Search results for: hydrogen permeation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1056

Search results for: hydrogen permeation

96 Biomimetic Systems to Reveal the Action Mode of Epigallocatechin-3-Gallate in Lipid Membrane

Authors: F. Pires, V. Geraldo, O. N. Oliveira Jr., M. Raposo

Abstract:

Catechins are powerful antioxidants which have attractive properties useful for tumor therapy. Considering their antioxidant activity, these molecules can act as a scavenger of the reactive oxygen species (ROS), alleviating the damage of cell membrane induced by oxidative stress. The complexity and dynamic nature of the cell membrane compromise the analysis of the biophysical interactions between drug and cell membrane and restricts the transport or uptake of the drug by intracellular targets. To avoid the cell membrane complexity, we used biomimetic systems as liposomes and Langmuir monolayers to study the interaction between catechin and membranes at the molecular level. Liposomes were formed after the dispersion of anionic 1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)(sodium salt) (DPPG) phospholipids in an aqueous solution, which mimic the arrangement of lipids in natural cell membranes and allows the entrapment of catechins. Langmuir monolayers were formed after dropping amphiphilic molecules, DPPG phospholipids, dissolved in an organic solvent onto the water surface. In this work, we mixed epigallocatechin-3-gallate (EGCG) with DPPG liposomes and exposed them to ultra-violet radiation in order to evaluate the antioxidant potential of these molecules against oxidative stress induced by radiation. The presence of EGCG in the mixture decreased the rate of lipid peroxidation, proving that EGCG protects membranes through the quenching of the reactive oxygen species. Considering the high amount of hydroxyl groups (OH groups) on structure of EGCG, a possible mechanism to these molecules interact with membrane is through hydrogen bonding. We also investigated the effect of EGCG at various concentrations on DPPG Langmuir monolayers. The surface pressure isotherms and infrared reflection-absorption spectroscopy (PM-IRRAS) results corroborate with absorbance results preformed on liposome-model, showing that EGCG interacts with polar heads of the monolayers. This study elucidates the physiological action of EGCG which can be incorporated in lipid membrane. These results are also relevant for the improvement of the current protocols used to incorporate catechins in drug delivery systems.

Keywords: catechins, lipid membrane, anticancer agent, molecular interactions

Procedia PDF Downloads 207
95 Acetic Acid Adsorption and Decomposition on Pt(111): Comparisons to Ni(111)

Authors: Lotanna Ezeonu, Jason P. Robbins, Ziyu Tang, Xiaofang Yang, Bruce E. Koel, Simon G. Podkolzin

Abstract:

The interaction of organic molecules with metal surfaces is of interest in numerous technological applications, such as catalysis, bone replacement, and biosensors. Acetic acid is one of the main products of bio-oils produced from the pyrolysis of hemicellulosic feedstocks. However, their high oxygen content makes them unsuitable for use as fuels. Hydrodeoxygenation is a proven technique for catalytic deoxygenation of bio-oils. An understanding of the energetics and control of the bond-breaking sequences of biomass-derived oxygenates on metal surfaces will enable a guided optimization of existing catalysts and the development of more active/selective processes for biomass transformations to fuels. Such investigations have been carried out with the aid of ultrahigh vacuum and its concomitant techniques. The high catalytic activity of platinum in biomass-derived oxygenate transformations has sparked a lot of interest. We herein exploit infrared reflection absorption spectroscopy(IRAS), temperature-programmed desorption(TPD), and density functional theory(DFT) to study the adsorption and decomposition of acetic acid on a Pt(111) surface, which was then compared with Ni(111), a model non-noble metal. We found that acetic acid adsorbs molecularly on the Pt(111) surface, interacting through the lone pair of electrons of one oxygen atomat 90 K. At 140 K, the molecular form is still predominant, with some dissociative adsorption (in the form of acetate and hydrogen). Annealing to 193 K led to complete dehydrogenation of molecular acetic acid species leaving adsorbed acetate. At 440 K, decomposition of the acetate species occurs via decarbonylation and decarboxylation as evidenced by desorption peaks for H₂,CO, CO₂ and CHX fragments (x=1, 2) in theTPD.The assignments for the experimental IR peaks were made using visualization of the DFT-calculated vibrational modes. The results showed that acetate adsorbs in a bridged bidentate (μ²η²(O,O)) configuration. The coexistence of linear and bridge bonded CO was also predicted by the DFT results. Similar molecular acid adsorption energy was predicted in the case of Ni(111) whereas a significant difference was found for acetate adsorption.

Keywords: acetic acid, platinum, nickel, infared-absorption spectrocopy, temperature programmed desorption, density functional theory

Procedia PDF Downloads 78
94 Oxidovanadium(IV) and Dioxidovanadium(V) Complexes: Efficient Catalyst for Peroxidase Mimetic Activity and Oxidation

Authors: Mannar R. Maurya, Bithika Sarkar, Fernando Avecilla

Abstract:

Peroxidase activity is possibly successfully used for different industrial processes in medicine, chemical industry, food processing and agriculture. However, they bear some intrinsic drawback associated with denaturation by proteases, their special storage requisite and cost factor also. Now a day’s artificial enzyme mimics are becoming a research interest because of their significant applications over conventional organic enzymes for ease of their preparation, low price and good stability in activity and overcome the drawbacks of natural enzymes e.g serine proteases. At present, a large number of artificial enzymes have been synthesized by assimilating a catalytic center into a variety of schiff base complexes, ligand-anchoring, supramolecular complexes, hematin, porphyrin, nanoparticles to mimic natural enzymes. Although in recent years a several number of vanadium complexes have been reported by a continuing increase in interest in bioinorganic chemistry. To our best of knowledge, the investigation of artificial enzyme mimics of vanadium complexes is very less explored. Recently, our group has reported synthetic vanadium schiff base complexes capable of mimicking peroxidases. Herein, we have synthesized monoidovanadium(IV) and dioxidovanadium(V) complexes of pyrazoleone derivateis ( extensively studied on account of their broad range of pharmacological appication). All these complexes are characterized by various spectroscopic techniques like FT-IR, UV-Visible, NMR (1H, 13C and 51V), Elemental analysis, thermal studies and single crystal analysis. The peroxidase mimic activity has been studied towards oxidation of pyrogallol to purpurogallin with hydrogen peroxide at pH 7 followed by measuring kinetic parameters. The Michaelis-Menten behavior shows an excellent catalytic activity over its natural counterparts, e.g. V-HPO and HRP. The obtained kinetic parameters (Vmax, Kcat) were also compared with peroxidase and haloperoxidase enzymes making it a promising mimic of peroxidase catalyst. Also, the catalytic activity has been studied towards the oxidation of 1-phenylethanol in presence of H2O2 as an oxidant. Various parameters such as amount of catalyst and oxidant, reaction time, reaction temperature and solvent have been taken into consideration to get maximum oxidative products of 1-phenylethanol.

Keywords: oxovanadium(IV)/dioxidovanadium(V) complexes, NMR spectroscopy, Crystal structure, peroxidase mimic activity towards oxidation of pyrogallol, Oxidation of 1-phenylethanol

Procedia PDF Downloads 317
93 Spectrophotometric Detection of Histidine Using Enzyme Reaction and Examination of Reaction Conditions

Authors: Akimitsu Kugimiya, Kouhei Iwato, Toru Saito, Jiro Kohda, Yasuhisa Nakano, Yu Takano

Abstract:

The measurement of amino acid content is reported to be useful for the diagnosis of several types of diseases, including lung cancer, gastric cancer, colorectal cancer, breast cancer, prostate cancer, and diabetes. The conventional detection methods for amino acid are high-performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS), but they have several drawbacks as the equipment is cumbersome and the techniques are costly in terms of time and costs. In contrast, biosensors and biosensing methods provide more rapid and facile detection strategies that use simple equipment. The authors have reported a novel approach for the detection of each amino acid that involved the use of aminoacyl-tRNA synthetase (aaRS) as a molecular recognition element because aaRS is expected to a selective binding ability for corresponding amino acid. The consecutive enzymatic reactions used in this study are as follows: aaRS binds to its cognate amino acid and releases inorganic pyrophosphate. Hydrogen peroxide (H₂O₂) was produced by the enzyme reactions of inorganic pyrophosphatase and pyruvate oxidase. The Trinder’s reagent was added into the reaction mixture, and the absorbance change at 556 nm was measured using a microplate reader. In this study, an amino acid-sensing method using histidyl-tRNA synthetase (HisRS; histidine-specific aaRS) as molecular recognition element in combination with the Trinder’s reagent spectrophotometric method was developed. The quantitative performance and selectivity of the method were evaluated, and the optimal enzyme reaction and detection conditions were determined. The authors developed a simple and rapid method for detecting histidine with a combination of enzymatic reaction and spectrophotometric detection. In this study, HisRS was used to detect histidine, and the reaction and detection conditions were optimized for quantitation of these amino acids in the ranges of 1–100 µM histidine. The detection limits are sufficient to analyze these amino acids in biological fluids. This work was partly supported by Hiroshima City University Grant for Special Academic Research (General Studies).

Keywords: amino acid, aminoacyl-tRNA synthetase, biosensing, enzyme reaction

Procedia PDF Downloads 257
92 Curcumin-Loaded Pickering Emulsion Stabilized by pH-Induced Self-Aggregated Chitosan Particles for Encapsulating Bioactive Compounds for Food, Flavor/Fragrance, Cosmetics, and Medicine

Authors: Rizwan Ahmed Bhutto, Noor ul ain Hira Bhutto, Mingwei Wang, Shahid Iqbal, Jiang Yi

Abstract:

Curcumin, a natural polyphenolic compound, boasts numerous health benefits; however, its industrial applications are hindered by instabilities and poor solubility. Encapsulating curcumin in Pickering emulsion presents a promising strategy to enhance its bioavailability. Yet, the development of an efficient and straightforward method to fabricate a natural emulsifier for Pickering emulsion poses a significant challenge. Chitosan has garnered attention due to its non-toxicity and excellent emulsifying properties. This study aimed to prepare four distinct types of self-aggregated chitosan particles using a pH-responsive self-assembling approach. The properties of the aggregated particles were adjusted by pH, degree of deacetylation (DDA), and molecular weight (MW), thereby controlling surface charge, size (ranging from nano to micro and floc), and contact angle. Pickering emulsions were then formulated using these various aggregated particles. As MW and pH increased and DDA decreased, the networked structures of the aggregated particles formed, resulting in highly elastic gels that were more resistant to the breakdown of Pickering emulsion at ambient temperature. With elevated temperatures, the kinetic energy of the aggregated particles increased, disrupting hydrogen bonds and potentially transforming the systems from fluids to gels. The Pickering emulsion based on aggregated particles served as a carrier for curcumin encapsulation. It was observed that DDA and MW played crucial roles in regulating drug loading, encapsulation efficiency, and release profile. This research sheds light on selecting suitable chitosan for controlling the release of bioactive compounds in Pickering emulsions, considering factors such as adjustable rheological properties, microstructure, and macrostructure. Furthermore, this study introduces an environmentally friendly and cost-effective synthesis of pH-responsive aggregate particles without the need for high-pressure homogenizers. It underscores the potential of aggregate particles with various MWs and DDAs for encapsulating other bioactive compounds, offering valuable applications in industries including food, flavor/fragrance, cosmetics, and medicine.

Keywords: chitosan, molecular weight, rheological properties, curcumin encapsulation

Procedia PDF Downloads 28
91 Evaluation of Antioxidant Activity and Total Phenolic Content of Lens Esculenta Moench, Seeds

Authors: Vivek Kumar Gupta, Kripi Vohra, Monika Gupta

Abstract:

Pulses have been a vital ingredient of the balanced human diet in India. Lentil (Lens culinaris Medikus or Lens esculenta Moench.) is a common legume known since biblical times. Lentil seeds, with or without hulls, are cooked as dhal and this has been the main dish for millennia in the South Asian region. Oxidative stress can damage lipids, proteins, enzymes, carbohydrates and DNA in cells and tissues, resulting in membrane damage, fragmentation or random cross linking of molecules like DNA, enzymes and structural proteins and even lead to cell death induced by DNA fragmentation and lipid peroxidation. These consequences of oxidative stress construct the molecular basis in the development of cancer, neurodegenerative disorders, cardiovascular diseases, diabetes and autoimmune. The aim of the present work is to assess the antioxidant potential of the peteroleum ether, acetone, methanol and water extract of the Lens esculenta seeds. In vitro antioxidant assessment of the extracts was carried out using 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging activity, hydroxyl radical scavenging activity, reducing power assay. The quantitative estimation of total phenolic content, total flavonoid content in extracts and in plant material, total saponin content, total alkaloid content, crude fibre content, total volatile content, fat content and mucilage content in drug material was also carried out. Though all the extracts exhibited dose dependent reducing power activity the acetone extract was found to possess significant hydrogen donating ability in DPPH (45.83%-93.13%) and hydroxyl radical scavenging system (28.7%-46.41%) than the peteroleum ether, methanol and water extracts. Total phenolic content in the acetone and methanol extract was found to be 608 and 188 mg gallic acid equivalent of phenol/g of sample respectively. Total flavonoid content of acetone and methanol extract was found to be 128 and 30.6 mg quercetin equivalent/g of sample respectively. It is evident that acetone extract of Lentil seeds possess high levels of polyphenolics and flavonoids that could be utilized as antioxidants and neutraceuticals.

Keywords: antioxidant, flavanoids, Lens esculenta, polyphenols

Procedia PDF Downloads 454
90 Modulating Photoelectrochemical Water-Splitting Activity by Charge-Storage Capacity of Electrocatalysts

Authors: Yawen Dai, Ping Cheng, Jian Ru Gong

Abstract:

Photoelctrochemical (PEC) water splitting using semiconductors (SCs) provides a convenient way to convert sustainable but intermittent solar energy into clean hydrogen energy, and it has been regarded as one of most promising technology to solve the energy crisis and environmental pollution in modern society. However, the record energy conversion efficiency of a PEC cell (~3%) is still far lower than the commercialization requirement (~10%). The sluggish kinetics of oxygen evolution reaction (OER) half reaction on photoanodes is a significant limiting factor of the PEC device efficiency, and electrocatalysts (ECs) are always deposited on SCs to accelerate the hole injection for OER. However, an active EC cannot guarantee enhanced PEC performance, since the newly emerged SC-EC interface complicates the interfacial charge behavior. Herein, α-Fe2O3 photoanodes coated with Co3O4 and CoO ECs are taken as the model system to glean fundamental understanding on the EC-dependent interfacial charge behavior. Intensity modulated photocurrent spectroscopy and electrochemical impedance spectroscopy were used to investigate the competition between interfacial charge transfer and recombination, which was found to be dominated by the charge storage capacities of ECs. The combined results indicate that both ECs can store holes and increase the hole density on photoanode surface. It is like a double-edged sword that benefit the multi-hole participated OER, as well as aggravate the SC-EC interfacial charge recombination due to the Coulomb attraction, thus leading to a nonmonotonic PEC performance variation trend with the increasing surface hole density. Co3O4 has low hole storage capacity which brings limited interfacial charge recombination, and thus the increased surface holes can be efficiently utilized for OER to generate enhanced photocurrent. In contrast, CoO has overlarge hole storage capacity that causes severe interfacial charge recombination, which hinders hole transfer to electrolyte for OER. Therefore, the PEC performance of α-Fe2O3 is improved by Co3O4 but decreased by CoO despite the similar electrocatalytic activity of the two ECs. First-principle calculation was conducted to further reveal how the charge storage capacity depends on the EC’s intrinsic property, demonstrating that the larger hole storage capacity of CoO than that of Co3O4 is determined by their Co valence states and original Fermi levels. This study raises up a new strategy to manipulate interfacial charge behavior and the resultant PEC performance by the charge storage capacity of ECs, providing insightful guidance for the interface design in PEC devices.

Keywords: charge storage capacity, electrocatalyst, interfacial charge behavior, photoelectrochemistry, water-splitting

Procedia PDF Downloads 108
89 Multi-Analyte Indium Gallium Zinc Oxide-Based Dielectric Electrolyte-Insulator-Semiconductor Sensing Membranes

Authors: Chyuan Haur Kao, Hsiang Chen, Yu Sheng Tsai, Chen Hao Hung, Yu Shan Lee

Abstract:

Dielectric electrolyte-insulator-semiconductor sensing membranes-based biosensors have been intensively investigated because of their simple fabrication, low cost, and fast response. However, to enhance their sensing performance, it is worthwhile to explore alternative materials, distinct processes, and novel treatments. An ISFET can be viewed as a variation of MOSFET with the dielectric oxide layer as the sensing membrane. Then, modulation on the work function of the gate caused by electrolytes in various ion concentrations could be used to calculate the ion concentrations. Recently, owing to the advancement of CMOS technology, some high dielectric materials substrates as the sensing membranes of electrolyte-insulator-semiconductor (EIS) structures. The EIS with a stacked-layer of SiO₂ layer between the sensing membrane and the silicon substrate exhibited a high pH sensitivity and good long-term stability. IGZO is a wide-bandgap (~3.15eV) semiconductor of the III-VI semiconductor group with several preferable properties, including good transparency, high electron mobility, wide band gap, and comparable with CMOS technology. IGZO was sputtered by reactive radio frequency (RF) on a p-type silicon wafer with various gas ratios of Ar:O₂ and was treated with rapid thermal annealing in O₂ ambient. The sensing performance, including sensitivity, hysteresis, and drift rate was measured and XRD, XPS, and AFM analyses were also used to study the material properties of the IGZO membrane. Moreover, IGZO was used as a sensing membrane in dielectric EIS bio-sensor structures. In addition to traditional pH sensing capability, detection for concentrations of Na+, K+, urea, glucose, and creatinine was performed. Moreover, post rapid thermal annealing (RTA) treatment was confirmed to improve the material properties and enhance the multi-analyte sensing capability for various ions or chemicals in solutions. In this study, the IGZO sensing membrane with annealing in O₂ ambient exhibited a higher sensitivity, higher linearity, higher H+ selectivity, lower hysteresis voltage and lower drift rate. Results indicate that the IGZO dielectric sensing membrane on the EIS structure is promising for future bio-medical device applications.

Keywords: dielectric sensing membrane, IGZO, hydrogen ion, plasma, rapid thermal annealing

Procedia PDF Downloads 228
88 Modification of Carbon-Based Gas Sensors for Boosting Selectivity

Authors: D. Zhao, Y. Wang, G. Chen

Abstract:

Gas sensors that utilize carbonaceous materials as sensing media offer numerous advantages, making them the preferred choice for constructing chemical sensors over those using other sensing materials. Carbonaceous materials, particularly nano-sized ones like carbon nanotubes (CNTs), provide these sensors with high sensitivity. Additionally, carbon-based sensors possess other advantageous properties that enhance their performance, including high stability, low power consumption for operation, and cost-effectiveness in their construction. These properties make carbon-based sensors ideal for a wide range of applications, especially in miniaturized devices created through MEMS or NEMS technologies. To capitalize on these properties, a group of chemoresistance-type carbon-based gas sensors was developed and tested against various volatile organic compounds (VOCs) and volatile inorganic compounds (VICs). The results demonstrated exceptional sensitivity to both VOCs and VICs, along with the sensor’s long-term stability. However, this broad sensitivity also led to poor selectivity towards specific gases. This project aims at addressing the selectivity issue by modifying the carbon-based sensing materials and enhancing the sensor's specificity to individual gas. Multiple groups of sensors were manufactured and modified using proprietary techniques. To assess their performance, we conducted experiments on representative sensors from each group to detect a range of VOCs and VICs. The VOCs tested included acetone, dimethyl ether, ethanol, formaldehyde, methane, and propane. The VICs comprised carbon monoxide (CO), carbon dioxide (CO2), hydrogen (H2), nitric oxide (NO), and nitrogen dioxide (NO2). The concentrations of the sample gases were all set at 50 parts per million (ppm). Nitrogen (N2) was used as the carrier gas throughout the experiments. The results of the gas sensing experiments are as follows. In Group 1, the sensors exhibited selectivity toward CO2, acetone, NO, and NO2, with NO2 showing the highest response. Group 2 primarily responded to NO2. Group 3 displayed responses to nitrogen oxides, i.e., both NO and NO2, with NO2 slightly surpassing NO in sensitivity. Group 4 demonstrated the highest sensitivity among all the groups toward NO and NO2, with NO2 being more sensitive than NO. In conclusion, by incorporating several modifications using carbon nanotubes (CNTs), sensors can be designed to respond well to NOx gases with great selectivity and without interference from other gases. Because the response levels to NO and NO2 from each group are different, the individual concentration of NO and NO2 can be deduced.

Keywords: gas sensors, carbon, CNT, MEMS/NEMS, VOC, VIC, high selectivity, modification of sensing materials

Procedia PDF Downloads 96
87 Molecular Dynamics Simulations on Richtmyer-Meshkov Instability of Li-H2 Interface at Ultra High-Speed Shock Loads

Authors: Weirong Wang, Shenghong Huang, Xisheng Luo, Zhenyu Li

Abstract:

Material mixing process and related dynamic issues at extreme compressing conditions have gained more and more concerns in last ten years because of the engineering appealings in inertial confinement fusion (ICF) and hypervelocity aircraft developments. However, there lacks models and methods that can handle fully coupled turbulent material mixing and complex fluid evolution under conditions of high energy density regime up to now. In aspects of macro hydrodynamics, three numerical methods such as direct numerical simulation (DNS), large eddy simulation (LES) and Reynolds-averaged Navier–Stokes equations (RANS) has obtained relative acceptable consensus under the conditions of low energy density regime. However, under the conditions of high energy density regime, they can not be applied directly due to occurrence of dissociation, ionization, dramatic change of equation of state, thermodynamic properties etc., which may make the governing equations invalid in some coupled situations. However, in view of micro/meso scale regime, the methods based on Molecular Dynamics (MD) as well as Monte Carlo (MC) model are proved to be promising and effective ways to investigate such issues. In this study, both classical MD and first-principle based electron force field MD (eFF-MD) methods are applied to investigate Richtmyer-Meshkov Instability of metal Lithium and gas Hydrogen (Li-H2) interface mixing at different shock loading speed ranging from 3 km/s to 30 km/s. It is found that: 1) Classical MD method based on predefined potential functions has some limits in application to extreme conditions, since it cannot simulate the ionization process and its potential functions are not suitable to all conditions, while the eFF-MD method can correctly simulate the ionization process due to its ‘ab initio’ feature; 2) Due to computational cost, the eFF-MD results are also influenced by simulation domain dimensions, boundary conditions and relaxation time choices, etc., in computations. Series of tests have been conducted to determine the optimized parameters. 3) Ionization induced by strong shock compression has important effects on Li-H2 interface evolutions of RMI, indicating a new micromechanism of RMI under conditions of high energy density regime.

Keywords: first-principle, ionization, molecular dynamics, material mixture, Richtmyer-Meshkov instability

Procedia PDF Downloads 206
86 Understanding the Accumulation of Microplastics in Riverbeds and Soils

Authors: Gopala Krishna Darbha

Abstract:

Microplastics (MPs) are secondary fragments of large-sized plastic debris released into the environment and fall in the size range of less than 5 mm. Though reports indicate the abundance of MPs in both riverine and soil environments, their fate is still not completely understood due to the complexity of natural conditions. Mineral particles are ubiquitous in the rivers and may play a vital role in accumulating MPs to the riverbed, thus affecting the benthic life and posing a threat to the river's health. Apart, the chemistry (pH, ionic strength, humics) at the interface can be very prominent. The MPs can also act as potential vectors to transport other contaminants in the environment causing secondary water pollution. The present study focuses on understanding the interaction of MPs with weathering sequence of minerals (feldspar, kaolinite and gibbsite) under batch mode under relevant environmental and natural conditions. Simultaneously, we performed stability studies and transport (column) experiments to understand the mobility of MPs under varying soil solutions (SS) chemistry and the influence of contaminants (CuO nanoparticles). Results showed that the charge and morphology of the gibbsite played an significant role in sorption of NPs (108.1 mg/g) compared to feldspar (7.7 mg/g) and kaolinite (11.9 mg/g). The Fourier transform infrared spectroscopy data supports the complexation of NPs with gibbsite particles via hydrogen bonding. In case of feldspar and kaolinite, a weak interaction with NPs was observed which can be due to electrostatic repulsions and low surface area to volume ration of the mineral particles. The study highlights the enhanced mobility in presence of feldspar and kaolinite while gibbsite rich zones can cause entrapment of NPs accumulating in the riverbeds. In the case of soils, in the absence of MPs, a very high aggregation of CuO NPs observed in SS extracted from black, lateritic, and red soils, which can be correlated with ionic strength (IS) and type of ionic species. The sedimentation rate (Ksed(1/h)) for CuO NPs was >0.5 h−1 in the case of these SS. Interestingly, the stability and sedimentation behavior of CuO NPs varied significantly in the presence of MPs. The Ksed for CuO NPs decreased to half and found <0.25 h−1 in the presence of MPs in all SS. C/C0 values in breakthrough curves increased drastically (black < alluvial < laterite < red) in the presence of MPs. Results suggest that the release of MPs in the terrestrial ecosystem is a potential threat leading to increased mobility of metal nanoparticles in the environment.

Keywords: microplastics, minerals, sorption, soils

Procedia PDF Downloads 64
85 Experimental Analysis of Supersonic Combustion Induced by Shock Wave at the Combustion Chamber of the 14-X Scramjet Model

Authors: Ronaldo de Lima Cardoso, Thiago V. C. Marcos, Felipe J. da Costa, Antonio C. da Oliveira, Paulo G. P. Toro

Abstract:

The 14-X is a strategic project of the Brazil Air Force Command to develop a technological demonstrator of a hypersonic air-breathing propulsion system based on supersonic combustion programmed to flight in the Earth's atmosphere at 30 km of altitude and Mach number 10. The 14-X is under development at the Laboratory of Aerothermodynamics and Hypersonic Prof. Henry T. Nagamatsu of the Institute of Advanced Studies. The program began in 2007 and was planned to have three stages: development of the wave rider configuration, development of the scramjet configuration and finally the ground tests in the hypersonic shock tunnel T3. The install configuration of the model based in the scramjet of the 14-X in the test section of the hypersonic shock tunnel was made to proportionate and test the flight conditions in the inlet of the combustion chamber. Experimental studies with hypersonic shock tunnel require special techniques to data acquisition. To measure the pressure along the experimental model geometry tested we used 30 pressure transducers model 122A22 of PCB®. The piezoeletronic crystals of a piezoelectric transducer pressure when to suffer pressure variation produces electric current (PCB® PIEZOTRONIC, 2016). The reading of the signal of the pressure transducers was made by oscilloscope. After the studies had begun we observed that the pressure inside in the combustion chamber was lower than expected. One solution to improve the pressure inside the combustion chamber was install an obstacle to providing high temperature and pressure. To confirm if the combustion occurs was selected the spectroscopy emission technique. The region analyzed for the spectroscopy emission system is the edge of the obstacle installed inside the combustion chamber. The emission spectroscopy technique was used to observe the emission of the OH*, confirming or not the combustion of the mixture between atmospheric air in supersonic speed and the hydrogen fuel inside of the combustion chamber of the model. This paper shows the results of experimental studies of the supersonic combustion induced by shock wave performed at the Hypersonic Shock Tunnel T3 using the scramjet 14-X model. Also, this paper provides important data about the combustion studies using the model based on the engine of 14-X (second stage of the 14-X Program). Informing the possibility of necessaries corrections to be made in the next stages of the program or in other models to experimental study.

Keywords: 14-X, experimental study, ground tests, scramjet, supersonic combustion

Procedia PDF Downloads 355
84 Atomic Layer Deposition of Metal Oxide Inverse Opals: A Tailorable Platform for Unprecedented Photocatalytic Performance

Authors: Hamsasew Hankebo Lemago, Dóra Hessz, Zoltán Erdélyi, Imre Miklós Szilágyi

Abstract:

Metal oxide inverse opals are a unique class of photocatalysts with a hierarchical structure that mimics the natural opal gemstone. They are composed of a network of interconnected pores, which provides a large surface area and efficient pathways for the transport of light and reactants. Atomic layer deposition (ALD) is a versatile technique for the synthesis of high-precision metal oxide thin films, including inverse opals. ALD allows for precise control over the thickness, composition, and morphology of the synthesized films, making it an ideal technique for the fabrication of photocatalysts with tailored properties. In this study, we report the synthesis of TiO2, ZnO, and Al2O3 inverse opal photocatalysts using thermal or plasma-enhanced ALD. The synthesized photocatalysts were characterized using a variety of techniques, including scanning electron microscopy (SEM)-energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Raman spectroscopy, photoluminescence (PL), ellipsometry, and UV-visible spectroscopy. The results showed that the ALD-synthesized metal oxide inverse opals had a highly ordered structure and a tunable pore size. The PL spectroscopy results showed low recombination rates of photogenerated electron-hole pairs, while the ellipsometry and UV-visible spectroscopy results showed tunable optical properties and band gap energies. The photocatalytic activity of the samples was evaluated by the degradation of methylene blue under visible light irradiation. The results showed that the ALD-synthesized metal oxide inverse opals exhibited high photocatalytic activity, even under visible light irradiation. The composites photocatalysts showed even higher activity than the individual metal oxide inverse opals. The enhanced photocatalytic activity of the composites can be attributed to the synergistic effect between the different metal oxides. For example, Al2O3 can act as a charge carrier scavenger, which can reduce the recombination of photogenerated electron-hole pairs. The ALD-synthesized metal oxide inverse opals and their composites are promising photocatalysts for a variety of applications, such as wastewater treatment, air purification, and energy production. For example, they can be used to remove organic pollutants from wastewater, decompose harmful gases in the air, and produce hydrogen fuel from water.

Keywords: ALD, metal oxide inverse opals, composites, photocatalysis

Procedia PDF Downloads 54
83 Study of Bis(Trifluoromethylsulfonyl)Imide Based Ionic Liquids by Gas Chromatography

Authors: F. Mutelet, L. Cesari

Abstract:

Development of safer and environmentally friendly processes and products is needed to achieve sustainable production and consumption patterns. Ionic liquids, which are of great interest to the chemical and related industries because of their attractive properties as solvents, should be considered. Ionic liquids are comprised of an asymmetric, bulky organic cation and a weakly coordinating organic or inorganic anion. A large number of possible combinations allows for the ability to ‘fine tune’ the solvent properties for a specific purpose. Physical and chemical properties of ionic liquids are not only influenced by the nature of the cation and the nature of cation substituents but also by the polarity and the size of the anion. These features infer to ionic liquids numerous applications, in organic synthesis, separation processes, and electrochemistry. Separation processes required a good knowledge of the behavior of organic compounds with ionic liquids. Gas chromatography is a useful tool to estimate the interactions between organic compounds and ionic liquids. Indeed, retention data may be used to determine infinite dilution thermodynamic properties of volatile organic compounds in ionic liquids. Among others, the activity coefficient at infinite dilution is a direct measure of solute-ionic liquid interaction. In this work, infinite dilution thermodynamic properties of volatile organic compounds in specific bis(trifluoromethylsulfonyl)imide based ionic liquids measured by gas chromatography is presented. It was found that apolar compounds are not miscible in this family of ionic liquids. As expected, the solubility of organic compounds is related to their polarity and hydrogen-bond. Through activity coefficients data, the performance of these ionic liquids was evaluated for different separation processes (benzene/heptane, thiophene/heptane and pyridine/heptane). Results indicate that ionic liquids may be used for the extraction of polar compounds (aromatics, alcohols, pyridine, thiophene, tetrahydrofuran) from aliphatic media. For example, 1-benzylpyridinium bis(trifluoromethylsulfonyl) imide and 1-cyclohexylmethyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide are more efficient for the extraction of aromatics or pyridine from aliphatics than classical solvents. Ionic liquids with long alkyl chain length present important capacity values but their selectivity values are low. In conclusion, we have demonstrated that specific bis(trifluoromethylsulfonyl)imide based ILs containing polar chain grafted on the cation (for example benzyl or cyclohexyl) increases considerably their performance in separation processes.

Keywords: interaction organic solvent-ionic liquid, gas chromatography, solvation model, COSMO-RS

Procedia PDF Downloads 79
82 Functionalized Spherical Aluminosilicates in Biomedically Grade Composites

Authors: Damian Stanislaw Nakonieczny, Grazyna Simha Martynkova, Marianna Hundakova, G. Kratosová, Karla Cech Barabaszova

Abstract:

The main aim of the research was to functionalize the surface of spherical aluminum silicates in the form of so-called cenospheres. Cenospheres are light ceramic particles with a density between 0.45 and 0.85 kgm-3 hat can be obtained as a result of separation from fly ash from coal combustion. However, their occurrence is limited to about 1% by weight of dry ash mainly derived from anthracite. Hence they are very rare and desirable material. Cenospheres are characterized by complete chemical inertness. Mohs hardness in range of 6 and completely smooth surface. Main idea was to prepare the surface by chemical etching, among others hydrofluoric acid (HF) and hydrogen peroxide, caro acid, silanization using (3-aminopropyl) triethoxysilane (APTES) and tetraethyl orthosilicate (TEOS) to obtain the maximum development and functionalization of the surface to improve chemical and mechanical connection with biomedically used polymers, i.e., polyacrylic methacrylate (PMMA) and polyetheretherketone (PEEK). These polymers are used medically mainly as a material for fixed and removable dental prostheses and PEEK spinal implants. The problem with their use is the decrease in mechanical properties over time and bacterial infections fungal during implantation and use of dentures. Hence, the use of a ceramic filler that will significantly improve the mechanical properties, improve the fluidity of the polymer during shape formation, and in the future, will be able to support bacteriostatic substances such as silver and zinc ions seem promising. In order to evaluate our laboratory work, several instrumental studies were performed: chemical composition and morphology with scanning electron microscopy with Energy-Dispersive X-Ray Probe (SEM/EDX), determination of characteristic functional groups of Fourier Transform Infrared Spectroscopy (FTIR), phase composition of X-ray Diffraction (XRD) and thermal analysis of Thermo Gravimetric Analysis/differentia thermal analysis (TGA/DTA), as well as assessment of isotherm of adsorption with Brunauer-Emmett-Teller (BET) surface development. The surface was evaluated for the future application of additional bacteria and static fungus layers. Based on the experimental work, it was found that orated methods can be suitable for the functionalization of the surface of cenosphere ceramics, and in the future it can be suitable as a bacteriostatic filler for biomedical polymers, i.e., PEEK or PMMA.

Keywords: bioceramics, composites, functionalization, surface development

Procedia PDF Downloads 100
81 Valorization of Mineralogical Byproduct TiO₂ Using Photocatalytic Degradation of Organo-Sulfur Industrial Effluent

Authors: Harish Kuruva, Vedasri Bai Khavala, Tiju Thomas, K. Murugan, B. S. Murty

Abstract:

Industries are growing day to day to increase the economy of the country. The biggest problem with industries is wastewater treatment. Releasing these wastewater directly into the river is more harmful to human life and a threat to aquatic life. These industrial effluents contain many dissolved solids, organic/inorganic compounds, salts, toxic metals, etc. Phenols, pesticides, dioxins, herbicides, pharmaceuticals, and textile dyes were the types of industrial effluents and more challenging to degrade eco-friendly. So many advanced techniques like electrochemical, oxidation process, and valorization have been applied for industrial wastewater treatment, but these are not cost-effective. Industrial effluent degradation is complicated compared to commercially available pollutants (dyes) like methylene blue, methylene orange, rhodamine B, etc. TiO₂ is one of the widely used photocatalysts which can degrade organic compounds using solar light and moisture available in the environment (organic compounds converted to CO₂ and H₂O). TiO₂ is widely studied in photocatalysis because of its low cost, non-toxic, high availability, and chemically and physically stable in the atmosphere. This study mainly focused on valorizing the mineralogical product TiO₂ (IREL, India). This mineralogical graded TiO₂ was characterized and compared with its structural and photocatalytic properties (industrial effluent degradation) with the commercially available Degussa P-25 TiO₂. It was testified that this mineralogical TiO₂ has the best photocatalytic properties (particle shape - spherical, size - 30±5 nm, surface area - 98.19 m²/g, bandgap - 3.2 eV, phase - 95% anatase, and 5% rutile). The industrial effluent was characterized by TDS (total dissolved solids), ICP-OES (inductively coupled plasma – optical emission spectroscopy), CHNS (Carbon, Hydrogen, Nitrogen, and sulfur) analyzer, and FT-IR (fourier-transform infrared spectroscopy). It was observed that it contains high sulfur (S=11.37±0.15%), organic compounds (C=4±0.1%, H=70.25±0.1%, N=10±0.1%), heavy metals, and other dissolved solids (60 g/L). However, the organo-sulfur industrial effluent was degraded by photocatalysis with the industrial mineralogical product TiO₂. In this study, the industrial effluent pH value (2.5 to 10), catalyst concentration (50 to 150 mg) were varied, and effluent concentration (0.5 Abs) and light exposure time (2 h) were maintained constant. The best degradation is about 80% of industrial effluent was achieved at pH 5 with a concentration of 150 mg - TiO₂. The FT-IR results and CHNS analyzer confirmed that the sulfur and organic compounds were degraded.

Keywords: wastewater treatment, industrial mineralogical product TiO₂, photocatalysis, organo-sulfur industrial effluent

Procedia PDF Downloads 88
80 Deregulation of Thorium for Room Temperature Superconductivity

Authors: Dong Zhao

Abstract:

Abstract—Extensive research on obtaining applicable room temperature superconductors meets the major barrier, and the record Tc of 135 K achieved via cuprate has been idling for decades. Even though, the accomplishment of higher Tc than the cuprate was made through pressurizing certain compounds composed of light elements, such as for the LaH10 and for the metallic hydrogen. Room temperature superconductivity under ambient pressure is still the preferred approach and is believed to be the ultimate solution for many applications. While racing to find the breakthrough method to achieve this room temperature Tc milestone in superconducting research, a report stated a discovery of a possible high-temperature superconductor, i.e., the thorium sulfide ThS. Apparently, ThS’s Tc can be at room temperature or even higher. This is because ThS revealed an unusual property of the ‘coexistence of high electrical conductivity and diamagnetism’. Noticed that this property of coexistence of high electrical conductivity and diamagnetism is in line with superconductors, meaning ThS is also at its superconducting state. Surprisingly, ThS owns the property of superconductivity at least at room temperature and under atmosphere pressure. Further study of the ThS’s electrical and magnetic properties in comparison with thorium di-iodide ThI2 concluded its molecular configuration as [Th4+(e-)2]S. This means the ThS’s cation is composed of a [Th4+(e-)2]2+ cation core. It is noticed that this cation core is built by an oxidation state +4 of thorium atom plus an electron pair on this thorium atom that resulted in an oxidation state +2 of this [Th4+(e-)2]2+ cation core. This special construction of [Th4+(e-)2]2+ cation core may lead to the ThS’s room temperature superconductivity because of this characteristic electron lone pair residing on the thorium atom. Since the study of thorium chemistry was carried out in the period of before 1970s. the exploration about ThS’s possible room temperature superconductivity would require resynthesizing ThS. This re-preparation of ThS will provide the sample and enable professionals to verify the ThS’s room temperature superconductivity. Regrettably, the current regulation prevents almost everyone from getting access to thorium metal or thorium compounds due to the radioactive nature of thorium-232 (Th-232), even though the radioactive level of Th-232 is extremely low with its half-life of 14.05 billion years. Consequently, further confirmation of ThS’s high-temperature superconductivity through experiments will be impossible unless the use of corresponding thorium metal and related thorium compounds can be deregulated. This deregulation would allow researchers to obtain the necessary starting materials for the study of ThS. Hopefully, the confirmation of ThS’s room temperature superconductivity can not only establish a method to obtain applicable superconductors but also to pave the way for fully understanding the mechanism of superconductivity.

Keywords: co-existence of high electrical conductivity and diamagnetism, electron pairing and electron lone pair, room temperature superconductivity, the special molecular configuration of thorium sulfide ThS

Procedia PDF Downloads 24
79 Computational Characterization of Electronic Charge Transfer in Interfacial Phospholipid-Water Layers

Authors: Samira Baghbanbari, A. B. P. Lever, Payam S. Shabestari, Donald Weaver

Abstract:

Existing signal transmission models, although undoubtedly useful, have proven insufficient to explain the full complexity of information transfer within the central nervous system. The development of transformative models will necessitate a more comprehensive understanding of neuronal lipid membrane electrophysiology. Pursuant to this goal, the role of highly organized interfacial phospholipid-water layers emerges as a promising case study. A series of phospholipids in neural-glial gap junction interfaces as well as cholesterol molecules have been computationally modelled using high-performance density functional theory (DFT) calculations. Subsequent 'charge decomposition analysis' calculations have revealed a net transfer of charge from phospholipid orbitals through the organized interfacial water layer before ultimately finding its way to cholesterol acceptor molecules. The specific pathway of charge transfer from phospholipid via water layers towards cholesterol has been mapped in detail. Cholesterol is an essential membrane component that is overrepresented in neuronal membranes as compared to other mammalian cells; given this relative abundance, its apparent role as an electronic acceptor may prove to be a relevant factor in further signal transmission studies of the central nervous system. The timescales over which this electronic charge transfer occurs have also been evaluated by utilizing a system design that systematically increases the number of water molecules separating lipids and cholesterol. Memory loss through hydrogen-bonded networks in water can occur at femtosecond timescales, whereas existing action potential-based models are limited to micro or nanosecond scales. As such, the development of future models that attempt to explain faster timescale signal transmission in the central nervous system may benefit from our work, which provides additional information regarding fast timescale energy transfer mechanisms occurring through interfacial water. The study possesses a dataset that includes six distinct phospholipids and a collection of cholesterol. Ten optimized geometric characteristics (features) were employed to conduct binary classification through an artificial neural network (ANN), differentiating cholesterol from the various phospholipids. This stems from our understanding that all lipids within the first group function as electronic charge donors, while cholesterol serves as an electronic charge acceptor.

Keywords: charge transfer, signal transmission, phospholipids, water layers, ANN

Procedia PDF Downloads 37
78 Geochemical Study of Natural Bitumen, Condensate and Gas Seeps from Sousse Area, Central Tunisia

Authors: Belhaj Mohamed, M. Saidi, N. Boucherab, N. Ouertani, I. Bouazizi, M. Ben Jrad

Abstract:

Natural hydrocarbon seepage has helped petroleum exploration as a direct indicator of gas and/or oil subsurface accumulations. Surface macro-seeps are generally an indication of a fault in an active Petroleum Seepage System belonging to a Total Petroleum System. This paper describes a case study in which multiple analytical techniques were used to identify and characterize trace petroleum-related hydrocarbons and other volatile organic compounds in groundwater samples collected from Sousse aquifer (Central Tunisia). The analytical techniques used for analyses of water samples included gas chromatography-mass spectrometry (GC-MS), capillary GC with flame-ionization detection, Compund Specific Isotope Analysis, Rock Eval Pyrolysis. The objective of the study was to confirm the presence of gasoline and other petroleum products or other volatile organic pollutants in those samples in order to assess the respective implication of each of the potentially responsible parties to the contamination of the aquifer. In addition, the degree of contamination at different depths in the aquifer was also of interest. The oil and gas seeps have been investigated using biomarker and stable carbon isotope analyses to perform oil-oil and oil-source rock correlations. The seepage gases are characterized by high CH4 content, very low δ13CCH4 values (-71,9 ‰) and high C1/C1–5 ratios (0.95–1.0), light deuterium–hydrogen isotope ratios (-198 ‰) and light δ13CC2 and δ13CCO2 values (-23,8‰ and-23,8‰ respectively) indicating a thermogenic origin with the contribution of the biogenic gas. An organic geochemistry study was carried out on the more ten oil seep samples. This study includes light hydrocarbon and biomarkers analyses (hopanes, steranes, n-alkanes, acyclic isoprenoids, and aromatic steroids) using GC and GC-MS. The studied samples show at least two distinct families, suggesting two different types of crude oil origins: the first oil seeps appears to be highly mature, showing evidence of chemical and/or biological degradation and was derived from a clay-rich source rock deposited in suboxic conditions. It has been sourced mainly by the lower Fahdene (Albian) source rocks. The second oil seeps was derived from a carbonate-rich source rock deposited in anoxic conditions, well correlated with the Bahloul (Cenomanian-Turonian) source rock.

Keywords: biomarkers, oil and gas seeps, organic geochemistry, source rock

Procedia PDF Downloads 418
77 CO₂ Conversion by Low-Temperature Fischer-Tropsch

Authors: Pauline Bredy, Yves Schuurman, David Farrusseng

Abstract:

To fulfill climate objectives, the production of synthetic e-fuels using CO₂ as a raw material appears as part of the solution. In particular, Power-to-Liquid (PtL) concept combines CO₂ with hydrogen supplied from water electrolysis, powered by renewable sources, which is currently gaining interest as it allows the production of sustainable fossil-free liquid fuels. The proposed process discussed here is an upgrading of the well-known Fischer-Tropsch synthesis. The concept deals with two cascade reactions in one pot, with first the conversion of CO₂ into CO via the reverse water gas shift (RWGS) reaction, which is then followed by the Fischer-Tropsch Synthesis (FTS). Instead of using a Fe-based catalyst, which can carry out both reactions, we have chosen the strategy to decouple the two functions (RWGS and FT) on two different catalysts within the same reactor. The FTS shall shift the equilibrium of the RWGS reaction (which alone would be limited to 15-20% of conversion at 250°C) by converting the CO into hydrocarbons. This strategy shall enable optimization of the catalyst pair and thus lower the temperature of the reaction thanks to the equilibrium shift to gain selectivity in the liquid fraction. The challenge lies in maximizing the activity of the RWGS catalyst but also in the ability of the FT catalyst to be highly selective. Methane production is the main concern as the energetic barrier of CH₄ formation is generally lower than that of the RWGS reaction, so the goal will be to minimize methane selectivity. Here we report the study of different combinations of copper-based RWGS catalysts with different cobalt-based FTS catalysts. We investigated their behaviors under mild process conditions by the use of high-throughput experimentation. Our results show that at 250°C and 20 bars, Cobalt catalysts mainly act as methanation catalysts. Indeed, CH₄ selectivity never drops under 80% despite the addition of various protomers (Nb, K, Pt, Cu) on the catalyst and its coupling with active RWGS catalysts. However, we show that the activity of the RWGS catalyst has an impact and can lead to longer hydrocarbons chains selectivities (C₂⁺) of about 10%. We studied the influence of the reduction temperature on the activity and selectivity of the tandem catalyst system. Similar selectivity and conversion were obtained at reduction temperatures between 250-400°C. This leads to the question of the active phase of the cobalt catalysts, which is currently investigated by magnetic measurements and DRIFTS. Thus, in coupling it with a more selective FT catalyst, better results are expected. This was achieved using a cobalt/iron FTS catalyst. The CH₄ selectivity dropped to 62% at 265°C, 20 bars, and a GHSV of 2500ml/h/gcat. We propose that the conditions used for the cobalt catalysts could have generated this methanation because these catalysts are known to have their best performance around 210°C in classical FTS, whereas the iron catalysts are more flexible but are also known to have an RWGS activity.

Keywords: cobalt-copper catalytic systems, CO₂-hydrogenation, Fischer-Tropsch synthesis, hydrocarbons, low-temperature process

Procedia PDF Downloads 35
76 Enhanced Stability of Piezoelectric Crystalline Phase of Poly(Vinylidene Fluoride) (PVDF) and Its Copolymer upon Epitaxial Relationships

Authors: Devi Eka Septiyani Arifin, Jrjeng Ruan

Abstract:

As an approach to manipulate the performance of polymer thin film, epitaxy crystallization within polymer blends of poly(vinylidene fluoride) (PVDF) and its copolymer poly(vinylidene fluoride-trifluoroethylene) P(VDF-TrFE) was studied in this research, which involves the competition between phase separation and crystal growth of constitutive semicrystalline polymers. The unique piezoelectric feature of poly(vinylidene fluoride) crystalline phase is derived from the packing of molecular chains in all-trans conformation, which spatially arranges all the substituted fluorene atoms on one side of the molecular chain and hydrogen atoms on the other side. Therefore, the net dipole moment is induced across the lateral packing of molecular chains. Nevertheless, due to the mutual repulsion among fluorene atoms, this all-trans molecular conformation is not stable, and ready to change above curie temperature, where thermal energy is sufficient to cause segmental rotation. This research attempts to explore whether the epitaxial interactions between piezoelectric crystals and crystal lattice of hexamethylbenzene (HMB) crystalline platelet is able to stabilize this metastable all-trans molecular conformation or not. As an aromatic crystalline compound, the melt of HMB was surprisingly found able to dissolve the poly(vinylidene fluoride), resulting in homogeneous eutectic solution. Thus, after quenching this binary eutectic mixture to room temperature, subsequent heating or annealing processes were designed to explore the involve phase separation and crystallization behavior. The phase transition behaviors were observed in-situ by X-ray diffraction and differential scanning calorimetry (DSC). The molecular packing was observed via transmission electron microscope (TEM) and the principles of electron diffraction were brought to study the internal crystal structure epitaxially developed within thin films. Obtained results clearly indicated the occurrence of heteroepitaxy of PVDF/PVDF-TrFE on HMB crystalline platelet. Both the concentration of poly(vinylidene fluoride) and the mixing ratios of these two constitutive polymers have been adopted as the influential factors for studying the competition between the epitaxial crystallization of PVDF and P(VDF-TrFE) on HMB crystalline. Furthermore, the involved epitaxial relationship is to be deciphered and studied as a potential factor capable of guiding the wide spread of piezoelectric crystalline form.

Keywords: epitaxy, crystallization, crystalline platelet, thin film and mixing ratio

Procedia PDF Downloads 198
75 Application of Nuclear Magnetic Resonance (1H-NMR) in the Analysis of Catalytic Aquathermolysis: Colombian Heavy Oil Case

Authors: Paola Leon, Hugo Garcia, Adan Leon, Samuel Munoz

Abstract:

The enhanced oil recovery by steam injection was considered a process that only generated physical recovery mechanisms. However, there is evidence of the occurrence of a series of chemical reactions, which are called aquathermolysis, which generates hydrogen sulfide, carbon dioxide, methane, and lower molecular weight hydrocarbons. These reactions can be favored by the addition of a catalyst during steam injection; in this way, it is possible to generate the original oil in situ upgrading through the production increase of molecules of lower molecular weight. This additional effect could increase the oil recovery factor and reduce costs in transport and refining stages. Therefore, this research has focused on the experimental evaluation of the catalytic aquathermolysis on a Colombian heavy oil with 12,8°API. The effects of three different catalysts, reaction time, and temperature were evaluated in a batch microreactor. The changes in the Colombian heavy oil were quantified through nuclear magnetic resonance 1H-NMR. The relaxation times interpretation and the absorption intensity allowed to identify the distribution of the functional groups in the base oil and upgraded oils. Additionally, the average number of aliphatic carbons in alkyl chains, the number of substituted rings, and the aromaticity factor were established as average structural parameters in order to simplify the samples' compositional analysis. The first experimental stage proved that each catalyst develops a different reaction mechanism. The aromaticity factor has an increasing order of the salts used: Mo > Fe > Ni. However, the upgraded oil obtained with iron naphthenate tends to form a higher content of mono-aromatic and lower content of poly-aromatic compounds. On the other hand, the results obtained from the second phase of experiments suggest that the upgraded oils have a smaller difference in the length of alkyl chains in the range of 240º to 270°C. This parameter has lower values at 300°C, which indicates that the alkylation or cleavage reactions of alkyl chains govern at higher reaction temperatures. The presence of condensation reactions is supported by the behavior of the aromaticity factor and the bridge carbons production between aromatic rings (RCH₂). Finally, it is observed that there is a greater dispersion in the aliphatic hydrogens, which indicates that the alkyl chains have a greater reactivity compared to the aromatic structures.

Keywords: catalyst, upgrading, aquathermolysis, steam

Procedia PDF Downloads 83
74 Micromechanism of Ionization Effects on Metal/Gas Mixing Instabilty at Extreme Shock Compressing Conditions

Authors: Shenghong Huang, Weirong Wang, Xisheng Luo, Xinzhu Li, Xinwen Zhao

Abstract:

Understanding of material mixing induced by Richtmyer-Meshkov instability (RMI) at extreme shock compressing conditions (high energy density environment: P >> 100GPa, T >> 10000k) is of great significance in engineering and science, such as inertial confinement fusion(ICF), supersonic combustion, etc. Turbulent mixing induced by RMI is a kind of complex fluid dynamics, which is closely related with hydrodynamic conditions, thermodynamic states, material physical properties such as compressibility, strength, surface tension and viscosity, etc. as well as initial perturbation on interface. For phenomena in ordinary thermodynamic conditions (low energy density environment), many investigations have been conducted and many progresses have been reported, while for mixing in extreme thermodynamic conditions, the evolution may be very different due to ionization as well as large difference of material physical properties, which is full of scientific problems and academic interests. In this investigation, the first principle based molecular dynamic method is applied to study metal Lithium and gas Hydrogen (Li-H2) interface mixing in micro/meso scale regime at different shock compressing loading speed ranging from 3 km/s to 30 km/s. It's found that, 1) Different from low-speed shock compressing cases, in high-speed shock compresing (>9km/s) cases, a strong acceleration of metal/gas interface after strong shock compression is observed numerically, leading to a strong phase inverse and spike growing with a relative larger linear rate. And more specially, the spike growing rate is observed to be increased with shock loading speed, presenting large discrepancy with available empirical RMI models; 2) Ionization is happened in shock font zone at high-speed loading cases(>9km/s). An additional local electric field induced by the inhomogeneous diffusion of electrons and nuclei after shock font is observed to occur near the metal/gas interface, leading to a large acceleration of nuclei in this zone; 3) In conclusion, the work of additional electric field contributes to a mechanism of RMI in micro/meso scale regime at extreme shock compressing conditions, i.e., a Rayleigh-Taylor instability(RTI) is induced by additional electric field during RMI mixing process and thus a larger linear growing rate of interface spike.

Keywords: ionization, micro/meso scale, material mixing, shock

Procedia PDF Downloads 202
73 Vitex agnus-castus Anti-Inflammatory, Antioxidants Characters and Anti-Tumor Effect in Ehrlich Ascites Carcinoma Model

Authors: Abeer Y. Ibrahim, Faten M. Ibrahim, Samah A. El-Newary, Saber F. Hendawy

Abstract:

Objective: Appreciation of in-vitro anti-inflammatory and antioxidant characters of Vitex agnus-castus berries alcoholic extract and fractions, as well as in-vivo antitumor ability of alcoholic extract and chloroform fraction against Ehrlich ascites carcinoma is the aim of this study. Material and methods: Antioxidant properties of crude alcoholic extract of vitex berries as well as petroleum ether, chloroform, ethyl acetate and butanol fractions were evaluated, in-vitro assessments, as compared with standard materials, l-ascorbic acid (vitamin C) and butylated hydroxyl toluene(BHT). The anti-inflammatory activity was investigated in cyclooxygenase (COX)-1 and COX-2 inhibition assays. Moreover, in-vivo antitumor effect of vitex berries alcoholic and chloroform extracts were evaluated using Ehrlich ascites carcinoma model. Data were presented as mean±SE, and data were analyzed by one-way analysis of variance test. Results and conclusion: Berries crude extract showed potent antioxidant activity followed with its fractions ethyl acetate and chloroform as compared with standard (V.C and BHT). Ethyl acetate fraction showed good reduction capability, metal ion chelation, hydrogen peroxide scavenging, nitric oxide scavenging and superoxide anion scavenging. Meanwhile, chloroform fraction produced the highest free radical scavenging activity and total antioxidant capacity. In respectable of lipid peroxidation inhibition, crude alcoholic extract and its fractions cleared weak inhibition in comparing with standard materials. Anti-inflammatory activity of V. agnus-castus berries chloroform fraction of vitex was best COX-2 inhibitor (IC₅₀, 135.41 µg/ ml) as compared to vitex alcoholic extract or ethyl acetate fraction with weak inhibitory effect on COX-1 (IC50, 778.432 µg/ ml), where the lowest effect on COX-1 was recorded with alcoholic extract. Alcoholic extract and its fractions showed weak COX-1 inhibition activity, whereas COX-2 was inhibited (100%), compared with celecoxib drug (72% at 1000ppm). The crude alcoholic and chloroform extracts of V. agnus-castus barries significantly reduced the viable Ehrlich cell count and increased nonviable count with amelioration of all hematological parameters. This amelioration was reflected on increasing median survival time and significant increase (P < 0.05) in lifespan.

Keywords: anti-inflammatory, antioxidants, ehrlich ascites carcinoma, Vitex agnus-castus

Procedia PDF Downloads 118
72 Comparision of Neutrophil Response to Curvularia, Bipolaris and Aspergillus Species

Authors: Eszter J. Tóth, Alexandra Hoffmann, Csaba Vágvölgyi, Tamás Papp

Abstract:

Members of the genera Curvularia and Bipolaris are closely related melanin producing filamentous fungi; both of them have the teleomorph states in genus Cochliobolus. While Bipolaris species infect only plants and may cause serious agriculture damages, some Curvularia species was recovered from opportunistic human infections. The human pathogenic species typically cause phaeohyphomycoses, i.e. mould infections caused by melanised fungi, which can manifest as invasive mycoses with frequent involvement of the central nervous system in immunocompromised patients or as local infections (e.g. keratitis, sinusitis, and cutaneous lesions) in immunocompetent people. Although their plant-fungal interactions have been intensively studied, there is only little information available about the human pathogenic feature of these fungi. The aim of this study was to investigate the neutrophil granulocytes’ response to hyphal forms of Curvularia and Bipolaris in comparison with the response to Aspergillus. In the present study Curvularia lunata SZMC 23759 and Aspergillus fumigatus SZMC 23245 both isolated from human eye infection, and Bipolaris zeicola BRIP 19582b isolated from plant leaf were examined. Neutrophils were isolated from heparinised venous blood of healthy donors with dextran sedimentation followed by centrifugation over Ficoll and hypotonic lysis of erythrocytes. Viability and purity of the cells were checked with trypan blue and Wright staining, respectively. Infection of neutrophils was carried out with germinated conidia in a ratio of 5:1. Production of hydrogen peroxide, superoxide anion, and nitrogen monoxide was measured both intracellularly and extracellularly in response to the germinated spores with or without the supernatant and after serum treatment. ROS and NOS production of neutrophils in interaction with the three fungi were compared. It is already known that Aspergillus species induce ROS production of neutrophils only after serum treatment. Although, in case of C. lunata, serum opsonisation also induced an intensive production of reactive species, lower level of production was measured in the lack of serum as well. After interaction with the plant pathogenic B. zeicola, amount of reactive species found to be similar with and without serum treatment. The presence of germination supernatant decreased the reactive species production in case of each fungus. Interaction with Curvularia, Bipolaris and Aspergillus species induced different response of neutrophils. It seems that recognition of C. lunata and B. zeicola is independent of serum opsonisation, albeit it increases the level of the produced reactive species in response for C. lunata. The study was supported by the grant LP2016-8/2016.

Keywords: Curvularia, neutrophils, NOS, ROS, serum opsonisation

Procedia PDF Downloads 175
71 Non-Perturbative Vacuum Polarization Effects in One- and Two-Dimensional Supercritical Dirac-Coulomb System

Authors: Andrey Davydov, Konstantin Sveshnikov, Yulia Voronina

Abstract:

There is now a lot of interest to the non-perturbative QED-effects, caused by diving of discrete levels into the negative continuum in the supercritical static or adiabatically slowly varying Coulomb fields, that are created by the localized extended sources with Z > Z_cr. Such effects have attracted a considerable amount of theoretical and experimental activity, since in 3+1 QED for Z > Z_cr,1 ≈ 170 a non-perturbative reconstruction of the vacuum state is predicted, which should be accompanied by a number of nontrivial effects, including the vacuum positron emission. Similar in essence effects should be expected also in both 2+1 D (planar graphene-based hetero-structures) and 1+1 D (one-dimensional ‘hydrogen ion’). This report is devoted to the study of such essentially non-perturbative vacuum effects for the supercritical Dirac-Coulomb systems in 1+1D and 2+1D, with the main attention drawn to the vacuum polarization energy. Although the most of works considers the vacuum charge density as the main polarization observable, vacuum energy turns out to be not less informative and in many respects complementary to the vacuum density. Moreover, the main non-perturbative effects, which appear in vacuum polarization for supercritical fields due to the levels diving into the lower continuum, show up in the behavior of vacuum energy even more clear, demonstrating explicitly their possible role in the supercritical region. Both in 1+1D and 2+1D, we explore firstly the renormalized vacuum density in the supercritical region using the Wichmann-Kroll method. Thereafter, taking into account the results for the vacuum density, we formulate the renormalization procedure for the vacuum energy. To evaluate the latter explicitly, an original technique, based on a special combination of analytical methods, computer algebra tools and numerical calculations, is applied. It is shown that, for a wide range of the external source parameters (the charge Z and size R), in the supercritical region the renormalized vacuum energy could significantly deviate from the perturbative quadratic growth up to pronouncedly decreasing behavior with jumps by (-2 x mc^2), which occur each time, when the next discrete level dives into the negative continuum. In the considered range of variation of Z and R, the vacuum energy behaves like ~ -Z^2/R in 1+1D and ~ -Z^3/R in 2+1D, exceeding deeply negative values. Such behavior confirms the assumption of the neutral vacuum transmutation into the charged one, and thereby of the spontaneous positron emission, accompanying the emergence of the next vacuum shell due to the total charge conservation. To the end, we also note that the methods, developed for the vacuum energy evaluation in 2+1 D, with minimal complements could be carried over to the three-dimensional case, where the vacuum energy is expected to be ~ -Z^4/R and so could be competitive with the classical electrostatic energy of the Coulomb source.

Keywords: non-perturbative QED-effects, one- and two-dimensional Dirac-Coulomb systems, supercritical fields, vacuum polarization

Procedia PDF Downloads 185
70 Sources of Precipitation and Hydrograph Components of the Sutri Dhaka Glacier, Western Himalaya

Authors: Ajit Singh, Waliur Rahaman, Parmanand Sharma, Laluraj C. M., Lavkush Patel, Bhanu Pratap, Vinay Kumar Gaddam, Meloth Thamban

Abstract:

The Himalayan glaciers are the potential source of perennial water supply to Asia’s major river systems like the Ganga, Brahmaputra and the Indus. In order to improve our understanding about the source of precipitation and hydrograph components in the interior Himalayan glaciers, it is important to decipher the sources of moisture and their contribution to the glaciers in this river system. In doing so, we conducted an extensive pilot study in a Sutri Dhaka glacier, western Himalaya during 2014-15. To determine the moisture sources, rain, surface snow, ice, and stream meltwater samples were collected and analyzed for stable oxygen (δ¹⁸O) and hydrogen (δD) isotopes. A two-component hydrograph separation was performed for the glacier stream using these isotopes assuming the contribution of rain, groundwater and spring water contribution is negligible based on field studies and available literature. To validate the results obtained from hydrograph separation using above method, snow and ice melt ablation were measured using a network of bamboo stakes and snow pits. The δ¹⁸O and δD in rain samples range from -5.3% to -20.8% and -31.7% to -148.4% respectively. It is noteworthy to observe that the rain samples showed enriched values in the early season (July-August) and progressively get depleted at the end of the season (September). This could be due to the ‘amount effect’. Similarly, old snow samples have shown enriched isotopic values compared to fresh snow. This could because of the sublimation processes operating over the old surface snow. The δ¹⁸O and δD values in glacier ice samples range from -11.6% to -15.7% and -31.7% to -148.4%, whereas in a Sutri Dhaka meltwater stream, it ranges from -12.7% to -16.2% and -82.9% to -112.7% respectively. The mean deuterium excess (d-excess) value in all collected samples exceeds more than 16% which suggests the predominant moisture source of precipitation is from the Western Disturbances. Our detailed estimates of the hydrograph separation of Sutri Dhaka meltwater using isotope hydrograph separation and glaciological field methods agree within their uncertainty; stream meltwater budget is dominated by glaciers ice melt over snowmelt. The present study provides insights into the sources of moisture, controlling mechanism of the isotopic characteristics of Sutri Dhaka glacier water and helps in understanding the snow and ice melt components in Chandra basin, Western Himalaya.

Keywords: D-excess, hydrograph separation, Sutri Dhaka, stable water isotope, western Himalaya

Procedia PDF Downloads 132
69 Optimization and Evaluation of Different Pathways to Produce Biofuel from Biomass

Authors: Xiang Zheng, Zhaoping Zhong

Abstract:

In this study, Aspen Plus was used to simulate the whole process of biomass conversion to liquid fuel in different ways, and the main results of material and energy flow were obtained. The process optimization and evaluation were carried out on the four routes of cellulosic biomass pyrolysis gasification low-carbon olefin synthesis olefin oligomerization, biomass water pyrolysis and polymerization to jet fuel, biomass fermentation to ethanol, and biomass pyrolysis to liquid fuel. The environmental impacts of three biomass species (poplar wood, corn stover, and rice husk) were compared by the gasification synthesis pathway. The global warming potential, acidification potential, and eutrophication potential of the three biomasses were the same as those of rice husk > poplar wood > corn stover. In terms of human health hazard potential and solid waste potential, the results were poplar > rice husk > corn stover. In the popular pathway, 100 kg of poplar biomass was input to obtain 11.9 kg of aviation coal fraction and 6.3 kg of gasoline fraction. The energy conversion rate of the system was 31.6% when the output product energy included only the aviation coal product. In the basic process of hydrothermal depolymerization process, 14.41 kg aviation kerosene was produced per 100 kg biomass. The energy conversion rate of the basic process was 33.09%, which can be increased to 38.47% after the optimal utilization of lignin gasification and steam reforming for hydrogen production. The total exergy efficiency of the system increased from 30.48% to 34.43% after optimization, and the exergy loss mainly came from the concentration of precursor dilute solution. Global warming potential in environmental impact is mostly affected by the production process. Poplar wood was used as raw material in the process of ethanol production from cellulosic biomass. The simulation results showed that 827.4 kg of pretreatment mixture, 450.6 kg of fermentation broth, and 24.8 kg of ethanol were produced per 100 kg of biomass. The power output of boiler combustion reached 94.1 MJ, the unit power consumption in the process was 174.9 MJ, and the energy conversion rate was 33.5%. The environmental impact was mainly concentrated in the production process and agricultural processes. On the basis of the original biomass pyrolysis to liquid fuel, the enzymatic hydrolysis lignin residue produced by cellulose fermentation to produce ethanol was used as the pyrolysis raw material, and the fermentation and pyrolysis processes were coupled. In the coupled process, 24.8 kg ethanol and 4.78 kg upgraded liquid fuel were produced per 100 kg biomass with an energy conversion rate of 35.13%.

Keywords: biomass conversion, biofuel, process optimization, life cycle assessment

Procedia PDF Downloads 50
68 Green Synthesis of Silver and Silver-Gold Alloy Nanoparticle Using Cyanobacteria as Bioreagent

Authors: Piya Roychoudhury, Ruma Pal

Abstract:

Cyanobacteria, commonly known as blue green algae were found to be an effective bioreagent for nanoparticle synthesis. Nowadays silver nanoparticles (AgNPs) are very popular due to their antimicrobial and anti-proliferative activity. To exploit these characters in different biotechnological fields, it is very essential to synthesize more stable, non-toxic nano-silver. For this reason silver-gold alloy (Ag-AuNPs) nanoparticles are of great interest as they are more stable, harder and more effective than single metal nanoparticles. In the present communication we described a simple technique for rapid synthesis of biocompatible AgNP and Ag-AuNP employing cyanobacteria, Leptolyngbya and Lyngbya respectively. For synthesis of AgNP the biomass of Leptolyngbya valderiana (200 mg Fresh weight) was exposed to 9 mM AgNO3 solution (pH 4). For synthesis of Ag-AuNP Lyngbya majuscula (200 mg Fresh weight) was exposed to equimolar solution of hydrogen tetra-auro chlorate and silver nitrate (1mM, pH 4). After 72 hrs of exposure thallus of Leptolyngyba turned brown in color and filaments of Lyngbya turned pink in color that indicated synthesis of nanoparticles. The produced particles were extracted from the cyanobacterial biomass using nano-capping agent, sodium citrate. Firstly, extracted brown and pink suspensions were taken for Energy Dispersive X-ray (EDAX) analysis to confirm the presence of silver in brown suspension and presence of both gold and silver in pink suspension. Extracted nanoparticles showed a distinct single plasmon band (AgNP at 411 nm; Ag-Au NP at 481 nm) in Uv-vis spectroscopy. It was revealed from Transmission electron microscopy (TEM) that all the synthesized particles were spherical in nature with a size range of ~2-25 nm. In X-ray powder diffraction (XRD) analysis four intense peaks appeared at 38.2°, 44.5°, 64.8°and 77.8° which confirmed the crystallographic nature of synthesized particles. Presence of different functional groups viz. N-H, C=C, C–O, C=O on the surface of nanoparticles were recorded by Fourier transform infrared spectroscopy (FTIR). Scanning Electron microscopy (SEM) images showed the surface topography of metal treated filaments of cyanobacteria. The stability of the particles was observed by Zeta potential study. Antibiotic property of synthesized particles was tested by Agar well diffusion method against gram negative bacteria Pseudomonas aeruginosa. Overall, this green-technique requires low energy, less manufacturing cost and produces rapidly eco-friendly metal nanoparticles.

Keywords: cyanobacteria, silver nanoparticles, silver-gold alloy nanoparticles, spectroscopy

Procedia PDF Downloads 291
67 The Efficacy of Thymbra spicata Ethanolic Extract and its Main Component Carvacrol on In vitro Model of Metabolically-Associated Dysfunctions

Authors: Farah Diab, Mohamad Khalil, Francesca Storace, Francesca Baldini, Piero Portincasaa, Giulio Lupidi, Laura Vergani

Abstract:

Thymbra spicata is a thyme-like plant belonging to the Lamiaceae family that shows a global distribution, especially in the eastern Mediterranean region. Leaves of T. spicata contain large amounts of phenols such as phenolic acids (rosmarinic acid), phenolic monoterpenes (carvacrol), and flavonoids. In Lebanon, T. spicata is currently used as a culinary herb in salad and infusion, as well as for traditional medicinal purposes. Carvacrol (5-isopropyl-2-methyl phenol), the most abundant polyphenol in the organic extract and essential oils, has a great array of pharmacological properties. In fact, carvacrol is largely employed as a food additive and neutraceutical agent. Our aim is to investigate the beneficial effects of T. spicata ethanolic extract (TE) and its main component, carvacrol, using in vitro models of hepatic steatosis and endothelial dysfunction. As a further point, we focused on investigating if and how the binding of carvacrol to albumin, the physiological transporter for drugs in the blood, might be altered by the presence of high levels of fatty acids (FAs), thus impairing the carvacrol bio-distribution in vivo. For that reason, hepatic FaO cells treated with exogenous FAs such as oleate and palmitate mimic hepatosteatosis; endothelial HECV cells exposed to hydrogen peroxide are a model of endothelial dysfunction. In these models, we measured lipid accumulation, free radical production, lipoperoxidation, and nitric oxide release before and after treatment with carvacrol. The carvacrol binding to albumin with/without high levels of long-chain FAs was assessed by absorption and emission spectroscopies. Our findings show that both TE and carvacrol (i) counteracted lipid accumulation in hepatocytes by decreasing the intracellular and extracellular lipid contents in steatotic FaO cells; (ii) decreased oxidative stress in endothelial cells by significantly reducing lipoperoxidation and free radical production, as well as, attenuating the nitric oxide release; (ii) high levels of circulating FAs reduced the binding of carvacrol to albumin. The beneficial effects of TE and carvacrol on both hepatic and endothelial cells point to a nutraceutical potential. However, high levels of circulating FAs, such as those occurring in metabolic disorders, might hinder the carvacrol transport, bio-distribution, and pharmacodynamics.

Keywords: carvacrol, endothelial dysfunction, fatty acids, non-alcoholic fatty liver diseases, serum albumin

Procedia PDF Downloads 156