Search results for: high affinity binding molecules
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20679

Search results for: high affinity binding molecules

20319 The Shona and isiXhosa Linguistic Matrimony Through Code-Switching in Cape Town

Authors: John Mambambo

Abstract:

Debates on the link between Bantu languages are often epitomized by animated theoretical critiques, including the language zoning and groupings. This evaluative, qualitative inquiry hovers above theoretical critiques to offer the sparsely studied ChiShona and isiXhosa code-switching nexus, a yawning gap in scholarship. Using interviews, questionnaires and observations, data germane to the study were collected from a purposively selected group of Shona speakers who had resided in Xhosa-speaking communities for not less than a year. Deploying Myers-Scotton’s Markedness theory, the paper gazes into the pragmatic linguistic affinity that is affirmed through the Shona-Xhosa code-switching in Cape Town. The assorted social variables motivating bilingual speakers to code-switch in Cape Town are also explored in this study. The study unveils that Shona speakers are motivated to code-switch by the linguistic affinity between ChiShona and isiXhosa. Other socio-political justifications also give an impetus to this phenomenon. The Matrix Language Frame Model affirms that ChiShona is the base while isiXhosa is the embedded language during code-switching. This paper is a momentous advancement of the extant literature on code-switching. It is a unique contribution to the nexus between ChiShona and isiXhosa languages, providing fresh insights into the discourse on African language comparison studies.

Keywords: code-switching, chishona, isiXhosa, bilingualism

Procedia PDF Downloads 83
20318 Modeling of Anode Catalyst against CO in Fuel Cell Using Material Informatics

Authors: M. Khorshed Alam, H. Takaba

Abstract:

The catalytic properties of metal usually change by intermixturing with another metal in polymer electrolyte fuel cells. Pt-Ru alloy is one of the much-talked used alloy to enhance the CO oxidation. In this work, we have investigated the CO coverage on the Pt2Ru3 nanoparticle with different atomic conformation of Pt and Ru using a combination of material informatics with computational chemistry. Density functional theory (DFT) calculations used to describe the adsorption strength of CO and H with different conformation of Pt Ru ratio in the Pt2Ru3 slab surface. Then through the Monte Carlo (MC) simulations we examined the segregation behaviour of Pt as a function of surface atom ratio, subsurface atom ratio, particle size of the Pt2Ru3 nanoparticle. We have constructed a regression equation so as to reproduce the results of DFT only from the structural descriptors. Descriptors were selected for the regression equation; xa-b indicates the number of bonds between targeted atom a and neighboring atom b in the same layer (a,b = Pt or Ru). Terms of xa-H2 and xa-CO represent the number of atoms a binding H2 and CO molecules, respectively. xa-S is the number of atom a on the surface. xa-b- is the number of bonds between atom a and neighboring atom b located outside the layer. The surface segregation in the alloying nanoparticles is influenced by their component elements, composition, crystal lattice, shape, size, nature of the adsorbents and its pressure, temperature etc. Simulations were performed on different size (2.0 nm, 3.0 nm) of nanoparticle that were mixing of Pt and Ru atoms in different conformation considering of temperature range 333K. In addition to the Pt2Ru3 alloy we also considered pure Pt and Ru nanoparticle to make comparison of surface coverage by adsorbates (H2, CO). Hence, we assumed the pure and Pt-Ru alloy nanoparticles have an fcc crystal structures as well as a cubo-octahedron shape, which is bounded by (111) and (100) facets. Simulations were performed up to 50 million MC steps. From the results of MC, in the presence of gases (H2, CO), the surfaces are occupied by the gas molecules. In the equilibrium structure the coverage of H and CO as a function of the nature of surface atoms. In the initial structure, the Pt/Ru ratios on the surfaces for different cluster sizes were in range of 0.50 - 0.95. MC simulation was employed when the partial pressure of H2 (PH2) and CO (PCO) were 70 kPa and 100-500 ppm, respectively. The Pt/Ru ratios decrease as the increase in the CO concentration, without little exception only for small nanoparticle. The adsorption strength of CO on the Ru site is higher than the Pt site that would be one of the reason for decreasing the Pt/Ru ratio on the surface. Therefore, our study identifies that controlling the nanoparticle size, composition, conformation of alloying atoms, concentration and chemical potential of adsorbates have impact on the steadiness of nanoparticle alloys which ultimately and also overall catalytic performance during the operations.

Keywords: anode catalysts, fuel cells, material informatics, Monte Carlo

Procedia PDF Downloads 171
20317 Influence of Layer-by-Layer Coating Parameters on the Properties of Hybrid Membrane for Water Treatment

Authors: Jenny Radeva, Anke-Gundula Roth, Christian Goebbert, Robert Niestroj-Pahl, Lars Daehne, Axel Wolfram, Juergen WIese

Abstract:

The presented investigation studies the correlation between the process parameters of Layer-by-Layer (LbL) coatings and properties of the produced hybrid membranes for water treatment. The coating of alumina ceramic support membrane with polyelectrolyte multilayers on top results in hybrid membranes with increased fouling resistant behavior, high retention (up to 90%) of salt ions and various pharmaceuticals, selectivity to various organic molecules as known from LbL coated polyether sulfone membranes and the possibility of pH response control. Chosen polyelectrolytes were added to the support using the LbL-coating process. Parameters like the type of polyelectrolyte, ionic strength, and pH were varied in order to find the most suitable process conditions and to study how they influence the properties of the final product. The applied LbL-films was investigated in respect to its homogeneity and penetration depth. The analysis of the layer buildup was performed using fluorescence labeled polyelectrolyte molecules and Confocal Laser Scanning Microscopy as well as Scanning and Transmission Electron Microscopy. Furthermore, the influence of the coating parameters on the porosity, surface potential, retention, and permeability of the developed hybrid membranes were estimated. In conclusion, a comparison was drawn between the filtration performance of the uncoated alumina ceramic membrane and modified hybrid membranes.

Keywords: water treatment, membranes, ceramic membranes, hybrid membranes, layer-by-layer modification

Procedia PDF Downloads 155
20316 Improved Signal-To-Noise Ratio by the 3D-Functionalization of Fully Zwitterionic Surface Coatings

Authors: Esther Van Andel, Stefanie C. Lange, Maarten M. J. Smulders, Han Zuilhof

Abstract:

False outcomes of diagnostic tests are a major concern in medical health care. To improve the reliability of surface-based diagnostic tests, it is of crucial importance to diminish background signals that arise from the non-specific binding of biomolecules, a process called fouling. The aim is to create surfaces that repel all biomolecules except the molecule of interest. This can be achieved by incorporating antifouling protein repellent coatings in between the sensor surface and it’s recognition elements (e.g. antibodies, sugars, aptamers). Zwitterionic polymer brushes are considered excellent antifouling materials, however, to be able to bind the molecule of interest, the polymer brushes have to be functionalized and so far this was only achieved at the expense of either antifouling or binding capacity. To overcome this limitation, we combined both features into one single monomer: a zwitterionic sulfobetaine, ensuring antifouling capabilities, equipped with a clickable azide moiety which allows for further functionalization. By copolymerizing this monomer together with a standard sulfobetaine, the number of azides (and with that the number of recognition elements) can be tuned depending on the application. First, the clickable azido-monomer was synthesized and characterized, followed by copolymerizing this monomer to yield functionalizable antifouling brushes. The brushes were fully characterized using surface characterization techniques like XPS, contact angle measurements, G-ATR-FTIR and XRR. As a proof of principle, the brushes were subsequently functionalized with biotin via strain-promoted alkyne azide click reactions, which yielded a fully zwitterionic biotin-containing 3D-functionalized coating. The sensing capacity was evaluated by reflectometry using avidin and fibrinogen containing protein solutions. The surfaces showed excellent antifouling properties as illustrated by the complete absence of non-specific fibrinogen binding, while at the same time clear responses were seen for the specific binding of avidin. A great increase in signal-to-noise ratio was observed, even when the amount of functional groups was lowered to 1%, compared to traditional modification of sulfobetaine brushes that rely on a 2D-approach in which only the top-layer can be functionalized. This study was performed on stoichiometric silicon nitride surfaces for future microring resonator based assays, however, this methodology can be transferred to other biosensor platforms which are currently being investigated. The approach presented herein enables a highly efficient strategy for selective binding with retained antifouling properties for improved signal-to-noise ratios in binding assays. The number of recognition units can be adjusted to a specific need, e.g. depending on the size of the analyte to be bound, widening the scope of these functionalizable surface coatings.

Keywords: antifouling, signal-to-noise ratio, surface functionalization, zwitterionic polymer brushes

Procedia PDF Downloads 286
20315 Foslip Loaded and CEA-Affimer Functionalised Silica Nanoparticles for Fluorescent Imaging of Colorectal Cancer Cells

Authors: Yazan S. Khaled, Shazana Shamsuddin, Jim Tiernan, Mike McPherson, Thomas Hughes, Paul Millner, David G. Jayne

Abstract:

Introduction: There is a need for real-time imaging of colorectal cancer (CRC) to allow tailored surgery to the disease stage. Fluorescence guided laparoscopic imaging of primary colorectal cancer and the draining lymphatics would potentially bring stratified surgery into clinical practice and realign future CRC management to the needs of patients. Fluorescent nanoparticles can offer many advantages in terms of intra-operative imaging and therapy (theranostic) in comparison with traditional soluble reagents. Nanoparticles can be functionalised with diverse reagents and then targeted to the correct tissue using an antibody or Affimer (artificial binding protein). We aimed to develop and test fluorescent silica nanoparticles and targeted against CRC using an anti-carcinoembryonic antigen (CEA) Affimer (Aff). Methods: Anti-CEA and control Myoglobin Affimer binders were subcloned into the expressing vector pET11 followed by transformation into BL21 Star™ (DE3) E.coli. The expression of Affimer binders was induced using 0.1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG). Cells were harvested, lysed and purified using nickle chelating affinity chromatography. The photosensitiser Foslip (soluble analogue of 5,10,15,20-Tetra(m-hydroxyphenyl) chlorin) was incorporated into the core of silica nanoparticles using water-in-oil microemulsion technique. Anti-CEA or control Affs were conjugated to silica nanoparticles surface using sulfosuccinimidyl-4-(N-maleimidomethyl) cyclohexane-1-carboxylate (sulfo SMCC) chemical linker. Binding of CEA-Aff or control nanoparticles to colorectal cancer cells (LoVo, LS174T and HC116) was quantified in vitro using confocal microscopy. Results: The molecular weights of the obtained band of Affimers were ~12.5KDa while the diameter of functionalised silica nanoparticles was ~80nm. CEA-Affimer targeted nanoparticles demonstrated 9.4, 5.8 and 2.5 fold greater fluorescence than control in, LoVo, LS174T and HCT116 cells respectively (p < 0.002) for the single slice analysis. A similar pattern of successful CEA-targeted fluorescence was observed in the maximum image projection analysis, with CEA-targeted nanoparticles demonstrating 4.1, 2.9 and 2.4 fold greater fluorescence than control particles in LoVo, LS174T, and HCT116 cells respectively (p < 0.0002). There was no significant difference in fluorescence for CEA-Affimer vs. CEA-Antibody targeted nanoparticles. Conclusion: We are the first to demonstrate that Foslip-doped silica nanoparticles conjugated to anti-CEA Affimers via SMCC allowed tumour cell-specific fluorescent targeting in vitro, and had shown sufficient promise to justify testing in an animal model of colorectal cancer. CEA-Affimer appears to be a suitable targeting molecule to replace CEA-Antibody. Targeted silica nanoparticles loaded with Foslip photosensitiser is now being optimised to drive photodynamic killing, via reactive oxygen generation.

Keywords: colorectal cancer, silica nanoparticles, Affimers, antibodies, imaging

Procedia PDF Downloads 215
20314 Interaction of Low-Energy Positrons with Mg Atoms: Elastic Scattering, Bound States, and Annihilation

Authors: Mahasen M. Abdel Mageed, H. S. Zaghloul

Abstract:

Annihilations, phase shifts, scattering lengths, and elastic cross sections of low energy positrons scattering from magnesium atoms were studied using the least-squares variational method (LSVM). The possibility of positron binding to the magnesium atoms is investigated. A trial wavefunction is suggested to represent e+-Mg elastic scattering and scattering parameters were derived to estimate the binding energy and annihilation rates. The trial function is taken to depend on several adjustable parameters and is improved iteratively by increasing the number of terms. The present results have the same behavior as reported semi-empirical, theoretical, and experimental results. Especially, the estimated positive scattering length supports the possibility of positron-magnesium bound state system that was confirmed in previous experimental and theoretical work.

Keywords: bound wavefunction, positron annihilation, scattering phase shift, scattering length

Procedia PDF Downloads 526
20313 Study of Aqueous Solutions: A Dielectric Spectroscopy Approach

Authors: Kumbharkhane Ashok

Abstract:

The time domain dielectric relaxation spectroscopy (TDRS) probes the interaction of a macroscopic sample with a time-dependent electrical field. The resulting complex permittivity spectrum, characterizes amplitude (voltage) and time scale of the charge-density fluctuations within the sample. These fluctuations may arise from the reorientation of the permanent dipole moments of individual molecules or from the rotation of dipolar moieties in flexible molecules, like polymers. The time scale of these fluctuations depends on the sample and its relative relaxation mechanism. Relaxation times range from some picoseconds in low viscosity liquids to hours in glasses, Therefore the DRS technique covers an extensive dynamical process, its corresponding frequency range from 10-4 Hz to 1012 Hz. This inherent ability to monitor the cooperative motion of molecular ensemble distinguishes dielectric relaxation from methods like NMR or Raman spectroscopy which yield information on the motions of individual molecules. An experimental set up for Time Domain Reflectometry (TDR) technique from 10 MHz to 30 GHz has been developed for the aqueous solutions. This technique has been very simple and covers a wide band of frequencies in the single measurement. Dielectric Relaxation Spectroscopy is especially sensitive to intermolecular interactions. The complex permittivity spectra of aqueous solutions have been fitted using Cole-Davidson (CD) model to determine static dielectric constants and relaxation times for entire concentrations. The heterogeneous molecular interactions in aqueous solutions have been discussed through Kirkwood correlation factor and excess properties.

Keywords: liquid, aqueous solutions, time domain reflectometry

Procedia PDF Downloads 421
20312 Removal of Heavy Metal Ions from Aqueous Solution by Polymer Enhanced Ultrafiltration Using Unmodified Starch as Biopolymer

Authors: Nurul Huda Baharuddin, Nik Meriam Nik Sulaiman, Mohammed Kheireddine Aroua

Abstract:

The effects of pH, polymer concentration, and metal ions feed concentration for four selected heavy metals Zn (II), Pb (II), Cr (III) and Cr (VI) were tested by using Polymer Enhanced Ultrafiltration (PEUF). An alternative biopolymer namely unmodified starch is proposed as a binding reagent in consequences, as compared to commonly used water-soluble polymers namely polyethylene glycol (PEG) and polyethyleneimine (PEI) in the removal of selected four heavy metal ions. The speciation species profiles of four selected complexes ions namely Zn (II), Pb (II), Cr (III) and Cr (VI) and the present of hydroxides ions (OH-) in variously charged ions were investigated by available software at certain pH range. In corresponds to identify the potential of complexation behavior between metal ion-polymers, potentiometric titration studies were obtained at first before carried out experimental works. Experimental works were done using ultrafiltration systems obtained by laboratory ultrafiltration bench scale equipped with 10 kDa polysulfone hollow fiber membrane. Throughout the laboratory works, the rejection coefficient and permeate flux were found to be significantly affected by the main operating parameter, namely the effects of pH, polymer composition and metal ions concentrations. The interaction of complexation between two binding polymers namely unmodified starch and PEG were occurred due to physical attraction of metal ions to the polymer on the molecular surface with high possibility of chemical occurrence. However, these selected metal ions are mainly complexes by polymer functional groups whenever there is interaction with PEI polymer. For study of single metal ions solutions, Zn (II) ions' rejections approaching over 90% were obtained at pH 7 for each tested polymer. This behavior was similar to Pb (II), Cr (III) and Cr (VI); where the rejections were obtained at lower acidic pH and increased at neutral pH of 7. Different behavior was found by Cr (VI) ions where a high rejection was only achieved at acidic pH region with PEI. Polymer concentration and metal ions concentration are found to have a significant effect on rejections. For mixed metal ion solutions, the behavior of metal ion rejections was similar to single metal ion solutions for investigation on the effects of pH. Rejection values were high at pH 7 for Zn (II) pH 7 for Zn (II) and Cr (III) ions, corresponding to higher rejections with unmodified starch. Pb (II) ions obtained high rejections when tested with PEG whenever carried out in mixed metal ion solutions. High Cr (VI) ions' rejection was found with PEI in single and mixed metal ions solutions at neutral pH range. The influence of starch’s granule structure towards the rejections of these four selected metal ions is found to be attracted in a non-ionic manner. No significant effects on permeate flux were obtained when tested at different pH ranges, polymer concentrations and metal ions feed either by single or mixtures metal ions solutions. Canizares Model was employed as the theoretical model to predict permeate flux and metal ions retention on the study of heavy metal ions removal.

Keywords: polyethyleneimine, polyethylene glycol, polymer-enhanced ultrafiltration, unmodified starch

Procedia PDF Downloads 138
20311 Revealing Potential Drug Targets against Proto-Oncogene Wnt10B by Comparative Molecular Docking

Authors: Shazia Mannan, Zunera Khalid, Hammad-Ul-Mubeen

Abstract:

Wingless type Mouse mammary tumor virus (MMTV) Integration site-10B (Wnt10B) is an important member of the Wnt protein family that functions as cellular messenger in paracrine manner. Aberrant Wnt10B activity is the cause of several abnormalities including cancers of breast, cervix, liver, gastric tract, esophagus, pancreas as well as physiological problems like obesity, and osteoporosis. The objective of this study was to determine the possible inhibitors against aberrant expression of Wnt10B in order to prevent and treat the physiological disorders associated with it. Wnt10B3D structure was predicted by using comparative modeling and then analyzed by PROCHECK, Verify3D, and Errat. The model having 84.54% quality value was selected and acylated to satisfy the hydrophobic nature of Wnt10B. For search of inhibitors, virtual screening was performed on Natural Products (NP) database. The compounds were filtered and ligand-based screening was performed using the antagonist for mouse Wnt-3A. This resulted in a library of 272 unique compounds having most potent drug like activities for Wnt-4. Out of the 271 molecules analyzed three small molecules ZINC35442871, ZINC85876388, and ZINC00754234 having activity against Wnt4 abbarent expression were found common through docking experiment of Wnt10B. It is concluded that the three molecules ZINC35442871, ZINC85876388, and ZINC00754234 can be considered as lead compounds for performing further drug designing experiments against aberrant Wnt expressions.

Keywords: Wnt10B inhibitors, comparative computational studies, proto-oncogene, molecular docking

Procedia PDF Downloads 133
20310 Green Synthesis of Magnetic, Silica Nanocomposite and Its Adsorptive Performance against Organochlorine Pesticides

Authors: Waleed A. El-Said, Dina M. Fouad, Mohamed H. Aly, Mohamed A. El-Gahami

Abstract:

Green synthesis of nanomaterials has received increasing attention as an eco-friendly technology in materials science. Here, we have used two types of extractions from green tea leaf (i.e. total extraction and tannin extraction) as reducing agents for a rapid, simple and one step synthesis method of mesoporous silica nanoparticles (MSNPs)/iron oxide (Fe3O4) nanocomposite based on deposition of Fe3O4 onto MSNPs. MSNPs/Fe3O4 nanocomposite were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray, vibrating sample magnetometer, N2 adsorption, and high-resolution transmission electron microscopy. The average mesoporous silica particle diameter was found to be around 30 nm with high surface area (818 m2/gm). MSNPs/Fe3O4 nanocomposite was used for removing lindane pesticide (an environmental hazard material) from aqueous solutions. Fourier transform infrared, UV-vis, High-performance liquid chromatography and gas chromatography techniques were used to confirm the high ability of MSNPs/Fe3O4 nanocomposite for sensing and capture of lindane molecules with high sorption capacity (more than 89%) that could develop a new eco-friendly strategy for detection and removing of pesticide and as a promising material for water treatment application.

Keywords: green synthesis, mesoporous silica, magnetic iron oxide NPs, adsorption Lindane

Procedia PDF Downloads 408
20309 “It Isn’t a State Problem”: The Minas Conga Mine Controversy and Exemplifying the Need for Binding International Obligations on Corporate Actors

Authors: Cindy Woods

Abstract:

After years of implacable neoliberal globalization, multinational corporations have moved from the periphery to the center of the international legal agenda. Human rights advocates have long called for greater corporate accountability in the international arena. The creation of the Global Compact in 2000, while aimed at fostering greater corporate respect for human rights, did not silence these calls. After multiple unsuccessful attempts to adopt a set of norms relating to the human rights responsibilities of transnational corporations, the United Nations succeeded in 2008 with the Guiding Principles on Business and Human Rights (Guiding Principles). The Guiding Principles, praised by some within the international human rights community for their recognition of an individual corporate responsibility to respect human rights, have not escaped their share of criticism. Many view the Guiding Principles to be toothless, failing to directly impose obligations upon corporations, and call for binding international obligations on corporate entities. After decades of attempting to promulgate human rights obligations for multinational corporations, the existing legal frameworks in place fall short of protecting individuals from the human rights abuses of multinational corporations. The Global Compact and Guiding Principles are proof of the United Nations’ unwillingness to impose international legal obligations on corporate actors. In June 2014, the Human Rights Council adopted a resolution to draft international legally binding human rights norms for business entities; however, key players in the international arena have already announced they will not cooperate with such efforts. This Note, through an overview of the existing corporate accountability frameworks and a study of Newmont Mining’s Minas Conga project in Peru, argues that binding international human rights obligations on corporations are necessary to fully protect human rights. Where states refuse to or simply cannot uphold their duty to protect individuals from transnational businesses’ human rights transgressions, there must exist mechanisms to pursue justice directly against the multinational corporation.

Keywords: business and human rights, Latin America, international treaty on business and human rights, mining, human rights

Procedia PDF Downloads 482
20308 Critical Role of Lipid Rafts in Influenza a Virus Binding to Host Cell

Authors: Dileep Kumar Verma, Sunil Kumar Lal

Abstract:

Influenza still remains one of the most challenging diseases posing significant threat to public health causing seasonal epidemics and pandemics. Influenza A Virus (IAV) surface protein hemagglutinin is known to play an important role in viral attachment to the host sialic acid receptors and concentrate in lipid rafts for efficient viral fusion. Selective nature of Influenza A virus to utilize rafts micro-domain for efficient virus assembly and budding has been explored in depth. However, the detailed mechanism of IAV binding to host cell membrane and entry into the host remains elusive. In the present study we investigated the role of lipid rafts in early life cycle events of IAV. Role of host lipid rafts was studied using raft disruption method by extraction of cholesterol by Methyl-β-Cyclodextrin. Using GM1, a well-known lipid raft marker, we were able to observe co-localization of IAV on lipid rafts on the host cell membrane. This experiment suggests a direct involvement of lipid rafts in the initiation of the IAV life cycle. Upon disruption of lipid rafts by Methyl-b-cyclodextrin, we observed a significant reduction in IAV binding on the host cell surface indicating a significant decrease in virus attachment to coherent membrane rafts. Our results provide proof that host lipid rafts and their constituents play an important role in the adsorption of IAV. This study opens a new avenues in IAV virus-host interactions to combat infection at a very early steps of the viral lifecycle.

Keywords: lipid raft, adsorption, cholesterol, methyl-β-cyclodextrin, GM1

Procedia PDF Downloads 335
20307 Development of Metal-Organic Frameworks-Type Hybrid Functionalized Materials for Selective Uranium Extraction

Authors: Damien Rinsant, Eugen Andreiadis, Michael Carboni, Daniel Meyer

Abstract:

Different types of materials have been developed for the solid/liquid uranium extraction processes, such as functionalized organic polymers, hybrid silica or inorganic adsorbents. In general, these materials exhibit a moderate affinity for uranyl ions and poor selectivity against impurities like iron, vanadium or molybdenum. Moreover, the structural organization deficiency of these materials generates ion diffusion issues inside the material. Therefore, the aim of our study is to developed efficient and organized materials, stable in the acid media encountered in uranium extraction processes. Metal organic frameworks (MOFs) are hybrid crystalline materials consisting of an inorganic part (cluster or metal ions) and tailored organic linkers connected via coordination bonds. These hierarchical materials have exceptional surface area, thermal stability and a large variety of tunable structures. However, due to the reversibility of constitutive coordination bonds, MOFs have moderate stability in strongly complexing or acidic media. Only few of them are known to be stable in aqueous media and only one example is described in strong acidic media. However, these conditions are very often encountered in the environmental pollution remediation of mine wastewaters. To tackle the challenge of developing MOFs adapted for uranium extraction from acid mine waters, we have investigated the stability of several materials. To ensure a good stability we have synthetized and characterized different materials based on highly coordinated metal clusters, such as LnOFs and Zirconium based materials. Among the latter, the UiO family shows a great stability in sulfuric acid media even in the presence of 1.4 M sodium sulfate at pH 2. However, the stability in phosphoric media is reduced due to the high affinity between zirconium and phosphate ligand. Based on these results, we have developed a tertiary amine functionalized MOF denoted UiO-68-NMe2 particularly adapted for the extraction of anionic uranyl (VI) sulfate complexes mainly present in the acid mine solutions. The adsorption capacity of the material has been determined upon varying total sulfate concentration, contact time and uranium concentration. The extraction tests put in evidence different phenomena due to the complexity of the extraction media and the interaction between the MOF and sulfate anion. Finally, the extraction mechanisms and the interaction between uranyl and the MOF structure have been investigated. The functionalized material UiO-68-NMe2 has been characterized in the presence and absence of uranium by FT-IR, UV and Raman techniques. Moreover, the stability of the protonated amino functionalized MOF has been evaluated. The synthesis, characterization and evaluation of this type of hybrid material, particularly adapted for uranium extraction in sulfuric acid media by an anionic exchange mechanism, paved the way for the development of metal organic frameworks functionalized by different other chelating motifs, such as bifunctional ligands showing an enhanced affinity and selectivity for uranium in acid and complexing media. Work in this direction is currently in progress.

Keywords: extraction, MOF, ligand, uranium

Procedia PDF Downloads 129
20306 Effect of Supply Frequency on Pre-Breakdown and Breakdown Phenomena in Unbridged Vacuum Gaps

Authors: T.C. Balachandra, Habibuddin Shaik

Abstract:

This paper presents experimental results leading towards a better understanding of pre-breakdown and breakdown behavior of vacuum gaps under variable frequency alternating excitations. The frequency variation is in the range of 30 to 300 Hz in steps of 10 Hz for a fixed gap spacing of 0.5 mm. The results indicate that the pre-breakdown currents show an inverse relation with the breakdown voltage in general though erratic behavior was observed over a certain range of frequencies. A breakdown voltage peak was observed at 130 Hz. This was pronounced when the electrode pair was of stainless steel and less pronounced when copper and aluminum electrodes were used. The experimental results are explained based on F-N emission, I-F emission, and also thermal interaction due to quasi-continuous shower of anode micro-particles. Further, it is speculated that the ostensible cause for time delay between voltage and current peaks is due to the presence of neutral molecules in the gap.

Keywords: anode hot-spots, F-N emission, I-F emission, microparticle, neutral molecules, pre-breakdown conduction, vacuum breakdown

Procedia PDF Downloads 126
20305 Antibacterial Evaluation, in Silico ADME and QSAR Studies of Some Benzimidazole Derivatives

Authors: Strahinja Kovačević, Lidija Jevrić, Miloš Kuzmanović, Sanja Podunavac-Kuzmanović

Abstract:

In this paper, various derivatives of benzimidazole have been evaluated against Gram-negative bacteria Escherichia coli. For all investigated compounds the minimum inhibitory concentration (MIC) was determined. Quantitative structure-activity relationships (QSAR) attempts to find consistent relationships between the variations in the values of molecular properties and the biological activity for a series of compounds so that these rules can be used to evaluate new chemical entities. The correlation between MIC and some absorption, distribution, metabolism and excretion (ADME) parameters was investigated, and the mathematical models for predicting the antibacterial activity of this class of compounds were developed. The quality of the multiple linear regression (MLR) models was validated by the leave-one-out (LOO) technique, as well as by the calculation of the statistical parameters for the developed models and the results are discussed on the basis of the statistical data. The results of this study indicate that ADME parameters have a significant effect on the antibacterial activity of this class of compounds. Principal component analysis (PCA) and agglomerative hierarchical clustering algorithms (HCA) confirmed that the investigated molecules can be classified into groups on the basis of the ADME parameters: Madin-Darby Canine Kidney cell permeability (MDCK), Plasma protein binding (PPB%), human intestinal absorption (HIA%) and human colon carcinoma cell permeability (Caco-2).

Keywords: benzimidazoles, QSAR, ADME, in silico

Procedia PDF Downloads 349
20304 In-Silico Fusion of Bacillus Licheniformis Chitin Deacetylase with Chitin Binding Domains from Chitinases

Authors: Keyur Raval, Steffen Krohn, Bruno Moerschbacher

Abstract:

Chitin, the biopolymer of the N-acetylglucosamine, is the most abundant biopolymer on the planet after cellulose. Industrially, chitin is isolated and purified from the shell residues of shrimps. A deacetylated derivative of chitin i.e. chitosan has more market value and applications owing to it solubility and overall cationic charge compared to the parent polymer. This deacetylation on an industrial scale is performed chemically using alkalis like sodium hydroxide. This reaction not only is hazardous to the environment owing to negative impact on the marine ecosystem. A greener option to this process is the enzymatic process. In nature, the naïve chitin is converted to chitosan by chitin deacetylase (CDA). This enzymatic conversion on the industrial scale is however hampered by the crystallinity of chitin. Thus, this enzymatic action requires the substrate i.e. chitin to be soluble which is technically difficult and an energy consuming process. We in this project wanted to address this shortcoming of CDA. In lieu of this, we have modeled a fusion protein with CDA and an auxiliary protein. The main interest being to increase the accessibility of the enzyme towards crystalline chitin. A similar fusion work with chitinases had improved the catalytic ability towards insoluble chitin. In the first step, suitable partners were searched through the protein data bank (PDB) wherein the domain architecture were sought. The next step was to create the models of the fused product using various in silico techniques. The models were created by MODELLER and evaluated for properties such as the energy or the impairment of the binding sites. A fusion PCR has been designed based on the linker sequences generated by MODELLER and would be tested for its activity towards insoluble chitin.

Keywords: chitin deacetylase, modeling, chitin binding domain, chitinases

Procedia PDF Downloads 217
20303 Cloning and Expression of Azurin: A Protein Having Antitumor and Cell Penetrating Ability

Authors: Mohsina Akhter

Abstract:

Cancer has become a wide spread disease around the globe and takes many lives every year. Different treatments are being practiced but all have potential side effects with somewhat less specificity towards target sites. Pseudomonas aeruginosa is known to secrete a protein azurin with special anti-cancer function. It has unique cell penetrating peptide comprising of 18 amino acids that have ability to enter cancer cells specifically. Reported function of Azurin is to stabilize p53 inside the tumor cells and induces apoptosis through Bax mediated cytochrome c release from mitochondria. At laboratory scale, we have made recombinant azurin through cloning rpTZ57R/T-azu vector into E.coli strain DH-5α and subcloning rpET28-azu vector into E.coli BL21-CodonPlus (DE3). High expression was ensured with IPTG induction at different concentrations then optimized high expression level at 1mM concentration of IPTG for 5 hours. Purification has been done by using Ni+2 affinity chromatography. We have concluded that azurin can be a remarkable improvement in cancer therapeutics if it produces on a large scale. Azurin does not enter into the normal cells so it will prove a safe and secure treatment for patients and prevent them from hazardous anomalies.

Keywords: azurin, pseudomonas aeruginosa, cancer, therapeutics

Procedia PDF Downloads 282
20302 A One Dimensional Cdᴵᴵ Coordination Polymer: Synthesis, Structure and Properties

Authors: Z. Derikvand, M. Dusek, V. Eigner

Abstract:

One dimensional coordination polymer of Cdᴵᴵ based on pyrazine (pz) and 3-nitrophthalic acid (3-nphaH₂), namely poly[[diaqua bis(3-nitro-2-carboxylato-1-carboxylic acid)(µ₂-pyrazine) cadmium(II)]dihydrate], {[Cd(3-nphaH)2(pz)(H₂O)₂]. 2H₂O}ₙ was prepared and characterized. The asymmetric unit consists of one Cdᴵᴵ center, two (3-nphaH)– anions, two halves of two crystallographically distinct pz ligands, two coordinated and two uncoordinated water molecules. The Cdᴵᴵ cation is surrounded by four oxygen atoms from two (3-nphaH)– and two water molecules as well as two nitrogen atoms from two pz ligands in distorted octahedral geometry. Complicated hydrogen bonding network accompanied with N–O···π and C–O···π stacking interactions leads to formation of a 3D supramolecular network. Commonly, this kind of C–O–π and N–O···π interaction is detected in electron-rich CO/NO groups of (3-nphaH)– ligand and electron-deficient π-system of pyrazine.

Keywords: supramolecular chemistry, Cd coordination polymer, crystal structure, 3-nithrophethalic acid

Procedia PDF Downloads 372
20301 L. rhamnosus GG Lysate Can Inhibit Cytotoxic Effects of S. aureus on Keratinocytes in vitro

Authors: W. Mohammed Saeed, A. J. Mcbain, S. M. Cruickshank, C. A. O’Neill

Abstract:

In the gut, probiotics have been shown to protect epithelial cells from pathogenic bacteria through a number of mechanisms: 1-Increasing epithelial barrier function, 2-Modulation of the immune response especially innate immune response, 3-Inhibition of pathogen adherence and down regulation of virulence factors. Since probiotics have positive impacts on the gut, their potential effects on other body tissues, such as skin have begun to be investigated. The purpose of this project is to characterize the potential of probiotic bacteria lysate as therapeutic agent for preventing or reducing the S. aureus infection. Normal human primary keratinocytes (KCs) were exposed to S. aureus (106/ml) in the presence or absence of L. rhamnosus GG lysate (extracted from 108cfu/ml). The viability of the KCs was measured after 24 hours using a trypan blue exclusion assay. When KCs were treated with S aureus alone, only 25% of the KCs remained viable at 24 hours post infection. However, in the presence of L. rhamnosus GG lysate the viability of pathogen infected KCs increased to 58% (p=0.008, n=3). Furthermore, when KCs co-exposed, pre- exposed or post-exposed to L. rhamnosus GG lysate, the viability of the KCs increased to ≈60%, the L. rhamnosus GG lysate was afforded equal protection in different conditions. These data suggests that two possible separate mechanisms are involved in the protective effects of L. rhamnosus GG such as reducing S. aureus growth, or inhibiting of pathogenic adhesion. Interestingly, a lysate of L rhamnosus GG provided significant reduction in S. aureus growth and adhesion of S. aureus that being viable following 24 hours incubation with S aureus. Therefore, a series of Liquid Chromatography (RP-LC) methods were adopted to partially purify the lysate in combination with functional assays to elucidate in which fractions the efficacious molecules were contained. In addition, the Mass Spectrometry-based protein sequencing was used to identify putative proteins in the fractions. The data presented from purification process demonstrated that L. rhamnosus GG lysate has the potential to protect keratinocytes from the toxic effects of the skin pathogen, S. aureus. Three potential mechanisms were identified: inhibition of pathogen growth; competitive exclusion; and displacement of the pathogen from keratinocyte binding sites. In this study, ‘moonlight’ proteins were identified in the current study’s MS/MS data for L. rhamnosus GG lysate, which could elucidate the ability of lysate in the competitive exclusion and displacement of S. aureus from keratinocyte binding sites. Taken together, it can be speculated that L. rhamnosus GG lysate utilizes different mechanisms to protect keratinocytes from S. aureus toxicity. The present study indicates that the proteinaceous substances are involved in anti-adhesion activity. This is achieved by displacing the pathogen and preventing the severity of pathogen infection and the moonlight proteins might be involved in inhibiting the adhesion of pathogens.

Keywords: lysate, fractions, adhesion, L. rhamnosus GG, S. aureus toxicity

Procedia PDF Downloads 265
20300 Difference in the Expression of CIRBP, RBM3 and HSP70 in the Myocardium and Cerebellum after Death by Hypothermi a and Carbon Monoxide Poisoning

Authors: Satoshi Furukawa, Satomu Morita, Lisa Wingenfeld, Katsuji Nishi, Masahito Hitosugi

Abstract:

We studied the expression of hypoxia-related antigens (e.g., cold-inducible antigens and apoptotic antigens) in the myocardium and the cerebellumthat were obtained from individuals after death by carbon monoxide or hypothermia. The immunohistochemistry results revealed that expression of cold-inducible RNA binding protein (CIRBP) and RNA-binding protein 3 (RBM3) may be associated with hpyothermic and the hypoxic conditions. The expression of CIRBP and RBM3 in the myocardium was different from their expression in the cerebellum, especially in the Purkinje cells. The results indicate that agonal duration influences antigen expression. In the hypothermic condition, the myocardium uses more ATP since the force of the excitation-contraction coupling of the myocardium increases by more than 400% when the experimental temperature is reduced from 35°C to 25°C. The results obtained in this study indicate that physicians should pay attention to the myocardium when cooling the patient’s body to protect the brain.

Keywords: carbon monoxide death, cerebellum, CIRBP, hypothermic death, myocardium, RBM3

Procedia PDF Downloads 337
20299 Synthesis and Characterization of Mixed ligand complexes of Bipyridyl and Glycine with Different Counter Anions as Functional Antioxidant Enzyme Mimics

Authors: Mohamed M. Ibrahim, Gaber A. M. Mersal, Salih Al-Juaid, Samir A. El-Shazly

Abstract:

A series of mixed ligand complexes, viz., [Cu(BPy)(Gly)X]Y {X = Cl (1), Y = 0; X = 0, Y = ClO4- (2); X = H2O, Y = NO3- (3); X = H2O, Y = CH3COO- (4); and [Cu(BPy)(Gly)-(H2O)]2(SO4) (5) have been synthesized. Their structures and properties were characterized by elemental analysis, thermal analaysis, IR, UV–vis, and ESR spectroscopy, as well as electrochemical measurements including cyclic voltammetry, electrical molar conductivity, and magnetic moment measurements. Complexes 1 and 2 formed slightly distorted square-pyramidal coordination geometries of CuN3OCl and CuN3O2, respectively in which the N,O-donor glycine and N,N-donor bipyridyl bind at the basal plane with chloride ion or water as the axial ligand. Complex 3 shows square planar CuN3O coordination geometry, which exhibits chemically significant hydrogen bonding interactions besides showing coordination polymer formation. The superoxide dismutase and catalase-like activities of all complexes were tested and were found to be promising candidates as durable electron-transfer catalyst being close to the efficiency of the mimicking enzymes displaying either catalase or tyrosinase activity to serve for complete reactive oxygen species (ROS) detoxification, both with respect to superoxide radicals and related peroxides. The DNA binding interaction with super coiled pGEM-T plasmid DNA was investigated by using spectral (absorption and emission) titration and electrochemical techniques. The results revealed that DNA intercalate with complexes 1 and 2 through the groove binding mode. The calculated intrinsic binding constant (Kb) of 1 and 2 were 4.71 and 2.429 × 105 M−1, respectively. Gel electrophoresis study reveals the fact that both complexes cleave super coiled pGEM-T plasmid DNA to nicked and linear forms in the absence of any additives. On the other hand, the interaction of both complexes with DNA, the quasi-reversible CuII/CuI redox couple slightly improves its reversibility with considerable decrease in current intensity. All the experimental results indicate that the bipyridyl mixed copper(II) complex (1) intercalate more effectively into the DNA base pairs.

Keywords: enzyme mimics, mixed ligand complexes, X-ray structures, antioxidant, DNA-binding, DNA cleavage

Procedia PDF Downloads 518
20298 Removal of Pharmaceuticals from Aquarius Solutions Using Hybrid Ceramic Membranes

Authors: Jenny Radeva, Anke-Gundula Roth, Christian Goebbert, Robert Niestroj-Pahl, Lars Daehne, Axel Wolfram, Juergen Wiese

Abstract:

The technological advantages of ceramic filtration elements were combined with polyelectrolyte films in the development process of hybrid membrane for the elimination of pharmaceuticals from Aquarius solutions. Previously extruded alumina ceramic membranes were coated with nanosized polyelectrolyte films using Layer-by-Layer technology. The polyelectrolyte chains form a network with nano-pores on the ceramic surface and promote the retention of small molecules like pharmaceuticals and microplastics, which cannot be eliminated using standard ultrafiltration methods. Additionally, the polyelectrolyte coat contributes with its adjustable (based on application) Zeta Potential for repulsion of contaminant molecules with opposite charges. Properties like permeability, bubble point, pore size distribution and Zeta Potential of ceramic and hybrid membranes were characterized using various laboratory and pilot tests and compared with each other. The most significant role for the membrane characterization played the filtration behavior investigation, during which retention against widely used pharmaceuticals like Diclofenac, Ibuprofen and Sulfamethoxazol was subjected to series of filtration tests. The presented study offers a new perspective on nanosized molecules removal from aqueous solutions and shows the importance of combined techniques application for the elimination of pharmaceutical contaminants from drinking water.

Keywords: water treatment, hybrid membranes, layer-by-layer coating, filtration, polyelectrolytes

Procedia PDF Downloads 145
20297 Signal Amplification Using Graphene Oxide in Label Free Biosensor for Pathogen Detection

Authors: Agampodi Promoda Perera, Yong Shin, Mi Kyoung Park

Abstract:

The successful detection of pathogenic bacteria in blood provides important information for early detection, diagnosis and the prevention and treatment of infectious diseases. Silicon microring resonators are refractive-index-based optical biosensors that provide highly sensitive, label-free, real-time multiplexed detection of biomolecules. We demonstrate the technique of using GO (graphene oxide) to enhance the signal output of the silicon microring optical sensor. The activated carboxylic groups in GO molecules bind directly to single stranded DNA with an amino modified 5’ end. This conjugation amplifies the shift in resonant wavelength in a real-time manner. We designed a capture probe for strain Staphylococcus aureus of 21 bp and a longer complementary target sequence of 70 bp. The mismatched target sequence we used was of Streptococcus agalactiae of 70 bp. GO is added after the complementary binding of the probe and target. GO conjugates to the unbound single stranded segment of the target and increase the wavelength shift on the silicon microring resonator. Furthermore, our results show that GO could successfully differentiate between the mismatched DNA sequences from the complementary DNA sequence. Therefore, the proposed concept could effectively enhance sensitivity of pathogen detection sensors.

Keywords: label free biosensor, pathogenic bacteria, graphene oxide, diagnosis

Procedia PDF Downloads 443
20296 Design and Development of Power Sources for Plasma Actuators to Control Flow Separation

Authors: Himanshu J. Bahirat, Apoorva S. Janawlekar

Abstract:

Plasma actuators are essential for aerodynamic flow separation control due to their lack of mechanical parts, lightweight, and high response frequency, which have numerous applications in hypersonic or supersonic aircraft. The working of these actuators is based on the formation of a low-temperature plasma between a pair of parallel electrodes by the application of a high-voltage AC signal across the electrodes, after which air molecules from the air surrounding the electrodes are ionized and accelerated through the electric field. The high-frequency operation is required in dielectric discharge barriers to ensure plasma stability. To carry out flow separation control in a hypersonic flow, the optimal design and construction of a power supply to generate dielectric barrier discharges is carried out in this paper. In this paper, it is aspired to construct a simplified circuit topology to emulate the dielectric barrier discharge and study its various frequency responses. The power supply can generate high voltage pulses up to 20kV at the repetitive frequency range of 20-50kHz with an input power of 500W. The power supply has been designed to be short circuit proof and can endure variable plasma load conditions. Its general outline is to charge a capacitor through a half-bridge converter and then later discharge it through a step-up transformer at a high frequency in order to generate high voltage pulses. After simulating the circuit, the PCB design and, eventually, lab tests are carried out to study its effectiveness in controlling flow separation.

Keywords: aircraft propulsion, dielectric barrier discharge, flow separation control, power source

Procedia PDF Downloads 99
20295 Identification and Characterization of Inhibitors of Epoxide Hydrolase from Trichoderma reesei

Authors: Gabriel S. De Oliveira, Patricia P. Adriani, Christophe Moriseau, Bruce D. Hammock, Felipe S. Chambergo

Abstract:

Epoxide hydrolases (EHs) are enzymes that are present in all living organisms and catalyze the hydrolysis of epoxides to the corresponding vicinal diols. EHs have high biotechnological interest for the drug design and chemistry transformation for industries. In this study, we describe the identification of substrates and inhibitors of epoxide hydrolase enzyme from the filamentous fungus Trichoderma reesei (TrEH), and these inhibitors showed the fungal growth inhibitory activity. We have used the cloned enzyme and expressed in E. coli to develop the screening in the library of fluorescent substrates with the objective of finding the best substrate to be used in the identification of good inhibitors for the enzyme TrEH. The substrate (3-phenyloxiranyl)-acetic acid cyano-(6-methoxy-naphthalen-2-yl)-methyl ester showed the highest specific activity and was chosen for the next steps of the study. The inhibitors screening was performed in the library with more than three thousand molecules and we could identify the 6 best inhibitors. The IC50 of these molecules were determined in nM and all the best inhibitors have urea or amide in their structure, because It has been recognized that these groups fit well in the hydrolase catalytic pocket of the epoxide hydrolases. Then the growth of T. reesei in PDA medium containing these TrEH inhibitors was tested, and fungal growth inhibition activity was demonstrated with more than 60% of inhibition of fungus growth in the assay with the TrEH inhibitor with the lowest IC50. Understanding how this EH enzyme from T. reesei responds to inhibitors may contribute for the study of fungal metabolism and drug design against pathogenic fungi.

Keywords: epoxide hydrolases, fungal growth inhibition, inhibitor, Trichoderma reesei

Procedia PDF Downloads 174
20294 Biosorption of Heavy Metals by Low Cost Adsorbents

Authors: Azam Tabatabaee, Fereshteh Dastgoshadeh, Akram Tabatabaee

Abstract:

This paper describes the use of by-products as adsorbents for removing heavy metals from aqueous effluent solutions. Products of almond skin, walnut shell, saw dust, rice bran and egg shell were evaluated as metal ion adsorbents in aqueous solutions. A comparative study was done with commercial adsorbents like ion exchange resins and activated carbon too. Batch experiments were investigated to determine the affinity of all of biomasses for, Cd(ΙΙ), Cr(ΙΙΙ), Ni(ΙΙ), and Pb(ΙΙ) metal ions at pH 5. The rate of metal ion removal in the synthetic wastewater by the biomass was evaluated by measuring final concentration of synthetic wastewater. At a concentration of metal ion (50 mg/L), egg shell adsorbed high levels (98.6 – 99.7%) of Pb(ΙΙ) and Cr(ΙΙΙ) and walnut shell adsorbed high levels (35.3 – 65.4%) of Ni(ΙΙ) and Cd(ΙΙ). In this study, it has been shown that by-products were excellent adsorbents for removal of toxic ions from wastewater with efficiency comparable to commercially available adsorbents, but at a reduced cost. Also statistical studies using Independent Sample t Test and ANOVA Oneway for statistical comparison between various elements adsorption showed that there isn’t a significant difference in some elements adsorption percentage by by-products and commercial adsorbents.

Keywords: adsorbents, heavy metals, commercial adsorbents, wastewater, by-products

Procedia PDF Downloads 377
20293 In vitro Inhibitory Action of an Aqueous Extract of Carob on the Release of Myeloperoxidase by Human Neutrophils

Authors: Kais Rtibi, Slimen Selmi, Jamel El-Benna, Lamjed Marzouki, Hichem Sebai

Abstract:

Background: Myeloperoxidase (MPO) is a hemic enzyme found in high concentrations in the primary neutrophils granules. In addition to its peroxidase activity, it has a chlorination activity, using hydrogen peroxide and chloride ions to form hypochlorous acid, a strong oxidant, capable of chlorinating molecules. Bioactive compounds contained in medicinal plants could limit the action of this enzyme to reduce the reactive oxygen species production and its chlorination activity. The purpose of this study is to evaluate the effect of the carob aqueous extract (CAE) on the release of MPO by human neutrophils in vitro and its activity following stimulation of these cells by PMA. Methods: Neutrophils were isolated by simple sedimentation using the Dextran/Ficoll method. After stimulation with phorbol 12-myristate 13-acetate (PMA), neutrophils release the MPO by degranulation. The effect of CAE on the release of MPO was analyzed by the Western blot technique, while, its activity was determined by biochemical method using the method of 3,3', 5,5'- Tetramethylbenzidine (TMB) and hydrogen peroxide. The data were expressed as mean ± SEM. Results: The carob aqueous extract causes a decrease in MPO quantity and activity in a concentration-dependent manner which leads to a reduction of the production of the ROS (reactive oxygen species) and the protection of the molecules against oxidation and chlorination mechanisms. Conclusion: Thanks to its richness in bioactive compounds, the aqueous extract of carob could limit the development of damages related to the uncontrolled activity of MPO.

Keywords: carob, MPO, myeloperoxidase, neutrophils, PMA, phorbol 12-myristate 13-acetate

Procedia PDF Downloads 133
20292 Hybrid Molecules: A Promising Approach to Design Potent Antimicrobial and Anticancer Drugs

Authors: Blessing Atim Aderibigbe

Abstract:

A series of amine/ester-linked hybrid compounds containing pharmacophores, such as ursolic acid, oleanolic acid, ferrocene and bisphosphonates, were synthesized in an attempt to develop potent antibacterial and anticancer agents. Their structures were analyzed and confirmed using Nuclear Magnetic Resonance, Fourier Transform Infrared Spectroscopy, and mass spectroscopy. All the synthesized hybrid compounds were evaluated for their antibacterial activities against eleven selected bacterial strains using a serial dilution method. Some of the compounds displayed significant antibacterial activity against most of the bacterial and fungal strains. In addition, the in vitro cytotoxicity of these compounds was also performed against selected cancer cell lines. Some of the compounds were also found to be more active than their parent compounds, revealing the efficacy of designing hybrid molecules using plant-based bioactive agents.

Keywords: ursolic acid, hybrid drugs, oleanolic acid, bisphosphonates

Procedia PDF Downloads 55
20291 Different Methods of Producing Bioemulsifier by Bacillus licheniformis Strains

Authors: Saba Pajuhan, Afshin Farahbakhsh, S. M. M. Dastgheib

Abstract:

Biosurfactants and bioemulsifiers are a structurally diverse group of surface-active molecules synthesized by microorganisms, they are amphipathic molecules which reduce surface and interfacial tensions and widely used in pharmaceutical, cosmetic, food and petroleum industries. In this paper, several methods of bioemulsifer synthesis and purification by Bacillus licheniformis strains (namely ACO1, PTCC 1595 and ACO4) were investigated. Strains were grown in nutrient broth with different conditions in order to get maximum production of bioemulsifer. The purification of bio emulsifier and the quality evaluation of the product was done by adding sulfuric acid (H₂SO₄) (98%), Ethanol or HCl to the solution followed by centrifuging. To determine the optimal conditions yielding the highest bioemulsifier production, the effect of various carbon and nitrogen sources, temperature, NaCl concentration, pH, O₂ levels, incubation time are indispensable and all of them were highly effective in bioemulsifiers production.

Keywords: biosurfactant, bioemulsifier, purification, surface tension, interfacial tension

Procedia PDF Downloads 247
20290 Bimetallic Cu/Au Nanostructures and Bio-Application

Authors: Si Yin Tee

Abstract:

Bimetallic nanostructures have received tremendous interests as a new class of nanomaterials which may have better technological usefulness with distinct properties from those of individual atoms and molecules or bulk matter. They excelled over the monometallic counterparts because of their improved electronic, optical and catalytic performances. The properties and the applicability of these bimetallic nanostructures not only depend on their size and shape, but also on the composition and their fine structure. These bimetallic nanostructures are potential candidates for bio-applications such as biosensing, bioimaging, biodiagnostics, drug delivery, targeted therapeutics, and tissue engineering. Herein, gold-incorporated copper (Cu/Au) nanostructures were synthesized through the controlled disproportionation of Cu⁺-oleylamine complex at 220 ºC to form copper nanowires and the subsequent reaction with Au³⁺ at different temperatures of 140, 220 and 300 ºC. This is to achieve their synergistic effect through the combined use of the merits of low-cost transition and high-stability noble metals. Of these Cu/Au nanostructures, Cu/Au nanotubes display the best performance towards electrochemical non-enzymatic glucose sensing, originating from the high conductivity of gold and the high aspect ratio copper nanotubes with high surface area so as to optimise the electroactive sites and facilitate mass transport. In addition to high sensitivity and fast response, the Cu/Au nanotubes possess high selectivity against interferences from other potential interfering species and excellent reproducibility with long-term stability. By introducing gold into copper nanostructures at a low level of 3, 1 and 0.1 mol% relative to initial copper precursor, a significant electrocatalytic enhancement of the resulting bimetallic Cu/Au nanostructures starts to occur at 1 mol%. Overall, the present fabrication of stable Cu/Au nanostructures offers a promising low-cost platform for sensitive, selective, reproducible and reusable electrochemical sensing of glucose.

Keywords: bimetallic, electrochemical sensing, glucose oxidation, gold-incorporated copper nanostructures

Procedia PDF Downloads 494