Search results for: glucose homeostasis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 884

Search results for: glucose homeostasis

854 Hydrothermal Synthesis of Mesoporous Carbon Nanospheres and Their Electrochemical Properties for Glucose Detection

Authors: Ali Akbar Kazemi Asl, Mansour Rahsepar

Abstract:

Mesoporous carbon nanospheres (MCNs) with uniform particle size distribution having an average of 290 nm and large specific surface area (274.4 m²/g) were synthesized by a one-step hydrothermal method followed by the calcination process and then utilized as an enzyme-free glucose biosensor. Morphology, crystal structure, and porous nature of the synthesized nanospheres were characterized by scanning electron microscopy (SEM), X-Ray diffraction (XRD), and Brunauer–Emmett–Teller (BET) analysis, respectively. Also, the electrochemical performance of the MCNs@GCE electrode for the measurement of glucose concentration in alkaline media was investigated by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and chronoamperometry (CA). MCNs@GCE electrode shows good sensing performance, including a rapid glucose oxidation response within 3.1 s, a wide linear range of 0.026-12 mM, a sensitivity of 212.34 μA.mM⁻¹.cm⁻², and a detection limit of 25.7 μM with excellent selectivity.

Keywords: biosensor, electrochemical, glucose, mesoporous carbon, non-enzymatic

Procedia PDF Downloads 160
853 Amperometric Biosensor for Glucose Determination Based on a Recombinant Mn Peroxidase from Corn Cross-linked to a Gold Electrode

Authors: Anahita Izadyar, My Ni Van, Kayleigh Amber Rodriguez, Ilwoo Seok, Elizabeth E. Hood

Abstract:

Using a recombinant enzyme derived from corn and a simple modification, we fabricated a facile, fast, and cost-beneficial biosensor to measure glucose. The Nafion/ Plant Produced Mn Peroxidase (PPMP)– glucose oxidase (GOx)- Bovine serum albumin (BSA) /Au electrode showed an excellent amperometric response to detect glucose. This biosensor is capable of responding to a wide range of glucose—20.0 µM−15.0 mM and has a lower detection limit (LOD) of 2.90µM. The reproducibility response using six electrodes is also very substantial and indicates the high capability of this biosensor to detect a wide range of 3.10±0.19µM to 13.2±1.8 mM glucose concentration. Selectivity of this electrode was investigated in an optimized experimental solution contains 10% diet green tea with citrus containing ascorbic acid (AA), and citric acid (CA) in a wide concentration of glucose at 0.02 to 14.0mM with an LOD of 3.10µM. Reproducibility was also investigated using 4 electrodes in this sample and shows notable results in the wide concentration range of 3.35±0.45µM to of 13.0 ± 0.81 mM. We also used other voltammetry methods to evaluate this biosensor. We applied linear sweep voltammetry (LSV) and this technique shows a wide range of 0.10−15.0 mM to detect glucose with a lower detection limit of 19.5µM. The performance and strength of this enzyme biosensor were the simplicity, wide linear ranges, sensitivities, selectivity, and low limits of detection. We expect that the modified biosensor has the potential for monitoring various biofluids.

Keywords: plant-produced manganese peroxidase, enzyme-based biosensors, glucose, modified gold electrode, glucose oxidase

Procedia PDF Downloads 115
852 Noninvasive Continuous Glucose Monitoring Device Using a Photon-Assisted Tunneling Photodetector Based on a Quantum Metal-Oxide-Semiconductor

Authors: Wannakorn Sangthongngam, Melissa Huerta, Jaewoo Kim, Doyeon Kim

Abstract:

Continuous glucose monitoring systems are essential for diabetics to avoid health complications but come at a costly price, especially when insurance does not fully cover the diabetic testing kits needed. This paper proposes a noninvasive continuous glucose monitoring system to provide an accessible, low-cost, and painless alternative method of accurate glucose measurements to help improve quality of life. Using a light source with a wavelength of 850nm illuminates the fingertip for the photodetector to detect the transmitted light. Utilizing SeeDevice’s photon-assisted tunneling photodetector (PAT-PD)-based QMOS™ sensor, fluctuations of voltage based on photon absorption in blood cells are comparable to traditional glucose measurements. The performance of the proposed method was validated using 4 test participants’ transmitted voltage readings compared with measurements obtained from the Accu-Chek glucometer. The proposed method was able to successfully measure concentrations from linear regression calculations.

Keywords: continuous glucose monitoring, non-invasive continuous glucose monitoring, NIR, photon-assisted tunneling photodetector, QMOS™, wearable device

Procedia PDF Downloads 59
851 Improved Blood Glucose-Insulin Monitoring with Dual-Layer Predictive Control Design

Authors: Vahid Nademi

Abstract:

In response to widely used wearable medical devices equipped with a continuous glucose monitor (CGM) and insulin pump, the advanced control methods are still demanding to get the full benefit of these devices. Unlike costly clinical trials, implementing effective insulin-glucose control strategies can provide significant contributions to the patients suffering from chronic diseases such as diabetes. This study deals with a key role of two-layer insulin-glucose regulator based on model-predictive-control (MPC) scheme so that the patient’s predicted glucose profile is in compliance with the insulin level injected through insulin pump automatically. It is achieved by iterative optimization algorithm which is called an integrated perturbation analysis and sequential quadratic programming (IPA-SQP) solver for handling uncertainties due to unexpected variations in glucose-insulin values and body’s characteristics. The feasibility evaluation of the discussed control approach is also studied by means of numerical simulations of two case scenarios via measured data. The obtained results are presented to verify the superior and reliable performance of the proposed control scheme with no negative impact on patient safety.

Keywords: blood glucose monitoring, insulin pump, predictive control, optimization

Procedia PDF Downloads 111
850 Effects of Concomitant Use of Metformin and Powdered Moringa Oleifera Leaves on Glucose Tolerance in Sprague-Dawley Rats

Authors: Emielex M. Aguilar, Kristen Angela G. Cruz, Czarina Joie L. Rivera, Francis Dave C. Tan, Gavino Ivan N. Tanodra, Dianne Katrina G. Usana, Mary Grace T. Valentin, Nico Albert S. Vasquez, Edwin Monico C. Wee

Abstract:

The risk of diabetes mellitus is increasing in the Philippines, with Metformin and Insulin as drugs commonly used for its management. The use of herbal medicines has grown increasingly, especially among the elderly population. Moringa oleifera or malunggay is one of the most common plants in the country, and several studies have shown the plant to exhibit a hypoglycemic property with its flavonoid content. This study aims to investigate the possible effects of concomitant use of Metformin and powdered M. oleifera leaves (PMOL) on blood glucose levels. Twenty male Sprague-Dawley rats were equally distributed into four groups. Fasting blood glucose levels of the rats were measured prior to experimentation. The following treatments were administered to the four groups, respectively: glucose only 2 g/kg; glucose 2 g/kg + Metformin 100 mg/kg; glucose 2 g/kg + PMOL 200 mg/kg; and glucose 2 g/kg + PMOL 200 mg/kg and Metformin 100 mg/kg. Blood glucose levels were determined on the 1st, 2nd, 3rd, and 4th hour post-treatment and compared between groups. Statistical analysis showed that the type of intervention did not show significance in the reduction of blood glucose levels when compared with the other groups (p=0.378), while the effect of time exhibited significance (p=0.000). The interaction between the type of intervention and time of blood glucose measurement was shown to be significant (p=0.024). Within each group, the control and PMOL-treated groups showed significant reduction in blood glucose levels over time with p-values of 0.000 and 0.000, respectively, while the Metformin-treated and the combination groups had p-values of 0.062 and 0.093, respectively, which are not significant. The descriptive data also showed that the mean total reduction of blood glucose levels of the Metformin and PMOL combination treatment group was lower than the PMOL-treated group alone, while the mean total reduction of blood glucose levels of the combination group was higher than the Metformin-treated group alone. Based on the results obtained, the combination of Metformin and PMOL did not significantly lower the blood glucose levels of the rats as compared to the other groups. However, the concomitant use of Metformin and PMOL may affect each other’s blood glucose lowering activity. Additionally, prolonged time of exposure and delay in the first blood glucose measurement after treatment could exhibit a significant effect in the blood glucose levels. Further studies are recommended regarding the effects of the concomitant use of the two agents on blood glucose levels.

Keywords: blood glucose levels, concomitant use, metformin, Moringa oleifera

Procedia PDF Downloads 378
849 Non Enzymatic Electrochemical Sensing of Glucose Using Manganese Doped Nickel Oxide Nanoparticles Decorated Carbon Nanotubes

Authors: Anju Joshi, C. N. Tharamani

Abstract:

Diabetes is one of the leading cause of death at present and remains an important concern as the prevalence of the disease is increasing at an alarming rate. Therefore, it is crucial to diagnose the accurate levels of glucose for developing an efficient therapeutic for diabetes. Due to the availability of convenient and compact self-testing, continuous monitoring of glucose is feasible nowadays. Enzyme based electrochemical sensing of glucose is quite popular because of its high selectivity but suffers from drawbacks like complicated purification and immobilization procedures, denaturation, high cost, and low sensitivity due to indirect electron transfer. Hence, designing a robust enzyme free platform using transition metal oxides remains crucial for the efficient and sensitive determination of glucose. In the present work, manganese doped nickel oxide nanoparticles (Mn-NiO) has been synthesized onto the surface of multiwalled carbon nanotubes using a simple microwave assisted approach for non-enzymatic electrochemical sensing of glucose. The morphology and structure of the synthesized nanostructures were characterized using scanning electron microscopy (SEM) and X-Ray diffraction (XRD). We demonstrate that the synthesized nanostructures show enormous potential for electrocatalytic oxidation of glucose with high sensitivity and selectivity. Cyclic voltammetry and square wave voltammetry studies suggest superior sensitivity and selectivity of Mn-NiO decorated carbon nanotubes towards the non-enzymatic determination of glucose. A linear response between the peak current and the concentration of glucose has been found to be in the concentration range of 0.01 μM- 10000 μM which suggests the potential efficacy of Mn-NiO decorated carbon nanotubes for sensitive determination of glucose.

Keywords: diabetes, glucose, Mn-NiO decorated carbon nanotubes, non-enzymatic

Procedia PDF Downloads 207
848 A Non-Invasive Blood Glucose Monitoring System Using near-Infrared Spectroscopy with Remote Data Logging

Authors: Bodhayan Nandi, Shubhajit Roy Chowdhury

Abstract:

This paper presents the development of a portable blood glucose monitoring device based on Near-Infrared Spectroscopy. The system supports Internet connectivity through WiFi and uploads the time series data of glucose concentration of patients to a server. In addition, the server is given sufficient intelligence to predict the future pathophysiological state of a patient given the current and past pathophysiological data. This will enable to prognosticate the approaching critical condition of the patient much before the critical condition actually occurs.The server hosts web applications to allow authorized users to monitor the data remotely.

Keywords: non invasive, blood glucose concentration, microcontroller, IoT, application server, database server

Procedia PDF Downloads 191
847 Genetic Change in Escherichia coli KJ122 That Improved Succinate Production from an Equal Mixture of Xylose and Glucose

Authors: Apichai Sawisit, Sirima Suvarnakuta Jantama, Sunthorn Kanchanatawee, Lonnie O. Ingram, Kaemwich Jantama

Abstract:

Escherichia coli KJ122 was engineered to produce succinate from glucose using the wild type GalP for glucose uptake instead of the native phosphotransferase system (ptsI mutation). This strain ferments 10% (w/v) xylose poorly. Mutants were selected by serial transfers in AM1 mineral salts medium with 10% (w/v) xylose. Evolved mutants exhibited a similar improvement, co-fermentation of an equal mixture of xylose and glucose. One of these, AS1600a, produced 84.26±1.37 g/L succinate, equivalent to that produced by the parent (KJ122) strain from 10% glucose (85.46±1.78 g/L). AS1600a was sequenced and found to contain a mutation in galactose permease (GalP, G236D). Expressing the galP* mutation gene in KJ122ΔgalP resembled the xylose utilization phenotype of the mutant AS1600a. The strain AS1600a and KJ122ΔgalP (pLOI5746; galP*) also co-fermented a mixture of glucose, xylose, arabinose, and galactose in sugarcane bagasse hydrolysate for succinate production.

Keywords: xylose, furfural, succinate, sugarcane bagasse, E. coli

Procedia PDF Downloads 360
846 Non-Enzymatic Electrochemical Detection of Glucose in Disposable Paper-Based Sensor Using a Graphene and Cobalt Phthalocyanine Composite

Authors: Sudkate Chaiyo, Weena Siangproh, Orawon Chailapakul, Kurt Kalcher

Abstract:

In the present work, a simple and sensitive non-enzymatic electrochemical detection of glucose in disposable paper-based sensor was developed at ionic liquid/graphene/cobalt phthalocyanine composite (IL/G/CoPc) modified electrode. The morphology of the fabricated composite was characterized and confirmed by scanning electron microscopy and UV-Vis spectroscopy. The UV-Vis spectroscopy results confirmed that the G/CoPc composite formed via the strong π–π interaction between CoPc and G. Amperometric i-t technique was used for the determination of glucose. The response of glucose was linear over the concentration ranging from 10 µM to 1.5 mM. The response time of the sensor was found as 30 s with a limit of detection of 0.64 µM (S/N=3). The fabricated sensor also exhibited its good selectivity in the presence of common interfering species. In addition, the fabricated sensor exhibited its special advantages such as low working potential, good sensitivity along with good repeatability and reproducibility for the determination of glucose.

Keywords: glucose, paper-based sensor, ionic liquid/graphene/cobalt phthalocyanine composite, electrochemical detection

Procedia PDF Downloads 143
845 Linear Prediction System in Measuring Glucose Level in Blood

Authors: Intan Maisarah Abd Rahim, Herlina Abdul Rahim, Rashidah Ghazali

Abstract:

Diabetes is a medical condition that can lead to various diseases such as stroke, heart disease, blindness and obesity. In clinical practice, the concern of the diabetic patients towards the blood glucose examination is rather alarming as some of the individual describing it as something painful with pinprick and pinch. As for some patient with high level of glucose level, pricking the fingers multiple times a day with the conventional glucose meter for close monitoring can be tiresome, time consuming and painful. With these concerns, several non-invasive techniques were used by researchers in measuring the glucose level in blood, including ultrasonic sensor implementation, multisensory systems, absorbance of transmittance, bio-impedance, voltage intensity, and thermography. This paper is discussing the application of the near-infrared (NIR) spectroscopy as a non-invasive method in measuring the glucose level and the implementation of the linear system identification model in predicting the output data for the NIR measurement. In this study, the wavelengths considered are at the 1450 nm and 1950 nm. Both of these wavelengths showed the most reliable information on the glucose presence in blood. Then, the linear Autoregressive Moving Average Exogenous model (ARMAX) model with both un-regularized and regularized methods was implemented in predicting the output result for the NIR measurement in order to investigate the practicality of the linear system in this study. However, the result showed only 50.11% accuracy obtained from the system which is far from the satisfying results that should be obtained.

Keywords: diabetes, glucose level, linear, near-infrared, non-invasive, prediction system

Procedia PDF Downloads 130
844 Comparative Electrochemical Studies of Enzyme-Based and Enzyme-less Graphene Oxide-Based Nanocomposite as Glucose Biosensor

Authors: Chetna Tyagi. G. B. V. S. Lakshmi, Ambuj Tripathi, D. K. Avasthi

Abstract:

Graphene oxide provides a good host matrix for preparing nanocomposites due to the different functional groups attached to its edges and planes. Being biocompatible, it is used in therapeutic applications. As enzyme-based biosensor requires complicated enzyme purification procedure, high fabrication cost and special storage conditions, we need enzyme-less biosensors for use even in a harsh environment like high temperature, varying pH, etc. In this work, we have prepared both enzyme-based and enzyme-less graphene oxide-based biosensors for glucose detection using glucose-oxidase as enzyme and gold nanoparticles, respectively. These samples were characterized using X-ray diffraction, UV-visible spectroscopy, scanning electron microscopy, and transmission electron microscopy to confirm the successful synthesis of the working electrodes. Electrochemical measurements were performed for both the working electrodes using a 3-electrode electrochemical cell. Cyclic voltammetry curves showed the homogeneous transfer of electron on the electrodes in the scan range between -0.2V to 0.6V. The sensing measurements were performed using differential pulse voltammetry for the glucose concentration varying from 0.01 mM to 20 mM, and sensing was improved towards glucose in the presence of gold nanoparticles. Gold nanoparticles in graphene oxide nanocomposite played an important role in sensing glucose in the absence of enzyme, glucose oxidase, as evident from these measurements. The selectivity was tested by measuring the current response of the working electrode towards glucose in the presence of the other common interfering agents like cholesterol, ascorbic acid, citric acid, and urea. The enzyme-less working electrode also showed storage stability for up to 15 weeks, making it a suitable glucose biosensor.

Keywords: electrochemical, enzyme-less, glucose, gold nanoparticles, graphene oxide, nanocomposite

Procedia PDF Downloads 111
843 Effect of Post Circuit Resistance Exercise Glucose Feeding on Energy and Hormonal Indexes in Plasma and Lymphocyte in Free-Style Wrestlers

Authors: Miesam Golzadeh Gangraj, Younes Parvasi, Mohammad Ghasemi, Ahmad Abdi, Saeid Fazelifar

Abstract:

The purpose of the study was to determine the effect of glucose feeding on energy and hormonal indexes in plasma and lymphocyte immediately after wrestling – base techniques circuit exercise (WBTCE) in young male freestyle wrestlers. Sixteen wrestlers (weight = 75/45 ± 12/92 kg, age = 22/29 ± 0/90 years, BMI = 26/23 ± 2/64 kg/m²) were randomly divided into two groups: control (water), glucose (2 gr per kg body weight). Blood samples were obtained before, immediately, and 90 minutes of the post-exercise recovery period. Glucose (2 g/kg of body weight, 1W/5V) and water (equal volumes) solutions were given immediately after the second blood sampling. Data were analyzed by using an ANOVA (a repeated measure) and a suitable post hoc test (LSD). A significant decrease was observed in lymphocytes glycogen immediately after exercise (P < 0.001). In the experimental group, increase Lymphocyte glycogen concentration (P < 0.028) than in the control group in 90 min post-exercise. Plasma glucose concentrations increased in all groups immediately after exercise (P < 0.05). Plasma insulin concentrations in both groups decreased immediately after exercise, but at 90 min after exercise, its level was significantly increased only in glucose group (P < 0.001). Our results suggested that WBTCE protocol could be affected cellular energy sources and hormonal response. Furthermore, Glucose consumption can increase the lymphocyte glycogen and better energy within the cell.

Keywords: glucose feeding, lymphocyte, Wrestling – base techniques circuit , exercise

Procedia PDF Downloads 238
842 Rapid Plasmonic Colorimetric Glucose Biosensor via Biocatalytic Enlargement of Gold Nanostars

Authors: Masauso Moses Phiri

Abstract:

Frequent glucose monitoring is essential to the management of diabetes. Plasmonic enzyme-based glucose biosensors have the advantages of greater specificity, simplicity and rapidity. The aim of this study was to develop a rapid plasmonic colorimetric glucose biosensor based on biocatalytic enlargement of AuNS guided by GOx. Gold nanoparticles of 18 nm in diameter were synthesized using the citrate method. Using these as seeds, a modified seeded method for the synthesis of monodispersed gold nanostars was followed. Both the spherical and star-shaped nanoparticles were characterized using ultra-violet visible spectroscopy, agarose gel electrophoresis, dynamic light scattering, high-resolution transmission electron microscopy and energy-dispersive X-ray spectroscopy. The feasibility of a plasmonic colorimetric assay through growth of AuNS by silver coating in the presence of hydrogen peroxide was investigated by several control and optimization experiments. Conditions for excellent sensing such as the concentration of the detection solution in the presence of 20 µL AuNS, 10 mM of 2-(N-morpholino) ethanesulfonic acid (MES), ammonia and hydrogen peroxide were optimized. Using the optimized conditions, the glucose assay was developed by adding 5mM of GOx to the solution and varying concentrations of glucose to it. Kinetic readings, as well as color changes, were observed. The results showed that the absorbance values of the AuNS were blue shifting and increasing as the concentration of glucose was elevated. Control experiments indicated no growth of AuNS in the absence of GOx, glucose or molecular O₂. Increased glucose concentration led to an enhanced growth of AuNS. The detection of glucose was also done by naked-eye. The color development was near complete in ± 10 minutes. The kinetic readings which were monitored at 450 and 560 nm showed that the assay could discriminate between different concentrations of glucose by ± 50 seconds and near complete at ± 120 seconds. A calibration curve for the qualitative measurement of glucose was derived. The magnitude of wavelength shifts and absorbance values increased concomitantly with glucose concentrations until 90 µg/mL. Beyond that, it leveled off. The lowest amount of glucose that could produce a blue shift in the localized surface plasmon resonance (LSPR) absorption maxima was found to be 10 – 90 µg/mL. The limit of detection was 0.12 µg/mL. This enabled the construction of a direct sensitivity plasmonic colorimetric detection of glucose using AuNS that was rapid, sensitive and cost-effective with naked-eye detection. It has great potential for transfer of technology for point-of-care devices.

Keywords: colorimetric, gold nanostars, glucose, glucose oxidase, plasmonic

Procedia PDF Downloads 126
841 Effects of Opuntia ficus-indica var. Saboten on Glucose Uptake and Insulin Sensitivity in Pancreatic β Cell

Authors: Kang-Hyun Leem, Myung-Gyou Kim, Hye Kyung Kim

Abstract:

The prickly pear cactus (Opuntia ficus-indica) has a global distribution and have been used for medicinal benefits such as artherosclerosis, diabetes, gastritis, and hyperglycemia. However, very little information is currently available for their mechanism. The prikly pear variety Opuntia ficus-indica var. Saboten (OFS) is widely cultivated in Cheju Island, southwestern region of Korea, and used as a functional food. Present study investigated the effects of OFS on pancreatic β-cell function using pancreatic islet β cells (HIT cell). Alpha-glucosidase inhibition, glucose uptake, insulin secretion, insulin sensitivity, and pancreatic β cell proliferation were determined. The inhibitory effect of ethanol extract of OFS stem on α-glucosidase enzyme was measured in a cell free system. Glucose uptake was determined using fluorescent glucose analogue, 2-NBDG. Insulin secretion was measured by ELISA assay. Cell proliferation was measured by MTT assay. Ethanol extracts of OFS dose-dependently inhibited α-glucosidase activity as well as glucose uptake. Insulinotrophic effect of OFS extract was observed at high glucose media in pancreatic β-islet cells. Furthermore, pancreatic β cell regeneration was also observed.These results suggest that OFS mediates the antidiabetic activity mainly via α-glucosidase inhibition, glucose uptake, and improved insulin sensitivity.

Keywords: prickly pear cactus, Opuntia ficus-indica var. Saboten, pancreatic islet HIT cells, α-glucosidase, glucose uptake, insulinotrophic

Procedia PDF Downloads 438
840 Effect of Intraperitoneal Administration of Ghrelin on Serum Glucose and Insulin Levels in Turkey

Authors: Habib Aghdam Shahryar

Abstract:

The aim of the present study was investigation on the effect of intraperipheral (IP) injection of ghrelin on serum insulin and glucose levels in native turkey. Seventy-two 28 day (d)-old native turkey were assigned into three treatments and four replicate for 40 days experimental rearing period: group 1, intact without any injection, group 2, injected 50 ng ghrelin/kg body weight (BW), and group 3, injected 100 ng ghrelin/kg BW. Intraperitoneal injection of rat ghrelin was conducted on d 28 and before the onset of the experimental rearing period. Blood samples were taken 12 hr after injection and 40 days after injection. The result showed glucose concentrations have been affected by administered ghrelin and significant between groups (P<0.01). Injection of ghrelin at G 100 increased glucose level of serum in 12 hr after injection and 40 days after injection (276.6 and 260.0 mg/dl, respectively). Also, by increasing the dose of injected ghrelin, insulin levels than the control group showed an increase (P < 0.001). This study suggests roles of ghrelin in serum biochemical regulation may show a different effect of ghrelin on blood parameters in avian species.

Keywords: ghrelin injection, insulin, glucose, turkey

Procedia PDF Downloads 454
839 Terahertz Glucose Sensors Based on Photonic Crystal Pillar Array

Authors: S. S. Sree Sanker, K. N. Madhusoodanan

Abstract:

Optical biosensors are dominant alternative for traditional analytical methods, because of their small size, simple design and high sensitivity. Photonic sensing method is one of the recent advancing technology for biosensors. It measures the change in refractive index which is induced by the difference in molecular interactions due to the change in concentration of the analyte. Glucose is an aldosic monosaccharide, which is a metabolic source in many of the organisms. The terahertz waves occupies the space between infrared and microwaves in the electromagnetic spectrum. Terahertz waves are expected to be applied to various types of sensors for detecting harmful substances in blood, cancer cells in skin and micro bacteria in vegetables. We have designed glucose sensors using silicon based 1D and 2D photonic crystal pillar arrays in terahertz frequency range. 1D photonic crystal has rectangular pillars with height 100 µm, length 1600 µm and width 50 µm. The array period of the crystal is 500 µm. 2D photonic crystal has 5×5 cylindrical pillar array with an array period of 75 µm. Height and diameter of the pillar array are 160 µm and 100 µm respectively. Two samples considered in the work are blood and glucose solution, which are labelled as sample 1 and sample 2 respectively. The proposed sensor detects the concentration of glucose in the samples from 0 to 100 mg/dL. For this, the crystal was irradiated with 0.3 to 3 THz waves. By analyzing the obtained S parameter, the refractive index of the crystal corresponding to the particular concentration of glucose was measured using the parameter retrieval method. Refractive indices of the two crystals decreased gradually with the increase in concentration of glucose in the sample. For 1D photonic crystals, a gradual decrease in refractive index was observed at 1 THz. 2D photonic crystal showed this behavior at 2 THz. The proposed sensor was simulated using CST Microwave studio. This will enable us to develop a model which can be used to characterize a glucose sensor. The present study is expected to contribute to blood glucose monitoring.

Keywords: CST microwave studio, glucose sensor, photonic crystal, terahertz waves

Procedia PDF Downloads 255
838 Electrochemical Studies of Nickel Nanoparticles Decorated the Surface of Some Conducting Polymers for Glucose Oxidation in Biofuel Cells

Authors: Z. Khalifa, K. M. Hassan, M. Abdel Azzem

Abstract:

Potential strategies for deriving useful forms of renewable high density energy from abundant energy stored in carbohydrates is direct conversion of glucose (GLU) to electrical power. A three novel versatile modified electrodes, synthesized by electrochemical polymerization of organic monomers on glassy carbon electrodes (GC), have been developed for biofuel cells results in stable and long-term power production. Electrocatalytic oxidation of glucose in alkaline solution on conducting polymers electrodes modified by incorporation of Ni nanoparticles (NiNPs) onto poly(1,5-aminonaphthalene) (1,5-PDAN), poly(1,8-diaminonaphthalene) (1,8-PDAN) and poly(1-amino-2-methyl-9,10-anthraquinone) (PAMAQ) was investigated. The electrocatalytic oxidation of glucose at NiNPs-modified 1,5-PDAN/GC, 1,8-PDAN/GC and PAMAQ/GC electrodes has been studied using voltammetry technique. The PDAN electrodes show a slight activity in the potential of interest. The prepared NiNPs/PAMAQ/GC catalyst showed a very interesting catalytic activity that was nicely comparable to the NiNPs/1,5-PDAN/GC, NiNPs/1,8-PDAN/GC modified electrodes. In advance, both shows a significant more catalytic activity compared to the reported data for electrodes for glucose electrocatalytic oxidation.

Keywords: biofuel cells, glucose oxidation, electrocatalysis, nanoparticles and modified electrodes

Procedia PDF Downloads 216
837 Prevalence of Diabetes Mellitus Type 2 Risk Factors among Nurses in Mongolia

Authors: V. Davaakhuu, D. Tserendagva, D. Amarsaikhan, T. Altanstetseg

Abstract:

In this study we aimed to detect main risk factors for diabetes in Mongolia and obtain data we used survey modified questionnaire. Survey data were obtained from 634 valid nurses (day work nurses-317, shift work nurses-317). Participants who were pregnant, less than 20 years old and no check for fasting glucose level were excluded from the survey in order to determine the risk factors of diabetes. Our study result shows the main risk factors of diabetes were physical inactivity, overweight and obesity, alcohol and tobacco use and lack of vegetable and fruit consumption. Peripheral blood glucose level was normal in subjects with BMI 26.28 ± 0.56, but 20 % of the subjects with normal blood glucose level were obese. Blood glucose level was higher in subjects with BMI 28.63 ± 2.32 and 36 % of them were obese. According to our study results, 3.62% of the surveyed population were identified having no diabetes risk factors, 52.3% were at risk, 28.8% were in higher risk for diabetes by the WHO criteria. In general, the prevalence of blood glucose were especially higher in shift work nurses.

Keywords: day work nurses, shift work nurses, BMI, WHR

Procedia PDF Downloads 571
836 Mutation of Galp Improved Fermentation of Mixed Sugars to Succinate Using Engineered Escherichia coli As1600a

Authors: Apichai Sawisit, Sirima Suvarnakuta Jantama, Sunthorn Kanchanatawee, Lonnie O. Ingram, Kaemwich Jantama

Abstract:

Escherichia coli KJ122 was engineered to produce succinate from glucose using the wild type GalP for glucose uptake instead of the native phosphotransferase system (ptsI mutation). This strain ferments 10% (w/v) xylose poorly. Mutants were selected by serial transfers in AM1 mineral salts medium with 10% (w/v) xylose. Evolved mutants exhibited a similar improvement, co-fermentation of an equal mixture of xylose and glucose. One of these, AS1600a, produced 84.26±1.37 g/L succinate, equivalent to that produced by the parent (KJ122) strain from 10% glucose (85.46±1.78 g/L). AS1600a was sequenced and found to contain a mutation in galactose permease (GalP, G236D). Expressing the galP* mutation gene in KJ122ΔgalP resembled the xylose utilization phenotype of the mutant AS1600a. The strain AS1600a and KJ122ΔgalP (pLOI5746; galP*) also co-fermented a mixture of glucose, xylose, arabinose, and galactose in sugarcane bagasse hydrolysate for succinate production.

Keywords: xylose, furfural, succinat, sugarcane bagasse, E. coli

Procedia PDF Downloads 409
835 The Effect of Resistance and Progressive Training on Hsp 70 and Glucose

Authors: F. Nameni, H. Poursadra

Abstract:

The present study investigated resistance and progressive training alters the expression of chaperone proteins. These proteins function to maintain homeostasis, facilitate repair from injury, and provide protection. Nineteen training female in 2 groups taking part in the intervention volunteered to give blood samples. Levels of chaperone proteins were measured in response to resistance and progressive training. Hsp 70 levels were increased immediately after 2 h progressive training but decreased after resistance training. The data showed that human skeletal muscle responds to the stress of a single period of progressive training by up-regulating and resistance training by down-regulating expression of HSP70. Physical exercise can elevate core temperature and muscle temperatures and the expression pattern of HSP70 due to training status may be attributed to adaptive mechanisms.

Keywords: resistance training, heat shock proteins, leukocytes, Hsp 70

Procedia PDF Downloads 426
834 Effect of Natural Molecular Crowding on the Structure and Stability of DNA Duplex

Authors: Chaudhari S. G., Saxena, S.

Abstract:

We systematically and quantitatively investigated the effect of glucose as a model of natural molecular crowding agent on the structure and thermodynamics of Watson-Crick base paired three duplexes (named as D1, D2 and D3) of different base compositions and lengths. Structural analyses demonstrated that duplexes (D1 and D2) folded into B-form with different cations in the absence and presence of glucose while duplex (D3) folded into mixed A and B-form. Moreover, we demonstrated that the duplex was more stable in the absence of glucose, and marginally destabilized in its presence because glucose act as a weak structure breaker on the tetrahedral network of water. In the absence of glucose, the values of ΔG°25 for duplex (D1) were -13.56, -13.76, -12.46, and -12.36 kcal/mol, for duplex (D2) were -13.64, -12.93, -12.86, and -12.30 kcal/mol, for duplex (D3) were -10.05, -11.76, -9.91, -9.70 kcal/mol in the presence of Na+, K+, Na+ + Mg++ and K+ + Mg++ respectively. At high concentration of glucose (1:10000), there was increase in ΔG°25 for duplex (D1) -12.47, -12.37, -11.96, -11.55 kcal/mol, for duplex (D2) -12.37, -11.47, -11.98, -11.01 kcal/mol and for duplex (D3) -8.47, -9.17, -9.16, -8.66 kcal/mol. Our results provide the information that structure and stability of DNA duplex depends on the structure of molecular crowding agent present in its close vicinity. In this study, I have taken the hydration of simple sugar as an essential model for understanding interactions between hydrophilic groups and interfacial water molecules and its effect on hydrogen bonded DNA duplexes. On the basis of these relatively simple building blocks I hope to gain some insights for understanding more generally the properties of sugar–water–salt systems with DNA duplexes.

Keywords: natural molecular crowding, DNA Duplex, structure of DNA, bioengineering and life sciences

Procedia PDF Downloads 437
833 Fatty Acid Translocase (Cd36), Energy Substrate Utilization, and Insulin Signaling in Brown Adipose Tissue in Spontaneously Hypertensive Rats

Authors: Michal Pravenec, Miroslava Simakova, Jan Silhavy

Abstract:

Brown adipose tissue (BAT) plays an important role in lipid and glucose metabolism in rodents and possibly also in humans. Recently, using systems genetics approach in the BAT from BXH/HXB recombinant inbred strains, derived from the SHR (spontaneously hypertensive rat) and BN (Brown Norway) progenitors, we identified Cd36 (fatty acid translocase) as the hub gene of co-expression module associated with BAT relative weight and function. An important aspect of BAT biology is to better understand the mechanisms regulating the uptake and utilization of fatty acids and glucose. Accordingly, BAT function in the SHR that harbors mutant nonfunctional Cd36 variant (hereafter referred to as SHR-Cd36⁻/⁻) was compared with SHR transgenic line expressing wild type Cd36 under control of a universal promoter (hereafter referred to as SHR-Cd36⁺/⁺). BAT was incubated in media containing insulin and 14C-U-glucose alone or 14C-U-glucose together with palmitate. Incorporation of glucose into BAT lipids was significantly higher in SHR-Cd36⁺/⁺ versus SHR-Cd36⁻/⁻ rats when incubation media contained glucose alone (SHR-Cd36⁻/⁻ 591 ± 75 vs. SHR-Cd36⁺/⁺ 1036 ± 135 nmol/gl./2h; P < 0.005). Adding palmitate into incubation media had no effect in SHR-Cd36⁻/⁻ rats but significantly reduced glucose incorporation into BAT lipids in SHR-Cd36⁺/⁺ (SHR-Cd36⁻/⁻ 543 ± 55 vs. SHR-Cd36⁺/⁺ 766 ± 75 nmol/gl./2h; P < 0.05 denotes significant Cd36 x palmitate interaction determined by two-way ANOVA). This Cd36-dependent reduced glucose uptake in SHR-Cd36⁺/⁺ BAT was likely secondary to increased palmitate incorporation and utilization due to the presence of wild type Cd36 fatty acid translocase in transgenic rats. This possibility is supported by increased incorporation of 14C-U-palmitate into BAT lipids in the presence of both palmitate and glucose in incubation media (palmitate alone: SHR-Cd36⁻/⁻ 870 ± 21 vs. SHR-Cd36⁺/⁺ 899 ± 42; glucose+palmitate: SHR-Cd36⁻/⁻ 899 ± 47 vs. SHR-Cd36⁺/⁺ 1460 ± 111 nmol/palm./2h; P < 0.05 denotes significant Cd36 x glucose interaction determined by two-way ANOVA). It is possible that addition of glucose into the incubation media increased palmitate incorporation into BAT lipids in SHR-Cd36⁺/⁺ rats because of glucose availability for glycerol phosphate production and increased triglyceride synthesis. These changes in glucose and palmitate incorporation into BAT lipids were associated with significant differential expression of Irs1, Irs2, Slc2a4 and Foxo1 genes involved in insulin signaling and glucose metabolism only in SHR-Cd36⁺/⁺ rats which suggests Cd36-dependent effects on insulin action. In conclusion, these results provide compelling evidence that Cd36 plays an important role in BAT insulin signaling and energy substrate utilization.

Keywords: brown adipose tissue, Cd36, energy substrate utilization, insulin signaling, spontaneously hypertensive rat

Procedia PDF Downloads 117
832 Blood Glucose Measurement and Analysis: Methodology

Authors: I. M. Abd Rahim, H. Abdul Rahim, R. Ghazali

Abstract:

There is numerous non-invasive blood glucose measurement technique developed by researchers, and near infrared (NIR) is the potential technique nowadays. However, there are some disagreements on the optimal wavelength range that is suitable to be used as the reference of the glucose substance in the blood. This paper focuses on the experimental data collection technique and also the analysis method used to analyze the data gained from the experiment. The selection of suitable linear and non-linear model structure is essential in prediction system, as the system developed need to be conceivably accurate.

Keywords: linear, near-infrared (NIR), non-invasive, non-linear, prediction system

Procedia PDF Downloads 429
831 Deproteination and Demineralization of Shrimp Waste Using Lactic Acid Bacteria for the Production of Crude Chitin and Chitosan

Authors: Farramae Francisco, Rhoda Mae Simora, Sharon Nunal

Abstract:

Deproteination and demineralization efficiencies of shrimp waste using two Lactobacillus species treated with different carbohydrate sources for chitin production, its chemical conversion to chitosan and the quality of chitin and chitosan produced were determined. Using 5% glucose and 5% cassava starch as carbohydrate sources, pH slightly increased from the initial pH of 6.0 to 6.8 and 7.2, respectively after 24 h and maintained their pH at 6.7 to 7.3 throughout the treatment period. Demineralization (%) in 5 % glucose and 5 % cassava was highest during the first day of treatment which was 82% and 83%, respectively. Deproteination (%) was highest in 5% cassava starch on the 3rd day of treatment at 84.4%. The obtained chitin from 5% cassava and 5% glucose had a residual ash and protein below 1% and solubility of 59% and 44.3%, respectively. Chitosan produced from 5% cassava and 5% glucose had protein content below 0.05%; residual ash was 1.1% and 0.8%, respectively. Chitosan solubility and degree of deacetylation were 56% and 33% in 5% glucose and 48% and 29% in 5% cassava, respectively. The advantage this alternative technology offers over that of chemical extraction is large reduction in chemicals needed thus less effluent production and generation of a protein-rich liquor, although the demineralization process should be improved to achieve greater degree of deacetylation.

Keywords: alternative carbon source, bioprocessing, lactic acid bacteria, waste utilization

Procedia PDF Downloads 456
830 Quantitative Analysis of Orphan Nuclear Receptors in Insulin Resistant C2C12 Skeletal Muscle Cells

Authors: Masocorro Gawned, Stephen Myers, Guat Siew Chew

Abstract:

Nuclear Receptors (NR) are a super family of transcription factors that play a major role in lipid and glucose metabolism in skeletal muscle. Recently, pharmacological evidence supports the view that stimulation of nuclear receptors alleviates Type 2 Diabetes (T2D). The orphan nuclear receptors (ONR) are members of the nuclear receptor (NR) superfamily whose ligands and physiological functions remain unknown. To date, no systematic studies have been carried out to screen for ONRs expressed in insulin resistant (IR) skeletal muscle cells. Therefore, in this study, we have established a model for IR by treating C2C12 skeletal muscle cells with insulin (10nM) for 48 hours. Western Blot analysis of phosphorylated AKT confirmed IR. Real-time quantitative polymerase chain reaction (qPCR) results highlighted key ONRs including NUR77 (NR4A1), NURR1 (NR4A2) and NOR1 (NR4A3) which have been associated with fatty acid oxidation regulation and glucose homeostasis. Increased mRNA expression levels of estrogen-related receptors (ERRs), REV-ERBα, NUR77, NURR1, NOR1, in insulin resistant C2C12 skeletal muscle cells, indicated that these ONRs could potentially play a pivotal regulatory role of insulin secretion in lipid metabolism. Taken together, this study has successfully contributed to the complete analysis of ONR in IR, and has filled in an important void in the study and treatment of T2D.

Keywords: type 2 diabetes, orphan nuclear receptors, transcription receptors, quantitative mRNA expression

Procedia PDF Downloads 403
829 Microfluidic Paper-Based Electrochemical Biosensor

Authors: Ahmad Manbohi, Seyyed Hamid Ahmadi

Abstract:

A low-cost paper-based microfluidic device (PAD) for the multiplex electrochemical determination of glucose, uric acid, and dopamine in biological fluids was developed. Using wax printing, PAD containing a central zone, six channels, and six detection zones was fabricated, and the electrodes were printed on detection zones using pre-made electrodes template. For each analyte, two detection zones were used. The carbon working electrode was coated with chitosan-BSA (and enzymes for glucose and uric acid). To detect glucose and uric acid, enzymatic reactions were employed. These reactions involve enzyme-catalyzed redox reactions of the analytes and produce free electrons for electrochemical measurement. Calibration curves were linear (R² > 0.980) in the range of 0-80 mM for glucose, 0.09–0.9 mM for dopamine, and 0–50 mM for uric acid, respectively. Blood samples were successfully analyzed by the proposed method.

Keywords: biological fluids, biomarkers, microfluidic paper-based electrochemical biosensors, Multiplex

Procedia PDF Downloads 258
828 The Effect of Acute Aerobic Exercise after Consumption of Four Different Diets on Serum Levels Irisin, Insulin and Glucose in Overweight Men

Authors: Majid Mardaniyan Ghahfarokhi, Abdolhamid Habibi, Majid Mohammad Shahi

Abstract:

The combination of exercise and diet as the most important strategy to reduce weight and control obesity-related factors, including Irisin, Insulin, and Glucose was raised. The aim of this study was to investigate the effect of aerobic exercise combined with four different diets on serum levels of Irisin, Insulin, and Glucose in overweight men. Methods: In this quasi-experimental study, 8 overweight men (BMI 29.23±0.47) with average age of (23±1.6) voluntarily participated in 4 sessions by one-week interval. The study was done in exercise physiology lab. In each session, subjects performed a 30 minutes treadmill test with 60-70% of maximum heart rate, after consuming a high carbohydrate, high-fat, high-protein and normal diet. For biochemical measurement, three blood samples were taken in fasting state, two hours after meals and after exercise Results: Statistical analysis of data showed that the serum levels of Irisin after consumption all four diets had been reduced which this reduce as a result of high-fat diet that were significantly (p ≤ 0/038). Serum concentration of Insulin and Glucose increased after consuming four diets. However, increase in serum Insulin and Glucose was significant only after consuming high-carbohydrate diet (Respectively p ≤ 0/001, p ≤ 0/042). In addition, during exercise after consuming all four regular diet, high carbohydrate, high-protein and high-fat, Irisin significant increased significantly (Respectively p ≤ 0/021, p ≤ 0/049, p ≤ 0/001, P ≤ 0/003), Insulin decreased significantly (Respectively p ≤ 0/002, p ≤ 0/001, p ≤ 0/001, p ≤ 0/002) and Glucose were significantly reduced (Respectively p ≤ 0/001, p ≤ 0/001, P ≤ 0/001, p ≤ 0/002). After aerobic activity following the consumption of a high protein diet the highest increase in irisin levels, and after aerobic exercise following consumption of high carbohydrate diet the greatest decrease in insulin and glucose levels were observed. Conclusion: It seems that diet alone and exercises following different consumption diets can have a significant effect on Irisin, Insulin, and Glucose serum levels in overweight young men.

Keywords: acute aerobic exercise, diet, irisin, overweight

Procedia PDF Downloads 227
827 Nutritional Value of Rabbit Meat after Contamination with 1,1-Dimethylhydrazine

Authors: Balgabay Sadepovich Maikanov, Laura Tyulegenovna Auteleyeva, Seidenova Simbat Polatbekovna

Abstract:

In this article reduced nutritional value of the rabbits’ meat at 1, 1 dimethylhydrazine experimental toxicosis is shown. The assay was performed on liquid chromatograph SHIMADZU LC-20 Prominence (Japan) with fluorometric and spectrophotometric detector. This research has revealed that samples of rabbit meat of the experimental group had significant differences from the control group:in amino acids concentration from 1.2% to 9.1%; vitamin concentration from 11.2% to 60.5%, macro – minerals concentration from 17.4% to 78.1% and saturated fatty acids concentration from 17,1% to 34.5%, respectively. The decrease in the chemical composition of rabbits’ meat at 1,1 dimethylhydrazine toxicosis may be due to changes in the internal processes associated with impaired metabolic homeostasis of animals.

Keywords: 1, 1-dimethylhydrazine, metabolic homeostasis, nutritional value, rabbit meat

Procedia PDF Downloads 181
826 D-Care: Diabetes Care Application to Enhance Diabetic Awareness to Diabetes in Indonesia

Authors: Samara R. Dania, Maulana S. Aji, Dewi Lestari

Abstract:

Diabetes is a common disease in Indonesia. One of the risk factors of diabetes is an unhealthy diet which is consuming food that contains too much glucose, one of glucose sources presents in food containing carbohydrate. The purpose of this study is to identify the amount of glucose level in the consumed food. The authors use literature studies for this research method. For the results of this study, the authors expect diabetics to be more aware of diabetes by applying daily dietary regulation through D-Care. D-Care is an application that can enhance people awareness to diabetes in Indonesia. D-Care provides two menus; there are nutrition calculation and healthy food. Nutrition calculation menu is used for knowing estimated glucose intake level by calculating food that consumed each day. Whereas healthy food menu, it provides a combination of healthy food menu for diabetic. The conclusion is D-Care is useful to be used for reducing diabetes prevalence in Indonesia.

Keywords: D-Care, diabetes, awareness, healthy food

Procedia PDF Downloads 392
825 Characterization of Fatty Acid Glucose Esters as Os9BGlu31 Transglucosidase Substrates in Rice

Authors: Juthamath Komvongsa, Bancha Mahong, Kannika Phasai, Sukanya Luang, Jong-Seong Jeon, James Ketudat-Cairns

Abstract:

Os9BGlu31 is a rice transglucosidase that transfers glucosyl moieties to various acceptors such as carboxylic acids and alcohols, including phenolic acids and flavonoids, in vitro. The role of Os9BGlu31 transglucosidase in rice plant metabolism has not been reported to date. Methanolic extracts of rice bran and flag leaves were found to contain substrates to which Os9BGlu31 could transfer glucose from 4-nitrophenyl β -D-glucopyranoside donor. The semi-purified substrate from rice bran was found to contain oleic acid and linoleic acid and the pure fatty acids were found to act as acceptor substrates for Os9BGlu31 transglucosidase to form 1-O-acyl glucose esters. Os9BGlu31 showed higher activity with oleic acid (18:1) and linoleic acid (18:2) than stearic acid (18:0), and had both higher kcat and higher Km for linoleic than oleic acid in the presence of 8 mM 4NPGlc donor. This transglucosidase reaction is reversible, Os9bglu31 knockout rice lines of flag leaves were found to have higher amounts of fatty acid glucose esters than wild type control lines, these data conclude that fatty acid glucose esters act as glucosyl donor substrates for Os9BGlu31 transglucosidase in rice.

Keywords: fatty acid, fatty acid glucose ester, transglucosidase, rice flag leaf, homologous knockout lines, tandam mass spectrometry

Procedia PDF Downloads 330