Search results for: fuzzy front-end
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 713

Search results for: fuzzy front-end

713 Fuzzy Ideal Topological Spaces

Authors: Ali Koam, Ismail Ibedou, S. E. Abbas

Abstract:

In this paper, it is introduced the notion of r-fuzzy ideal separation axioms Tᵢi = 0; 1; 2 based on a fuzzy ideal I on a fuzzy topological space (X; τ). An r-fuzzy ideal connectedness related to the fuzzy ideal I is introduced which has relations with a previous r-fuzzy fuzzy connectedness. An r-fuzzy ideal compactness related to Ι is introduced which has also relations with many other types of fuzzy compactness.

Keywords: fuzzy ideal, fuzzy separation axioms, fuzzy compactness, fuzzy connectedness

Procedia PDF Downloads 266
712 Sensitivity Analysis in Fuzzy Linear Programming Problems

Authors: S. H. Nasseri, A. Ebrahimnejad

Abstract:

Fuzzy set theory has been applied to many fields, such as operations research, control theory, and management sciences. In this paper, we consider two classes of fuzzy linear programming (FLP) problems: Fuzzy number linear programming and linear programming with trapezoidal fuzzy variables problems. We state our recently established results and develop fuzzy primal simplex algorithms for solving these problems. Finally, we give illustrative examples.

Keywords: fuzzy linear programming, fuzzy numbers, duality, sensitivity analysis

Procedia PDF Downloads 565
711 Some New Hesitant Fuzzy Sets Operator

Authors: G. S. Thakur

Abstract:

In this paper, four new operators (O1, O2, O3, O4) are proposed, defined and considered to study the new properties and identities on hesitant fuzzy sets. These operators are useful for different operation on hesitant fuzzy sets. The various theorems are proved using the new operators. The study of the proposed new operators has opened a new area of research and applications.

Keywords: vague sets, hesitant fuzzy sets, intuitionistic fuzzy set, fuzzy sets, fuzzy multisets

Procedia PDF Downloads 285
710 2D Structured Non-Cyclic Fuzzy Graphs

Authors: T. Pathinathan, M. Peter

Abstract:

Fuzzy graphs incorporate concepts from graph theory with fuzzy principles. In this paper, we make a study on the properties of fuzzy graphs which are non-cyclic and are of two-dimensional in structure. In particular, this paper presents 2D structure or the structure of double layer for a non-cyclic fuzzy graph whose underlying crisp graph is non-cyclic. In any graph structure, introducing 2D structure may lead to an inherent cycle. We propose relevant conditions for 2D structured non-cyclic fuzzy graphs. These conditions are extended even to fuzzy graphs of the 3D structure. General theoretical properties that are studied for any fuzzy graph are verified to 2D structured or double layered fuzzy graphs. Concepts like Order, Degree, Strong and Size for a fuzzy graph are studied for 2D structured or double layered non-cyclic fuzzy graphs. Using different types of fuzzy graphs, the proposed concepts relating to 2D structured fuzzy graphs are verified.

Keywords: double layered fuzzy graph, double layered non–cyclic fuzzy graph, order, degree and size

Procedia PDF Downloads 400
709 Solving Fuzzy Multi-Objective Linear Programming Problems with Fuzzy Decision Variables

Authors: Mahnaz Hosseinzadeh, Aliyeh Kazemi

Abstract:

In this paper, a method is proposed for solving Fuzzy Multi-Objective Linear Programming problems (FMOLPP) with fuzzy right hand side and fuzzy decision variables. To illustrate the proposed method, it is applied to the problem of selecting suppliers for an automotive parts producer company in Iran in order to find the number of optimal orders allocated to each supplier considering the conflicting objectives. Finally, the obtained results are discussed.

Keywords: fuzzy multi-objective linear programming problems, triangular fuzzy numbers, fuzzy ranking, supplier selection problem

Procedia PDF Downloads 383
708 Complex Fuzzy Evolution Equation with Nonlocal Conditions

Authors: Abdelati El Allaoui, Said Melliani, Lalla Saadia Chadli

Abstract:

The objective of this paper is to study the existence and uniqueness of Mild solutions for a complex fuzzy evolution equation with nonlocal conditions that accommodates the notion of fuzzy sets defined by complex-valued membership functions. We first propose definition of complex fuzzy strongly continuous semigroups. We then give existence and uniqueness result relevant to the complex fuzzy evolution equation.

Keywords: Complex fuzzy evolution equations, nonlocal conditions, mild solution, complex fuzzy semigroups

Procedia PDF Downloads 281
707 Fuzzy Multi-Component DEA with Shared and Undesirable Fuzzy Resources

Authors: Jolly Puri, Shiv Prasad Yadav

Abstract:

Multi-component data envelopment analysis (MC-DEA) is a popular technique for measuring aggregate performance of the decision making units (DMUs) along with their components. However, the conventional MC-DEA is limited to crisp input and output data which may not always be available in exact form. In real life problems, data may be imprecise or fuzzy. Therefore, in this paper, we propose (i) a fuzzy MC-DEA (FMC-DEA) model in which shared and undesirable fuzzy resources are incorporated, (ii) the proposed FMC-DEA model is transformed into a pair of crisp models using cut approach, (iii) fuzzy aggregate performance of a DMU and fuzzy efficiencies of components are defined to be fuzzy numbers, and (iv) a numerical example is illustrated to validate the proposed approach.

Keywords: multi-component DEA, fuzzy multi-component DEA, fuzzy resources, decision making units (DMUs)

Procedia PDF Downloads 407
706 A Fuzzy Nonlinear Regression Model for Interval Type-2 Fuzzy Sets

Authors: O. Poleshchuk, E. Komarov

Abstract:

This paper presents a regression model for interval type-2 fuzzy sets based on the least squares estimation technique. Unknown coefficients are assumed to be triangular fuzzy numbers. The basic idea is to determine aggregation intervals for type-1 fuzzy sets, membership functions of whose are low membership function and upper membership function of interval type-2 fuzzy set. These aggregation intervals were called weighted intervals. Low and upper membership functions of input and output interval type-2 fuzzy sets for developed regression models are considered as piecewise linear functions.

Keywords: interval type-2 fuzzy sets, fuzzy regression, weighted interval

Procedia PDF Downloads 373
705 A Fuzzy Mathematical Model for Order Acceptance and Scheduling Problem

Authors: E. Koyuncu

Abstract:

The problem of Order Acceptance and Scheduling (OAS) is defined as a joint decision of which orders to accept for processing and how to schedule them. Any linear programming model representing real-world situation involves the parameters defined by the decision maker in an uncertain way or by means of language statement. Fuzzy data can be used to incorporate vagueness in the real-life situation. In this study, a fuzzy mathematical model is proposed for a single machine OAS problem, where the orders are defined by their fuzzy due dates, fuzzy processing times, and fuzzy sequence dependent setup times. The signed distance method, one of the fuzzy ranking methods, is used to handle the fuzzy constraints in the model.

Keywords: fuzzy mathematical programming, fuzzy ranking, order acceptance, single machine scheduling

Procedia PDF Downloads 338
704 Operational Matrix Method for Fuzzy Fractional Reaction Diffusion Equation

Authors: Sachin Kumar

Abstract:

Fuzzy fractional diffusion equation is widely useful to depict different physical processes arising in physics, biology, and hydrology. The motive of this article is to deal with the fuzzy fractional diffusion equation. We study a mathematical model of fuzzy space-time fractional diffusion equation in which unknown function, coefficients, and initial-boundary conditions are fuzzy numbers. First, we find out a fuzzy operational matrix of Legendre polynomial of Caputo type fuzzy fractional derivative having a non-singular Mittag-Leffler kernel. The main advantages of this method are that it reduces the fuzzy fractional partial differential equation (FFPDE) to a system of fuzzy algebraic equations from which we can find the solution of the problem. The feasibility of our approach is shown by some numerical examples. Hence, our method is suitable to deal with FFPDE and has good accuracy.

Keywords: fractional PDE, fuzzy valued function, diffusion equation, Legendre polynomial, spectral method

Procedia PDF Downloads 201
703 Single Valued Neutrosophic Hesitant Fuzzy Rough Set and Its Application

Authors: K. M. Alsager, N. O. Alshehri

Abstract:

In this paper, we proposed the notion of single valued neutrosophic hesitant fuzzy rough set, by combining single valued neutrosophic hesitant fuzzy set and rough set. The combination of single valued neutrosophic hesitant fuzzy set and rough set is a powerful tool for dealing with uncertainty, granularity and incompleteness of knowledge in information systems. We presented both definition and some basic properties of the proposed model. Finally, we gave a general approach which is applied to a decision making problem in disease diagnoses, and demonstrated the effectiveness of the approach by a numerical example.

Keywords: single valued neutrosophic fuzzy set, single valued neutrosophic fuzzy hesitant set, rough set, single valued neutrosophic hesitant fuzzy rough set

Procedia PDF Downloads 271
702 Fuzzy Control and Pertinence Functions

Authors: Luiz F. J. Maia

Abstract:

This paper presents an approach to fuzzy control, with the use of new pertinence functions, applied in the case of an inverted pendulum. Appropriate definitions of pertinence functions to fuzzy sets make possible the implementation of the controller with only one control rule, resulting in a smooth control surface. The fuzzy control system can be implemented with analog devices, affording a true real-time performance.

Keywords: control surface, fuzzy control, Inverted pendulum, pertinence functions

Procedia PDF Downloads 449
701 A Fuzzy Kernel K-Medoids Algorithm for Clustering Uncertain Data Objects

Authors: Behnam Tavakkol

Abstract:

Uncertain data mining algorithms use different ways to consider uncertainty in data such as by representing a data object as a sample of points or a probability distribution. Fuzzy methods have long been used for clustering traditional (certain) data objects. They are used to produce non-crisp cluster labels. For uncertain data, however, besides some uncertain fuzzy k-medoids algorithms, not many other fuzzy clustering methods have been developed. In this work, we develop a fuzzy kernel k-medoids algorithm for clustering uncertain data objects. The developed fuzzy kernel k-medoids algorithm is superior to existing fuzzy k-medoids algorithms in clustering data sets with non-linearly separable clusters.

Keywords: clustering algorithm, fuzzy methods, kernel k-medoids, uncertain data

Procedia PDF Downloads 215
700 Derivation of BCK\BCI-Algebras

Authors: Tumadhir Fahim M Alsulami

Abstract:

The concept of this paper builds on connecting between two important notions, fuzzy ideals of BCK-algebras and derivation of BCI-algebras. The result we got is a new concept called derivation fuzzy ideals of BCI-algebras. Followed by various results and important theorems on different types of ideals. In chapter 1: We presented the basic and fundamental concepts of BCK\ BCI- algebras as follows: BCK/BCI-algebras, BCK sub-algebras, bounded BCK-algebras, positive implicative BCK-algebras, commutative BCK-algebras, implicative BCK- algebras. Moreover, we discussed ideals of BCK-algebras, positive implicative ideals, implicative ideals and commutative ideals. In the last section of chapter 1 we proposed the notion of derivation of BCI-algebras, regular derivation of BCI-algebras and basic definitions and properties. In chapter 2: It includes 3 sections as follows: Section 1 contains elementary concepts of fuzzy sets and fuzzy set operations. Section 2 shows O. G. Xi idea, where he applies fuzzy sets concept to BCK-algebras and we studied fuzzy sub-algebras as well. Section 3 contains fuzzy ideals of BCK-algebras basic definitions, closed fuzzy ideals, fuzzy commutative ideals, fuzzy positive implicative ideals, fuzzy implicative ideals, fuzzy H-ideals and fuzzy p-ideals. Moreover, we investigated their concepts in diverse theorems and propositions. In chapter 3: The main concept of our thesis on derivation fuzzy ideals of BCI- algebras is introduced. Chapter 3 splits into 4 sections. We start with General definitions and important theorems on derivation fuzzy ideal theory in section 1. Section 2 and 3 contain derivations fuzzy p-ideals and derivations fuzzy H-ideals of BCI- algebras, several important theorems and propositions were introduced. The last section studied derivations fuzzy implicative ideals of BCI-algebras and it includes new theorems and results. Furthermore, we presented a new theorem that associate derivations fuzzy implicative ideals, derivations fuzzy positive implicative ideals and derivations fuzzy commutative ideals. These concepts and the new results were obtained and introduced in chapter 3 were submitted in two separated articles and accepted for publication.

Keywords: BCK, BCI, algebras, derivation

Procedia PDF Downloads 124
699 Application of Interval Valued Picture Fuzzy Set in Medical Diagnosis

Authors: Palash Dutta

Abstract:

More frequently uncertainties are encountered in medical diagnosis and therefore it is the most important and interesting area of applications of fuzzy set theory. In this present study, an attempt has been made to extend Sanchez’s approach for medical diagnosis via interval valued picture fuzzy sets and exhibit the technique with suitable case studies. In this article, it is observed that a refusal can be expressed in the databases concerning the examined objects. The technique is performing diagnosis on the basis of distance measures and as a result, this approach makes it possible to introduce weights of all symptoms and consequently patient can be diagnosed directly.

Keywords: medical diagnosis, uncertainty, fuzzy set, picture fuzzy set, interval valued picture fuzzy set

Procedia PDF Downloads 378
698 Assessment the Quality of Telecommunication Services by Fuzzy Inferences System

Authors: Oktay Nusratov, Ramin Rzaev, Aydin Goyushov

Abstract:

Fuzzy inference method based approach to the forming of modular intellectual system of assessment the quality of communication services is proposed. Developed under this approach the basic fuzzy estimation model takes into account the recommendations of the International Telecommunication Union in respect of the operation of packet switching networks based on IP-protocol. To implement the main features and functions of the fuzzy control system of quality telecommunication services it is used multilayer feedforward neural network.

Keywords: quality of communication, IP-telephony, fuzzy set, fuzzy implication, neural network

Procedia PDF Downloads 468
697 Recruitment Model (FSRM) for Faculty Selection Based on Fuzzy Soft

Authors: G. S. Thakur

Abstract:

This paper presents a Fuzzy Soft Recruitment Model (FSRM) for faculty selection of MHRD technical institutions. The selection criteria are based on 4-tier flexible structure in the institutions. The Advisory Committee on Faculty Recruitment (ACoFAR) suggested nine criteria for faculty in the proposed FSRM. The model Fuzzy Soft is proposed with consultation of ACoFAR based on selection criteria. The Fuzzy Soft distance similarity measures are applied for finding best faculty from the applicant pool.

Keywords: fuzzy soft set, fuzzy sets, fuzzy soft distance, fuzzy soft similarity measures, ACoFAR

Procedia PDF Downloads 347
696 A Different Approach to Optimize Fuzzy Membership Functions with Extended FIR Filter

Authors: Jun-Ho Chung, Sung-Hyun Yoo, In-Hwan Choi, Hyun-Kook Lee, Moon-Kyu Song, Choon-Ki Ahn

Abstract:

The extended finite impulse response (EFIR) filter is addressed to optimize membership functions (MFs) of the fuzzy model that has strong nonlinearity. MFs are important parts of the fuzzy logic system (FLS) and, thus optimizing MFs of FLS is one of approaches to improve the performance of output. We employ the EFIR as an alternative optimization option to nonlinear fuzzy model. The performance of EFIR is demonstrated on a fuzzy cruise control via a numerical example.

Keywords: fuzzy logic system, optimization, membership function, extended FIR filter

Procedia PDF Downloads 723
695 Robust H∞ State Feedback Control for Discrete Time T-S Fuzzy Systems Based on Fuzzy Lyapunov Function Approach

Authors: Walied Hanora

Abstract:

This paper presents the problem of robust state feedback H∞ for discrete time nonlinear system represented by Takagi-Sugeno fuzzy systems. Based on fuzzy lyapunov function, the condition ,which is represented in the form of Liner Matrix Inequalities (LMI), guarantees the H∞ performance of the T-S fuzzy system with uncertainties. By comparison with recent literature, this approach will be more relaxed condition. Finally, an example is given to illustrate the proposed result.

Keywords: fuzzy lyapunov function, H∞ control , linear matrix inequalities, state feedback, T-S fuzzy systems

Procedia PDF Downloads 287
694 Fuzzy Inference System for Diagnosis of Malaria

Authors: Purnima Pandit

Abstract:

Malaria remains one of the world’s most deadly infectious disease and arguably, the greatest menace to modern society in terms of morbidity and mortality. To choose the right treatment and to ensure a quality of life suitable for a specific patient condition, early and accurate diagnosis of malaria is essential. It reduces transmission of disease and prevents deaths. Our work focuses on designing an efficient, accurate fuzzy inference system for malaria diagnosis.

Keywords: fuzzy inference system, fuzzy logic, malaria disease, triangular fuzzy number

Procedia PDF Downloads 297
693 Caputo-Type Fuzzy Fractional Riccati Differential Equations with Fuzzy Initial Conditions

Authors: Trilok Mathur, Shivi Agarwal

Abstract:

This paper deals with the solutions of fuzzy-fractional-order Riccati equations under Caputo-type fuzzy fractional derivatives. The Caputo-type fuzzy fractional derivatives are defined based on Hukuhura difference and strongly generalized fuzzy differentiability. The Laplace-Adomian-Pade method is used for solving fractional Riccati-type initial value differential equations of fractional order. Moreover, we also displayed some examples to illustrate our methods.

Keywords: Caputo-type fuzzy fractional derivative, Fractional Riccati differential equations, Laplace-Adomian-Pade method, Mittag Leffler function

Procedia PDF Downloads 395
692 Fuzzy Linear Programming Approach for Determining the Production Amounts in Food Industry

Authors: B. Güney, Ç. Teke

Abstract:

In recent years, rapid and correct decision making is crucial for both people and enterprises. However, uncertainty makes decision-making difficult. Fuzzy logic is used for coping with this situation. Thus, fuzzy linear programming models are developed in order to handle uncertainty in objective function and the constraints. In this study, a problem of a factory in food industry is investigated, required data is obtained and the problem is figured out as a fuzzy linear programming model. The model is solved using Zimmerman approach which is one of the approaches for fuzzy linear programming. As a result, the solution gives the amount of production for each product type in order to gain maximum profit.

Keywords: food industry, fuzzy linear programming, fuzzy logic, linear programming

Procedia PDF Downloads 650
691 The Analysis of Different Classes of Weighted Fuzzy Petri Nets and Their Features

Authors: Yurii Bloshko, Oksana Olar

Abstract:

This paper presents the analysis of 6 different classes of Petri nets: fuzzy Petri nets (FPN), generalized fuzzy Petri nets (GFPN), parameterized fuzzy Petri nets (PFPN), T2GFPN, flexible generalized fuzzy Petri nets (FGFPN), binary Petri nets (BPN). These classes were simulated in the special software PNeS® for the analysis of its pros and cons on the example of models which are dedicated to the decision-making process of passenger transport logistics. The paper includes the analysis of two approaches: when input values are filled with the experts’ knowledge; when fuzzy expectations represented by output values are added to the point. These approaches fulfill the possibilities of triples of functions which are replaced with different combinations of t-/s-norms.

Keywords: fuzzy petri net, intelligent computational techniques, knowledge representation, triangular norms

Procedia PDF Downloads 141
690 General Network with Four Nodes and Four Activities with Triangular Fuzzy Number as Activity Times

Authors: Rashmi Tamhankar, Madhav Bapat

Abstract:

In many projects, we have to use human judgment for determining the duration of the activities which may vary from person to person. Hence, there is vagueness about the time duration for activities in network planning. Fuzzy sets can handle such vague or imprecise concepts and has an application to such network. The vague activity times can be represented by triangular fuzzy numbers. In this paper, a general network with fuzzy activity times is considered and conditions for the critical path are obtained also we compute total float time of each activity. Several numerical examples are discussed.

Keywords: PERT, CPM, triangular fuzzy numbers, fuzzy activity times

Procedia PDF Downloads 472
689 Behind Fuzzy Regression Approach: An Exploration Study

Authors: Lavinia B. Dulla

Abstract:

The exploration study of the fuzzy regression approach attempts to present that fuzzy regression can be used as a possible alternative to classical regression. It likewise seeks to assess the differences and characteristics of simple linear regression and fuzzy regression using the width of prediction interval, mean absolute deviation, and variance of residuals. Based on the simple linear regression model, the fuzzy regression approach is worth considering as an alternative to simple linear regression when the sample size is between 10 and 20. As the sample size increases, the fuzzy regression approach is not applicable to use since the assumption regarding large sample size is already operating within the framework of simple linear regression. Nonetheless, it can be suggested for a practical alternative when decisions often have to be made on the basis of small data.

Keywords: fuzzy regression approach, minimum fuzziness criterion, interval regression, prediction interval

Procedia PDF Downloads 298
688 A New Reliability Allocation Method Based on Fuzzy Numbers

Authors: Peng Li, Chuanri Li, Tao Li

Abstract:

Reliability allocation is quite important during early design and development stages for a system to apportion its specified reliability goal to subsystems. This paper improves the reliability fuzzy allocation method and gives concrete processes on determining the factor set, the factor weight set, judgment set, and multi-grade fuzzy comprehensive evaluation. To determine the weight of factor set, the modified trapezoidal numbers are proposed to reduce errors caused by subjective factors. To decrease the fuzziness in the fuzzy division, an approximation method based on linear programming is employed. To compute the explicit values of fuzzy numbers, centroid method of defuzzification is considered. An example is provided to illustrate the application of the proposed reliability allocation method based on fuzzy arithmetic.

Keywords: reliability allocation, fuzzy arithmetic, allocation weight, linear programming

Procedia PDF Downloads 341
687 A Fuzzy Linear Regression Model Based on Dissemblance Index

Authors: Shih-Pin Chen, Shih-Syuan You

Abstract:

Fuzzy regression models are useful for investigating the relationship between explanatory variables and responses in fuzzy environments. To overcome the deficiencies of previous models and increase the explanatory power of fuzzy data, the graded mean integration (GMI) representation is applied to determine representative crisp regression coefficients. A fuzzy regression model is constructed based on the modified dissemblance index (MDI), which can precisely measure the actual total error. Compared with previous studies based on the proposed MDI and distance criterion, the results from commonly used test examples show that the proposed fuzzy linear regression model has higher explanatory power and forecasting accuracy.

Keywords: dissemblance index, fuzzy linear regression, graded mean integration, mathematical programming

Procedia PDF Downloads 436
686 Integration of Fuzzy Logic in the Representation of Knowledge: Application in the Building Domain

Authors: Hafida Bouarfa, Mohamed Abed

Abstract:

The main object of our work is the development and the validation of a system indicated Fuzzy Vulnerability. Fuzzy Vulnerability uses a fuzzy representation in order to tolerate the imprecision during the description of construction. At the the second phase, we evaluated the similarity between the vulnerability of a new construction and those of the whole of the historical cases. This similarity is evaluated on two levels: 1) individual similarity: bases on the fuzzy techniques of aggregation; 2) Global similarity: uses the increasing monotonous linguistic quantifiers (RIM) to combine the various individual similarities between two constructions. The third phase of the process of Fuzzy Vulnerability consists in using vulnerabilities of historical constructions narrowly similar to current construction to deduce its estimate vulnerability. We validated our system by using 50 cases. We evaluated the performances of Fuzzy Vulnerability on the basis of two basic criteria, the precision of the estimates and the tolerance of the imprecision along the process of estimation. The comparison was done with estimates made by tiresome and long models. The results are satisfactory.

Keywords: case based reasoning, fuzzy logic, fuzzy case based reasoning, seismic vulnerability

Procedia PDF Downloads 292
685 Fuzzy Gauge Capability (Cg and Cgk) through Buckley Approach

Authors: Seyed Habib A. Rahmati, Mohsen Sadegh Amalnick

Abstract:

Different terms of the statistical process control (SPC) has sketch in the fuzzy environment. However, measurement system analysis (MSA), as a main branch of the SPC, is rarely investigated in fuzzy area. This procedure assesses the suitability of the data to be used in later stages or decisions of the SPC. Therefore, this research focuses on some important measures of MSA and through a new method introduces the measures in fuzzy environment. In this method, which works based on Buckley approach, imprecision and vagueness nature of the real world measurement are considered simultaneously. To do so, fuzzy version of the gauge capability (Cg and Cgk) are introduced. The method is also explained through example clearly.

Keywords: measurement, SPC, MSA, gauge capability (Cg and Cgk)

Procedia PDF Downloads 650
684 Approach to Formulate Intuitionistic Fuzzy Regression Models

Authors: Liang-Hsuan Chen, Sheng-Shing Nien

Abstract:

This study aims to develop approaches to formulate intuitionistic fuzzy regression (IFR) models for many decision-making applications in the fuzzy environments using intuitionistic fuzzy observations. Intuitionistic fuzzy numbers (IFNs) are used to characterize the fuzzy input and output variables in the IFR formulation processes. A mathematical programming problem (MPP) is built up to optimally determine the IFR parameters. Each parameter in the MPP is defined as a couple of alternative numerical variables with opposite signs, and an intuitionistic fuzzy error term is added to the MPP to characterize the uncertainty of the model. The IFR model is formulated based on the distance measure to minimize the total distance errors between estimated and observed intuitionistic fuzzy responses in the MPP resolution processes. The proposed approaches are simple/efficient in the formulation/resolution processes, in which the sign of parameters can be determined so that the problem to predetermine the sign of parameters is avoided. Furthermore, the proposed approach has the advantage that the spread of the predicted IFN response will not be over-increased, since the parameters in the established IFR model are crisp. The performance of the obtained models is evaluated and compared with the existing approaches.

Keywords: fuzzy sets, intuitionistic fuzzy number, intuitionistic fuzzy regression, mathematical programming method

Procedia PDF Downloads 138