Search results for: hierarchical linear regression
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6254

Search results for: hierarchical linear regression

6074 Creating Inclusive Educational Environments for Women Faculty of Color Harnessing Ubuntu Perspectives

Authors: Gonzaga Mukasa, Faith Maina, Amani Zaier

Abstract:

This study investigated whether harnessing Ubuntu perspectives can aid in healing wounds Hierarchical Microaggressive intersectionalities inflict on African immigrant women faculty in predominantly white institutions. The study interviewed 8 African immigrant faculty from different higher education institutions in the United States selected using the snowball sampling technique. The Ubuntu Theory anchored the study. Findings indicated that women faculty of color experience Hierarchical Microaggressive intersectionalities leading them to lose job satisfaction and feel deprofessionalized and isolated. The recommendations were that institutions make their recruitment more inclusive of women of color to avoid isolation. And should embrace Ubuntu perspectives such as survival, solidarity, compassion, dignity, and mutual respect to architect educational environments that foster diversity and inclusion.

Keywords: ubuntu, women faculty, African immigrants, hierarchical microaggressive intersectionalities

Procedia PDF Downloads 63
6073 A Study of Anthropometric Correlation between Upper and Lower Limb Dimensions in Sudanese Population

Authors: Altayeb Abdalla Ahmed

Abstract:

Skeletal phenotype is a product of a balanced interaction between genetics and environmental factors throughout different life stages. Therefore, interlimb proportions are variable between populations. Although interlimb proportion indices have been used in anthropology in assessing the influence of various environmental factors on limbs, an extensive literature review revealed that there is a paucity of published research assessing interlimb part correlations and possibility of reconstruction. Hence, this study aims to assess the relationships between upper and lower limb parts and develop regression formulae to reconstruct the parts from one another. The left upper arm length, ulnar length, wrist breadth, hand length, hand breadth, tibial length, bimalleolar breadth, foot length, and foot breadth of 376 right-handed subjects, comprising 187 males and 189 females (aged 25-35 years), were measured. Initially, the data were analyzed using basic univariate analysis and independent t-tests; then sex-specific simple and multiple linear regression models were used to estimate upper limb parts from lower limb parts and vice-versa. The results of this study indicated significant sexual dimorphism for all variables. The results indicated a significant correlation between the upper and lower limbs parts (p < 0.01). Linear and multiple (stepwise) regression equations were developed to reconstruct the limb parts in the presence of a single or multiple dimension(s) from the other limb. Multiple stepwise regression equations generated better reconstructions than simple equations. These results are significant in forensics as it can aid in identification of multiple isolated limb parts particularly during mass disasters and criminal dismemberment. Although a DNA analysis is the most reliable tool for identification, its usage has multiple limitations in undeveloped countries, e.g., cost, facility availability, and trained personnel. Furthermore, it has important implication in plastic and orthopedic reconstructive surgeries. This study is the only reported study assessing the correlation and prediction capabilities between many of the upper and lower dimensions. The present study demonstrates a significant correlation between the interlimb parts in both sexes, which indicates a possibility to reconstruction using regression equations.

Keywords: anthropometry, correlation, limb, Sudanese

Procedia PDF Downloads 290
6072 Assessing Relationships between Glandularity and Gray Level by Using Breast Phantoms

Authors: Yun-Xuan Tang, Pei-Yuan Liu, Kun-Mu Lu, Min-Tsung Tseng, Liang-Kuang Chen, Yuh-Feng Tsai, Ching-Wen Lee, Jay Wu

Abstract:

Breast cancer is predominant of malignant tumors in females. The increase in the glandular density increases the risk of breast cancer. BI-RADS is a frequently used density indicator in mammography; however, it significantly overestimates the glandularity. Therefore, it is very important to accurately and quantitatively assess the glandularity by mammography. In this study, 20%, 30% and 50% glandularity phantoms were exposed using a mammography machine at 28, 30 and 31 kVp, and 30, 55, 80 and 105 mAs, respectively. The regions of interest (ROIs) were drawn to assess the gray level. The relationship between the glandularity and gray level under various compression thicknesses, kVp, and mAs was established by the multivariable linear regression. A phantom verification was performed with automatic exposure control (AEC). The regression equation was obtained with an R-square value of 0.928. The average gray levels of the verification phantom were 8708, 8660 and 8434 for 0.952, 0.963 and 0.985 g/cm3, respectively. The percent differences of glandularity to the regression equation were 3.24%, 2.75% and 13.7%. We concluded that the proposed method could be clinically applied in mammography to improve the glandularity estimation and further increase the importance of breast cancer screening.

Keywords: mammography, glandularity, gray value, BI-RADS

Procedia PDF Downloads 485
6071 The Relationship Between Hourly Compensation and Unemployment Rate Using the Panel Data Regression Analysis

Authors: S. K. Ashiquer Rahman

Abstract:

the paper concentrations on the importance of hourly compensation, emphasizing the significance of the unemployment rate. There are the two most important factors of a nation these are its unemployment rate and hourly compensation. These are not merely statistics but they have profound effects on individual, families, and the economy. They are inversely related to one another. When we consider the unemployment rate that will probably decline as hourly compensations in manufacturing rise. But when we reduced the unemployment rates and increased job prospects could result from higher compensation. That’s why, the increased hourly compensation in the manufacturing sector that could have a favorable effect on job changing issues. Moreover, the relationship between hourly compensation and unemployment is complex and influenced by broader economic factors. In this paper, we use panel data regression models to evaluate the expected link between hourly compensation and unemployment rate in order to determine the effect of hourly compensation on unemployment rate. We estimate the fixed effects model, evaluate the error components, and determine which model (the FEM or ECM) is better by pooling all 60 observations. We then analysis and review the data by comparing 3 several countries (United States, Canada and the United Kingdom) using panel data regression models. Finally, we provide result, analysis and a summary of the extensive research on how the hourly compensation effects on the unemployment rate. Additionally, this paper offers relevant and useful informational to help the government and academic community use an econometrics and social approach to lessen on the effect of the hourly compensation on Unemployment rate to eliminate the problem.

Keywords: hourly compensation, Unemployment rate, panel data regression models, dummy variables, random effects model, fixed effects model, the linear regression model

Procedia PDF Downloads 72
6070 Performance Comparison of Different Regression Methods for a Polymerization Process with Adaptive Sampling

Authors: Florin Leon, Silvia Curteanu

Abstract:

Developing complete mechanistic models for polymerization reactors is not easy, because complex reactions occur simultaneously; there is a large number of kinetic parameters involved and sometimes the chemical and physical phenomena for mixtures involving polymers are poorly understood. To overcome these difficulties, empirical models based on sampled data can be used instead, namely regression methods typical of machine learning field. They have the ability to learn the trends of a process without any knowledge about its particular physical and chemical laws. Therefore, they are useful for modeling complex processes, such as the free radical polymerization of methyl methacrylate achieved in a batch bulk process. The goal is to generate accurate predictions of monomer conversion, numerical average molecular weight and gravimetrical average molecular weight. This process is associated with non-linear gel and glass effects. For this purpose, an adaptive sampling technique is presented, which can select more samples around the regions where the values have a higher variation. Several machine learning methods are used for the modeling and their performance is compared: support vector machines, k-nearest neighbor, k-nearest neighbor and random forest, as well as an original algorithm, large margin nearest neighbor regression. The suggested method provides very good results compared to the other well-known regression algorithms.

Keywords: batch bulk methyl methacrylate polymerization, adaptive sampling, machine learning, large margin nearest neighbor regression

Procedia PDF Downloads 299
6069 Predictive Analysis of the Stock Price Market Trends with Deep Learning

Authors: Suraj Mehrotra

Abstract:

The stock market is a volatile, bustling marketplace that is a cornerstone of economics. It defines whether companies are successful or in spiral. A thorough understanding of it is important - many companies have whole divisions dedicated to analysis of both their stock and of rivaling companies. Linking the world of finance and artificial intelligence (AI), especially the stock market, has been a relatively recent development. Predicting how stocks will do considering all external factors and previous data has always been a human task. With the help of AI, however, machine learning models can help us make more complete predictions in financial trends. Taking a look at the stock market specifically, predicting the open, closing, high, and low prices for the next day is very hard to do. Machine learning makes this task a lot easier. A model that builds upon itself that takes in external factors as weights can predict trends far into the future. When used effectively, new doors can be opened up in the business and finance world, and companies can make better and more complete decisions. This paper explores the various techniques used in the prediction of stock prices, from traditional statistical methods to deep learning and neural networks based approaches, among other methods. It provides a detailed analysis of the techniques and also explores the challenges in predictive analysis. For the accuracy of the testing set, taking a look at four different models - linear regression, neural network, decision tree, and naïve Bayes - on the different stocks, Apple, Google, Tesla, Amazon, United Healthcare, Exxon Mobil, J.P. Morgan & Chase, and Johnson & Johnson, the naïve Bayes model and linear regression models worked best. For the testing set, the naïve Bayes model had the highest accuracy along with the linear regression model, followed by the neural network model and then the decision tree model. The training set had similar results except for the fact that the decision tree model was perfect with complete accuracy in its predictions, which makes sense. This means that the decision tree model likely overfitted the training set when used for the testing set.

Keywords: machine learning, testing set, artificial intelligence, stock analysis

Procedia PDF Downloads 90
6068 Blood Glucose Level Measurement from Breath Analysis

Authors: Tayyab Hassan, Talha Rehman, Qasim Abdul Aziz, Ahmad Salman

Abstract:

The constant monitoring of blood glucose level is necessary for maintaining health of patients and to alert medical specialists to take preemptive measures before the onset of any complication as a result of diabetes. The current clinical monitoring of blood glucose uses invasive methods repeatedly which are uncomfortable and may result in infections in diabetic patients. Several attempts have been made to develop non-invasive techniques for blood glucose measurement. In this regard, the existing methods are not reliable and are less accurate. Other approaches claiming high accuracy have not been tested on extended dataset, and thus, results are not statistically significant. It is a well-known fact that acetone concentration in breath has a direct relation with blood glucose level. In this paper, we have developed the first of its kind, reliable and high accuracy breath analyzer for non-invasive blood glucose measurement. The acetone concentration in breath was measured using MQ 138 sensor in the samples collected from local hospitals in Pakistan involving one hundred patients. The blood glucose levels of these patients are determined using conventional invasive clinical method. We propose a linear regression classifier that is trained to map breath acetone level to the collected blood glucose level achieving high accuracy.

Keywords: blood glucose level, breath acetone concentration, diabetes, linear regression

Procedia PDF Downloads 166
6067 Achieving 13th Sustainable Development Goal: Urbanization and ICT Empowerment in Pursuit of Carbon Neutrality - Beyond Linear Thinking

Authors: Salim Khan

Abstract:

The attainment of the carbon neutrality objective and Sustainable Development Goal 13 (SDG-13) target, which pertains to climate actions, received widespread attention in developing and emerging nations. Given the increasing pace of urbanization, technological advancements, and rapid growth, it is imperative to examine the linear and nonlinear effects of urbanization and economic growth and the linear impact of information and communication technology (ICT) on carbon emissions (CO2e). This study employs the Dynamic System GMM (DSGMM) and Panel Quantile Regression (PQR) methodologies to investigate the causal relationship between urbanization, ICT, economic growth, and their interplay on CO2e in 39 BRI countries from 2001 to 2020. The study's findings indicate that the impact of urbanization on CO2e exhibits linear and nonlinear patterns. The specific nonlinear impact of urbanization leads to a decrease in CO2e, hence facilitating the achievement of carbon neutrality and contributing to SDG-13. The study highlights the importance of ICT in achieving SDG-13 by reducing CO2e, emphasizing the need for informatization. Simultaneously, the findings support the Environmental Kuznets Curve (EKC) hypothesis and support the pollution haven theory. Finally, based on empirical findings, significant policy implications are suggested for achieving SGD 13 and carbon neutrality.

Keywords: urbanization, ICT, CO2 emission, EKC, pollution haven, BRI

Procedia PDF Downloads 17
6066 Assessment of Forest Above Ground Biomass Through Linear Modeling Technique Using SAR Data

Authors: Arjun G. Koppad

Abstract:

The study was conducted in Joida taluk of Uttara Kannada district, Karnataka, India, to assess the land use land cover (LULC) and forest aboveground biomass using L band SAR data. The study area covered has dense, moderately dense, and sparse forests. The sampled area was 0.01 percent of the forest area with 30 sampling plots which were selected randomly. The point center quadrate (PCQ) method was used to select the tree and collected the tree growth parameters viz., tree height, diameter at breast height (DBH), and diameter at the tree base. The tree crown density was measured with a densitometer. Each sample plot biomass was estimated using the standard formula. In this study, the LULC classification was done using Freeman-Durden, Yamaghuchi and Pauli polarimetric decompositions. It was observed that the Freeman-Durden decomposition showed better LULC classification with an accuracy of 88 percent. An attempt was made to estimate the aboveground biomass using SAR backscatter. The ALOS-2 PALSAR-2 L-band data (HH, HV, VV &VH) fully polarimetric quad-pol SAR data was used. SAR backscatter-based regression model was implemented to retrieve forest aboveground biomass of the study area. Cross-polarization (HV) has shown a good correlation with forest above-ground biomass. The Multi Linear Regression analysis was done to estimate aboveground biomass of the natural forest areas of the Joida taluk. The different polarizations (HH &HV, VV &HH, HV & VH, VV&VH) combination of HH and HV polarization shows a good correlation with field and predicted biomass. The RMSE and value for HH & HV and HH & VV were 78 t/ha and 0.861, 81 t/ha and 0.853, respectively. Hence the model can be recommended for estimating AGB for the dense, moderately dense, and sparse forest.

Keywords: forest, biomass, LULC, back scatter, SAR, regression

Procedia PDF Downloads 22
6065 Support Vector Regression for Retrieval of Soil Moisture Using Bistatic Scatterometer Data at X-Band

Authors: Dileep Kumar Gupta, Rajendra Prasad, Pradeep Kumar, Varun Narayan Mishra, Ajeet Kumar Vishwakarma, Prashant K. Srivastava

Abstract:

An approach was evaluated for the retrieval of soil moisture of bare soil surface using bistatic scatterometer data in the angular range of 200 to 700 at VV- and HH- polarization. The microwave data was acquired by specially designed X-band (10 GHz) bistatic scatterometer. The linear regression analysis was done between scattering coefficients and soil moisture content to select the suitable incidence angle for retrieval of soil moisture content. The 250 incidence angle was found more suitable. The support vector regression analysis was used to approximate the function described by the input-output relationship between the scattering coefficient and corresponding measured values of the soil moisture content. The performance of support vector regression algorithm was evaluated by comparing the observed and the estimated soil moisture content by statistical performance indices %Bias, root mean squared error (RMSE) and Nash-Sutcliffe Efficiency (NSE). The values of %Bias, root mean squared error (RMSE) and Nash-Sutcliffe Efficiency (NSE) were found 2.9451, 1.0986, and 0.9214, respectively at HH-polarization. At VV- polarization, the values of %Bias, root mean squared error (RMSE) and Nash-Sutcliffe Efficiency (NSE) were found 3.6186, 0.9373, and 0.9428, respectively.

Keywords: bistatic scatterometer, soil moisture, support vector regression, RMSE, %Bias, NSE

Procedia PDF Downloads 421
6064 An Examination of the Relationship between Organizational Justice and Trust in the Supervisor: The Mediating Role of Perceived Supervisor Support

Authors: Michel Zaitouni, Mohamed Nassar

Abstract:

The purpose of this study is first, to explore the effect of employees’ perception of justice on trust in the supervisor in the context of performance appraisal; Second, to assess the role of perceived supervisor support as a mediator between organizational justice and trust in the supervisor in a non-western society such as Kuwait.The survey data consisted of 415 employees working at different hierarchical levels in three major banks in Kuwait. Hierarchical regression analysis was used to test the research hypotheses. Results supported hypothesized relationships between distributive, informational and interpersonal justice and trust in the supervisor but failed to support that procedural justice positively and significantly relate to trust in the supervisor. Moreover, results found that this relationship is partially mediated by perceived supervisor support. A potential limitation of this study is that data were obtained from the same industry which limits the generalizability of this study to other industries. Moreover, a longitudinal research will be helpful to strengthen the mediating relationship. The findings provide valuable information for the development of common perspectives regarding the perception of justice in the context of performance appraisal between the western and non-western societies. The paper has the privilege to explore additional relationships related to justice perceptions in the Kuwaiti banking sector, whereas previous research focused mainly on procedural and distributive justice as predictors of trust in the supervisor.

Keywords: Kuwait, organizational justice, perceived supervisor support, trust in the supervisor

Procedia PDF Downloads 301
6063 A Heuristic Based Decomposition Approach for a Hierarchical Production Planning Problem

Authors: Nusrat T. Chowdhury, M. F. Baki, A. Azab

Abstract:

The production planning problem is concerned with specifying the optimal quantities to produce in order to meet the demand for a prespecified planning horizon with the least possible expenditure. Making the right decisions in production planning will affect directly the performance and productivity of a manufacturing firm, which is important for its ability to compete in the market. Therefore, developing and improving solution procedures for production planning problems is very significant. In this paper, we develop a Dantzig-Wolfe decomposition of a multi-item hierarchical production planning problem with capacity constraint and present a column generation approach to solve the problem. The original Mixed Integer Linear Programming model of the problem is decomposed item by item into a master problem and a number of subproblems. The capacity constraint is considered as the linking constraint between the master problem and the subproblems. The subproblems are solved using the dynamic programming approach. We also propose a multi-step iterative capacity allocation heuristic procedure to handle any kind of infeasibility that arises while solving the problem. We compare the computational performance of the developed solution approach against the state-of-the-art heuristic procedure available in the literature. The results show that the proposed heuristic-based decomposition approach improves the solution quality by 20% as compared to the literature.

Keywords: inventory, multi-level capacitated lot-sizing, emission control, setup carryover

Procedia PDF Downloads 135
6062 Generalized Correlation Coefficient in Genome-Wide Association Analysis of Cognitive Ability in Twins

Authors: Afsaneh Mohammadnejad, Marianne Nygaard, Jan Baumbach, Shuxia Li, Weilong Li, Jesper Lund, Jacob v. B. Hjelmborg, Lene Christensen, Qihua Tan

Abstract:

Cognitive impairment in the elderly is a key issue affecting the quality of life. Despite a strong genetic background in cognition, only a limited number of single nucleotide polymorphisms (SNPs) have been found. These explain a small proportion of the genetic component of cognitive function, thus leaving a large proportion unaccounted for. We hypothesize that one reason for this missing heritability is the misspecified modeling in data analysis concerning phenotype distribution as well as the relationship between SNP dosage and the phenotype of interest. In an attempt to overcome these issues, we introduced a model-free method based on the generalized correlation coefficient (GCC) in a genome-wide association study (GWAS) of cognitive function in twin samples and compared its performance with two popular linear regression models. The GCC-based GWAS identified two genome-wide significant (P-value < 5e-8) SNPs; rs2904650 near ZDHHC2 on chromosome 8 and rs111256489 near CD6 on chromosome 11. The kinship model also detected two genome-wide significant SNPs, rs112169253 on chromosome 4 and rs17417920 on chromosome 7, whereas no genome-wide significant SNPs were found by the linear mixed model (LME). Compared to the linear models, more meaningful biological pathways like GABA receptor activation, ion channel transport, neuroactive ligand-receptor interaction, and the renin-angiotensin system were found to be enriched by SNPs from GCC. The GCC model outperformed the linear regression models by identifying more genome-wide significant genetic variants and more meaningful biological pathways related to cognitive function. Moreover, GCC-based GWAS was robust in handling genetically related twin samples, which is an important feature in handling genetic confounding in association studies.

Keywords: cognition, generalized correlation coefficient, GWAS, twins

Procedia PDF Downloads 116
6061 Finding Bicluster on Gene Expression Data of Lymphoma Based on Singular Value Decomposition and Hierarchical Clustering

Authors: Alhadi Bustaman, Soeganda Formalidin, Titin Siswantining

Abstract:

DNA microarray technology is used to analyze thousand gene expression data simultaneously and a very important task for drug development and test, function annotation, and cancer diagnosis. Various clustering methods have been used for analyzing gene expression data. However, when analyzing very large and heterogeneous collections of gene expression data, conventional clustering methods often cannot produce a satisfactory solution. Biclustering algorithm has been used as an alternative approach to identifying structures from gene expression data. In this paper, we introduce a transform technique based on singular value decomposition to identify normalized matrix of gene expression data followed by Mixed-Clustering algorithm and the Lift algorithm, inspired in the node-deletion and node-addition phases proposed by Cheng and Church based on Agglomerative Hierarchical Clustering (AHC). Experimental study on standard datasets demonstrated the effectiveness of the algorithm in gene expression data.

Keywords: agglomerative hierarchical clustering (AHC), biclustering, gene expression data, lymphoma, singular value decomposition (SVD)

Procedia PDF Downloads 271
6060 Fuzzy Linear Programming Approach for Determining the Production Amounts in Food Industry

Authors: B. Güney, Ç. Teke

Abstract:

In recent years, rapid and correct decision making is crucial for both people and enterprises. However, uncertainty makes decision-making difficult. Fuzzy logic is used for coping with this situation. Thus, fuzzy linear programming models are developed in order to handle uncertainty in objective function and the constraints. In this study, a problem of a factory in food industry is investigated, required data is obtained and the problem is figured out as a fuzzy linear programming model. The model is solved using Zimmerman approach which is one of the approaches for fuzzy linear programming. As a result, the solution gives the amount of production for each product type in order to gain maximum profit.

Keywords: food industry, fuzzy linear programming, fuzzy logic, linear programming

Procedia PDF Downloads 645
6059 Quantitative Structure Activity Relationship and Insilco Docking of Substituted 1,3,4-Oxadiazole Derivatives as Potential Glucosamine-6-Phosphate Synthase Inhibitors

Authors: Suman Bala, Sunil Kamboj, Vipin Saini

Abstract:

Quantitative Structure Activity Relationship (QSAR) analysis has been developed to relate antifungal activity of novel substituted 1,3,4-oxadiazole against Candida albicans and Aspergillus niger using computer assisted multiple regression analysis. The study has shown the better relationship between antifungal activities with respect to various descriptors established by multiple regression analysis. The analysis has shown statistically significant correlation with R2 values 0.932 and 0.782 against Candida albicans and Aspergillus niger respectively. These derivatives were further subjected to molecular docking studies to investigate the interactions between the target compounds and amino acid residues present in the active site of glucosamine-6-phosphate synthase. All the synthesized compounds have better docking score as compared to standard fluconazole. Our results could be used for the further design as well as development of optimal and potential antifungal agents.

Keywords: 1, 3, 4-oxadiazole, QSAR, multiple linear regression, docking, glucosamine-6-phosphate synthase

Procedia PDF Downloads 334
6058 Low-Cost Image Processing System for Evaluating Pavement Surface Distress

Authors: Keerti Kembhavi, M. R. Archana, V. Anjaneyappa

Abstract:

Most asphalt pavement condition evaluation use rating frameworks in which asphalt pavement distress is estimated by type, extent, and severity. Rating is carried out by the pavement condition rating (PCR), which is tedious and expensive. This paper presents the development of a low-cost technique for image pavement distress analysis that permits the identification of pothole and cracks. The paper explores the application of image processing tools for the detection of potholes and cracks. Longitudinal cracking and pothole are detected using Fuzzy-C- Means (FCM) and proceeded with the Spectral Theory algorithm. The framework comprises three phases, including image acquisition, processing, and extraction of features. A digital camera (Gopro) with the holder is used to capture pavement distress images on a moving vehicle. FCM classifier and Spectral Theory algorithms are used to compute features and classify the longitudinal cracking and pothole. The Matlab2016Ra Image preparing tool kit utilizes performance analysis to identify the viability of pavement distress on selected urban stretches of Bengaluru city, India. The outcomes of image evaluation with the utilization semi-computerized image handling framework represented the features of longitudinal crack and pothole with an accuracy of about 80%. Further, the detected images are validated with the actual dimensions, and it is seen that dimension variability is about 0.46. The linear regression model y=1.171x-0.155 is obtained using the existing and experimental / image processing area. The R2 correlation square obtained from the best fit line is 0.807, which is considered in the linear regression model to be ‘large positive linear association’.

Keywords: crack detection, pothole detection, spectral clustering, fuzzy-c-means

Procedia PDF Downloads 175
6057 Variogram Fitting Based on the Wilcoxon Norm

Authors: Hazem Al-Mofleh, John Daniels, Joseph McKean

Abstract:

Within geostatistics research, effective estimation of the variogram points has been examined, particularly in developing robust alternatives. The parametric fit of these variogram points which eventually defines the kriging weights, however, has not received the same attention from a robust perspective. This paper proposes the use of the non-linear Wilcoxon norm over weighted non-linear least squares as a robust variogram fitting alternative. First, we introduce the concept of variogram estimation and fitting. Then, as an alternative to non-linear weighted least squares, we discuss the non-linear Wilcoxon estimator. Next, the robustness properties of the non-linear Wilcoxon are demonstrated using a contaminated spatial data set. Finally, under simulated conditions, increasing levels of contaminated spatial processes have their variograms points estimated and fit. In the fitting of these variogram points, both non-linear Weighted Least Squares and non-linear Wilcoxon fits are examined for efficiency. At all levels of contamination (including 0%), using a robust estimation and robust fitting procedure, the non-weighted Wilcoxon outperforms weighted Least Squares.

Keywords: non-linear wilcoxon, robust estimation, variogram estimation, wilcoxon norm

Procedia PDF Downloads 449
6056 High Resolution Satellite Imagery and Lidar Data for Object-Based Tree Species Classification in Quebec, Canada

Authors: Bilel Chalghaf, Mathieu Varin

Abstract:

Forest characterization in Quebec, Canada, is usually assessed based on photo-interpretation at the stand level. For species identification, this often results in a lack of precision. Very high spatial resolution imagery, such as DigitalGlobe, and Light Detection and Ranging (LiDAR), have the potential to overcome the limitations of aerial imagery. To date, few studies have used that data to map a large number of species at the tree level using machine learning techniques. The main objective of this study is to map 11 individual high tree species ( > 17m) at the tree level using an object-based approach in the broadleaf forest of Kenauk Nature, Quebec. For the individual tree crown segmentation, three canopy-height models (CHMs) from LiDAR data were assessed: 1) the original, 2) a filtered, and 3) a corrected model. The corrected CHM gave the best accuracy and was then coupled with imagery to refine tree species crown identification. When compared with photo-interpretation, 90% of the objects represented a single species. For modeling, 313 variables were derived from 16-band WorldView-3 imagery and LiDAR data, using radiance, reflectance, pixel, and object-based calculation techniques. Variable selection procedures were employed to reduce their number from 313 to 16, using only 11 bands to aid reproducibility. For classification, a global approach using all 11 species was compared to a semi-hierarchical hybrid classification approach at two levels: (1) tree type (broadleaf/conifer) and (2) individual broadleaf (five) and conifer (six) species. Five different model techniques were used: (1) support vector machine (SVM), (2) classification and regression tree (CART), (3) random forest (RF), (4) k-nearest neighbors (k-NN), and (5) linear discriminant analysis (LDA). Each model was tuned separately for all approaches and levels. For the global approach, the best model was the SVM using eight variables (overall accuracy (OA): 80%, Kappa: 0.77). With the semi-hierarchical hybrid approach, at the tree type level, the best model was the k-NN using six variables (OA: 100% and Kappa: 1.00). At the level of identifying broadleaf and conifer species, the best model was the SVM, with OA of 80% and 97% and Kappa values of 0.74 and 0.97, respectively, using seven variables for both models. This paper demonstrates that a hybrid classification approach gives better results and that using 16-band WorldView-3 with LiDAR data leads to more precise predictions for tree segmentation and classification, especially when the number of tree species is large.

Keywords: tree species, object-based, classification, multispectral, machine learning, WorldView-3, LiDAR

Procedia PDF Downloads 127
6055 Antibacterial Evaluation, in Silico ADME and QSAR Studies of Some Benzimidazole Derivatives

Authors: Strahinja Kovačević, Lidija Jevrić, Miloš Kuzmanović, Sanja Podunavac-Kuzmanović

Abstract:

In this paper, various derivatives of benzimidazole have been evaluated against Gram-negative bacteria Escherichia coli. For all investigated compounds the minimum inhibitory concentration (MIC) was determined. Quantitative structure-activity relationships (QSAR) attempts to find consistent relationships between the variations in the values of molecular properties and the biological activity for a series of compounds so that these rules can be used to evaluate new chemical entities. The correlation between MIC and some absorption, distribution, metabolism and excretion (ADME) parameters was investigated, and the mathematical models for predicting the antibacterial activity of this class of compounds were developed. The quality of the multiple linear regression (MLR) models was validated by the leave-one-out (LOO) technique, as well as by the calculation of the statistical parameters for the developed models and the results are discussed on the basis of the statistical data. The results of this study indicate that ADME parameters have a significant effect on the antibacterial activity of this class of compounds. Principal component analysis (PCA) and agglomerative hierarchical clustering algorithms (HCA) confirmed that the investigated molecules can be classified into groups on the basis of the ADME parameters: Madin-Darby Canine Kidney cell permeability (MDCK), Plasma protein binding (PPB%), human intestinal absorption (HIA%) and human colon carcinoma cell permeability (Caco-2).

Keywords: benzimidazoles, QSAR, ADME, in silico

Procedia PDF Downloads 370
6054 Investigation of Compressive Strength of Fly Ash-Based Geopolymer Bricks with Hierarchical Bayesian Path Analysis

Authors: Ersin Sener, Ibrahim Demir, Hasan Aykut Karaboga, Kadir Kilinc

Abstract:

Bayesian methods, which have very wide range of applications, are implemented to the data obtained from the production of F class fly ash-based geopolymer bricks’ experimental design. In this study, dependent variable is compressive strength, independent variables are treatment type (oven and steam), treatment time, molding time, temperature, water absorbtion ratio and density. The effect of independent variables on compressive strength is investigated. There is no difference among treatment types, but there is a correlation between independent variables. Therefore, hierarchical Bayesian path analysis is applied. In consequence of analysis we specified that treatment time, temperature and density effects on compressive strength is higher, molding time, and water absorbtion ratio is relatively low.

Keywords: experimental design, F class fly ash, geopolymer bricks, hierarchical Bayesian path analysis

Procedia PDF Downloads 381
6053 Effect of Linear Thermal Gradient on Steady-State Creep Behavior of Isotropic Rotating Disc

Authors: Minto Rattan, Tania Bose, Neeraj Chamoli

Abstract:

The present paper investigates the effect of linear thermal gradient on the steady-state creep behavior of rotating isotropic disc using threshold stress based Sherby’s creep law. The composite discs made of aluminum matrix reinforced with silicon carbide particulate has been taken for analysis. The stress and strain rate distributions have been calculated for discs rotating at linear thermal gradation using von Mises’ yield criterion. The material parameters have been estimated by regression fit of the available experimental data. The results are displayed and compared graphically in designer friendly format for the above said temperature profile with the disc operating under uniform temperature profile. It is observed that radial and tangential stresses show minor variation and the strain rates vary significantly in the presence of thermal gradation as compared to disc having uniform temperature.

Keywords: creep, isotropic, steady-state, thermal gradient

Procedia PDF Downloads 264
6052 Management of Femoral Neck Stress Fractures at a Specialist Centre and Predictive Factors to Return to Activity Time: An Audit

Authors: Charlotte K. Lee, Henrique R. N. Aguiar, Ralph Smith, James Baldock, Sam Botchey

Abstract:

Background: Femoral neck stress fractures (FNSF) are uncommon, making up 1 to 7.2% of stress fractures in healthy subjects. FNSFs are prevalent in young women, military recruits, endurance athletes, and individuals with energy deficiency syndrome or female athlete triad. Presentation is often non-specific and is often misdiagnosed following the initial examination. There is limited research addressing the return–to–activity time after FNSF. Previous studies have demonstrated prognostic time predictions based on various imaging techniques. Here, (1) OxSport clinic FNSF practice standards are retrospectively reviewed, (2) FNSF cohort demographics are examined, (3) Regression models were used to predict return–to–activity prognosis and consequently determine bone stress risk factors. Methods: Patients with a diagnosis of FNSF attending Oxsport clinic between 01/06/2020 and 01/01/2020 were selected from the Rheumatology Assessment Database Innovation in Oxford (RhADiOn) and OxSport Stress Fracture Database (n = 14). (1) Clinical practice was audited against five criteria based on local and National Institute for Health Care Excellence guidance, with a 100% standard. (2) Demographics of the FNSF cohort were examined with Student’s T-Test. (3) Lastly, linear regression and Random Forest regression models were used on this patient cohort to predict return–to–activity time. Consequently, an analysis of feature importance was conducted after fitting each model. Results: OxSport clinical practice met standard (100%) in 3/5 criteria. The criteria not met were patient waiting times and documentation of all bone stress risk factors. Importantly, analysis of patient demographics showed that of the population with complete bone stress risk factor assessments, 53% were positive for modifiable bone stress risk factors. Lastly, linear regression analysis was utilized to identify demographic factors that predicted return–to–activity time [R2 = 79.172%; average error 0.226]. This analysis identified four key variables that predicted return-to-activity time: vitamin D level, total hip DEXA T value, femoral neck DEXA T value, and history of an eating disorder/disordered eating. Furthermore, random forest regression models were employed for this task [R2 = 97.805%; average error 0.024]. Analysis of the importance of each feature again identified a set of 4 variables, 3 of which matched with the linear regression analysis (vitamin D level, total hip DEXA T value, and femoral neck DEXA T value) and the fourth: age. Conclusion: OxSport clinical practice could be improved by more comprehensively evaluating bone stress risk factors. The importance of this evaluation is demonstrated by the population found positive for these risk factors. Using this cohort, potential bone stress risk factors that significantly impacted return-to-activity prognosis were predicted using regression models.

Keywords: eating disorder, bone stress risk factor, femoral neck stress fracture, vitamin D

Procedia PDF Downloads 176
6051 The Impact of Transformational Leadership on Individual Entrepreneurial Behavior and the Moderating Role of Hierarchy

Authors: Patrick Guggenberger

Abstract:

Extant literature has highlighted the importance of individual employees in the entrepreneurial process, as they are those that come up with novel ideas and promote their implementation throughout the organization. However, research on antecedents of individual entrepreneurial behavior (IEB) is very limited. The present study takes an initial step to investigate the interplay between transformational leader behaviors of direct supervisors and employees’ ability and willingness to act entrepreneurial and sheds light on the moderating role of an individual’s hierarchical level. A theoretically derived research model is empirically tested, drawing on survey data of 450 individuals working in medium- and large-sized corporations in two countries. Findings indicate that various transformational leader behaviors have a strong positive impact on IEB, while the ability of direct supervisors to influence their followers’ entrepreneurial behavior depends strongly on their own hierarchical level. The study reveals that transformational leadership has most impact at lower hierarchical levels, where employees’ motivation to act entrepreneurial is the lowest.

Keywords: corporate entrepreneurship, hierarchy, individual entrepreneurial behavior, transformational leadership

Procedia PDF Downloads 344
6050 Artificial Neural Network Modeling of a Closed Loop Pulsating Heat Pipe

Authors: Vipul M. Patel, Hemantkumar B. Mehta

Abstract:

Technological innovations in electronic world demand novel, compact, simple in design, less costly and effective heat transfer devices. Closed Loop Pulsating Heat Pipe (CLPHP) is a passive phase change heat transfer device and has potential to transfer heat quickly and efficiently from source to sink. Thermal performance of a CLPHP is governed by various parameters such as number of U-turns, orientations, input heat, working fluids and filling ratio. The present paper is an attempt to predict the thermal performance of a CLPHP using Artificial Neural Network (ANN). Filling ratio and heat input are considered as input parameters while thermal resistance is set as target parameter. Types of neural networks considered in the present paper are radial basis, generalized regression, linear layer, cascade forward back propagation, feed forward back propagation; feed forward distributed time delay, layer recurrent and Elman back propagation. Linear, logistic sigmoid, tangent sigmoid and Radial Basis Gaussian Function are used as transfer functions. Prediction accuracy is measured based on the experimental data reported by the researchers in open literature as a function of Mean Absolute Relative Deviation (MARD). The prediction of a generalized regression ANN model with spread constant of 4.8 is found in agreement with the experimental data for MARD in the range of ±1.81%.

Keywords: ANN models, CLPHP, filling ratio, generalized regression, spread constant

Procedia PDF Downloads 285
6049 A General Approach to Define Adjoint of Linear and Non-linear Operators

Authors: Mehdi Jafari Matehkolaee

Abstract:

In this paper, we have obtained the adjoint of an arbitrary operator (linear and nonlinear) in Hilbert space by introducing an n-dimensional Riemannian manifold. This general formalism covers every linear operator (non – differential) in Hilbert space. In fact, our approach shows that instead of using the adjoint definition of an operator directly, it can be obtained directly by relying on a suitable generalized space according to the action of the operator in question. For the case of nonlinear operators, we have to change the definition of the linear operator adjoint. But here, we have obtained an adjoint of these operators with respect to the definition of the derivative of the operator. As a matter of fact, we have shown one of the straight applications of the ''Frechet derivative'' in the algebra of the operators.

Keywords: adjoint operator, non-linear operator, differentiable operator, manifold

Procedia PDF Downloads 112
6048 Model Averaging for Poisson Regression

Authors: Zhou Jianhong

Abstract:

Model averaging is a desirable approach to deal with model uncertainty, which, however, has rarely been explored for Poisson regression. In this paper, we propose a model averaging procedure based on an unbiased estimator of the expected Kullback-Leibler distance for the Poisson regression. Simulation study shows that the proposed model average estimator outperforms some other commonly used model selection and model average estimators in some situations. Our proposed methods are further applied to a real data example and the advantage of this method is demonstrated again.

Keywords: model averaging, poission regression, Kullback-Leibler distance, statistics

Procedia PDF Downloads 512
6047 An Improved Transmission Scheme in Cooperative Communication System

Authors: Seung-Jun Yu, Young-Min Ko, Hyoung-Kyu Song

Abstract:

Recently developed cooperative diversity scheme enables a terminal to get transmit diversity through the support of other terminals. However, most of the introduced cooperative schemes have a common fault of decreased transmission rate because the destination should receive the decodable compositions of symbols from the source and the relay. In order to achieve high data rate, we propose a cooperative scheme that employs hierarchical modulation. This scheme is free from the rate loss and allows seamless cooperative communication.

Keywords: cooperative communication, hierarchical modulation, high data rate, transmission scheme

Procedia PDF Downloads 421
6046 Finding Related Scientific Documents Using Formal Concept Analysis

Authors: Nadeem Akhtar, Hira Javed

Abstract:

An important aspect of research is literature survey. Availability of a large amount of literature across different domains triggers the need for optimized systems which provide relevant literature to researchers. We propose a search system based on keywords for text documents. This experimental approach provides a hierarchical structure to the document corpus. The documents are labelled with keywords using KEA (Keyword Extraction Algorithm) and are automatically organized in a lattice structure using Formal Concept Analysis (FCA). This groups the semantically related documents together. The hierarchical structure, based on keywords gives out only those documents which precisely contain them. This approach open doors for multi-domain research. The documents across multiple domains which are indexed by similar keywords are grouped together. A hierarchical relationship between keywords is obtained. To signify the effectiveness of the approach, we have carried out the experiment and evaluation on Semeval-2010 Dataset. Results depict that the presented method is considerably successful in indexing of scientific papers.

Keywords: formal concept analysis, keyword extraction algorithm, scientific documents, lattice

Procedia PDF Downloads 324
6045 Analytical Solution of Non–Autonomous Discrete Non-Linear Schrodinger Equation With Saturable Non-Linearity

Authors: Mishu Gupta, Rama Gupta

Abstract:

It has been elucidated here that non- autonomous discrete non-linear Schrödinger equation is associated with saturable non-linearity through photo-refractive media. We have investigated the localized solution of non-autonomous saturable discrete non-linear Schrödinger equations. The similarity transformation has been involved in converting non-autonomous saturable discrete non-linear Schrödinger equation to constant-coefficient saturable discrete non-linear Schrödinger equation (SDNLSE), whose exact solution is already known. By back substitution, the solution of the non-autonomous version has been obtained. We have analysed our solution for the hyperbolic and periodic form of gain/loss term, and interesting results have been obtained. The most important characteristic role is that it helps us to analyse the propagation of electromagnetic waves in glass fibres and other optical wave mediums. Also, the usage of SDNLSE has been seen in tight binding for Bose-Einstein condensates in optical mediums. Even the solutions are interrelated, and its properties are prominently used in various physical aspects like optical waveguides, Bose-Einstein (B-E) condensates in optical mediums, Non-linear optics in photonic crystals, and non-linear kerr–type non-linearity effect and photo refracting medium.

Keywords: B-E-Bose-Einstein, DNLSE-Discrete non linear schrodinger equation, NLSE-non linear schrodinger equation, SDNLSE - saturable discrete non linear Schrodinger equation

Procedia PDF Downloads 149