Search results for: furnishing envelope
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 252

Search results for: furnishing envelope

192 Cross Ventilation Potential in an Array of Building Blocks: The Case Study of Alexandria

Authors: Bakr Gomaa

Abstract:

Wind driven Cross ventilation is achieved when air moves indoors due to the pressure difference on the building envelope. This is especially important in breezy moderate to humid settings in which fast air flow can promote thermal comfort. Studies have shown that the use of simple building forms or ignoring the urban context when studying natural ventilation can lead to inaccurate results. In this paper, the impact of the urban form of a regular array of buildings is investigated to define the impact of this urban setting on cross ventilation potential. The objective of this paper is to provide the necessary tools to achieve natural ventilation for cooling purposes in an array of building blocks context. The array urban form has been studied before for natural ventilation purposes yet to the best of our knowledge no study has considered the relationship between the urban form and the pressure patterns that develop on the buildings envelope for cross ventilation. For this we use detailed weather data for a case study city of Alexandria (Egypt), as well as a validated CFD simulations to investigate the cross ventilation potential in terms of pressure patterns in waterfront as well as in-city wind flows perpendicular to the buildings array. it was found that for both waterfront and in-city wind speeds the windows needed for cross ventilation in rear raws of the array are significantly larger than those needed for front raw.

Keywords: Alexandria, CFD, cross ventilation, pressure coefficient

Procedia PDF Downloads 361
191 The Influence of Islamic Arts in Omani Weaving Motifs

Authors: Zahra Ahmed Al-zadjali

Abstract:

The influence of Islam on arts can be found primarily in calligraphy, arabesque designs and architecture. Also, geometric designs were used quite extensively. Muslim craftsmen produced stunning designs based on simple geometric principles and traditional motifs which were used to decorate many surfaces. The idea of interlacing simple rectilinear lines to form the patterns impressed Arabs. Nomads of Persia, Turks and Mongols were equally impressed with the designs so they begin to use them in their homes in carpet weaving. Islamic designs, motifs and colours which were used became common place and served to influence people’s tastes. Modern life style and contemporary products have changed the style of people’s daily lives, however, people still long for the nomadic way of life. This is clearly reflected in people’s homes. In a great many Muslim homes, Islamic decorative motifs can be seen along with traditional ‘Bedouin’ style furnishing, especially in homes of the Arabian Peninsula.

Keywords: art, craft, design, Oman, weaving

Procedia PDF Downloads 438
190 The Impact of Roof Thermal Performance on the Indoor Thermal Comfort in a Natural Ventilated Building Envelope in Hot Climatic Climates

Authors: J. Iwaro, A. Mwasha, K. Ramsubhag

Abstract:

Global warming has become a threat of our time. It poses challenges to the existence of beings on earth, the built environment, natural environment and has made a clear impact on the level of energy and water consumption. As such, increase in the ambient temperature increases indoor and outdoor temperature level of the buildings which brings about the use of more energy and mechanical air conditioning systems. In addition, in view of the increased modernization and economic growth in the developing countries, a significant amount of energy is being used, especially those with hot climatic conditions. Since modernization in developing countries is rising rapidly, more pressure is being placed on the buildings and energy resources to satisfy the indoor comfort requirements. This paper presents a sustainable passive roof solution as a means of reducing energy cooling loads for satisfying human comfort requirements in a hot climate. As such, the study based on the field study data discusses indoor thermal roof design strategies for a hot climate by investigating the impacts of roof thermal performance on indoor thermal comfort in naturally ventilated building envelope small scaled structures. In this respect, the traditional concrete flat roof, corrugated galvanised iron roof and pre-painted standing seam roof were used. The experiment made used of three identical small scale physical models constructed and sited on the roof of a building at the University of the West Indies. The results show that the utilization of insulation in traditional roofing systems will significantly reduce heat transfer between the internal and ambient environment, thus reducing the energy demand of the structure and the relative carbon footprint of a structure per unit area over its lifetime. Also, the application of flat slab concrete roofing system showed the best performance as opposed to the metal roof sheeting alternative systems. In addition, it has been shown experimentally through this study that a sustainable passive roof solution such as insulated flat concrete roof in hot dry climate has a better cooling strength that can provide building occupant with a better thermal comfort, conducive indoor conditions and energy efficiency.

Keywords: building envelope, roof, energy consumption, thermal comfort

Procedia PDF Downloads 243
189 Applicability of Overhangs for Energy Saving in Existing High-Rise Housing in Different Climates

Authors: Qiong He, S. Thomas Ng

Abstract:

Upgrading the thermal performance of building envelope of existing residential buildings is an effective way to reduce heat gain or heat loss. Overhang device is a common solution for building envelope improvement as it can cut down solar heat gain and thereby can reduce the energy used for space cooling in summer time. Despite that, overhang can increase the demand for indoor heating in winter due to its function of lowering the solar heat gain. Obviously, overhang has different impacts on energy use in different climatic zones which have different energy demand. To evaluate the impact of overhang device on building energy performance under different climates of China, an energy analysis model is built up in a computer-based simulation program known as DesignBuilder based on the data of a typical high-rise residential building. The energy simulation results show that single overhang is able to cut down around 5% of the energy consumption of the case building in the stand-alone situation or about 2% when the building is surrounded by other buildings in regions which predominantly rely on space cooling though it has no contribution to energy reduction in cold region. In regions with cold summer and cold winter, adding overhang over windows can cut down around 4% and 1.8% energy use with and without adjoining buildings, respectively. The results indicate that overhang might not an effective shading device to reduce the energy consumption in the mixed climate or cold regions.

Keywords: overhang, energy analysis, computer-based simulation, design builder, high-rise residential building, climate, BIM model

Procedia PDF Downloads 318
188 High Rate of Dual Carriage of Hepatitis B Surface and Envelope Antigen in Gombe in Infants and Young Children, North-East Nigeria: 2000-2015

Authors: E. Isaac, I. Jalo, Y. Alkali, A. Ajani, A. Rasaki, Y. Jibrin, K. Mustapha, S. Charanchi, A. Kudi, H. Danlami

Abstract:

Introduction: Hepatitis B infection is endemic in sub-Saharan Africa, where transmission predominantly occurs in infants and children by perinatal and horizontal routes. The risk of chronic infection peaks when infection is acquired early. Materials and Methods: Records of Hepatitis B surface and envelope antigen results in Federal Teaching Hospital, Gombe between May 2000 and May 2015 were retrieved and analyzed. Results: Paediatric outpatient visits and in-patient admissions were 64,193 accounting for 13% of total. Individuals tested for Hepatitis B surface antigenaemia were 23,866. Children aged 0-18 years constituted 11% (2,626). Among children tested, males accounted for 52.8% (1386/2626) and females 47.2% (1240/2626). Infants contributed 65 (2.3%); 1-4 year old children 309 (11.7%); 5-9 year old children 564 (21.4%) and adolescents 1717 (65.1%). HbSAg sero-positivity was 18% (496/2626) among children tested. The highest number of children tested per year was in 2009 (518) and 2014 (569) and the lowest, in the first study year (62). The highest sero-positivity rate was in 2010; 21.7% (54/255). Children aged 0-18years accounted for 10.5% (496/4720) of individuals with Hepatitis B surface antigenaemia. Sero-positivity was 3.1% (2/65); 12.9% (40/309); 18.1% (102/564); and 20.5% (352/1717) in infants, children ages 1-4years, 5-9years and adolescents respectively. 2.5% (1/40) and 4% (1/25) of male and female infants respectively had HbSAg. Among children aged 1-4years, 15.1% (30/198) of males and 9.0% (10/111) of females were seropositive; 14.8% (52/350) and 22% (50/224) of male and female 5-9year old children respectively has HbSAg. 14.3% (138/943) of adolescent females had Hepatitis B surface antigenaemia. Adolescent males demonstrated the highest sero-positivity rate 27.6% (214/774). 97.3% (483/496) of children who demonstrated Hepatitis B surface antigenaemia were tested for dual carriage with the e antigen. Males accounted for 296/483 (63.1%) and females 187/483 (36.9%). Infants constituted 0.97% (4/482); children aged 1-4years, 5-9years and adolescents were 6.8% (33/483); 20.9% (100/483) and 71.3% (342/483) respectively. 17.6% (85/483) of children tested had HBe antigenaemia. Of these, males accounted for 69.4% (59/85). 1.2% (1/85) were infants; 9.4% (8/85%) 1-4years; 22.3% (19/85) 5-9years and 68.2% (58/85) adolescents. 25% (1/4) infants; 24% (8/33) children aged 1-4 years; 19% (19/100) 5-9 year old children and 16.9% (58/342) adolescents had dual carriage. Infants and young children demonstrated the highest rate of dual carriage but were less likely to be tested for dual carriage 37/42 (88%) than their 5-9 year old 98% (100/102) and adolescent 342/352 (97%) counterparts. HB e antigen positivity rate was 45.4% (59/130) males and 36.0% (27/75) in females. Conclusion: Hepatitis B surface antigenaemia is high among adolescent males. Infants and young children who had HBSAg had the highest rate of envelope antigen carriage. Testing in pregnancy, vaccination programmes and prophylaxis need to be strengthened.

Keywords: children, dual carriage, Gombe, hepatitis B

Procedia PDF Downloads 276
187 Dual Carriage of Hepatitis B Surface and Envelope Antigen in Adults in the Poorest Region of Nigeria: 2000-2015

Authors: E. Isaac, I. Jalo, Y. Alkali, A. Ajani, A. Rasaki, Y. Jibrin, K. Mustapha, A. Ayuba, S. Charanchi, H. Danlami

Abstract:

Introduction: Hepatitis B infection continues to be a serious global health problem with about 2 billion people infected worldwide, many of these in sub-Saharan Africa. Nigeria is one of the countries with the highest incidence, with a prevalence of 10-15%. Methods: Records of Hepatitis B surface and envelope antigen test results in adults in Federal Teaching Hospital, Gombe between May 2000 and May 2015 were retrieved and analyzed. Findings: Adult out-patient consultations and in-patient admissions were 343,083 and 67,761 respectively, accounting for 87% of total. Hepatitis B surface antigenaemia was tested for in 23,888 adults and children. 88.9% (21240) were adults. Males constituted 56% (11902/21240) and females 44% (9211/21240). 5104 (24.0%) of tested individuals were 19-25years; 12,039 (56.7%) 26-45years; 21119 (9.0%) 46-55years; 2.8% (590/21240) and 766 (3.6%) >65years. Among adult males, 17% (2133/11902) was contributed by ages 19-25. 58% (7017/11902), 11.9% (1421/11902), 6.4% (765/11902) and 4.7% (563/11902) of males were 26-45 years old, 46-55 years old and 56-65 years and >65year old respectively. Adults aged 19-25years, 26-45 years, 46-55years, 56-65 and > 65years each constituted 32% (2966/9211); 54.4% (5009/9211); 7.4% (684/9211), 3.8% (350/9211) and 2.2% (201/9211) of females respectively. 16.2% (3431/21,240) demonstrated Hepatitis B surface antigenaemia. The sero-positivity rate was 16.9% (865//5104) between 19-25years, 21.2% (2559/12,039) among 26-45year old individuals. 17.9% (377/2111); 14.1% (83/590) and 7.3% (56/766) of 46-55year old, 56-65year old and >65year old individuals screened were seropositive. The highest sero-positivity rate was found in male young adults aged 19-25years 27.9% (398/1426) and lowest in elderly males 7.4% (28/377). HBe antigen testing rate among HbSAg seropositive individuals was 97.3% (3338/3431). Males constituted 59.7% (1992/3338) and females 40.3% (1345/3338). 25.3% (844/3338) were aged 19-25years; 61.1% (2039/3338) 26-45years; 10.2% (340/3338) 46-55years; 2.7% (90/3338) 56-65years and 0.7% >65years old. HB e antigenaemia was positive in 8.2% (275/3338) of those tested. 41% (113/275); 50.2% (138/275); 5.4% (15/275); 1.8% (5/275) and 1.1 (3/275) of HB e sero-positivity was among age groups 19-25, 26-45, 46-55, 56-65 and > 65year old individuals. Dual sero-positivity rate was highest 13% (113/844) in young adults 19-25years and lowest between 46-55years; 15/340 (4.4%). 4.2% (15/360); 13.5% (69/512); 6.7% (90/1348); 4.6% (10/214); 5% (2/40) and 6.7% (1/15) of males aged 19-25; 26-45; 46-55; 56-65; and >65years had HB e antigenaemia respectively. Among females - 27/293 (9.2%) aged 19-25; 26/500 (5.2%) 26-45; 2/84 (2.4%) 46-55; 1/12 (8.3%) 56-65 and 1/9(11.1%) >65years had dual antigenaemia. In women of childbearing age, 6.9% (53/793) had a dual carriage. Conclusion: Dual hepatitis B surface and envelope antigenaemia are highest in young adult males. This will have significant implications for the development of chronic liver disease and hepatocellular carcinoma.

Keywords: adult, Hepatitis B, Nigeria, dual carriage

Procedia PDF Downloads 227
186 Effect of Porous Multi-Layer Envelope System on Effective Wind Pressure of Building Ventilation

Authors: Ying-Chang Yu, Yuan-Lung Lo

Abstract:

Building ventilation performance is an important indicator of indoor comfort. However, in addition to the geometry of the building or the proportion of the opening, the ventilation performance is also very much related to the actual wind pressure of the building. There are more and more contemporary building designs built with multi-layer exterior envelope. Due to ventilation and view observatory requirement, the porous outer layer of the building is commonly adopted and has a significant wind damping effect, causing the phenomenon of actual wind pressure loss. However, the relationship between the wind damping effect and the actual wind pressure is not linear. This effect can make the indoor ventilation of the building rationalized to reasonable range under the condition of high wind pressure, and also maintain a good amount of ventilation performance under the condition of low wind pressure. In this study, wind tunnel experiments were carried out to simulate the different wind pressures flow through the porous outer layer, and observe the actual wind pressure strength engage with the window layer to find the decreasing relationship between the damping effect of the porous shell and the wind pressure. Experiment specimen scale was designed to be 1:50 for testing real-world building conditions; the study found that the porous enclosure has protective shielding without affecting low-pressure ventilation. Current study observed the porous skin may damp more wind energy to ease the wind pressure under high-speed wind. Differential wind speed may drop the pressure into similar pressure level by using porous skin. The actual mechanism and value of this phenomenon will need further study in the future.

Keywords: multi-layer facade, porous media, wind damping, wind tunnel test, building ventilation

Procedia PDF Downloads 106
185 1-D Convolutional Neural Network Approach for Wheel Flat Detection for Freight Wagons

Authors: Dachuan Shi, M. Hecht, Y. Ye

Abstract:

With the trend of digitalization in railway freight transport, a large number of freight wagons in Germany have been equipped with telematics devices, commonly placed on the wagon body. A telematics device contains a GPS module for tracking and a 3-axis accelerometer for shock detection. Besides these basic functions, it is desired to use the integrated accelerometer for condition monitoring without any additional sensors. Wheel flats as a common type of failure on wheel tread cause large impacts on wagons and infrastructure as well as impulsive noise. A large wheel flat may even cause safety issues such as derailments. In this sense, this paper proposes a machine learning approach for wheel flat detection by using car body accelerations. Due to suspension systems, impulsive signals caused by wheel flats are damped significantly and thus could be buried in signal noise and disturbances. Therefore, it is very challenging to detect wheel flats using car body accelerations. The proposed algorithm considers the envelope spectrum of car body accelerations to eliminate the effect of noise and disturbances. Subsequently, a 1-D convolutional neural network (CNN), which is well known as a deep learning method, is constructed to automatically extract features in the envelope-frequency domain and conduct classification. The constructed CNN is trained and tested on field test data, which are measured on the underframe of a tank wagon with a wheel flat of 20 mm length in the operational condition. The test results demonstrate the good performance of the proposed algorithm for real-time fault detection.

Keywords: fault detection, wheel flat, convolutional neural network, machine learning

Procedia PDF Downloads 96
184 Comparing the Embodied Carbon Impacts of a Passive House with the BC Energy Step Code Using Life Cycle Assessment

Authors: Lorena Polovina, Maddy Kennedy-Parrott, Mohammad Fakoor

Abstract:

The construction industry accounts for approximately 40% of total GHG emissions worldwide. In order to limit global warming to 1.5 degrees Celsius, ambitious reductions in the carbon intensity of our buildings are crucial. Passive House presents an opportunity to reduce operational carbon by as much as 90% compared to a traditional building through improving thermal insulation, limiting thermal bridging, increasing airtightness and heat recovery. Up until recently, Passive House design was mainly concerned with meeting the energy demands without considering embodied carbon. As buildings become more energy-efficient, embodied carbon becomes more significant. The main objective of this research is to calculate the embodied carbon impact of a Passive House and compare it with the BC Energy Step Code (ESC). British Columbia is committed to increasing the energy efficiency of buildings through the ESC, which is targeting net-zero energy-ready buildings by 2032. However, there is a knowledge gap in the embodied carbon impacts of more energy-efficient buildings, in particular Part 3 construction. In this case study, life cycle assessments (LCA) are performed on Part 3, a multi-unit residential building in Victoria, BC. The actual building is not constructed to the Passive House standard; however, the building envelope and mechanical systems are designed to comply with the Passive house criteria, as well as Steps 1 and 4 of the BC Energy Step Code (ESC) for comparison. OneClick LCA is used to perform the LCA of the case studies. Several strategies are also proposed to minimize the total carbon emissions of the building. The assumption is that there will not be significant differences in embodied carbon between a Passive House and a Step 4 building due to the building envelope.

Keywords: embodied carbon, energy modeling, energy step code, life cycle assessment

Procedia PDF Downloads 116
183 Will My Home Remain My Castle? Tenants’ Interview Topics regarding an Eco-Friendly Refurbishment Strategy in a Neighborhood in Germany

Authors: Karin Schakib-Ekbatan, Annette Roser

Abstract:

According to the Federal Government’s plans, the German building stock should be virtually climate neutral by 2050. Thus, the “EnEff.Gebäude.2050” funding initiative was launched, complementing the projects of the Energy Transition Construction research initiative. Beyond the construction and renovation of individual buildings, solutions must be found at the neighborhood level. The subject of the presented pilot project is a building ensemble from the Wilhelminian period in Munich, which is planned to be refurbished based on a socially compatible, energy-saving, innovative-technical modernization concept. The building ensemble, with about 200 apartments, is part of the building cooperative. To create an optimized network and possible synergies between researchers and projects of the funding initiative, a Scientific Accompanying Research was established for cross-project analyses of findings and results in order to identify further research needs and trends. Thus, the project is characterized by an interdisciplinary approach that combines constructional, technical, and socio-scientific expertise based on a participatory understanding of research by involving the tenants at an early stage. The research focus is on getting insights into the tenants’ comfort requirements, attitudes, and energy-related behaviour. Both qualitative and quantitative methods are applied based on the Technology-Acceptance-Model (TAM). The core of the refurbishment strategy is a wall heating system intended to replace conventional radiators. A wall heating provides comfortable and consistent radiant heat instead of convection heat, which often causes drafts and dust turbulence. Besides comfort and health, the advantage of wall heating systems is an energy-saving operation. All apartments would be supplied by a uniform basic temperature control system (around perceived room temperature of 18 °C resp. 64,4 °F), which could be adapted to individual preferences via individual heating options (e. g. infrared heating). The new heating system would affect the furnishing of the walls, in terms of not allowing the wall surface to be covered too much with cupboards or pictures. Measurements and simulations of the energy consumption of an installed wall heating system are currently being carried out in a show apartment in this neighborhood to investigate energy-related, economical aspects as well as thermal comfort. In March, interviews were conducted with a total of 12 people in 10 households. The interviews were analyzed by MAXQDA. The main issue of the interview was the fear of reduced self-efficacy within their own walls (not having sufficient individual control over the room temperature or being very limited in furnishing). Other issues concerned the impact that the construction works might have on their daily life, such as noise or dirt. Despite their basically positive attitude towards a climate-friendly refurbishment concept, tenants were very concerned about the further development of the project and they expressed a great need for information events. The results of the interviews will be used for project-internal discussions on technical and psychological aspects of the refurbishment strategy in order to design accompanying workshops with the tenants as well as to prepare a written survey involving all households of the neighbourhood.

Keywords: energy efficiency, interviews, participation, refurbishment, residential buildings

Procedia PDF Downloads 99
182 The Impact of Green Building Envelopes on the Urban Microclimate of the Urban Canopy-Case Study: Fawzy Moaz Street, Alexandria, Egypt

Authors: Amany Haridy, Ahmed Elseragy, Fahd Omar

Abstract:

The issue of temperature increase in the urban microclimate has been at the center of attention recently, especially in dense urban areas, such as the City of Alexandria in Egypt, where building surfaces have become the dominant element (more than green areas and streets). Temperatures have been rising during daytime as well as nighttime, however, the research focused on the rise of air temperature at night, a phenomenon known as the urban heat island. This phenomenon has many effects on ecological life, as well as human health. This study provided evidence of the possibility of reducing the urban heat island by using a green building envelope (green wall and green roof) in Alexandria, Egypt. This City has witnessed a boom in growth in its urban fabric and population. A simulation analysis using the Envi-met software to find the ratio of air temperature reduction was performed. The simulation depended on the orientation of the green areas and their density, which was defined through a process of climatic analysis made by the Diva plugin using the Grasshopper software. Results showed that the reduction in air temperature varies from 0.8–2.0 °C, increasing with the increasing density of green areas. Many systems of green wall and green roof can be found in the local market. However, treating an existing building requires a careful choice of system to fit the building construction load and the surrounding nature. Among the systems of choice, there was the ‘geometric system’ of vertical greening that can be fixed on a light aluminum structure for walls and the extensive green system for roofs. Finally, native plants were the best choice in the long term because they fare well in the local climate.

Keywords: envi-met, green building envelope, urban heat island, urban microclimate

Procedia PDF Downloads 166
181 Bioinformatics Identification of Rare Codon Clusters in Proteins Structure of HBV

Authors: Abdorrasoul Malekpour, Mohammad Ghorbani Mojtaba Mortazavi, Mohammadreza Fattahi, Mohammad Hassan Meshkibaf, Ali Fakhrzad, Saeid Salehi, Saeideh Zahedi, Amir Ahmadimoghaddam, Parviz Farzadnia Dr., Mohammadreza Hajyani Asl Bs

Abstract:

Hepatitis B as an infectious disease has eight main genotypes (A–H). The aim of this study is to Bioinformatically identify Rare Codon Clusters (RCC) in proteins structure of HBV. For detection of protein family accession numbers (Pfam) of HBV proteins; used of uni-prot database and Pfam search tool were used. Obtained Pfam IDs were analyzed in Sherlocc program and RCCs in HBV proteins were detected. In further, the structures of TrEMBL entries proteins studied in PDB database and 3D structures of the HBV proteins and locations of RCCs were visualized and studied using Swiss PDB Viewer software. Pfam search tool have found nine significant hits and 0 insignificant hits in 3 frames. Results of Pfams studied in the Sherlocc program show this program not identified RCCs in the external core antigen (PF08290) and truncated HBeAg protein (PF08290). By contrast the RCCs become identified in Hepatitis core antigen (PF00906) Large envelope protein S (PF00695), X protein (PF00739), DNA polymerase (viral) N-terminal domain (PF00242) and Protein P (Pf00336). In HBV genome, seven RCC identified that found in hepatitis core antigen, large envelope protein S and DNA polymerase proteins and proteins structures of TrEMBL entries sequences that reported in Sherlocc program outputs are not complete. Based on situation of RCC in structure of HBV proteins, it suggested those RCCs are important in HBV life cycle. We hoped that this study provide a new and deep perspective in protein research and drug design for treatment of HBV.

Keywords: rare codon clusters, hepatitis B virus, bioinformatic study, infectious disease

Procedia PDF Downloads 447
180 New Test Algorithm to Detect Acute and Chronic HIV Infection Using a 4th Generation Combo Test

Authors: Barun K. De

Abstract:

Acquired immunodeficiency syndrome (AIDS) is caused by two types of human immunodeficiency viruses, collectively designated HIV. HIV infection is spreading globally particularly in developing countries. Before an individual is diagnosed with HIV, the disease goes through different phases. First there is an acute early phase that is followed by an established or chronic phase. Subsequently, there is a latency period after which the individual becomes immunodeficient. It is in the acute phase that an individual is highly infectious due to a high viral load. Presently, HIV diagnosis involves use of tests that do not detect the acute phase infection during which both the viral RNA and p24 antigen are expressed. Instead, these less sensitive tests detect antibodies to viral antigens which are typically sero-converted later in the disease process following acute infection. These antibodies are detected in both asymptomatic HIV-infected individuals as well as AIDS patients. Studies indicate that early diagnosis and treatment of HIV infection can reduce medical costs, improve survival, and reduce spreading of infection to new uninfected partners. Newer 4th generation combination antigen/antibody tests are highly sensitive and specific for detection of acute and established HIV infection (HIV1 and HIV2) enabling immediate linkage to care. The CDC (Center of Disease Control, USA) recently recommended an algorithm involving three different tests to screen and diagnose acute and established infections of HIV-1 and HIV-2 in a general population. Initially a 4th generation combo test detects a viral antigen p24 and specific antibodies against HIV -1 and HIV-2 envelope proteins. If the test is positive it is followed by a second test known as a differentiation assay which detects antibodies against specific HIV-1 and HIV-2 envelope proteins confirming established infection of HIV-1 or HIV-2. However if it is negative then another test is performed that measures viral load confirming an acute HIV-1 infection. Screening results of a Phoenix area population detected 0.3% new HIV infections among which 32.4% were acute cases. Studies in the U.S. indicate that this algorithm effectively reduces HIV infection through immediate treatment and education following diagnosis.

Keywords: new algorithm, HIV, diagnosis, infection

Procedia PDF Downloads 377
179 Using Passive Cooling Strategies to Reduce Thermal Cooling Load for Coastal High-Rise Buildings of Jeddah, Saudi Arabia

Authors: Ahmad Zamzam

Abstract:

With the development of the economy in recent years, Saudi Arabia has been maintaining high economic growth. Therefore, its energy consumption has increased dramatically. This economic growth reflected on the expansion of high-rise tower's construction. Jeddah coastal strip (cornice) has many high-rise buildings planned to start next few years. These projects required a massive amount of electricity that was not planned to be supplied by the old infrastructure. This research studies the effect of the building envelope on its thermal performance. It follows a parametric simulation methodology using Ecotect software to analyze the effect of the building envelope design on its cooling energy load for an office high-rise building in Jeddah, Saudi Arabia, which includes building geometrical form, massing treatments, orientation and glazing type effect. The research describes an integrated passive design approach to reduce the cooling requirement for high-rise building through an improved building envelope design. The research used Ecotect to make four simulation studies; the first simulation compares the thermal performance of five high-rise buildings, presenting the basic shape of the plan. All the buildings have the same plan area and same floor height. The goal of this simulation is to find out the best shape for the thermal performance. The second simulation studies the effect of orientation on the thermal performance by rotating the same building model to find out the best and the worst angle for the building thermal performance. The third simulation studies the effect of the massing treatment on the total cooling load. It compared five models with different massing treatment, but with the same total built up area. The last simulation studied the effect of the glazing type by comparing the total cooling load of the same building using five different glass type and also studies the feasibility of using these glass types by studying the glass cost effect. The results indicate that using the circle shape as building plan could reduce the thermal cooling load by 40%. Also, using shading devices could reduce the cooling loads by 5%. The study states that using any of the massing grooving, recess or any treatment that could increase the outer exposed surface is not preferred and will decrease the building thermal performance. Also, the result shows that the best direction for glazing and openings from thermal performance viewpoint in Jeddah is the North direction while the worst direction is the East one. The best direction angle for openings - regarding the thermal performance in Jeddah- is 15 deg West and the worst is 250 deg West (110 deg East). Regarding the glass type effect, comparing to the double glass with air fill type as a reference case, the double glass with Air-Low-E will save 14% from the required amount of the thermal cooling load annually. Argon fill and triple glass will save 16% and 17% from the total thermal cooling load respectively, but for the glass cost purpose, using the Argon fill and triple glass is not feasible.

Keywords: passive cooling, reduce thermal load, Jeddah, building shape, energy

Procedia PDF Downloads 102
178 Development of Hydrodynamic Drag Calculation and Cavity Shape Generation for Supercavitating Torpedoes

Authors: Sertac Arslan, Sezer Kefeli

Abstract:

In this paper, firstly supercavitating phenomenon and supercavity shape design parameters are explained and then drag force calculation methods of high speed supercavitating torpedoes are investigated with numerical techniques and verified with empirical studies. In order to reach huge speeds such as 200, 300 knots for underwater vehicles, hydrodynamic hull drag force which is proportional to density of water (ρ) and square of speed should be reduced. Conventional heavy weight torpedoes could reach up to ~50 knots by classic underwater hydrodynamic techniques. However, to exceed 50 knots and reach about 200 knots speeds, hydrodynamic viscous forces must be reduced or eliminated completely. This requirement revives supercavitation phenomena that could be implemented to conventional torpedoes. Supercavitation is the use of cavitation effects to create a gas bubble, allowing the torpedo to move at huge speed through the water by being fully developed cavitation bubble. When the torpedo moves in a cavitation envelope due to cavitator in nose section and solid fuel rocket engine in rear section, this kind of torpedoes could be entitled as Supercavitating Torpedoes. There are two types of cavitation; first one is natural cavitation, and second one is ventilated cavitation. In this study, disk cavitator is modeled with natural cavitation and supercavitation phenomenon parameters are studied. Moreover, drag force calculation is performed for disk shape cavitator with numerical techniques and compared via empirical studies. Drag forces are calculated with computational fluid dynamics methods and different empirical methods. Numerical calculation method is developed by comparing with empirical results. In verification study cavitation number (σ), drag coefficient (CD) and drag force (D), cavity wall velocity (U

Keywords: cavity envelope, CFD, high speed underwater vehicles, supercavitation, supercavity flows

Procedia PDF Downloads 147
177 Numerical Modelling of Hydrodynamic Drag and Supercavitation Parameters for Supercavitating Torpedoes

Authors: Sezer Kefeli, Sertaç Arslan

Abstract:

In this paper, supercavitationphenomena, and parameters are explained, and hydrodynamic design approaches are investigated for supercavitating torpedoes. In addition, drag force calculation methods ofsupercavitatingvehicles are obtained. Basically, conventional heavyweight torpedoes reach up to ~50 knots by classic hydrodynamic techniques, on the other hand super cavitating torpedoes may reach up to ~200 knots, theoretically. However, in order to reachhigh speeds, hydrodynamic viscous forces have to be reduced or eliminated completely. This necessity is revived the supercavitation phenomena that is implemented to conventional torpedoes. Supercavitation is a type of cavitation, after all, it is more stable and continuous than other cavitation types. The general principle of supercavitation is to separate the underwater vehicle from water phase by surrounding the vehicle with cavitation bubbles. This situation allows the torpedo to operate at high speeds through the water being fully developed cavitation. Conventional torpedoes are entitled as supercavitating torpedoes when the torpedo moves in a cavity envelope due to cavitator in the nose section and solid fuel rocket engine in the rear section. There are two types of supercavitation phase, these are natural and artificial cavitation phases. In this study, natural cavitation is investigated on the disk cavitators based on numerical methods. Once the supercavitation characteristics and drag reduction of natural cavitationare studied on CFD platform, results are verified with the empirical equations. As supercavitation parameters cavitation number (), pressure distribution along axial axes, drag coefficient (C_?) and drag force (D), cavity wall velocity (U_?) and dimensionless cavity shape parameters, which are cavity length (L_?/d_?), cavity diameter(d_ₘ/d_?) and cavity fineness ratio (〖L_?/d〗_ₘ) are investigated and compared with empirical results. This paper has the characteristics of feasibility study to carry out numerical solutions of the supercavitation phenomena comparing with empirical equations.

Keywords: CFD, cavity envelope, high speed underwater vehicles, supercavitating flows, supercavitation, drag reduction, supercavitation parameters

Procedia PDF Downloads 140
176 Assessing Overall Thermal Conductance Value of Low-Rise Residential Home Exterior Above-Grade Walls Using Infrared Thermography Methods

Authors: Matthew D. Baffa

Abstract:

Infrared thermography is a non-destructive test method used to estimate surface temperatures based on the amount of electromagnetic energy radiated by building envelope components. These surface temperatures are indicators of various qualitative building envelope deficiencies such as locations and extent of heat loss, thermal bridging, damaged or missing thermal insulation, air leakage, and moisture presence in roof, floor, and wall assemblies. Although infrared thermography is commonly used for qualitative deficiency detection in buildings, this study assesses its use as a quantitative method to estimate the overall thermal conductance value (U-value) of the exterior above-grade walls of a study home. The overall U-value of exterior above-grade walls in a home provides useful insight into the energy consumption and thermal comfort of a home. Three methodologies from the literature were employed to estimate the overall U-value by equating conductive heat loss through the exterior above-grade walls to the sum of convective and radiant heat losses of the walls. Outdoor infrared thermography field measurements of the exterior above-grade wall surface and reflective temperatures and emissivity values for various components of the exterior above-grade wall assemblies were carried out during winter months at the study home using a basic thermal imager device. The overall U-values estimated from each methodology from the literature using the recorded field measurements were compared to the nominal exterior above-grade wall overall U-value calculated from materials and dimensions detailed in architectural drawings of the study home. The nominal overall U-value was validated through calendarization and weather normalization of utility bills for the study home as well as various estimated heat loss quantities from a HOT2000 computer model of the study home and other methods. Under ideal environmental conditions, the estimated overall U-values deviated from the nominal overall U-value between ±2% to ±33%. This study suggests infrared thermography can estimate the overall U-value of exterior above-grade walls in low-rise residential homes with a fair amount of accuracy.

Keywords: emissivity, heat loss, infrared thermography, thermal conductance

Procedia PDF Downloads 281
175 Outdoor Thermal Comfort Strategies: The Case of Cool Facades

Authors: Noelia L. Alchapar, Cláudia C. Pezzuto, Erica N. Correa

Abstract:

Mitigating urban overheating is key to achieving the environmental and energy sustainability of cities. The management of the optical properties of the materials that make up the urban envelope -roofing, pavement, and facades- constitutes a profitable and effective tool to improve the urban microclimate and rehabilitate urban areas. Each material that makes up the urban envelope has a different capacity to reflect received solar radiation, which alters the fraction of solar radiation absorbed by the city. However, the paradigm of increasing solar reflectance in all areas of the city without distinguishing their relative position within the urban canyon can cause serious problems of overheating and discomfort among its inhabitants. The hypothesis that supports the research postulates that not all reflective technologies that contribute to urban radiative cooling favor the thermal comfort conditions of pedestrians to equal measure. The objective of this work is to determine to what degree the management of the optical properties of the facades modifies outdoor thermal comfort, given that the mitigation potential of materials with high reflectance in facades is strongly conditioned by geographical variables and by the geometric characteristics of the urban profile aspect ratio (H/W). This research was carried out under two climatic contexts, that of the city of Mendoza-Argentina and that of the city of Campinas-Brazil, according to the Köppen climate classification: BWk and Cwa, respectively. Two areas in two different climatic contexts (Mendoza - Argentina and Campinas - Brazil) were selected. Both areas have comparable urban morphology patterns. These areas are located in a region with low horizontal building density and residential zoning. The microclimatic conditions were monitored during the summer period with temperature and humidity fixed sensors inside vial channels. The microclimate model was simulated in ENVI-Met V5. A grid resolution of 3.5 x 3.5 x 3.5m was used for both cities, totaling an area of 145x145x30 grids. Based on the validated theoretical model, ten scenarios were simulated, modifying the height of buildings and the solar reflectivity of facades. The solar reflectivity façades ranges were: low (0.3) and high (0.75). The density scenarios range from 1th to the 5th level. The study scenarios' performance was assessed by comparing the air temperature, physiological equivalent temperature (PET), and thermal climate index (UTCI). As a result, it is observed that the behavior of the materials of the urban outdoor space depends on complex interactions. Many urban environmental factors influence including constructive characteristics, urban morphology, geographic locations, local climate, and so forth. The role of the vertical urban envelope is decisive for the reduction of urban overheating. One of the causes of thermal gain is the multiple reflections within the urban canyon, which affects not only the air temperature but also the pedestrian thermal comfort. One of the main findings of this work leads to the remarkable importance of considering both the urban warming and the thermal comfort aspects of pedestrians in urban mitigation strategies.

Keywords: materials facades, solar reflectivity, thermal comfort, urban cooling

Procedia PDF Downloads 63
174 Media Diplomacy in the Age of Social Networks towards a Conceptual Framework for Understanding Diplomatic Cyber Engagement

Authors: Mohamamd Ayish

Abstract:

This study addresses media diplomacy as an integral component of public diplomacy which emerged in the United States in the post-World War II era and found applications in other countries around the world. The study seeks to evolve a conceptual framework for understanding the practice of public diplomacy through social networks, often referred to as social engagement diplomacy. This form of diplomacy is considered far more ahead of the other two forms associated with both government controlled and independent media. The cases of the Voice of America Arabic Service and the 1977 CBS interviews with the late Egyptian President Anwar Sadat and Israeli Prime Minister Menachem Begin are cited in this study as reflecting the two traditional models. The new social engagement model sees public diplomacy as an act of communication that seeks to effect changes in target audiences through a process of persuasion shaped by discourse orientations and technological features. The proposed conceptual framework for social, diplomatic engagement draws on an open communication environment, an empowered audience, an interactive and symmetrical process of communication, multimedia-based flows of information, direct and credible feedback, distortion and high risk. The writer believes this study would be helpful in providing appropriate knowledge pertaining to our understanding of social diplomacy and furnishing concrete insights into how diplomats could harness virtual space to maximize their goals in the global environment.

Keywords: diplomacy, engagement, social, globalization

Procedia PDF Downloads 249
173 Dynamic Simulation of IC Engine Bearings for Fault Detection and Wear Prediction

Authors: M. D. Haneef, R. B. Randall, Z. Peng

Abstract:

Journal bearings used in IC engines are prone to premature failures and are likely to fail earlier than the rated life due to highly impulsive and unstable operating conditions and frequent starts/stops. Vibration signature extraction and wear debris analysis techniques are prevalent in the industry for condition monitoring of rotary machinery. However, both techniques involve a great deal of technical expertise, time and cost. Limited literature is available on the application of these techniques for fault detection in reciprocating machinery, due to the complex nature of impact forces that confounds the extraction of fault signals for vibration based analysis and wear prediction. This work is an extension of a previous study, in which an engine simulation model was developed using a MATLAB/SIMULINK program, whereby the engine parameters used in the simulation were obtained experimentally from a Toyota 3SFE 2.0 litre petrol engines. Simulated hydrodynamic bearing forces were used to estimate vibrations signals and envelope analysis was carried out to analyze the effect of speed, load and clearance on the vibration response. Three different loads 50/80/110 N-m, three different speeds 1500/2000/3000 rpm, and three different clearances, i.e., normal, 2 times and 4 times the normal clearance were simulated to examine the effect of wear on bearing forces. The magnitude of the squared envelope of the generated vibration signals though not affected by load, but was observed to rise significantly with increasing speed and clearance indicating the likelihood of augmented wear. In the present study, the simulation model was extended further to investigate the bearing wear behavior, resulting as a consequence of different operating conditions, to complement the vibration analysis. In the current simulation, the dynamics of the engine was established first, based on which the hydrodynamic journal bearing forces were evaluated by numerical solution of the Reynold’s equation. Also, the essential outputs of interest in this study, critical to determine wear rates are the tangential velocity and oil film thickness between the journal and bearing sleeve, which if not maintained appropriately, have a detrimental effect on the bearing performance. Archard’s wear prediction model was used in the simulation to calculate the wear rate of bearings with specific location information as all determinative parameters were obtained with reference to crank rotation. Oil film thickness obtained from the model was used as a criterion to determine if the lubrication is sufficient to prevent contact between the journal and bearing thus causing accelerated wear. A limiting value of 1 µm was used as the minimum oil film thickness needed to prevent contact. The increased wear rate with growing severity of operating conditions is analogous and comparable to the rise in amplitude of the squared envelope of the referenced vibration signals. Thus on one hand, the developed model demonstrated its capability to explain wear behavior and on the other hand it also helps to establish a correlation between wear based and vibration based analysis. Therefore, the model provides a cost-effective and quick approach to predict the impending wear in IC engine bearings under various operating conditions.

Keywords: condition monitoring, IC engine, journal bearings, vibration analysis, wear prediction

Procedia PDF Downloads 287
172 Speaker Identification by Atomic Decomposition of Learned Features Using Computational Auditory Scene Analysis Principals in Noisy Environments

Authors: Thomas Bryan, Veton Kepuska, Ivica Kostanic

Abstract:

Speaker recognition is performed in high Additive White Gaussian Noise (AWGN) environments using principals of Computational Auditory Scene Analysis (CASA). CASA methods often classify sounds from images in the time-frequency (T-F) plane using spectrograms or cochleargrams as the image. In this paper atomic decomposition implemented by matching pursuit performs a transform from time series speech signals to the T-F plane. The atomic decomposition creates a sparsely populated T-F vector in “weight space” where each populated T-F position contains an amplitude weight. The weight space vector along with the atomic dictionary represents a denoised, compressed version of the original signal. The arraignment or of the atomic indices in the T-F vector are used for classification. Unsupervised feature learning implemented by a sparse autoencoder learns a single dictionary of basis features from a collection of envelope samples from all speakers. The approach is demonstrated using pairs of speakers from the TIMIT data set. Pairs of speakers are selected randomly from a single district. Each speak has 10 sentences. Two are used for training and 8 for testing. Atomic index probabilities are created for each training sentence and also for each test sentence. Classification is performed by finding the lowest Euclidean distance between then probabilities from the training sentences and the test sentences. Training is done at a 30dB Signal-to-Noise Ratio (SNR). Testing is performed at SNR’s of 0 dB, 5 dB, 10 dB and 30dB. The algorithm has a baseline classification accuracy of ~93% averaged over 10 pairs of speakers from the TIMIT data set. The baseline accuracy is attributable to short sequences of training and test data as well as the overall simplicity of the classification algorithm. The accuracy is not affected by AWGN and produces ~93% accuracy at 0dB SNR.

Keywords: time-frequency plane, atomic decomposition, envelope sampling, Gabor atoms, matching pursuit, sparse dictionary learning, sparse autoencoder

Procedia PDF Downloads 260
171 Thermodynamic Performance of a Low-Cost House Coated with Transparent Infrared Reflective Paint

Authors: Ochuko K. Overen, Edson L. Meyer

Abstract:

Uncontrolled heat transfer between the inner and outer space of low-cost housings through the thermal envelope result in indoor thermal discomfort. As a result, an excessive amount of energy is consumed for space heating and cooling. Thermo-optical properties are the ability of paints to reduce the rate of heat transfer through the thermal envelope. The aim of this study is to analyze the thermal performance of a low-cost house with its walls inner surface coated with transparent infrared reflective paint. The thermo-optical properties of the paint were analyzed using Scanning Electron Microscopy/ Energy Dispersive X-ray spectroscopy (SEM/EDX), Fourier Transform Infra-Red (FTIR) and thermal photographic technique. Meteorological indoor and ambient parameters such as; air temperature, relative humidity, solar radiation, wind speed and direction of a low-cost house in Golf-course settlement, South Africa were monitored. The monitoring period covers both winter and summer period before and after coating. The thermal performance of the coated walls was evaluated using time lag and decrement factor. The SEM image shows that the coat is transparent to light. The presence of Al as Al2O and other elements were revealed by the EDX spectrum. Before coating, the average decrement factor of the walls in summer was found to be 0.773 with a corresponding time lag of 1.3 hours. In winter, the average decrement factor and corresponding time lag were 0.467 and 1.6 hours, respectively. After coating, the average decrement factor and corresponding time lag were 0.533 and 2.3 hour, respectively in summer. In winter, an average decrement factor of 1.120 and corresponding time lag of 3 hours was observed. The findings show that the performance of the coats is influenced by the seasons. With a 74% reduction in decrement factor and 1.4 time lag increase in winter, it implies that the coatings have more ability to retain heat within the inner space of the house than preventing heat flow into the house. In conclusion, the results have shown that transparent infrared reflective paint has the ability to reduce the propagation of heat flux through building walls. Hence, it can serve as a remedy to the poor thermal performance of low-cost housings in South Africa.

Keywords: energy efficiency, decrement factor, low-cost housing, paints, rural development, thermal comfort, time lag

Procedia PDF Downloads 259
170 Environmental Life Cycle Assessment of Circular, Bio-Based and Industrialized Building Envelope Systems

Authors: N. Cihan KayaçEtin, Stijn Verdoodt, Alexis Versele

Abstract:

The construction industry is accounted for one-third of all waste generated in the European Union (EU) countries. The Circular Economy Action Plan of the EU aims to tackle this issue and aspires to enhance the sustainability of the construction industry by adopting more circular principles and bio-based material use. The Interreg Circular Bio-Based Construction Industry (CBCI) project was conceived to research how this adoption can be facilitated. For this purpose, an approach is developed that integrates technical, legal and social aspects and provides business models for circular designing and building with bio-based materials. In the scope of the project, the research outputs are to be displayed in a real-life setting by constructing a demo terraced single-family house, the living lab (LL) located in Ghent (Belgium). The realization of the LL is conducted in a step-wise approach that includes iterative processes for design, description, criteria definition and multi-criteria assessment of building components. The essence of the research lies within the exploratory approach to the state-of-art building envelope and technical systems options for achieving an optimum combination for a circular and bio-based construction. For this purpose, nine preliminary designs (PD) for building envelope are generated, which consist of three basic construction methods: masonry, lightweight steel construction and wood framing construction supplemented with bio-based construction methods like cross-laminated timber (CLT) and massive wood framing. A comparative analysis on the PDs was conducted by utilizing several complementary tools to assess the circularity. This paper focuses on the life cycle assessment (LCA) approach for evaluating the environmental impact of the LL Ghent. The adoption of an LCA methodology was considered critical for providing a comprehensive set of environmental indicators. The PDs were developed at the component level, in particular for the (i) inclined roof, (ii-iii) front and side façade, (iv) internal walls and (v-vi) floors. The assessment was conducted on two levels; component and building level. The options for each component were compared at the first iteration and then, the PDs as an assembly of components were further analyzed. The LCA was based on a functional unit of one square meter of each component and CEN indicators were utilized for impact assessment for a reference study period of 60 years. A total of 54 building components that are composed of 31 distinct materials were evaluated in the study. The results indicate that wood framing construction supplemented with bio-based construction methods performs environmentally better than the masonry or steel-construction options. An analysis on the correlation between the total weight of components and environmental impact was also conducted. It was seen that masonry structures display a high environmental impact and weight, steel structures display low weight but relatively high environmental impact and wooden framing construction display low weight and environmental impact. The study provided valuable outputs in two levels: (i) several improvement options at component level with substitution of materials with critical weight and/or impact per unit, (ii) feedback on environmental performance for the decision-making process during the design phase of a circular single family house.

Keywords: circular and bio-based materials, comparative analysis, life cycle assessment (LCA), living lab

Procedia PDF Downloads 152
169 Vibroacoustic Modulation of Wideband Vibrations and its Possible Application for Windmill Blade Diagnostics

Authors: Abdullah Alnutayfat, Alexander Sutin, Dong Liu

Abstract:

Wind turbine has become one of the most popular energy productions. However, failure of blades and maintenance costs evolve into significant issues in the wind power industry, so it is essential to detect the initial blade defects to avoid the collapse of the blades and structure. This paper aims to apply modulation of high-frequency blade vibrations by low-frequency blade rotation, which is close to the known Vibro-Acoustic Modulation (VAM) method. The high-frequency wideband blade vibration is produced by the interaction of the surface blades with the environment air turbulence, and the low-frequency modulation is produced by alternating bending stress due to gravity. The low-frequency load of rotational wind turbine blades ranges between 0.2-0.4 Hz and can reach up to 2 Hz for strong wind. The main difference between this study and previous ones on VAM methods is the use of a wideband vibration signal from the blade's natural vibrations. Different features of the vibroacoustic modulation are considered using a simple model of breathing crack. This model considers the simple mechanical oscillator, where the parameters of the oscillator are varied due to low-frequency blade rotation. During the blade's operation, the internal stress caused by the weight of the blade modifies the crack's elasticity and damping. The laboratory experiment using steel samples demonstrates the possibility of VAM using a probe wideband noise signal. A cycle load with a small amplitude was used as a pump wave to damage the tested sample, and a small transducer generated a wideband probe wave. The received signal demodulation was conducted using the Detecting of Envelope Modulation on Noise (DEMON) approach. In addition, the experimental results were compared with the modulation index (MI) technique regarding the harmonic pump wave. The wideband and traditional VAM methods demonstrated similar sensitivity for earlier detection of invisible cracks. Importantly, employing a wideband probe signal with the DEMON approach speeds up and simplifies testing since it eliminates the need to conduct tests repeatedly for various harmonic probe frequencies and to adjust the probe frequency.

Keywords: vibro-acoustic modulation, detecting of envelope modulation on noise, damage, turbine blades

Procedia PDF Downloads 59
168 Engineering C₃ Plants with SbtA, a Cyanobacterial Transporter, for Enhancing CO₂ Fixation

Authors: Vandana Deopanée Tomar, Gurpreet Kaur Sidhu, Panchsheela Nogia, Rajesh Mehrotra, Sandhya Mehrotra

Abstract:

The cyanobacterial CO₂ concentrating mechanism (CCM) operates to raise the levels of CO₂ in the vicinity of the main carboxylation enzyme Rubisco which is encapsulated in protein micro compartments called carboxysomes. Thus, due to the presence of CCM, cyanobacterial cells are able to work with high photosynthetic efficiency even at low Ci conditions and can accumulate 1000 folds high internal concentrations of Ci than external environment. Engineering of some useful CCM components into higher plants is one of the plausible approaches to improve their photosynthetic performance. The first step and the simplest approach for attaining this objective would be the transfer of cyanobacterial bicarbonate transporter such as SbtA to inner chloroplast envelope of C₃ plants. For this, SbtA transporter gene from Synechococcus elongatus PCC 7942 was fused to a transit peptide element to generate chimeric constructs in order to direct it to chloroplast inner envelope. Two transit peptides namely, TnaXTP (transit peptide from AT3G56160) and TMDTP (transit peptide from AT2G02590) were shortlisted from Arabidopsis thaliana genome and cloned in plant expression vector pCAMBIA1302 having mgfp5 as a reporter gene. Plant transformation was done by agro infiltration and Agrobacterium mediated co-culture. DNA, RNA, and protein were isolated from the leaves four days post infiltration, and the presence of transgene was confirmed by gene specific PCR (Polymerase Chain Reaction) analysis and by RT-PCR (Reverse Transcription Polymerase Chain Reaction). The expression was confirmed at the protein level by western blotting using anti-GFP primary antibody and horseradish peroxidase (HRP) conjugated secondary antibody. The localization of the protein was detected by confocal microscopy of isolated protoplasts. We observed chloroplastic expression for both the fusion constructs which suggest that the transit peptide sequences are capable of taking the cargo protein to the chloroplasts. These constructs are now being used to generate stable transgenic plants by Agrobacterium mediated transformation. The stability of transgene expression will be analyzed from T₀ to T₂ generation.

Keywords: agro infiltration, bicarbonate transporter, carbon concentrating mechanisms, cyanobacteria, SbtA

Procedia PDF Downloads 188
167 Reading the Interior Furnishings of the Houses through Turkish Films in the 1980's

Authors: Dicle Aydın, Tuba Bulbul Bahtiyar, Esra Yaldız

Abstract:

Housing offers a confirmed space for individuals. In the sense of interior decoration design, housing is a kind of typology in which user’s profile and individual preferences are considered as primary determinants. In Turkish society, the transition from traditional residences to apartment buildings brings the change in interior fittings depending upon the location of houses in its wake. The social status of the users in the residence and the differences of their everyday life can be represented more evident in these interior fittings. Hence, space becomes a tool to carry the information of users and the act. From this aspect, space as a concrete tool also enables a multidirectional communication with the cinema which reflects the social, cultural and economic changes of the society. While space takes a virtual or real part of the cinema, architecture discipline has also been influenced by cinematic phenomenas in its own practice. The subject of the movie and its content commune with the space, therefore, the design of the space is formed to support the subject. The purpose of this study is to analyze the space through motion pictures that convey the information of social life with an objective perspective. In addition, this study aims to determine the space, fittings and the use of fittings with respect to the social status of users. Morever, three films in 1980s in which Kemal Sunal, protagonist of the scripts that reflect society in many ways, performed are examined in this study. Movie sets are considered in many ways. For instance, in one of these movies, different houses from an apartment are analyzed vis a vis the perspective of the study.

Keywords: housing, interior, furniture, furnishing, user

Procedia PDF Downloads 171
166 Retrofitting Measures for Existing Housing Stock in Kazakhstan

Authors: S. Yessengabulov, A. Uyzbayeva

Abstract:

Residential buildings fund of Kazakhstan was built in the Soviet time about 35-60 years ago without considering energy efficiency measures. Currently, most of these buildings are in a rundown condition and fail to meet the minimum of hygienic, sanitary and comfortable living requirements. The paper aims to examine the reports of recent building energy survey activities in the country and provide a possible solution for retrofitting existing housing stock built before 1989 which could be applicable for building envelope in cold climate. Methodology also includes two-dimensional modeling of possible practical solutions and further recommendations.

Keywords: energy audit, energy efficient buildings in Kazakhstan, retrofit, two-dimensional conduction heat transfer analysis

Procedia PDF Downloads 218
165 Bandgap Engineering of CsMAPbI3-xBrx Quantum Dots for Intermediate Band Solar Cell

Authors: Deborah Eric, Abbas Ahmad Khan

Abstract:

Lead halide perovskites quantum dots have attracted immense scientific and technological interest for successful photovoltaic applications because of their remarkable optoelectronic properties. In this paper, we have simulated CsMAPbI3-xBrx based quantum dots to implement their use in intermediate band solar cells (IBSC). These types of materials exhibit optical and electrical properties distinct from their bulk counterparts due to quantum confinement. The conceptual framework provides a route to analyze the electronic properties of quantum dots. This layer of quantum dots optimizes the position and bandwidth of IB that lies in the forbidden region of the conventional bandgap. A three-dimensional MAPbI3 quantum dot (QD) with geometries including spherical, cubic, and conical has been embedded in the CsPbBr3 matrix. Bound energy wavefunction gives rise to miniband, which results in the formation of IB. If there is more than one miniband, then there is a possibility of having more than one IB. The optimization of QD size results in more IBs in the forbidden region. One band time-independent Schrödinger equation using the effective mass approximation with step potential barrier is solved to compute the electronic states. Envelope function approximation with BenDaniel-Duke boundary condition is used in combination with the Schrödinger equation for the calculation of eigen energies and Eigen energies are solved for the quasi-bound states using an eigenvalue study. The transfer matrix method is used to study the quantum tunneling of MAPbI3 QD through neighbor barriers of CsPbI3. Electronic states are computed using Schrödinger equation with effective mass approximation by considering quantum dot and wetting layer assembly. Results have shown the varying the quantum dot size affects the energy pinning of QD. Changes in the ground, first, second state energies have been observed. The QD is non-zero at the center and decays exponentially to zero at boundaries. Quasi-bound states are characterized by envelope functions. It has been observed that conical quantum dots have maximum ground state energy at a small radius. Increasing the wetting layer thickness exhibits energy signatures similar to bulk material for each QD size.

Keywords: perovskite, intermediate bandgap, quantum dots, miniband formation

Procedia PDF Downloads 138
164 Development of Peptide Inhibitors against Dengue Virus Infection by in Silico Design

Authors: Aussara Panya, Nunghathai Sawasdee, Mutita Junking, Chatchawan Srisawat, Kiattawee Choowongkomon, Pa-Thai Yenchitsomanus

Abstract:

Dengue virus (DENV) infection is a global public health problem with approximately 100 million infected cases a year. Presently, there is no approved vaccine or effective drug available; therefore, the development of anti-DENV drug is urgently needed. The clinical reports revealing the positive association between the disease severity and viral titer has been reported previously suggesting that the anti-DENV drug therapy can possibly ameliorate the disease severity. Although several anti-DENV agents showed inhibitory activities against DENV infection, to date none of them accomplishes clinical use in the patients. The surface envelope (E) protein of DENV is critical for the viral entry step, which includes attachment and membrane fusion; thus, the blocking of envelope protein is an attractive strategy for anti-DENV drug development. To search the safe anti-DENV agent, this study aimed to search for novel peptide inhibitors to counter DENV infection through the targeting of E protein using a structure-based in silico design. Two selected strategies has been used including to identify the peptide inhibitor which interfere the membrane fusion process whereby the hydrophobic pocket on the E protein was the target, the destabilization of virion structure organization through the disruption of the interaction between the envelope and membrane proteins, respectively. The molecular docking technique has been used in the first strategy to search for the peptide inhibitors that specifically bind to the hydrophobic pocket. The second strategy, the peptide inhibitor has been designed to mimic the ectodomain portion of membrane protein to disrupt the protein-protein interaction. The designed peptides were tested for the effects on cell viability to measure the toxic to peptide to the cells and their inhibitory assay to inhibit the DENV infection in Vero cells. Furthermore, their antiviral effects on viral replication, intracellular protein level and viral production have been observed by using the qPCR, cell-based flavivirus immunodetection and immunofluorescence assay. None of tested peptides showed the significant effect on cell viability. The small peptide inhibitors achieved from molecular docking, Glu-Phe (EF), effectively inhibited DENV infection in cell culture system. Its most potential effect was observed for DENV2 with a half maximal inhibition concentration (IC50) of 96 μM, but it partially inhibited other serotypes. Treatment of EF at 200 µM on infected cells also significantly reduced the viral genome and protein to 83.47% and 84.15%, respectively, corresponding to the reduction of infected cell numbers. An additional approach was carried out by using peptide mimicking membrane (M) protein, namely MLH40. Treatment of MLH40 caused the reduction of foci formation in four individual DENV serotype (DENV1-4) with IC50 of 24-31 μM. Further characterization suggested that the MLH40 specifically blocked viral attachment to host membrane, and treatment with 100 μM could diminish 80% of viral attachment. In summary, targeting the hydrophobic pocket and M-binding site on the E protein by using the peptide inhibitors could inhibit DENV infection. The results provide proof of-concept for the development of antiviral therapeutic peptide inhibitors to counter DENV infection through the use of a structure-based design targeting conserved viral protein.

Keywords: dengue virus, dengue virus infection, drug design, peptide inhibitor

Procedia PDF Downloads 328
163 The Closed Cavity Façade (CCF): Optimization of CCF for Enhancing Energy Efficiency and Indoor Environmental Quality in Office Buildings

Authors: Michalis Michael, Mauro Overend

Abstract:

Buildings, in which we spend 87-90% of our time, act as a shelter protecting us from environmental conditions and weather phenomena. The building's overall performance is significantly dependent on the envelope’s glazing part, which is particularly critical as it is the most vulnerable part to heat gain and heat loss. However, conventional glazing technologies have relatively low-performance thermo-optical characteristics. In this regard, during winter, the heat losses due to the glazing part of a building envelope are significantly increased as well as the heat gains during the summer period. In this study, the contribution of an innovative glazing technology, namely Closed Cavity Façade (CCF) in improving energy efficiency and IEQ in office buildings is examined, aiming to optimize various design configurations of CCF. Using Energy Plus and IDA ICE packages, the performance of several CCF configurations and geometries for various climate types were investigated, aiming to identify the optimum solution. The model used for the simulations and optimization process was MATELab, a recently constructed outdoor test facility at the University of Cambridge (UK). The model was previously experimentally calibrated. The study revealed that the use of CCF technology instead of conventional double or triple glazing leads to important benefits. Particularly, the replacement of the traditional glazing units, used as the baseline, with the optimal configuration of CCF led to a decrease in energy consumption in the range of 18-37% (depending on the location). This mainly occurs due to integrating shading devices in the cavity and applying proper glass coatings and control strategies, which lead to improvement of thermal transmittance and g-value of the glazing. Since the solar gain through the façade is the main contributor to energy consumption during cooling periods, it was observed that a higher energy improvement is achieved in cooling-dominated locations. Furthermore, it was shown that a suitable selection of the constituents of a closed cavity façade, such as the colour and type of shading devices and the type of coatings, leads to an additional improvement of its thermal performance, avoiding overheating phenomena and consequently ensuring temperatures in the glass cavity below the critical value, and reducing the radiant discomfort providing extra benefits in terms of Indoor Environmental Quality (IEQ).

Keywords: building energy efficiency, closed cavity façade, optimization, occupants comfort

Procedia PDF Downloads 42