Search results for: gene pool
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1757

Search results for: gene pool

1517 Parallel Opportunity for Water Conservation and Habitat Formation on Regulated Streams through Formation of Thermal Stratification in River Pools

Authors: Todd H. Buxton, Yong G. Lai

Abstract:

Temperature management in regulated rivers can involve significant expenditures of water to meet the cold-water requirements of species in summer. For this purpose, flows released from Lewiston Dam on the Trinity River in Northern California are 12.7 cms with temperatures around 11oC in July through September to provide adult spring Chinook cold water to hold in deep pools and mature until spawning in fall. The releases are more than double the flow and 10oC colder temperatures than the natural conditions before the dam was built. The high, cold releases provide springers the habitat they require but may suppress the stream food base and limit future populations of salmon by reducing the juvenile fish size and survival to adults via the positive relationship between the two. Field and modeling research was undertaken to explore whether lowering summer releases from Lewiston Dam may promote thermal stratification in river pools so that both the cold-water needs of adult salmon and warmer water requirements of other organisms in the stream biome may be met. For this investigation, a three-dimensional (3D) computational fluid dynamics (CFD) model was developed and validated with field measurements in two deep pools on the Trinity River. Modeling and field observations were then used to identify the flows and temperatures that may form and maintain thermal stratification under different meteorologic conditions. Under low flows, a pool was found to be well mixed and thermally homogenous until temperatures began to stratify shortly after sunrise. Stratification then strengthened through the day until shading from trees and mountains cooled the inlet flow and decayed the thermal gradient, which collapsed shortly before sunset and returned the pool to a well-mixed state. This diurnal process of stratification formation and destruction was closely predicted by the 3D CFD model. Both the model and field observations indicate that thermal stratification maintained the coldest temperatures of the day at ≥2m depth in a pool and provided water that was around 8oC warmer in the upper 2m of the pool. Results further indicate that the stratified pool under low flows provided almost the same daily average temperatures as when flows were an order of magnitude higher and stratification was prevented, indicating significant water savings may be realized in regulated streams while also providing a diversity in water temperatures the ecosystem requires. With confidence in the 3D CFD model, the model is now being applied to a dozen pools in the Trinity River to understand how pool bathymetry influences thermal stratification under variable flows and diurnal temperature variations. This knowledge will be used to expand the results to 52 pools in a 64 km reach below Lewiston Dam that meet the depth criteria (≥2 m) for spring Chinook holding. From this, rating curves will be developed to relate discharge to the volume of pool habitat that provides springers the temperature (<15.6oC daily average), velocity (0.15 to 0.4 m/s) and depths that accommodate the escapement target for spring Chinook (6,000 adults) under maximum fish densities measured in other streams (3.1 m3/fish) during the holding time of year (May through August). Flow releases that meet these goals will be evaluated for water savings relative to the current flow regime and their influence on indicator species, including the Foothill Yellow-Legged Frog, and aspects of the stream biome that support salmon populations, including macroinvertebrate production and juvenile Chinook growth rates.

Keywords: 3D CFD modeling, flow regulation, thermal stratification, chinook salmon, foothill yellow-legged frogs, water managment

Procedia PDF Downloads 34
1516 Clinical and Molecular Characterization of 120 Families with Sporadic Juvenile Onset Open Angle Glaucoma

Authors: Bindu I. Somarajan, Viney Gupta, Gagandeep Kaur Walia, Jasbir Kaur, Sunil Kumar, Shikha Gupta, Abadh K. Chaurasia, Dinesh Gupa, Abhinav Kaushik, Aditi Mehta, Vipin Gupta, Arundhati Sharma

Abstract:

Background: Juvenile onset primary open angle glaucoma (JOAG), affects individuals under the age of 40 years. Studies on a few families of JOAG, that led to the discovery of the Myocilin gene, reported the disease to have an autosomal dominant pattern of inheritance. However, sporadic forms of JOAG been seen to be more common in some populations. Most pathological homozygous mutations in the CYP1B1 gene associated with JOAG have been seen among sporadic cases. Given the higher prevalence of sporadic JOAG cases in our population, we aimed to look for common mutations E229K and R368H, the two most common variants in the CYP1B1 gene associated with glaucoma. Objective: To determine the frequency and evaluate genotype phenotype correlation of CYP1B1 E229K and R368H mutations in a cohort of 120 sporadic Juvenile open angle glaucoma patients.Methods: Unrelated JOAG patients whose first degree relatives had been examined and found to be unaffected were included in the study. The patients and their parents were screened for E229K and R368H mutations. The phenotypic characteristics were compared between probands with and with out these mutations by SPSS v16. Results: Out of 120 JOAG patients included in the study, the E229K mutation was seen in 9 probands (7.5%) and R368H in 7 (5.8%). The average age of onset of the disease (p=0.3) and the highest untreated IOP (p=0.4) among those carrying mutations was not significantly different from those who did not have these mutations. The proportion of probands with angle dysgenesis among those with E229K and R368H mutations was 70% (11 out of 16) in comparison to 65% (67 out of 104) of those who did not harbour these mutations (p=0.56). Similarly the probands with moderate to high myopia among those with E229K and R368H mutations was 20% (3 out of 16) in comparison to 18% (18 out of 104) of those who did not harbour these mutations(p=0.59). Conclusion: The frequency of E229K and R368H mutations of the CYP1B1 gene is low even among sporadic JOAG patients. Moreover there is no clinical correlation between the presence of these mutations and disease severity

Keywords: CYP1B1, gene, IOP, JOAG, mutation

Procedia PDF Downloads 303
1515 A Study of Growth Performance, Carcass Characteristic, Meat Quality and Association of Polymorphism in the ApoVLDL-II Gene with Fat Accumulation in the Female Broiler, Thai Native and Betong Chickens (KU Line)

Authors: C. Kridtayopas, W. Danvilai, P. Sopannarath, A. Kayan, W. Loongyai

Abstract:

Both Betong chicken (KU Line) and Thai Native chickens were the high quality of the meat and low carcass fat compared to broiler chickens. The objective of this study was to determine the growth performance, carcass characteristic, meat quality and association of polymorphism in the ApoVLDL-II gene with fat accumulation in the female broiler, Thai Native and Betong (KU line) chickens at 4-14 weeks. The chickens were used and reared under the same environment and management (100 chicks per breed). The results showed that body weight (BW) of broiler chickens was significantly higher than Thai Native and Betong (KU line) chickens (P < 0.01) through all the experiment. At 4-8 weeks of age, feed conversion ratio (FCR) of broiler chickens was significantly better than Thai Native and Betong (KU line) chickens (P < 0.01), then increased at week 8-14. The percentage of breast, abdominal fat and subcutaneous fat of broiler chickens was significantly greater than Thai Native and Betong (KU line) chickens (P < 0.01). However, Thai Native chickens showed the highest percentage of liver (P < 0.01) when compared to other breeds. In addition, the percentage of wing of Thai Native and Betong (KU line) chickens were significantly (P < 0.01) higher than broiler chickens. Meat quality was also determined and found that, pH of breast meat left from slaughter 45 minutes (pH45) and 24 hours (pH24) of broiler was significantly higher than Thai Native and Betong (KU line) (P < 0.01) whereas the percentage of drip loss, thawing loss, cooking loss and shear force was not significantly different between breeds. The polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique was used to genotype the polymorphism in the ApoVLDL-II gene in the broiler, Thai Native and Betong (KU line) chickens. The results found that, the polymorphism in the ApoVLDL-II gene at VLDL6 loci was not associated with fat accumulation in those studied population.

Keywords: ApoVLDL-II gene, Betong (KU line) chickens, broiler chickens, carcass characteristic, growth performance, meat quality, Thai native chickens

Procedia PDF Downloads 177
1514 Prevalence and Molecular Characterization of Extended-Spectrum–β Lactamase and Carbapenemase-Producing Enterobacterales from Tunisian Seafood

Authors: Mehdi Soula, Yosra Mani, Estelle Saras, Antoine Drapeau, Raoudha Grami, Mahjoub Aouni, Jean-Yves Madec, Marisa Haenni, Wejdene Mansour

Abstract:

Multi-resistance to antibiotics in gram-negative bacilli and particularly in enterobacteriaceae, has become frequent in hospitals in Tunisia. However, data on antibiotic resistant bacteria in aquatic products are scarce. The aims of this study are to estimate the proportion of ESBL- and carbapenemase-producing Enterobacterales in seafood (clams and fish) in Tunisia and to molecularly characterize the collected isolates. Two types of seafood were sampled in unrelated markets in four different regions in Tunisia (641 pieces of farmed fish and 1075 mediterranean clams divided into 215 pools, and each pool contained 5 pieces). Once purchased, all samples were incubated in tubes containing peptone salt broth for 24 to 48h at 37°C. After incubation, overnight cultures were isolated on selective MacConkey agar plates supplemented with either imipenem or cefotaxime, identified using API20E test strips (bioMérieux, Marcy-l’Étoile, France) and confirmed by Maldi-TOF MS. Antimicrobial susceptibility was determined by the disk diffusion method on Mueller-Hinton agar plates and results were interpreted according to CA-SFM 2021. ESBL-producing Enterobacterales were detected using the Double Disc Synergy Test (DDST). Carbapenem-resistance was detected using an ertapenem disk and was respectively confirmed using the ROSCO KPC/MBL and OXA-48 Confirm Kit (ROSCO Diagnostica, Taastrup, Denmark). DNA was extracted using a NucleoSpin Microbial DNA extraction kit (Macherey-Nagel, Hoerdt, France), according to the manufacturer’s instructions. Resistance genes were determined using the CGE online tools. The replicon content and plasmid formula were identified from the WGS data using PlasmidFinder 2.0.1 and pMLST 2.0. From farmed fishes, nine ESBL-producing strains (9/641, 1.4%) were isolated, which were identified as E. coli (n=6) and K. pneumoniae (n=3). Among the 215 pools of 5 clams analyzed, 18 ESBL-producing isolates were identified, including 14 E. coli and 4 K. pneumoniae. A low isolation rate of ESBL-producing Enterobacterales was detected 1.6% (18/1075) in clam pools. In fish, the ESBL phenotype was due to the presence of the blaCTX-M-15 gene in all nine isolates, but no carbapenemase gene was identified. In clams, the predominant ESBL phenotype was blaCTX-M-1 (n=6/18). blaCPE (NDM1, OXA48) was detected only in 3 isolates ‘K. pneumoniae isolates’. Replicon typing on the strains carring the ESBL and carbapenemase gene revelead that the major type plasmid carried ESBL were IncF (42.3%) [n=11/26]. In all, our results suggest that seafood can be a reservoir of multi-drug resistant bacteria, most probably of human origin but also by the selection pressure of antibiotic. Our findings raise concerns that seafood bought for consumption may serve as potential reservoirs of AMR genes and pose serious threat to public health.

Keywords: BLSE, carbapenemase, enterobacterales, tunisian seafood

Procedia PDF Downloads 75
1513 Unzipping the Stress Response Genes in Moringa oleifera Lam. through Transcriptomics

Authors: Vivian A. Panes, Raymond John S. Rebong, Miel Q. Diaz

Abstract:

Moringa oleifera Lam. is known mainly for its high nutritional value and medicinal properties contributing to its popular reputation as a 'miracle plant' in the tropical climates where it usually grows. The main objective of this study is to discover the genes and gene products involved in abiotic stress-induced activity that may impact the M. oleifera Lam. mature seeds as well as their corresponding functions. In this study, RNA-sequencing and de novo transcriptome assembly were performed using two assemblers, Trinity and Oases, which produced 177,417 and 120,818 contigs respectively. These transcripts were then subjected to various bioinformatics tools such as Blast2GO, UniProt, KEGG, and COG for gene annotation and the analysis of relevant metabolic pathways. Furthermore, FPKM analysis was performed to identify gene expression levels. The sequences were filtered according to the 'response to stress' GO term since this study dealt with stress response. Clustered Orthologous Groups (COG) showed that the highest frequencies of stress response gene functions were those of cytoskeleton which make up approximately 14% and 23% of stress-related sequences under Trinity and Oases respectively, recombination, repair and replication at 11% and 14% respectively, carbohydrate transport and metabolism at 23% and 9% respectively and defense mechanisms 16% and 12% respectively. KEGG pathway analysis determined the most abundant stress-response genes in the phenylpropanoid biosynthesis at counts of 187 and 166 pathways for Oases and Trinity respectively, purine metabolism at 123 and 230 pathways, and biosynthesis of antibiotics at 105 and 102. Unique and cumulative GO term counts revealed that majority of the stress response genes belonged to the category of cellular response to stress at cumulative counts of 1,487 to 2,187 for Oases and Trinity respectively, defense response at 754 and 1,255, and response to heat at 213 and 208, response to water deprivation at 229 and 228, and oxidative stress at 508 and 488. Lastly, FPKM was used to determine the levels of expression of each stress response gene. The most upregulated gene encodes for thiamine thiazole synthase chloroplastic-like enzyme which plays a significant role in DNA damage tolerance. Data analysis implies that M. oleifera stress response genes are directed towards the effects of climate change more than other stresses indicating the potential of M. oleifera for cultivation in harsh environments because it is resistant to climate change, pathogens, and foreign invaders.

Keywords: stress response, genes, Moringa oleifera, transcriptomics

Procedia PDF Downloads 116
1512 New Targets Promoting Oncolytic Virotherapy

Authors: Felicia Segeth, Florian G. Klein, Lea Berger, Andreas Kolk, Per S. Holm

Abstract:

The entry of oncolytic viruses (OVs) into clinical application opens groundbreaking changes in current and future treatment regimens. However, despite their potent anti-cancer activity in vitro, clinical studies revealed limitations of OVs as monotherapy. The same applies to CDK 4/6 inhibitors (CDK4/6i) targeting cell cycle as well as bromodomain and extra-terminal domain inhibitors (BETi) targeting gene expression. In this study, the anti-tumoral effect of XVir-N-31, an YB-1 dependent oncolytic adenovirus, was evaluated in combination with Ribociclib, a CDK4/6i, and JQ1, a BETi. The head and neck squamous cell carcinoma (HNSCC) cell lines Fadu, SAS, and Cal-33 were used. DNA replication and gene expression of XVir-N-31 was measured by RT-qPCR, protein expression by western blotting, and cell lysis by SRB assays. Treatment with CDK4/6i and BETi increased viral gene expression, viral DNA replication, and viral particle formation. The data show that the combination of oncolytic adenovirus XVir-N-31 with CDK4/6i & BETi acts highly synergistic in cancer cell lysis. Furthermore, additional molecular analyses on this subject demonstrate that the positive transcription elongation factor P-TEFb plays a decisive role in this regard, indicating an influence of the combinational therapy on gene transcription control. The combination of CDK4/6i & BETi and XVir-N-31 is an attractive strategy to achieve substantial cancer cell killing and is highly suitable for clinical testing.

Keywords: adenovirus, BET, CDK4/6, HNSCC, P-TEFb, YB-1

Procedia PDF Downloads 87
1511 Prevalence of Clostridium perfringens β2-Toxin in Type a Isolates of Sheep and Goats

Authors: Mudassar Mohiuddin, Zahid Iqbal

Abstract:

Introduction: Clostridium perfringens is an important pathogen responsible for causing enteric diseases in both human and animals. The bacteria produce several toxins. These toxins play vital role in the pathogenesis of various fatal enteric diseases and are classified into five types, on the basis of the differential production of Alpha, Beta, Epsilon and Iota toxins. In addition to the so-called major toxins, there are other toxins like beta2 toxin, produced by some strains of C. perfringens which may play a role in the pathogenesis of disease. Aim of the study: In this study a multiplex PCR assay was developed and used for detection of cpb2 gene to identify the Beta2 harboring isolates among different types of C. perfringens. Objectives: The primary objective of this study was to identify the prevalence of β2-toxin gene in local isolates of Clostridium perfringens. Methodology: This was an experimental study. Random sampling technique was used. A total of 97 sheep and goats were included in this study. All were Pakistani local breeds. The samples were collected during the period from Sep, 2014 to Mar, 2015 from selected districts of Punjab province (Pakistan). Faecal samples were cultured in cooked meat media. The identification of Clostridium perfringens was made on the basis of biochemical tests. Multiplex PCR was performed to identify the toxin genes. Results: A total of 43 C. perfringens isolates were genotyped using multiplex PCR assay. The gene encoding C. perfringens β2-toxin (cpb2) was present in more than 50% of the isolates genotyped. However, the prevalence of this gene varied between sheep and goat isolates. Conclusion: The present study suggests the high occurrence of C. perfringens b2-toxin (cpb2) in the local isolates of Pakistan. As β2-toxin is present in both healthy and diseased animals, so further studies are suggested to establish the role of β2-toxin in pathogenesis of the clostridial enteric diseases.

Keywords: beta 2 toxin gene, clostridium perfringens, enteric diseases, goats, multiplex PCR, sheep

Procedia PDF Downloads 429
1510 Identification and Classification of Gliadin Genes in Iranian Diploid Wheat

Authors: Jafar Ahmadi, Alireza Pour-Aboughadareh

Abstract:

Wheat is the first and the most important grain of the world and its bakery property is due to glutenin and gliadin qualities. Wheat seed proteins were divided into four groups according to solubility. Two groups are albumin and globulin dissolving in water and salt solutions possessing metabolic activities. Two other groups are inactive and non-dissolvable and contain glutelins or glutenins and prolamins or gliadins. Gliadins are major components of the storage proteins in wheat endosperm. Gliadin proteins are separated into three groups based on electrophoretic mobility: α/β-gliadin, γ-gliadin, and ω-gliadin. It seems that little information is available about gliadin genes in Iranian wild relatives of wheat. Thus, the aim of this study was the evaluation of the wheat wild relatives collected from different origins of Zagros Mountains in Iran, involving coding gliadin genes using specific primers. For this, forty accessions of Triticum boeoticum and Triticum urartu were selected. For each accession, genomic DNA was extracted and PCRs were performed in total volumes of 15 μl. The amplification products were separated on 1.5% agarose gels. In results, for Gli-2A locus, three allelic variants were detected by Gli-2As primer pairs. The sizes of PCR products for these alleles were 210, 490 and 700 bp. Only five (13%) and two accessions (5%) produced 700 and 490 bp fragments when their DNA was amplified with the Gli.As.2 primer pairs. However, 37 of the 40 accessions (93%) carried 210 bp allele, and three accessions (8%) did not yield any product for this marker. Therefore, these germplasm could be used as rich gene pool to broaden the genetic base of bread wheat.

Keywords: diploied wheat, gliadin, Triticum boeoticum, Triticum urartu

Procedia PDF Downloads 222
1509 Characterization of an Isopropanol-Butanol Clostridium

Authors: Chen Zhang, Fengxue Xin, Jianzhong He

Abstract:

A unique Clostridium beijerinckii species strain BGS1 was obtained from grass land samples, which is capable of producing 8.43g/L butanol and 3.21 isopropanol from 60g/L glucose while generating 4.68g/L volatile fatty acids (VFAs) from 30g/L xylan. The concentration of isopropanol produced by culture BGS1 is ~15% higher than previously reported wild-type Clostridium beijerinckii under similar conditions. Compared to traditional Acetone-Butanol-Ethanol (ABE) fermentation species, culture BGS1 only generates negligible amount of ethanol and acetone, but produces butanol and isopropanol as biosolvent end-products which are pure alcohols and more economical than ABE. More importantly, culture BGS1 can consume acetone to produce isopropanol, e.g., 1.84g/L isopropanol from 0.81g/L acetone in 60g/L glucose medium containing 6.15g/L acetone. The analysis of BGS1 draft genome annotated by RAST server demonstrates that no ethanol production is caused by the lack of pyruvate decarboxylase gene – related to ethanol production. In addition, an alcohol dehydrogenase (adhe gene) was found in BGS1 which could be a potential gene responsible for isopropanol-generation. This is the first report on Isopropanol-Butanol (IB) fermentation by wild-type Clostridium strain and its application for isopropanol and butanol production.

Keywords: acetone conversion, butanol, clostridium, isopropanol

Procedia PDF Downloads 261
1508 The Interplay between Autophagy and Macrophages' Polarization in Wound Healing: A Genetic Regulatory Network Analysis

Authors: Mayada Mazher, Ahmed Moustafa, Ahmed Abdellatif

Abstract:

Background: Autophagy is a eukaryotic, highly conserved catabolic process implicated in many pathophysiologies such as wound healing. Autophagy-associated genes serve as a scaffolding platform for signal transduction of macrophage polarization during the inflammatory phase of wound healing and tissue repair process. In the current study, we report a model for the interplay between autophagy-associated genes and macrophages polarization associated genes. Methods: In silico analysis was performed on 249 autophagy-related genes retrieved from the public autophagy database and gene expression data retrieved from Gene Expression Omnibus (GEO); GSE81922 and GSE69607 microarray data macrophages polarization 199 DEGS. An integrated protein-protein interaction network was constructed for autophagy and macrophage gene sets. The gene sets were then used for GO terms pathway enrichment analysis. Common transcription factors for autophagy and macrophages' polarization were identified. Finally, microRNAs enriched in both autophagy and macrophages were predicated. Results: In silico prediction of common transcription factors in DEGs macrophages and autophagy gene sets revealed a new role for the transcription factors, HOMEZ, GABPA, ELK1 and REL, that commonly regulate macrophages associated genes: IL6,IL1M, IL1B, NOS1, SOC3 and autophagy-related genes: Atg12, Rictor, Rb1cc1, Gaparab1, Atg16l1. Conclusions: Autophagy and macrophages' polarization are interdependent cellular processes, and both autophagy-related proteins and macrophages' polarization related proteins coordinate in tissue remodelling via transcription factors and microRNAs regulatory network. The current work highlights a potential new role for transcription factors HOMEZ, GABPA, ELK1 and REL in wound healing.

Keywords: autophagy related proteins, integrated network analysis, macrophages polarization M1 and M2, tissue remodelling

Procedia PDF Downloads 119
1507 Gene Expression and Staining Agents: Exploring the Factors That Influence the Electrophoretic Properties of Fluorescent Proteins

Authors: Elif Tugce Aksun Tumerkan, Chris Lowe, Hannah Krupa

Abstract:

Fluorescent proteins are self-sufficient in forming chromophores with a visible wavelength from 3 amino acids sequence within their own polypeptide structure. This chromophore – a molecule that absorbs a photon of light and exhibits an energy transition equal to the energy of the absorbed photon. Fluorescent proteins (FPs) consisted of a chain of 238 amino acid residues and composed of 11 beta strands shaped in a cylinder surrounding an alpha helix structure. A better understanding of the system of the chromospheres and the increasing advance in protein engineering in recent years, the properties of FPs offers the potential for new applications. They have used sensors and probes in molecular biology and cell-based research that giving a chance to observe these FPs tagged cell localization, structural variation and movement. For clarifying functional uses of fluorescent proteins, electrophoretic properties of these proteins are one of the most important parameters. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) analysis is used for determining electrophoretic properties commonly. While there are many techniques are used for determining the functionality of protein-based research, SDS-PAGE analysis can only provide a molecular level assessment of the proteolytic fragments. Before SDS-PAGE analysis, fluorescent proteins need to successfully purified. Due to directly purification of the target, FPs is difficult from the animal, gene expression is commonly used which must be done by transformation with the plasmid. Furthermore, used gel within electrophoresis and staining agents properties have a key role. In this review, the different factors that have the impact on the electrophoretic properties of fluorescent proteins explored. Fluorescent protein separation and purification are the essential steps before electrophoresis that should be done very carefully. For protein purification, gene expression process and following steps have a significant function. For successful gene expression, the properties of selected bacteria for expression, used plasmid are essential. Each bacteria has own characteristics which are very sensitive to gene expression, also used procedure is the important factor for fluorescent protein expression. Another important factors are gel formula and used staining agents. Gel formula has an effect on the specific proteins mobilization and staining with correct agents is a key step for visualization of electrophoretic bands of protein. Visuality of proteins can be changed depending on staining reagents. Apparently, this review has emphasized that gene expression and purification have a stronger effect than electrophoresis protocol and staining agents.

Keywords: cell biology, gene expression, staining agents, SDS-page

Procedia PDF Downloads 166
1506 Management and Genetic Characterization of Local Sheep Breeds for Better Productive and Adaptive Traits

Authors: Sonia Bedhiaf-Romdhani

Abstract:

The sheep (Ovis aries) was domesticated, approximately 11,000 years ago (YBP), in the Fertile Crescent from Asian Mouflon (Ovis Orientalis). The Northern African (NA) sheep is 7,000 years old, represents a remarkable diversity of sheep populations reared under traditional and low input farming systems (LIFS) over millennia. The majority of small ruminants in developing countries are encountered in low input production systems and the resilience of local communities in rural areas is often linked to the wellbeing of small ruminants. Regardless of the rich biodiversity encountered in sheep ecotypes there are four main sheep breeds in the country with 61,6 and 35.4 percents of Barbarine (fat tail breed) and Queue Fine de l’Ouest (thin tail breed), respectively. Phoenicians introduced the Barbarine sheep from the steppes of Central Asia in the Carthaginian period, 3000 years ago. The Queue Fine de l’Ouest is a thin-tailed meat breed heavily concentrated in the Western and the central semi-arid regions. The Noire de Thibar breed, involving mutton-fine wool producing animals, has been on the verge of extinction, it’s a composite black coated sheep breed found in the northern sub-humid region because of its higher nutritional requirements and non-tolerance of the prevailing harsher condition. The D'Man breed, originated from Morocco, is mainly located in the southern oases of the extreme arid ecosystem. A genetic investigation of Tunisian sheep breeds using a genome-wide scan of approximately 50,000 SNPs was performed. Genetic analysis of relationship between breeds highlighted the genetic differentiation of Noire de Thibar breed from the other local breeds, reflecting the effect of past events of introgression of European gene pool. The Queue Fine de l’Ouest breed showed a genetic heterogeneity and was close to Barbarine. The D'Man breed shared a considerable gene flow with the thin-tailed Queue Fine de l'Ouest breed. Native small ruminants breeds, are capable to be efficiently productive if essential ingredients and coherent breeding schemes are implemented and followed. Assessing the status of genetic variability of native sheep breeds could provide important clues for research and policy makers to devise better strategies for the conservation and management of genetic resources.

Keywords: sheep, farming systems, diversity, SNPs.

Procedia PDF Downloads 118
1505 The Construction of a Probiotic Lactic Acid Bacterium Expressing Acid-Resistant Phytase Enzyme

Authors: R. Majidzadeh Heravi, M. Sankian, H. Kermanshahi, M. R. Nassiri, A. Heravi Moussavi, S. A. Lari, A. R. Varasteh

Abstract:

The use of probiotics engineered to express specific enzymes has been the subject of considerable attention in poultry industry because of increased nutrient availability and reduced cost of enzyme supplementation. Phytase enzyme is commonly added to poultry feed to improve digestibility and availability of phosphorus from plant sources. To construct a probiotic with potential of phytate degradation, phytase gene (appA) from E. coli was cloned and transformed into two probiotic bacteria Lactobacillus salivarius and Lactococcus lactis. L. salivarous showed plasmid instability, unable to express the gene. The expression of appA gene in L. lactis was analyzed by detecting specific RNA and zymography assay. Phytase enzyme was isolated from cellular extracts of recombinant L. lactis, showing a 46 kDa band upon the SDS-PAGE analysis. Zymogram also confirmed the phytase activity of the 46 kDa band corresponding to the enzyme. An enzyme activity of 4.9U/ml was obtained in cell extracts of L. lactis. The growth of native and recombinant L. lactis was similar in the presence of two concentrations of ox bile.

Keywords: Lactobacillus salivarus, Lactococcuslactis, recombinant, phytase, poultry

Procedia PDF Downloads 458
1504 Habitat-Specific Divergences in the Gene Repertoire among the Reference Prevotella Genomes of the Human Microbiome

Authors: Vinod Kumar Gupta, Narendrakumar M. Chaudhari, Suchismitha Iskepalli, Chitra Dutta

Abstract:

Background-The community composition of the human microbiome is known to vary at distinct anatomical niches. But little is known about the nature of variations if any, at the genome/sub-genome levels of a specific microbial community across different niches. The present report aims to explore, as a case study, the variations in gene repertoire of 28 Prevotella reference draft genomes derived from different body-sites of human, as reported earlier by the Human Microbiome Consortium. Results-The analysis reveals the exclusive presence of 11798, 3673, 3348 and 934 gene families and exclusive absence of 17, 221, 115 and 645 gene families in Prevotella genomes derived from the human oral cavity, gastro-intestinal tracts (GIT), urogenital tract (UGT) and skin, respectively. The pan-genome for Prevotella remains “open”. Distribution of various functional COG categories differs appreciably among the habitat-specific genes, within Prevotella pan-genome and between the GIT-derived Bacteroides and Prevotella. The skin and GIT isolates of Prevotella are enriched in singletons involved in Signal transduction mechanisms, while the UGT and oral isolates show higher representation of the Defense mechanisms category. No niche-specific variations could be observed in the distribution of KEGG pathways. Conclusion-Prevotella may have developed distinct genetic strategies for adaptation to different anatomical habitats through selective, niche-specific acquisition and elimination of suitable gene-families. In addition, individual microorganisms tend to develop their own distinctive adaptive stratagems through large repertoires of singletons. Such in situ, habitat-driven refurbishment of the genetic makeup can impart substantial intra-lineage genome diversity within the microbes without perturbing their general taxonomic heritage.

Keywords: body niche adaptation, human microbiome, pangenome, Prevotella

Procedia PDF Downloads 226
1503 Phenotypical and Genotypical Diagnosis of Cystic Fibrosis in 26 Cases from East and South Algeria

Authors: Yahia Massinissa, Yahia Mouloud

Abstract:

Cystic fibrosis (CF), the most common lethal genetic disease in the Europe population, is caused by mutations in the transmembrane conductance regulator gene (CFTR). It affects most organs including an epithelial tissue, base of hydroelectrolytic transepithelial transport, notably that aerial ways, the pancreas, the biliary ways, the intestine, sweat glands and the genital tractus. The gene whose anomalies are responsible of the cystic fibrosis codes for a protein Cl channel named CFTR (cystic fibrosis transmembrane conductance regulator) that exercises multiple functions in the cell, one of the most important in control of sodium and chlorine through epithelia. The deficient function translates itself notably by an abnormal production of viscous secretion that obstructs the execrator channels of this target organ: one observes then a dilatation, an inflammation and an atrophy of these organs. It also translates itself by an increase of the concentration in sodium and in chloride in sweat, to the basis of the sweat test. In order to do a phenotypical and genotypical diagnosis at a part of the Algerian population, our survey has been carried on 16 patients with evocative symptoms of the cystic fibrosis at that the clinical context has been confirmed by a sweat test. However, anomalies of the CFTR gene have been determined by electrophoresis in gel of polyacrylamide of the PCR products (polymerase chain reaction), after enzymatic digestion, then visualized to the ultraviolet (UV) after action of the ethidium bromide. All mutations detected at the time of our survey have already been identified at patients attained by this pathology in other populations of the world. However, the important number of found mutation with regard to the one of the studied patients testifies that the origin of this big clinical variability that characterizes the illness in the consequences of an enormous diversity of molecular defects of the CFTR gene.

Keywords: cystic fibrosis, CFTR gene, polymorphism, algerian population, sweat test, genotypical diagnosis

Procedia PDF Downloads 275
1502 Resistance Gene Expression and Antioxidant Enzymes Activities in Wheat Genotypes Affected by Bipolaris sorokiniana and Heterodera filipjevi

Authors: Maryam Monazzah, Ronak Samadpour, Mehdi Nasr-esfahani, Fatemeh Qalavand, Marziye Motamedi

Abstract:

Bipolaris sorokiniana, and Heterodera filipjevi, are important wheat diseases that lead to yield losses worldwide. Identifying novel resistant sources helps us combat these devastating diseases. In this study, we studied the role of Cre3 gene and antioxidant enzymes in the immune responses of wheat genotypes to H. filipjevi and B. sorokiniana. Therefore, real-time PCR analysis using Cre3 gene marker, a resistant gene to cereal cyst nematodes, was conducted on leaves and roots, along with changes ‎in the activity of antioxidant enzymes, peroxidase, and catalase. Enzyme activity assay was performed on roots attacked by nematode and in leaves infected with Bipolaris. Wheat accessions including “Bam” (resistant), “Parsi” (moderately-resistant), “Azar2”, “Ohadi”, “Homa” (highly-susceptible) were previously screened against both stresses under greenhouse and field conditions. Results showed that Cre3 expression against cyst nematodes was significantly higher in resistant cultivars compared to susceptible cultivars. Cre3 was used in marker-assisted selection programs to identify genotypes carrying resistant genes to cyst nematodes. Interestingly, Cre3 was also up-regulated in both tissues of resistant cultivars to B. sorokiniana. Therefore, Cre3 in wheat similarly modulates immunity against B. sorokiniana and might be one of the central components of the induced immune system in wheat. The activity of antioxidant enzymes also indicated the highest increase in resistant genotypes upon both stresses that subsequently neutralize oxidative stress in tissues and decrease damage. Further studies on these resistance components may help us gain insight into the molecular basis of resistance and shed new light on the interaction and overlap between different forms of stress.

Keywords: Bipolaris sorokiniana, Heterodera filipjevi, resistant gene expression, wheat

Procedia PDF Downloads 49
1501 Detecting Memory-Related Gene Modules in sc/snRNA-seq Data by Deep-Learning

Authors: Yong Chen

Abstract:

To understand the detailed molecular mechanisms of memory formation in engram cells is one of the most fundamental questions in neuroscience. Recent single-cell RNA-seq (scRNA-seq) and single-nucleus RNA-seq (snRNA-seq) techniques have allowed us to explore the sparsely activated engram ensembles, enabling access to the molecular mechanisms that underlie experience-dependent memory formation and consolidation. However, the absence of specific and powerful computational methods to detect memory-related genes (modules) and their regulatory relationships in the sc/snRNA-seq datasets has strictly limited the analysis of underlying mechanisms and memory coding principles in mammalian brains. Here, we present a deep-learning method named SCENTBOX, to detect memory-related gene modules and causal regulatory relationships among themfromsc/snRNA-seq datasets. SCENTBOX first constructs codifferential expression gene network (CEGN) from case versus control sc/snRNA-seq datasets. It then detects the highly correlated modules of differential expression genes (DEGs) in CEGN. The deep network embedding and attention-based convolutional neural network strategies are employed to precisely detect regulatory relationships among DEG genes in a module. We applied them on scRNA-seq datasets of TRAP; Ai14 mouse neurons with fear memory and detected not only known memory-related genes, but also the modules and potential causal regulations. Our results provided novel regulations within an interesting module, including Arc, Bdnf, Creb, Dusp1, Rgs4, and Btg2. Overall, our methods provide a general computational tool for processing sc/snRNA-seq data from case versus control studie and a systematic investigation of fear-memory-related gene modules.

Keywords: sc/snRNA-seq, memory formation, deep learning, gene module, causal inference

Procedia PDF Downloads 85
1500 Genetic Structure Analysis through Pedigree Information in a Closed Herd of the New Zealand White Rabbits

Authors: M. Sakthivel, A. Devaki, D. Balasubramanyam, P. Kumarasamy, A. Raja, R. Anilkumar, H. Gopi

Abstract:

The New Zealand White breed of rabbit is one of the most commonly used, well adapted exotic breeds in India. Earlier studies were limited only to analyze the environmental factors affecting the growth and reproductive performance. In the present study, the population of the New Zealand White rabbits in a closed herd was evaluated for its genetic structure. Data on pedigree information (n=2508) for 18 years (1995-2012) were utilized for the study. Pedigree analysis and the estimates of population genetic parameters based on gene origin probabilities were performed using the software program ENDOG (version 4.8). The analysis revealed that the mean values of generation interval, coefficients of inbreeding and equivalent inbreeding were 1.489 years, 13.233 percent and 17.585 percent, respectively. The proportion of population inbred was 100 percent. The estimated mean values of average relatedness and the individual increase in inbreeding were 22.727 and 3.004 percent, respectively. The percent increase in inbreeding over generations was 1.94, 3.06 and 3.98 estimated through maximum generations, equivalent generations, and complete generations, respectively. The number of ancestors contributing the most of 50% genes (fₐ₅₀) to the gene pool of reference population was 4 which might have led to the reduction in genetic variability and increased amount of inbreeding. The extent of genetic bottleneck assessed by calculating the effective number of founders (fₑ) and the effective number of ancestors (fₐ), as expressed by the fₑ/fₐ ratio was 1.1 which is indicative of the absence of stringent bottlenecks. Up to 5th generation, 71.29 percent pedigree was complete reflecting the well-maintained pedigree records. The maximum known generations were 15 with an average of 7.9 and the average equivalent generations traced were 5.6 indicating of a fairly good depth in pedigree. The realized effective population size was 14.93 which is very critical, and with the increasing trend of inbreeding, the situation has been assessed to be worse in future. The proportion of animals with the genetic conservation index (GCI) greater than 9 was 39.10 percent which can be used as a scale to use such animals with higher GCI to maintain balanced contribution from the founders. From the study, it was evident that the herd was completely inbred with very high inbreeding coefficient and the effective population size was critical. Recommendations were made to reduce the probability of deleterious effects of inbreeding and to improve the genetic variability in the herd. The present study can help in carrying out similar studies to meet the demand for animal protein in developing countries.

Keywords: effective population size, genetic structure, pedigree analysis, rabbit genetics

Procedia PDF Downloads 267
1499 Microarray Data Visualization and Preprocessing Using R and Bioconductor

Authors: Ruchi Yadav, Shivani Pandey, Prachi Srivastava

Abstract:

Microarrays provide a rich source of data on the molecular working of cells. Each microarray reports on the abundance of tens of thousands of mRNAs. Virtually every human disease is being studied using microarrays with the hope of finding the molecular mechanisms of disease. Bioinformatics analysis plays an important part of processing the information embedded in large-scale expression profiling studies and for laying the foundation for biological interpretation. A basic, yet challenging task in the analysis of microarray gene expression data is the identification of changes in gene expression that are associated with particular biological conditions. Careful statistical design and analysis are essential to improve the efficiency and reliability of microarray experiments throughout the data acquisition and analysis process. One of the most popular platforms for microarray analysis is Bioconductor, an open source and open development software project based on the R programming language. This paper describes specific procedures for conducting quality assessment, visualization and preprocessing of Affymetrix Gene Chip and also details the different bioconductor packages used to analyze affymetrix microarray data and describe the analysis and outcome of each plots.

Keywords: microarray analysis, R language, affymetrix visualization, bioconductor

Procedia PDF Downloads 450
1498 Cotton Fiber Quality Improvement by Introducing Sucrose Synthase (SuS) Gene into Gossypium hirsutum L.

Authors: Ahmad Ali Shahid, Mukhtar Ahmed

Abstract:

The demand for long staple fiber having better strength and length is increasing with the introduction of modern spinning and weaving industry in Pakistan. Work on gene discovery from developing cotton fibers has helped to identify dozens of genes that take part in cotton fiber development and several genes have been characterized for their role in fiber development. Sucrose synthase (SuS) is a key enzyme in the metabolism of sucrose in a plant cell, in cotton fiber it catalyzes a reversible reaction, but preferentially converts sucrose and UDP into fructose and UDP-glucose. UDP-glucose (UDPG) is a nucleotide sugar act as a donor for glucose residue in many glycosylation reactions and is essential for the cytosolic formation of sucrose and involved in the synthesis of cell wall cellulose. The study was focused on successful Agrobacterium-mediated stable transformation of SuS gene in pCAMBIA 1301 into cotton under a CaMV35S promoter. Integration and expression of the gene were confirmed by PCR, GUS assay, and real-time PCR. Young leaves of SuS overexpressing lines showed increased total soluble sugars and plant biomass as compared to non-transgenic control plants. Cellulose contents from fiber were significantly increased. SEM analysis revealed that fibers from transgenic cotton were highly spiral and fiber twist number increased per unit length when compared with control. Morphological data from field plants showed that transgenic plants performed better in field conditions. Incorporation of genes related to cotton fiber length and quality can provide new avenues for fiber improvement. The utilization of this technology would provide an efficient import substitution and sustained production of long-staple fiber in Pakistan to fulfill the industrial requirements.

Keywords: agrobacterium-mediated transformation, cotton fiber, sucrose synthase gene, staple length

Procedia PDF Downloads 203
1497 Investigation of FoxM1 Gene Expression in Breast Cancer and Its Relationship with miR-216b-5p Expression Level

Authors: Neda Menbari, Ramin Mehdiabadi

Abstract:

Background: breast cancer remains a critical global health issue, constituting a leading cause of cancer-related mortality in women. MicroRNAs (miRs) are natural RNA molecules that play an important role in cellular processes and regulate post-transcriptional gene expression. MiR-216b-5p is a miR that acts as a tumor suppressor. The expression levels of FoxM1 and miR-216b-5p in malignant and control cells have been evaluated by quantitative polymerase chain reaction (qPCR) technique and flow cytometry. Results: the results of this study revealed a significant downregulation of miR-216b-5p in cancerous cells compared to the control MCF-10A cells (P=0.0004). Interestingly, the expression of miR-216b-5p exhibited an inverse relationship with key clinical indicators such as tumor size, grade, and lymph node invasion. Conclusion: The study's findings showed the prognostic value of miR-216b-5p levels in breast cancer, and its reduced expression correlates with unfavorable tumor characteristics. This research recommends performing more studies on the role of FoxM1 and miR-216b-5p in breast cancer pathology which potentially paving the way for targeted therapeutic interventions.

Keywords: breast cancer, gene expression, FOXM1, microRNA

Procedia PDF Downloads 15
1496 Correlation between Polysaccharides Molecular Weight Changes and Pectinases Gene Expression during Papaya Ripening

Authors: Samira B. R. Prado, Paulo R. Melfi, Beatriz T. Minguzzi, João P. Fabi

Abstract:

Fruit softening is the main change that occurs during papaya (Carica papaya L.) ripening. It is characterized by the depolymerization of cell wall polysaccharides, especially the pectic fractions, which causes cell wall disassembling. However, it is uncertain how the modification of the two main pectin polysaccharides fractions (water-soluble – WSF, and oxalate-soluble fractions - OSF) accounts for fruit softening. The aim of this work was to correlate molecular weight changes of WSF and OSF with the gene expression of pectin-solubilizing enzymes (pectinases) during papaya ripening. Papaya fruits obtained from a producer were harvest and storage under specific conditions. The fruits were divided in five groups according to days after harvesting. Cell walls from all groups of papaya pulp were isolated and fractionated (WSF and OSF). Expression profiles of pectinase genes were achieved according to the MIQE guidelines (Minimum Information for publication of Quantitative real-time PCR Experiments). The results showed an increased yield and a decreased molecular weight throughout ripening for WSF and OSF. Gene expression data support that papaya softening is achieved by polygalacturonases (PGs) up-regulation, in which their actions might have been facilitated by the constant action of pectinesterases (PMEs). Moreover, BGAL1 gene was up-regulated during ripening with a simultaneous galactose release, suggesting that galactosidases (GALs) could also account for pulp softening. The data suggest that a solubilization of galacturonans and a depolymerization of cell wall components were caused mainly by the action of PGs and GALs.

Keywords: carica papaya, fruit ripening, galactosidases, plant cell wall, polygalacturonases

Procedia PDF Downloads 394
1495 Genome-Wide Analysis of BES1/BZR1 Gene Family in Five Plant Species

Authors: Jafar Ahmadi, Zhohreh Asiaban, Sedigheh Fabriki Ourang

Abstract:

Brassinosteroids (BRs) regulate cell elongation, vascular differentiation, senescence and stress responses. BRs signal through the BES1/BZR1 family of transcription factors, which regulate hundreds of target genes involved in this pathway. In this research a comprehensive genome-wide analysis was carried out in BES1/BZR1 gene family in Arabidopsis thaliana, Cucumis sativus, Vitis vinifera, Glycin max, and Brachypodium distachyon. Specifications of the desired sequences, dot plot and hydropathy plot were analyzed in the protein and genome sequences of five plant species. The maximum amino acid length was attributed to protein sequence Brdic3g with 374aa and the minimum amino acid length was attributed to protein sequence Gm7g with 163aa. The maximum Instability index was attributed to protein sequence AT1G19350 equal with 79.99 and the minimum Instability index was attributed to protein sequence Gm5g equal with 33.22. Aliphatic index of these protein sequences ranged from 47.82 to 78.79 in Arabidopsis thaliana, 49.91 to 57.50 in Vitis vinifera, 55.09 to 82.43 in Glycin max, 54.09 to 54.28 in Brachypodium distachyon 55.36 to 56.83 in Cucumis sativus. Overall, data obtained from our investigation contributes a better understanding of the complexity of the BES1/BZR1 gene family and provides the first step towards directing future experimental designs to perform systematic analysis of the functions of the BES1/BZR1 gene family.

Keywords: BES1/BZR1, brassinosteroids, phylogenetic analysis, transcription factor

Procedia PDF Downloads 307
1494 Ring FingerPortein 2 (RNF2) Targeting by miRNAs in Breast Cancer Cell Lines

Authors: Ceyda Okudu, Secil Eroglu, Khandakar A. S. M. Saadat, Sibel O. Balci

Abstract:

Ring Finger Protein 2 (RNF2) is a member of polycomb repressive complex 1 (PRC1), which is one of the epigenetic regulators in the genome. When RNF2 combines with other PRC1 members, it mediates the mono-ubiquitination of Histon2A (H2A). In breast cancer, RNF2 is commonly overexpressed, and also it promotes metastasis and invasion in other aggressive tumors like melanoma, prostate, and hepatocarcinoma. The role of RNF2 in the metastasis and invasion of breast cancer has not yet been elucidated. Our aim is to observe the role of RNF2 in metastasis and invasion in this study by miRNA mediated RNF2 gene silencing in breast cancer cell lines. We selected miRNAs, targeting to RNF2 by searching online databases. miR-17-5p, miR20a-5p, and miR-106b-5p were transfected to breast cancer cell lines (MCF-7, MDA-MB-231, SK-BR-3, and ZR-75-1), and also we used normal breast epithelial cell line (hTERT-HME1) to compare RNF2 gene expression level. After 48-72 hours post-transfection, mRNAs were isolated from the cells, and gene expressions were measured by RT-qPCR after from cDNA syntheses. We observed that RNF2 was highly expressed in SK-BR-3 and MDA-MB-231 cell lines opposite to MCF-7 and ZR-75-1 cell lines. RNF2 was downregulated 5, 5 and 7 fold by miR17-5p, miR20a-5p and miR106b-5p respectively in MCF-7. However, in SK-BR-3 and ZR-75-1 cell lines, miRNAs did not affect significantly RNF2 gene expression level. miR20a-5p decreased RNF2 3 fold and miR17-5p and miR106b-5p did not affect MDA-MB-231. After gene expression analysis, we performed metastasis and invasion assay in MCF-7 cells. For metastasis, we used both wound healing assay and Transwell Cell Migration Assay, and we used Transwell Cell Invasion Assay for invasion. The data of this assay showed that miR17-5p and miR20a-5p decreased both invasion and metastasis level, but miR106b-5p has no effect. We would like to conclude that RNF2 can be targeted by miR17-5p, miR20a-5p and miR106b-5p in MCF-7 cells and also RNF2, which is one of the upregulated genes in aggressive tumor, can be decreased by using these miRNAs. In future, we would like to confirm these results at the protein level and also whether these miRNAs are direct target of RNF2 or not.

Keywords: breast cancer, epigenetic, microRNAs, RNF2

Procedia PDF Downloads 149
1493 CMT4G: Rare Form of Charcot-Marie-Tooth Disease in Slovak Roma Patient

Authors: Dana Gabriková, Martin Mistrík, Jarmila Bernasovská, Iveta Tóthová, Jana Kisková

Abstract:

The Roma (Gypsies) is a transnational minority with a high degree of consanguineous marriages. Similar to other genetically isolated founder populations, the Roma harbor a number of unique or rare genetic disorders. This paper discusses about a rare form of Charcot-Marie-Tooth disease – type 4G (CMT4G), also called Hereditary Motor and Sensory Neuropathy type Russe, an autosomal recessive disease caused by mutation private to Roma characterized by abnormally increased density of non-myelinated axons. CMT4G was originally found in Bulgarian Roma and in 2009 two putative causative mutations in the HK1 gene were identified. Since then, several cases were reported in Roma families mainly from Bulgaria and Spain. Here we present a Slovak Roma family in which CMT4G was diagnosed on the basis of clinical examination and genetic testing. This case is a further proof of the role of the HK1 gene in pathogenesis of the disease. It confirms that mutation in the HK1 gene is a common cause of autosomal recessive CMT disease in Roma and should be considered as a common part of a diagnostic procedure.

Keywords: gypsies, HK1, HSMN-Russe, rare disease

Procedia PDF Downloads 360
1492 lncRNA Gene Expression Profiling Analysis by TCGA RNA-Seq Data of Breast Cancer

Authors: Xiaoping Su, Gabriel G. Malouf

Abstract:

Introduction: Breast cancer is a heterogeneous disease that can be classified in 4 subgroups using transcriptional profiling. The role of lncRNA expression in human breast cancer biology, prognosis, and molecular classification remains unknown. Methods and results: Using an integrative comprehensive analysis of lncRNA, mRNA and DNA methylation in 900 breast cancer patients from The Cancer Genome Atlas (TCGA) project, we unraveled the molecular portraits of 1,700 expressed lncRNA. Some of those lncRNAs (i.e, HOTAIR) are previously reported and others are novel (i.e, HOTAIRM1, MAPT-AS1). The lncRNA classification correlated well with the PAM50 classification for basal-like, Her-2 enriched and luminal B subgroups, in contrast to the luminal A subgroup which behaved differently. Importantly, estrogen receptor (ESR1) expression was associated with distinct lncRNA networks in lncRNA clusters III and IV. Gene set enrichment analysis for cis- and trans-acting lncRNA showed enrichment for breast cancer signatures driven by breast cancer master regulators. Almost two third of those lncRNA were marked by enhancer chromatin modifications (i.e., H3K27ac), suggesting that lncRNA expression may result in increased activity of neighboring genes. Differential analysis of gene expression profiling data showed that lncRNA HOTAIRM1 was significantly down-regulated in basal-like subtype, and DNA methylation profiling data showed that lncRNA HOTAIRM1 was highly methylated in basal-like subtype. Thus, our integrative analysis of gene expression and DNA methylation strongly suggested that lncRNA HOTAIRM1 should be a tumor suppressor in basal-like subtype. Conclusion and significance: Our study depicts the first lncRNA molecular portrait of breast cancer and shows that lncRNA HOTAIRM1 might be a novel tumor suppressor.

Keywords: lncRNA profiling, breast cancer, HOTAIRM1, tumor suppressor

Procedia PDF Downloads 78
1491 Bioinformatic Prediction of Hub Genes by Analysis of Signaling Pathways, Transcriptional Regulatory Networks and DNA Methylation Pattern in Colon Cancer

Authors: Ankan Roy, Niharika, Samir Kumar Patra

Abstract:

Anomalous nexus of complex topological assemblies and spatiotemporal epigenetic choreography at chromosomal territory may forms the most sophisticated regulatory layer of gene expression in cancer. Colon cancer is one of the leading malignant neoplasms of the lower gastrointestinal tract worldwide. There is still a paucity of information about the complex molecular mechanisms of colonic cancerogenesis. Bioinformatics prediction and analysis helps to identify essential genes and significant pathways for monitoring and conquering this deadly disease. The present study investigates and explores potential hub genes as biomarkers and effective therapeutic targets for colon cancer treatment. Colon cancer patient sample containing gene expression profile datasets, such as GSE44076, GSE20916, and GSE37364 were downloaded from Gene Expression Omnibus (GEO) database and thoroughly screened using the GEO2R tool and Funrich software to find out common 2 differentially expressed genes (DEGs). Other approaches, including Gene Ontology (GO) and KEGG pathway analysis, Protein-Protein Interaction (PPI) network construction and hub gene investigation, Overall Survival (OS) analysis, gene correlation analysis, methylation pattern analysis, and hub gene-Transcription factors regulatory network construction, were performed and validated using various bioinformatics tool. Initially, we identified 166 DEGs, including 68 up-regulated and 98 down-regulated genes. Up-regulated genes are mainly associated with the Cytokine-cytokine receptor interaction, IL17 signaling pathway, ECM-receptor interaction, Focal adhesion and PI3K-Akt pathway. Downregulated genes are enriched in metabolic pathways, retinol metabolism, Steroid hormone biosynthesis, and bile secretion. From the protein-protein interaction network, thirty hub genes with high connectivity are selected using the MCODE and cytoHubba plugin. Survival analysis, expression validation, correlation analysis, and methylation pattern analysis were further verified using TCGA data. Finally, we predicted COL1A1, COL1A2, COL4A1, SPP1, SPARC, and THBS2 as potential master regulators in colonic cancerogenesis. Moreover, our experimental data highlights that disruption of lipid raft and RAS/MAPK signaling cascade affects this gene hub at mRNA level. We identified COL1A1, COL1A2, COL4A1, SPP1, SPARC, and THBS2 as determinant hub genes in colon cancer progression. They can be considered as biomarkers for diagnosis and promising therapeutic targets in colon cancer treatment. Additionally, our experimental data advertise that signaling pathway act as connecting link between membrane hub and gene hub.

Keywords: hub genes, colon cancer, DNA methylation, epigenetic engineering, bioinformatic predictions

Procedia PDF Downloads 100
1490 Construction of Genetic Recombinant Yeasts with High Environmental Tolerance by Accumulation of Trehalose and Detoxication of Aldehyde

Authors: Yun-Chin Chung, Nileema Divate, Gen-Hung Chen, Pei-Ru Huang, Rupesh Divate

Abstract:

Many environmental factors, such as glucose concentration, ethanol, temperature, osmotic pressure and pH, decrease the production rate of ethanol using yeast as a starter. Fermentation starters with high tolerance to various stresses are always demanded for brewing industry. Trehalose, a storage carbohydrate in cell wall of yeast, plays an important role in tolerance of environmental stress by preserving integrity of plasma membrane and stabilizing proteins. Furan aldehydes are toxic to yeast and the growth rate of yeast is significantly reduced if furan aldehydes were present in the fermentation medium. In yeast, aldehyde reductase is involved in the detoxification of reactive aldehydes and consequently the growth of yeast is improved. The aims of this study were to construct a genetic recombinant Saccharomyces cerevisiae or Pichia pastoris with furfural and HMF degrading and high ethanol tolerance capacities. Yeast strains were engineered by genetic recombination for overexpression of trehalose-6-phosphate synthase gene (tps1) and aldehyde reductase gene (ari1). TPS1 gene was cloned from S. cerevisiae by reverse transcription-polymerase chain reaction (RT-PCR) and then ligated with pGAPZαC vector. The constructed vector, pGAPZC-tps1, was transformed to recombinant yeasts strain with overexpression of ari1. The transformants with pGAPZC-tps1-ari1 were generated called STA (S. cerevisiae) and PTA (P. pastoris) with overexpression of tps1, ari1. PCR with tps1-specific primers and western blot with his-tag confirmed the gene insertion and protein expression of tps1 in the transformants, respectively. The neutral trehalase gene (nth1) of STA was successfully deleted and the novel strain STAΔN will be used for further study, including the measurement of trehalose concentration and ethanol, furfural tolerance assay.

Keywords: genetic recombinant, yeast, ethanol tolerance, trehalase, aldehyde reductase

Procedia PDF Downloads 396
1489 Expression of ULK-1 mRNA in Human Peripheral Blood Mononuclear Cells from Patients with Alzheimer's Disease

Authors: Ali Bayram, Remzi Yiğiter

Abstract:

Objective: Alzheimer's disease (AD), the most common cause of dementia, is a progressive neurodegenerative disease. At present, diagnosis of AD is rather late in the disease. Therefore, we attempted to find peripheral biomarkers for the early diagnosis of AD. Herein, we conducted a study to investigate the unc-51 like autophagy activating kinase-1 (ULK1) mRNA expression levels in human peripheral blood mononuclear cells from patients with Alzheimer's disease. Method: To determine whether ULK1 gene expression are altered in AD patients, we measured their gene expression in human peripheral blood cell in 50 patients with AD and 50 age and gender matched healthy controls by quantitative real-time PCR technique. Results: We found that both ULK1 gene expression in peripheral blood cell were significantly decreased in patients with AD as compared with controls (p <0.05). Lower levels of ULK1 gene expression were significantly associated with the increased risk for AD. Conclusions: Serine/threonine-protein kinase involved in autophagy in response to starvation. Acts upstream of phosphatidylinositol 3-kinase PIK3C3 to regulate the formation of autophagophores, the precursors of autophagosomes. Part of regulatory feedback loops in autophagy: acts both as a downstream effector and negative regulator of mammalian target of rapamycin complex 1 (mTORC1) via interaction with RPTOR. Activated via phosphorylation by AMPK and also acts as a regulator of AMPK by mediating phosphorylation of AMPK subunits PRKAA1, PRKAB2, and PRKAG1, leading to negatively regulate AMPK activity. May phosphorylate ATG13/KIAA0652 and RPTOR; however such data need additional evidences. Plays a role early in neuronal differentiation and is required for granule cell axon formation. Alzheimer is the most common neurodegenerative disease. Our results provide useful information that the ULK1 gene expression is decreased in the neurodegeneration and AD patients with, indicating their possible systemic involvement in AD.

Keywords: Alzheimer’s sisease, ULK1, mRNA expression, RT-PCR

Procedia PDF Downloads 367
1488 Heritability and Diversity Analysis of Blast Resistant Upland Rice Genotypes Based on Quantitative Traits

Authors: Mst. Tuhina-Khatun, Mohamed Hanafi Musa, Mohd Rafii Yosup, Wong Mui Yun, Md. Aktar-Uz-Zaman, Mahbod Sahebi

Abstract:

Rice is a staple crop of economic importance of most Asian people, and blast is the major constraints for its higher yield. Heritability of plants traits helps plant breeders to make an appropriate selection and to assess the magnitude of genetic improvement through hybridization. Diversity of crop plants is necessary to manage the continuing genetic erosion and address the issues of genetic conservation for successfully meet the future food requirements. Therefore, an experiment was conducted to estimate heritability and to determine the diversity of 27 blast resistant upland rice genotypes based on 18 quantitative traits using randomized complete block design. Heritability value was found to vary from 38 to 93%. The lowest heritability belonged to the character total number of tillers/plant (38%). In contrast, number of filled grains/panicle, and yield/plant (g) was recorded for their highest heritability value viz. 93 and 91% correspondingly. Cluster analysis based on 18 traits grouped 27 rice genotypes into six clusters. Cluster I was the biggest, which comprised 17 genotypes, accounted for about 62.96% of total population. The multivariate analysis suggested that the genotype ‘Chokoto 14’ could be hybridized with ‘IR 5533-55-1-11’ and ‘IR 5533-PP 854-1’ for broadening the gene pool of blast resistant upland rice germplasms for yield and other favorable characters.

Keywords: blast resistant, diversity analysis, heritability, upland rice

Procedia PDF Downloads 347