month of October. The green and vegetative areas witnessed a decrease in the area while a higher number of pixels increased in urban class.

Keywords: LST, LULC, isodata, urbanization

Procedia PDF Downloads 77
124 An Intelligent Prediction Method for Annular Pressure Driven by Mechanism and Data

Authors: Zhaopeng Zhu, Xianzhi Song, Gensheng Li, Shuo Zhu, Shiming Duan, Xuezhe Yao

Abstract:

Accurate calculation of wellbore pressure is of great significance to prevent wellbore risk during drilling. The traditional mechanism model needs a lot of iterative solving procedures in the calculation process, which reduces the calculation efficiency and is difficult to meet the demand of dynamic control of wellbore pressure. In recent years, many scholars have introduced artificial intelligence algorithms into wellbore pressure calculation, which significantly improves the calculation efficiency and accuracy of wellbore pressure. However, due to the ‘black box’ property of intelligent algorithm, the existing intelligent calculation model of wellbore pressure is difficult to play a role outside the scope of training data and overreacts to data noise, often resulting in abnormal calculation results. In this study, the multi-phase flow mechanism is embedded into the objective function of the neural network model as a constraint condition, and an intelligent prediction model of wellbore pressure under the constraint condition is established based on more than 400,000 sets of pressure measurement while drilling (MPD) data. The constraint of the multi-phase flow mechanism makes the prediction results of the neural network model more consistent with the distribution law of wellbore pressure, which overcomes the black-box attribute of the neural network model to some extent. The main performance is that the accuracy of the independent test data set is further improved, and the abnormal calculation values basically disappear. This method is a prediction method driven by MPD data and multi-phase flow mechanism, and it is the main way to predict wellbore pressure accurately and efficiently in the future.

Keywords: multiphase flow mechanism, pressure while drilling data, wellbore pressure, mechanism constraints, combined drive

Procedia PDF Downloads 147
123 An Explanatory Study Approach Using Artificial Intelligence to Forecast Solar Energy Outcome

Authors: Agada N. Ihuoma, Nagata Yasunori

Abstract:

Artificial intelligence (AI) techniques play a crucial role in predicting the expected energy outcome and its performance, analysis, modeling, and control of renewable energy. Renewable energy is becoming more popular for economic and environmental reasons. In the face of global energy consumption and increased depletion of most fossil fuels, the world is faced with the challenges of meeting the ever-increasing energy demands. Therefore, incorporating artificial intelligence to predict solar radiation outcomes from the intermittent sunlight is crucial to enable a balance between supply and demand of energy on loads, predict the performance and outcome of solar energy, enhance production planning and energy management, and ensure proper sizing of parameters when generating clean energy. However, one of the major problems of forecasting is the algorithms used to control, model, and predict performances of the energy systems, which are complicated and involves large computer power, differential equations, and time series. Also, having unreliable data (poor quality) for solar radiation over a geographical location as well as insufficient long series can be a bottleneck to actualization. To overcome these problems, this study employs the anaconda Navigator (Jupyter Notebook) for machine learning which can combine larger amounts of data with fast, iterative processing and intelligent algorithms allowing the software to learn automatically from patterns or features to predict the performance and outcome of Solar Energy which in turns enables the balance of supply and demand on loads as well as enhance production planning and energy management.

Keywords: artificial Intelligence, backward elimination, linear regression, solar energy

Procedia PDF Downloads 136
122 Signs, Signals and Syndromes: Algorithmic Surveillance and Global Health Security in the 21st Century

Authors: Stephen L. Roberts

Abstract:

This article offers a critical analysis of the rise of syndromic surveillance systems for the advanced detection of pandemic threats within contemporary global health security frameworks. The article traces the iterative evolution and ascendancy of three such novel syndromic surveillance systems for the strengthening of health security initiatives over the past two decades: 1) The Program for Monitoring Emerging Diseases (ProMED-mail); 2) The Global Public Health Intelligence Network (GPHIN); and 3) HealthMap. This article demonstrates how each newly introduced syndromic surveillance system has become increasingly oriented towards the integration of digital algorithms into core surveillance capacities to continually harness and forecast upon infinitely generating sets of digital, open-source data, potentially indicative of forthcoming pandemic threats. This article argues that the increased centrality of the algorithm within these next-generation syndromic surveillance systems produces a new and distinct form of infectious disease surveillance for the governing of emergent pathogenic contingencies. Conceptually, the article also shows how the rise of this algorithmic mode of infectious disease surveillance produces divergences in the governmental rationalities of global health security, leading to the rise of an algorithmic governmentality within contemporary contexts of Big Data and these surveillance systems. Empirically, this article demonstrates how this new form of algorithmic infectious disease surveillance has been rapidly integrated into diplomatic, legal, and political frameworks to strengthen the practice of global health security – producing subtle, yet distinct shifts in the outbreak notification and reporting transparency of states, increasingly scrutinized by the algorithmic gaze of syndromic surveillance.

Keywords: algorithms, global health, pandemic, surveillance

Procedia PDF Downloads 151
121 A Finite Element Study of Laminitis in Horses

Authors: Naeim Akbari Shahkhosravi, Reza Kakavand, Helen M. S. Davies, Amin Komeili

Abstract:

Equine locomotion and performance are significantly affected by hoof health. One of the most critical diseases of the hoof is laminitis, which can lead to horse lameness in a severe condition. This disease exhibits the mechanical properties degradation of the laminar junction tissue within the hoof. Therefore, it is essential to investigate the biomechanics of the hoof, focusing specifically on excessive and cumulatively accumulated stresses within the laminar junction tissue. For this aim, the current study generated a novel equine hoof Finite Element (FE) model under dynamic physiological loading conditions and employing a hyperelastic material model. Associated tissues of the equine hoof were segmented from computed tomography scans of an equine forelimb, including the navicular bone, third phalanx, sole, frog, laminar junction, digital cushion, and medial- dorsal- lateral wall areas. The inner tissues were connected based on the hoof anatomy, and the hoof was under a dynamic loading over cyclic strides at the trot. The strain distribution on the hoof wall of the model was compared with the published in vivo strain measurements to validate the model. Then the validated model was used to study the development of laminitis. The ultimate stress tolerated by the laminar junction before rupture was considered as a stress threshold. The tissue damage was simulated through iterative reduction of the tissue’s mechanical properties in the presence of excessive maximum principal stresses. The findings of this investigation revealed how damage initiates from the medial and lateral sides of the tissue and propagates through the hoof dorsal area.

Keywords: horse hoof, laminitis, finite element model, continuous damage

Procedia PDF Downloads 146
120 Breastfeeding Experiences of Nutritionist who are Mothers in Quito- Ecuador

Authors: Maria Jose Mendoza Gordillo

Abstract:

Introduction: Research regarding breastfeeding is devoted to how essential breastfeeding is to guarantee wellbeing for the mother and the baby from a medical standpoint relegating the cultural, material and social barriers for breastfeeding. Consequently, worldwide breastfeeding rates are low, and Ecuador is not the exception, especially among working mothers. Worldwide, health care providers have low rates of breastfeeding due to several barriers to lactation, such as the work schedule, a lack of private places for pumping while at work, and negative emotions. Goals and Methods: This study aimed to explore how do Ecuadorian women embrace their identities as nutritionists and mothers within their breastfeeding experience. The primary data come from 20 synchronous semi-structured interviews, which follow a topic guide. The interviews were recorded and transcribed verbatim. The data analysis followed the Phronetic Iterative Approach. Results: Women shifted the preconceived idea of the ideal breastfeeding that came from the medicalized discourse of breastfeeding, and that was constructed in their training as nutritionists. Although these women believe that breast milk and breastfeeding is the best way to feed a baby, the internalized ideal of breastfeeding shifted through the experience of motherhood. When these women developed their identity as mothers, they understood that the ideal breastfeeding is different from the medicalized discourse. Although they have that clash between the ideal and the external reality, they continued breastfeeding their babies and those experiences made them improve their professional practice. Conclusions: The narratives that women shared illustrate how complex it was to manage the different roles and identities that they wanted to fulfill to keep their identity of a good mother who breastfeeds her baby and, at the same time, a good healthcare provider identity. The process of breastfeeding for this group of women who are mothers and healthcare professionals appears to be a unique relational and identity negotiation process.

Keywords: breastfeeding, identity, nutritionist, qualitative

Procedia PDF Downloads 142
119 Digital System Design for Strategic Improvement Planning in Education: A Socio-Technical and Iterative Design Approach

Authors: Neeley Current, Fatih Demir, Kenneth Haggerty, Blake Naughton, Isa Jahnke

Abstract:

Educational systems seek reform using data-intensive continuous improvement processes known as strategic improvement plans (SIPs). Schools turn to digital systems to monitor, analyze and report SIPs. One technical challenge of these digital systems focuses on integrating a highly diverse set of data sources. Another challenge is to create a learnable sociotechnical system to help administrators, principals and teachers add, manipulate and interpret data. This study explores to what extent one particular system is usable and useful for strategic planning activities and whether intended users see the benefit of the system achieve the goal of improving workflow related to strategic planning in schools. In a three-phase study, researchers used sociotechnical design methods to understand the current workflow, technology use, and processes of teachers and principals surrounding their strategic improvement planning. Additionally, design review and task analysis usability methods were used to evaluate task completion, usability, and user satisfaction of the system. The resulting socio-technical models illustrate the existing work processes and indicate how and at which places in the workflow the newly developed system could have an impact. The results point to the potential of the system but also indicate that it was initially too complicated for use. However, the diverse users see the potential benefits, especially to overcome the diverse set of data sources, and that the system could fill a gap for schools in planning and conducting strategic improvement plans.

Keywords: continuous improvement process, education reform, strategic improvement planning, sociotechnical design, software development, usability

Procedia PDF Downloads 276
118 Implementing the Quality of Care Partnership to Reduce the Cost of Screenings for Sexually Transmitted Infections on a Southeastern College Campus

Authors: Amy Guidera, Steven Busby, Christian Williams, David Phillippi

Abstract:

College students are a priority preventative healthcare population that can engage in high-risk behaviors which may concurrently increase the potential for unsafe sexual practices, including contracting sexually transmitted infections (STIs). Early education, screening, treatment, and partner notification are important interventions for breaking the chain of transmission and recurrence in relation to preventing poor health outcomes and mitigating college dropout rates. The aim of this quality improvement project was to determine if the reduction in STI screening costs for college students (aged 18-30 years old) would increase the amount of STI screenings conducted at a university health center over the course of an academic semester while evaluating our ability to achieve an improved quality of care at a reduced cost, along with improved STI reporting and documentation. This study was conducted through retrospective chart reviews of STI-related visits and utilized the RADAR matrix to provide a guiding, iterative mechanism to continuously reassess goals and outcomes defined in a memorandum of agreement (MOA) between a university health center and the state department of health (DOH) laboratory. The project failed to increase the amount of STI screenings, most likely due to the emergence of COVID-19, but resulted in improved quality of care for students, improved STI-related visit documentation and reporting, and significantly reduced costs for STI screening for collegiate students at a southeastern private university campus.

Keywords: college health, college students, preventive health, reproductive health, sexually transmitted infections, young adults

Procedia PDF Downloads 111
117 Optimizing Super Resolution Generative Adversarial Networks for Resource-Efficient Single-Image Super-Resolution via Knowledge Distillation and Weight Pruning

Authors: Hussain Sajid, Jung-Hun Shin, Kum-Won Cho

Abstract:

Image super-resolution is the most common computer vision problem with many important applications. Generative adversarial networks (GANs) have promoted remarkable advances in single-image super-resolution (SR) by recovering photo-realistic images. However, high memory requirements of GAN-based SR (mainly generators) lead to performance degradation and increased energy consumption, making it difficult to implement it onto resource-constricted devices. To relieve such a problem, In this paper, we introduce an optimized and highly efficient architecture for SR-GAN (generator) model by utilizing model compression techniques such as Knowledge Distillation and pruning, which work together to reduce the storage requirement of the model also increase in their performance. Our method begins with distilling the knowledge from a large pre-trained model to a lightweight model using different loss functions. Then, iterative weight pruning is applied to the distilled model to remove less significant weights based on their magnitude, resulting in a sparser network. Knowledge Distillation reduces the model size by 40%; pruning then reduces it further by 18%. To accelerate the learning process, we employ the Horovod framework for distributed training on a cluster of 2 nodes, each with 8 GPUs, resulting in improved training performance and faster convergence. Experimental results on various benchmarks demonstrate that the proposed compressed model significantly outperforms state-of-the-art methods in terms of peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and image quality for x4 super-resolution tasks.

Keywords: single-image super-resolution, generative adversarial networks, knowledge distillation, pruning

Procedia PDF Downloads 54
116 Improving 99mTc-tetrofosmin Myocardial Perfusion Images by Time Subtraction Technique

Authors: Yasuyuki Takahashi, Hayato Ishimura, Masao Miyagawa, Teruhito Mochizuki

Abstract:

Quantitative measurement of myocardium perfusion is possible with single photon emission computed tomography (SPECT) using a semiconductor detector. However, accumulation of 99mTc-tetrofosmin in the liver may make it difficult to assess that accurately in the inferior myocardium. Our idea is to reduce the high accumulation in the liver by using dynamic SPECT imaging and a technique called time subtraction. We evaluated the performance of a new SPECT system with a cadmium-zinc-telluride solid-state semi- conductor detector (Discovery NM 530c; GE Healthcare). Our system acquired list-mode raw data over 10 minutes for a typical patient. From the data, ten SPECT images were reconstructed, one for every minute of acquired data. Reconstruction with the semiconductor detector was based on an implementation of a 3-D iterative Bayesian reconstruction algorithm. We studied 20 patients with coronary artery disease (mean age 75.4 ± 12.1 years; range 42-86; 16 males and 4 females). In each subject, 259 MBq of 99mTc-tetrofosmin was injected intravenously. We performed both a phantom and a clinical study using dynamic SPECT. An approximation to a liver-only image is obtained by reconstructing an image from the early projections during which time the liver accumulation dominates (0.5~2.5 minutes SPECT image-5~10 minutes SPECT image). The extracted liver-only image is then subtracted from a later SPECT image that shows both the liver and the myocardial uptake (5~10 minutes SPECT image-liver-only image). The time subtraction of liver was possible in both a phantom and the clinical study. The visualization of the inferior myocardium was improved. In past reports, higher accumulation in the myocardium due to the overlap of the liver is un-diagnosable. Using our time subtraction method, the image quality of the 99mTc-tetorofosmin myocardial SPECT image is considerably improved.

Keywords: 99mTc-tetrofosmin, dynamic SPECT, time subtraction, semiconductor detector

Procedia PDF Downloads 299
115 Sensitivity Analysis of Prestressed Post-Tensioned I-Girder and Deck System

Authors: Tahsin A. H. Nishat, Raquib Ahsan

Abstract:

Sensitivity analysis of design parameters of the optimization procedure can become a significant factor while designing any structural system. The objectives of the study are to analyze the sensitivity of deck slab thickness parameter obtained from both the conventional and optimum design methodology of pre-stressed post-tensioned I-girder and deck system and to compare the relative significance of slab thickness. For analysis on conventional method, the values of 14 design parameters obtained by the conventional iterative method of design of a real-life I-girder bridge project have been considered. On the other side for analysis on optimization method, cost optimization of this system has been done using global optimization methodology 'Evolutionary Operation (EVOP)'. The problem, by which optimum values of 14 design parameters have been obtained, contains 14 explicit constraints and 46 implicit constraints. For both types of design parameters, sensitivity analysis has been conducted on deck slab thickness parameter which can become too sensitive for the obtained optimum solution. Deviations of slab thickness on both the upper and lower side of its optimum value have been considered reflecting its realistic possible ranges of variations during construction. In this procedure, the remaining parameters have been kept unchanged. For small deviations from the optimum value, compliance with the explicit and implicit constraints has been examined. Variations in the cost have also been estimated. It is obtained that without violating any constraint deck slab thickness obtained by the conventional method can be increased up to 25 mm whereas slab thickness obtained by cost optimization can be increased only up to 0.3 mm. The obtained result suggests that slab thickness becomes less sensitive in case of conventional method of design. Therefore, for realistic design purpose sensitivity should be conducted for any of the design procedure of girder and deck system.

Keywords: sensitivity analysis, optimum design, evolutionary operations, PC I-girder, deck system

Procedia PDF Downloads 104
114 Finite Element Analysis for Earing Prediction Incorporating the BBC2003 Material Model with Fully Implicit Integration Method: Derivation and Numerical Algorithm

Authors: Sajjad Izadpanah, Seyed Hadi Ghaderi, Morteza Sayah Irani, Mahdi Gerdooei

Abstract:

In this research work, a sophisticated yield criterion known as BBC2003, capable of describing planar anisotropic behaviors of aluminum alloy sheets, was integrated into the commercial finite element code ABAQUS/Standard via a user subroutine. The complete formulation of the implementation process using a fully implicit integration scheme, i.e., the classic backward Euler method, is presented, and relevant aspects of the yield criterion are introduced. In order to solve nonlinear differential and algebraic equations, the line-search algorithm was adopted in the user-defined material subroutine (UMAT) to expand the convergence domain of the iterative Newton-Raphson method. The developed subroutine was used to simulate a challenging computational problem with complex stress states, i.e., deep drawing of an anisotropic aluminum alloy AA3105. The accuracy and stability of the developed subroutine were confirmed by comparing the numerically predicted earing and thickness variation profiles with the experimental results, which showed an excellent agreement between numerical and experimental earing and thickness profiles. The integration of the BBC2003 yield criterion into ABAQUS/Standard represents a significant contribution to the field of computational mechanics and provides a useful tool for analyzing the mechanical behavior of anisotropic materials subjected to complex loading conditions.

Keywords: BBC2003 yield function, plastic anisotropy, fully implicit integration scheme, line search algorithm, explicit and implicit integration schemes

Procedia PDF Downloads 43
113 A Segmentation Method for Grayscale Images Based on the Firefly Algorithm and the Gaussian Mixture Model

Authors: Donatella Giuliani

Abstract:

In this research, we propose an unsupervised grayscale image segmentation method based on a combination of the Firefly Algorithm and the Gaussian Mixture Model. Firstly, the Firefly Algorithm has been applied in a histogram-based research of cluster means. The Firefly Algorithm is a stochastic global optimization technique, centered on the flashing characteristics of fireflies. In this context it has been performed to determine the number of clusters and the related cluster means in a histogram-based segmentation approach. Successively these means are used in the initialization step for the parameter estimation of a Gaussian Mixture Model. The parametric probability density function of a Gaussian Mixture Model is represented as a weighted sum of Gaussian component densities, whose parameters are evaluated applying the iterative Expectation-Maximization technique. The coefficients of the linear super-position of Gaussians can be thought as prior probabilities of each component. Applying the Bayes rule, the posterior probabilities of the grayscale intensities have been evaluated, therefore their maxima are used to assign each pixel to the clusters, according to their gray-level values. The proposed approach appears fairly solid and reliable when applied even to complex grayscale images. The validation has been performed by using different standard measures, more precisely: the Root Mean Square Error (RMSE), the Structural Content (SC), the Normalized Correlation Coefficient (NK) and the Davies-Bouldin (DB) index. The achieved results have strongly confirmed the robustness of this gray scale segmentation method based on a metaheuristic algorithm. Another noteworthy advantage of this methodology is due to the use of maxima of responsibilities for the pixel assignment that implies a consistent reduction of the computational costs.

Keywords: clustering images, firefly algorithm, Gaussian mixture model, meta heuristic algorithm, image segmentation

Procedia PDF Downloads 189
112 Inter-Communication-Management in Cases with Disabled Children (ICDC)

Authors: Dena A. Hussain

Abstract:

The objective of this project is to design an Information and Communication Technologies (ICT) tool based on a standardized platform to assist the work-integrated learning process of caretakers of disabled children. The tool should assist the intercommunication between caretakers and improve the learning process through knowledge bridging between all involved caretakers. Some children are born with disabilities while others have special needs after an illness or accident. Special needs children often need help in their learning process and require tools and services in a different way. In some cases the child has multiple disabilities that affect several capabilities in different ways. These needs are to be transformed into different learning techniques that the staff or personal (called caretakers in this project) caring for the child needs to learn and adapt. The caretakers involved are also required to learn new learning or training techniques and utilities specialized for the child’s needs. In many cases the number of people caring for the child’s development is rather large; the parents, specialist pedagogues, teachers, therapists, psychologists, personal assistants, etc. Each group of specialists has different objectives and in some cases the merge between theses specifications is very unique. This makes the synchronization between different caretakers difficult, resulting often in low level cooperation. By better intercommunication between professions both the child’s development could be improved but also the caretakers’ methods and knowledge of each other’s work processes and their own profession. This introduces a unique work integrated learning environment for all personnel involve, merging learning and knowledge in the work environment and at the same time assist the children’s development process. Creating an iterative process generates a unique learning experience for all involved. Using a work integrated platform will help encourage and support the process of all the teams involved in the process.We believe that working with children who have special needs is a continues learning/working process that is always integrated to achieve one main goal, which is to make a better future for all children.

Keywords: information and communication technologies (ICT), work integrated learning (WIL), sustainable learning, special needs children

Procedia PDF Downloads 272
111 Characterising the Dynamic Friction in the Staking of Plain Spherical Bearings

Authors: Jacob Hatherell, Jason Matthews, Arnaud Marmier

Abstract:

Anvil Staking is a cold-forming process that is used in the assembly of plain spherical bearings into a rod-end housing. This process ensures that the bearing outer lip conforms to the chamfer in the matching rod end to produce a lightweight mechanical joint with sufficient strength to meet the pushout load requirement of the assembly. Finite Element (FE) analysis is being used extensively to predict the behaviour of metal flow in cold forming processes to support industrial manufacturing and product development. On-going research aims to validate FE models across a wide range of bearing and rod-end geometries by systematically isolating and understanding the uncertainties caused by variations in, material properties, load-dependent friction coefficients and strain rate sensitivity. The improved confidence in these models aims to eliminate the costly and time-consuming process of experimental trials in the introduction of new bearing designs. Previous literature has shown that friction coefficients do not remain constant during cold forming operations, however, the understanding of this phenomenon varies significantly and is rarely implemented in FE models. In this paper, a new approach to evaluate the normal contact pressure versus friction coefficient relationship is outlined using friction calibration charts generated via iterative FE models and ring compression tests. When compared to previous research, this new approach greatly improves the prediction of forming geometry and the forming load during the staking operation. This paper also aims to standardise the FE approach to modelling ring compression test and determining the friction calibration charts.

Keywords: anvil staking, finite element analysis, friction coefficient, spherical plain bearing, ring compression tests

Procedia PDF Downloads 181