Search results for: fuel products
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5638

Search results for: fuel products

5608 Low NOx Combustion Technology for Minimizing NOx

Authors: Sewon Kim, Changyeop Lee

Abstract:

A noble low NOx combustion technology, based on partial oxidation combustion concept in a fuel rich combustion zone, is successfully applied in this research. The burner is designed such that a portion of fuel is heated and pre-vaporized in the furnace then injected into a fuel rich combustion zone so that a partial oxidation reaction occurs. The effects of equivalence ratio, thermal load, and fuel distribution ratio on the emissions of NOx and CO are experimentally investigated. This newly developed combustion technology is successfully applied to industrial furnace, and showed extremely low NOx emission levels.

Keywords: low NOx, combustion, burner, fuel rich

Procedia PDF Downloads 388
5607 Renewable Energy from Local Waste for Producing of Processed Agricultural Products

Authors: Ruedee Niyomrath, Somboon Sarasit, Chaisri Tharaswatpipat

Abstract:

This research aims to study the potential of local waste material in quantity and quality. The potential for such local forms of waste material used as renewable energy for the production of processed agricultural products. The results of this study are useful to producers of agricultural products to use fuel that in local, reduce production costs, and conservation. The results showed that Samut Songkhram is a small province located in the central Thailand, sea area, and subdivided into 3 districts. This province has a population of 80 percent of farmers and agriculture with 50 percent of the area planted to coconut growing. Productivity of coconut help create value for the primacy of the province. Waste materials from coconut have quantity and quality potentials for processing biomass into charcoal as the renewable energy for the production of processed agricultural products.

Keywords: waste, renewable energy, producing of product, processed agricultural products

Procedia PDF Downloads 415
5606 Consideration of Failed Fuel Detector Location through Computational Flow Dynamics Analysis on Primary Cooling System Flow with Two Outlets

Authors: Sanghoon Bae, Hanju Cha

Abstract:

Failed fuel detector (FFD) in research reactor is a very crucial instrument to detect the anomaly from failed fuels in the early stage around primary cooling system (PCS) outlet prior to the decay tank. FFD is considered as a mandatory sensor to ensure the integrity of fuel assemblies and mitigate the consequence from a failed fuel accident. For the effective function of FFD, the location of them should be determined by contemplating the effect from coolant flow around two outlets. For this, the analysis on computational flow dynamics (CFD) should be first performed how the coolant outlet flow including radioactive materials from failed fuels are mixed and discharged through the outlet plenum within certain seconds. The analysis result shows that the outlet flow is well mixed regardless of the position of failed fuel and ultimately illustrates the effect of detector location.

Keywords: computational flow dynamics (CFD), failed fuel detector (FFD), fresh fuel assembly (FFA), spent fuel assembly (SFA)

Procedia PDF Downloads 221
5605 Fuelwood Rsources Utilisation and Its Impact on Sustainable Environment: A Rural Perception

Authors: Abubakar Abdullahi

Abstract:

Large amount of human energy are spent gathering and collecting fuel wood in many parts of the world, most especially in rural areas. In Nigeria fuel wood serves million houses in both rural and urban centers for various energy needs. It’s a common scene in many places while passing by roads to see bunch of woods being sold by the road sides. Even though the resource serves millions of peoples energy needs it has serious consequences on our environment, thus sustainable environment. Majority of the rural areas who rely heavily on the firewood as a means of energy are not aware of the dangers associated with the uses of the products. The aim of this work is to look into the utilization of fuel wood among rural dwellers and their perception about the dangers associated with it and how to sustain our environment. The methodology used involves a structured questionnaire designed with the question about the utilization and perception. The questionnaire is administered to the people of Kashere, a rural area in Gombe state. The result clearly shows there is a high level of ignorance among rural dwellers on the dangers of using fuel wood and how it constitute the depletion of the immediate environment. However, what is surprising in the research is the people’s readiness for alternative energy sources. The research recommend that proper orientation and sensitization is required to create education and awareness to the rural dwellers as well as provide alternative energy that is available, environment friendly and accessible to address the problems.

Keywords: energy, rural dwellers, environment, fuel wood, resources

Procedia PDF Downloads 464
5604 An Empirical Dynamic Fuel Cell Model Used for Power System Verification in Aerospace

Authors: Giuliano Raimondo, Jörg Wangemann, Peer Drechsel

Abstract:

In systems development involving Fuel Cells generators, it is important to have from an early stage of the project a dynamic model for the electrical behavior of the stack to be shared between involved development parties. It allows independent and early design and tests of fuel cell related power electronic. This paper presents an empirical Fuel Cell system model derived from characterization tests on a real system. Moreover, it is illustrated how the obtained model is used to build and validate a real-time Fuel Cell system emulator which is used for aerospace electrical integration testing activities.

Keywords: fuel cell, modelling, real time emulation, testing

Procedia PDF Downloads 308
5603 Analysis of Fuel Efficiency in Heavy Construction Compaction Machine and Factors Affecting Fuel Efficiency

Authors: Amey Kulkarni, Paavan Shetty, Amol Patil, B. Rajiv

Abstract:

Fuel Efficiency plays a very important role in overall performance of an automobile. In this paper study of fuel efficiency of heavy construction, compaction machine is done. The fuel Consumption trials are performed in order to obtain the consumption of fuel in performing certain set of actions by the compactor. Usually, Heavy Construction machines are put to work in locations where refilling the fuel tank is not an easy task and also the fuel is consumed at a greater rate than a passenger automobile. So it becomes important to have a fuel efficient machine for long working hours. The fuel efficiency is the most important point in determining the future scope of the product. A heavy construction compaction machine operates in five major roles. These five roles are traveling, Static working, High-frequency Low amplitude compaction, Low-frequency High amplitude compaction, low idle. Fuel consumption readings for 1950 rpm, 2000 rpm & 2350 rpm of the engine are taken by using differential fuel flow meter and are analyzed. And the optimum RPM setting which fulfills the fuel efficiency, as well as engine performance criteria, is considered. Also, other factors such as rear end gears, Intake and exhaust restriction for an engine, vehicle operating techniques, air drag, Tribological aspects, Tires are considered for increasing the fuel efficiency of the compactor. The fuel efficiency of compactor can be precisely calculated by using Differential Fuel Flow Meter. By testing the compactor at different combinations of Engine RPM and also considering other factors such as rear end gears, Intake and exhaust restriction of an engine, vehicle operating techniques, air drag, Tribological aspects, The optimum solution was obtained which lead to significant improvement in fuel efficiency of the compactor.

Keywords: differential fuel flow meter, engine RPM, fuel efficiency, heavy construction compaction machine

Procedia PDF Downloads 263
5602 Influence of Driving Strategy on Power and Fuel Consumption of Lightweight PEM Fuel Cell Vehicle Powertrain

Authors: Suhadiyana Hanapi, Alhassan Salami Tijani, W. A. N Wan Mohamed

Abstract:

In this paper, a prototype PEM fuel cell vehicle integrated with a 1 kW air-blowing proton exchange membrane fuel cell (PEMFC) stack as a main power sources has been developed for a lightweight cruising vehicle. The test vehicle is equipped with a PEM fuel cell system that provides electric power to a brushed DC motor. This vehicle was designed to compete with industrial lightweight vehicle with the target of consuming least amount of energy and high performance. Individual variations in driving style have a significant impact on vehicle energy efficiency and it is well established from the literature. The primary aim of this study was to assesses the power and fuel consumption of a hydrogen fuel cell vehicle operating at three difference driving technique (i.e. 25 km/h constant speed, 22-28 km/h speed range, 20-30 km/h speed range). The goal is to develop the best driving strategy to maximize performance and minimize fuel consumption for the vehicle system. The relationship between power demand and hydrogen consumption has also been discussed. All the techniques can be evaluated and compared on broadly similar terms. Automatic intelligent controller for driving prototype fuel cell vehicle on different obstacle while maintaining all systems at maximum efficiency was used. The result showed that 25 km/h constant speed was identified for optimal driving with less fuel consumption.

Keywords: prototype fuel cell electric vehicles, energy efficient, control/driving technique, fuel economy

Procedia PDF Downloads 409
5601 Experimental Investigation of the Effect of Temperature on A PEM Fuel Cell Performance

Authors: Remzi Şahin, Sadık Ata, Kevser Dincer

Abstract:

In this study, performance of proton exchange membrane (PEM) fuel cell was experimentally investigated. The efficiency of energy conversion in PEM fuel cells is dependent on the catalytic activities of the catalysts used in the cathode and anode of membrane electrode assemblies. Membrane is considered the heart of PEM fuel cells without which they cannot produce electricity. PEM fuel cell performance increased with coating carbon nanotube (CNT). CNT show a unique combination of stiffness, strength, and tenacity compared to other fiber materials which usually lack one or more of these properties. Two different experiments were performed and the membrane performance has been determined by repeating the two experiments that were done before coating. The purposes of these experiments are the observation of power change due to a temperature change in the same voltage value.

Keywords: carbon nanotube (CNT), proton exchange membrane (PEM), fuel cell, spin method

Procedia PDF Downloads 347
5600 Technical and Environmental Improvement of LNG Carrier's Propulsion Machinery by Using Jatropha Biao Diesel Fuel

Authors: E. H. Hegazy, M. A. Mosaad, A. A. Tawfik, A. A. Hassan, M. Abbas

Abstract:

The rapid depletion of petroleum reserves and rising oil prices has led to the search for alternative fuels. A promising alternative fuel Jatropha Methyl Easter, JME, has drawn the attention of researchers in recent times as a high potential substrate for production of biodiesel fuel. In this paper, the combustion, performance and emission characteristics of a single cylinder diesel engine when fuelled with JME, diesel oil and natural gas are evaluated experimentally and theoretically. The experimental results showed that the thermal and volumetric efficiency of diesel engine is higher than Jatropha biodiesel engine. The specific fuel consumption, exhaust gas temperature, HC, CO2 and NO were comparatively higher in Jatropha biodiesel, while CO emission is appreciable decreased. CFD investigation was carried out in the present work to compare diesel fuel oil and JME. The CFD simulation offers a powerful and convenient way to help understanding physical and chemical processes involved internal combustion engines for diesel oil fuel and JME fuel. The CFD concluded that the deviation between diesel fuel pressure and JME not exceeds 3 bar and the trend for compression pressure almost the same, also the temperature deviation between diesel fuel and JME not exceeds 40 k and the trend for temperature almost the same. Finally the maximum heat release rate of JME is lower than that of diesel fuel. The experimental and CFD investigation indicated that the Jatropha biodiesel can be used instead of diesel fuel oil with safe engine operation.

Keywords: dual fuel diesel engine, natural gas, Jatropha Methyl Easter, volumetric efficiency, emissions, CFD

Procedia PDF Downloads 628
5599 Passive Heat Exchanger for Proton Exchange Membrane Fuel Cell Cooling

Authors: Ivan Tolj

Abstract:

Water produced during electrochemical reaction in Proton Exchange Membrane (PEM) fuel cell can be used for internal humidification of reactant gases; hydrogen and air. On such a way it is possible to eliminate expensive external humidifiers and simplify fuel cell balance-of-plant (BoP). When fuel cell operates at constant temperature (usually between 60 °C and 80 °C) relatively cold and dry ambient air heats up quickly upon entering channels which cause further drop in relative humidity (below 20%). Low relative humidity of reactant gases dries up polymer membrane and decrease its proton conductivity which results in fuel cell performance drop. It is possible to maintain such temperature profile throughout fuel cell cathode channel which will result in close to 100 % RH. In order to achieve this, passive heat exchanger was designed using commercial CFD software (ANSYS Fluent). Such passive heat exchanger (with variable surface area) is suitable for small scale PEM fuel cells. In this study, passive heat exchanger for single PEM fuel cell segment (with 20 x 1 cm active area) was developed. Results show close to 100 % RH of air throughout cathode channel with increased fuel cell performance (mainly improved polarization curve) and improved durability.

Keywords: PEM fuel cell, passive heat exchange, relative humidity, thermal management

Procedia PDF Downloads 242
5598 Transition to Hydrogen Cities in Korea and Japan

Authors: Minhee Son, Kyung Nam Kim

Abstract:

This study explores the plan of the Korean and Japanese governments to transition into the hydrogen economy. Two motor companies, Hyundai Motor Company from Korea and Toyota from Japan, released the Hydrogen Fuel Cell Vehicle to monopolize the green energy automobile market. Although, they are the main countries which emit greenhouse gas, hydrogen energy can bring from a certain industry places, such as chemical plants and steel mills. Recent, the two countries have been focusing on the hydrogen industry including a fuel cell vehicle, a hydrogen station, a fuel cell plant, a residential fuel cell. The purpose of this paper is to find out the differences of the policies in the two countries to be hydrogen societies. We analyze the behavior of the public and private sectors in Korea and Japan about hydrogen energy and fuel cells for the transition of the hydrogen economy. Finally we show the similarities and differences of both countries in hydrogen fuel cells. And some cities have feature such as Hydrogen cities. Hydrogen energy can make impact environmental sustainability.

Keywords: fuel cell, hydrogen city, hydrogen fuel cell vehicle, hydrogen station, hydrogen energy

Procedia PDF Downloads 449
5597 Study on Pressurized Reforming System for the Application of Hydrogen Permeable Membrane Applying to Proton Exchange Membrane Fuel Cell

Authors: Kwangho Lee, Joongmyeon Bae

Abstract:

Fuel cells are spotlighted in the world for being highly efficient and environmentally friendly. A hydrogen fuel for a fuel cell is obtained from a number of sources. Most of fuel cell for APU(Auxiliary power unit) system using diesel fuel as a hydrogen source. Diesel fuel has many advantages, such as high hydrogen storage density, easy to transport and also well-infra structure. However, conventional diesel reforming system for PEMFC(Proton exchange membrane fuel cell) requires a large volume and complex CO removal system for the lower the CO level to less than 10ppm. In addition, the PROX(Preferential Oxidation) reaction cooling load is needed because of the strong exothermic reaction. However, the hydrogen separation membrane that we propose can be eliminated many disadvantages, because the volume is small and permeates only pure hydrogen. In this study, we were conducted to the pressurized diesel reforming and water-gas shift reaction experiment for the hydrogen permeable membrane application.

Keywords: hydrogen, diesel, reforming, ATR, WGS, PROX, membrane, pressure

Procedia PDF Downloads 385
5596 Two-Dimensional Modeling of Spent Nuclear Fuel Using FLUENT

Authors: Imane Khalil, Quinn Pratt

Abstract:

In a nuclear reactor, an array of fuel rods containing stacked uranium dioxide pellets clad with zircalloy is the heat source for a thermodynamic cycle of energy conversion from heat to electricity. After fuel is used in a nuclear reactor, the assemblies are stored underwater in a spent nuclear fuel pool at the nuclear power plant while heat generation and radioactive decay rates decrease before it is placed in packages for dry storage or transportation. A computational model of a Boiling Water Reactor spent fuel assembly is modeled using FLUENT, the computational fluid dynamics package. Heat transfer simulations were performed on the two-dimensional 9x9 spent fuel assembly to predict the maximum cladding temperature for different input to the FLUENT model. Uncertainty quantification is used to predict the heat transfer and the maximum temperature profile inside the assembly.

Keywords: spent nuclear fuel, conduction, heat transfer, uncertainty quantification

Procedia PDF Downloads 192
5595 Reducing Energy Consumption and GHG Emission by Integration of Flare Gas with Fuel Gas Network in Refinery

Authors: N. Tahouni, M. Gholami, M. H. Panjeshahi

Abstract:

Gas flaring is one of the most GHG emitting sources in the oil and gas industries. It is also a major way for wasting such an energy that could be better utilized and even generates revenue. Minimize flaring is an effective approach for reducing GHG emissions and also conserving energy in flaring systems. Integrating waste and flared gases into the fuel gas networks (FGN) of refineries is an efficient tool. A fuel gas network collects fuel gases from various source streams and mixes them in an optimal manner, and supplies them to different fuel sinks such as furnaces, boilers, turbines, etc. In this article we use fuel gas network model proposed by Hasan et al. as a base model and modify some of its features and add constraints on emission pollution by gas flaring to reduce GHG emissions as possible. Results for a refinery case study showed that integration of flare gas stream with waste and natural gas streams to construct an optimal FGN can significantly reduce total annualized cost and flaring emissions.

Keywords: flaring, fuel gas network, GHG emissions, stream

Procedia PDF Downloads 305
5594 Developing Model for Fuel Consumption Optimization in Aviation Industry

Authors: Somesh Kumar Sharma, Sunanad Gupta

Abstract:

The contribution of aviation to society and economy is undisputedly significant. The aviation industry drives economic and social progress by contributing prominently to tourism, commerce and improved quality of life. Identifying the amount of fuel consumed by an aircraft while moving in both airspace and ground networks is critical to air transport economics. Aviation fuel is a major operating cost parameter of the aviation industry and at the same time it is prone to various constraints. This article aims to develop a model for fuel consumption of aviation product. The paper tailors the information for the fuel consumption optimization in terms of information development, information evaluation and information refinement. The information is evaluated and refined using statistical package R and Factor Analysis which is further validated with neural networking. The study explores three primary dimensions which are finally summarized into 23 influencing variables in contrast to 96 variables available in literature. The 23 variables explored in this study should be considered as highly influencing variables for fuel consumption which will contribute significantly towards fuel optimization.

Keywords: fuel consumption, civil aviation industry, neural networking, optimization

Procedia PDF Downloads 305
5593 Catalytic Study of Natural Gas Based Solid Oxide Fuel Cell

Authors: Nasir Iqbal, Khurram Siraj, Rizwan Raza

Abstract:

Solid oxide fuel cell (SOFC) is the promising technology now days. SOFC can be operated with different types of fuels available. In this work catalytic anode is prepared with metal oxides i.e. Li, Ni, Zn and Sn and tested for catalytic activity with natural gas as a fuel. The operating temperature range is 170-750°C as observed with the help of TGA. Electrical conductivity and fuel cell performance has been observed for four different samples with varying composition of Sn and Zn. It is concluded that the sample having greater concentration of Zn shows better conductivity and power density results. All the results are promising and verified with different characterizations.

Keywords: catalytic activity, solid oxide fuel cell, energy material, natural gas

Procedia PDF Downloads 44
5592 Investigation about Mechanical Equipment Needed to Break the Molecular Bonds of Heavy Oil by Using Hydrodynamic Cavitation

Authors: Mahdi Asghari

Abstract:

The cavitation phenomenon is the formation and production of micro-bubbles and eventually the bursting of the micro-bubbles inside the liquid fluid, which results in localized high pressure and temperature, causing physical and chemical fluid changes. This pressure and temperature are predicted to be 2000 atmospheres and 5000 °C, respectively. As a result of small bubbles bursting from this process, temperature and pressure increase momentarily and locally, so that the intensity and magnitude of these temperatures and pressures provide the energy needed to break the molecular bonds of heavy compounds such as fuel oil. In this paper, we study the theory of cavitation and the methods of cavitation production by acoustic and hydrodynamic methods and the necessary mechanical equipment and reactors for industrial application of the hydrodynamic cavitation method to break down the molecular bonds of the fuel oil and convert it into useful and economical products.

Keywords: Cavitation, Hydrodynamic Cavitation, Cavitation Reactor, Fuel Oil

Procedia PDF Downloads 89
5591 Study of Dual Fuel Engine as Environmentally Friendly Engine

Authors: Nilam S. Octaviani, Semin

Abstract:

The diesel engine is an internal combustion engine that uses compressed air to combust. The diesel engines are widely used in the world because it has the most excellent combustion efficiency than other types of internal combustion engine.  However, the exhaust emissions of it produce pollutants that are harmful to human health and the environment. Therefore, natural gas used as an alternative fuel using on compression ignition engine to respond those environment issues. This paper aims to discuss the comparison of the technical characteristics and exhaust gases emission from conventional diesel engine and dual fuel diesel engine. According to the study, the dual fuel engine applications have a lower compression pressure and has longer ignition delay compared with normal diesel mode. The engine power is decreased at dual fuel mode. However, the exhaust gases emission on dual fuel engine significantly reduce the nitrogen oxide (NOx), carbon dioxide (CO2) and particular metter (PM) emissions.

Keywords: diesel engine, dual fuel diesel engine, emission reduction, technical characteristics

Procedia PDF Downloads 271
5590 An Evolutionary Algorithm for Optimal Fuel-Type Configurations in Car Lines

Authors: Charalampos Saridakis, Stelios Tsafarakis

Abstract:

Although environmental concern is on the rise across Europe, current market data indicate that adoption rates of environmentally friendly vehicles remain extremely low. Against this background, the aim of this paper is to a) assess preferences of European consumers for clean-fuel cars and their characteristics and b) design car lines that optimize the combination of fuel types among models in the line-up. In this direction, the authors introduce a new evolutionary mechanism and implement it to stated-preference data derived from a large-scale choice-based conjoint experiment that measures consumer preferences for various factors affecting clean-fuel vehicle (CFV) adoption. The proposed two-step methodology provides interesting insights into how new and existing fuel-types can be combined in a car line that maximizes customer satisfaction.

Keywords: clean-fuel vehicles, product line design, conjoint analysis, choice experiment, differential evolution

Procedia PDF Downloads 241
5589 Dynamic Thermal Modelling of a PEMFC-Type Fuel Cell

Authors: Marco Avila Lopez, Hasnae Ait-Douchi, Silvia De Los Santos, Badr Eddine Lebrouhi, Pamela Ramírez Vidal

Abstract:

In the context of the energy transition, fuel cell technology has emerged as a solution for harnessing hydrogen energy and mitigating greenhouse gas emissions. An in-depth study was conducted on a PEMFC-type fuel cell, with an initiation of an analysis of its operational principles and constituent components. Subsequently, the modelling of the fuel cell was undertaken using the Python programming language, encompassing both steady-state and transient regimes. In the case of the steady-state regime, the physical and electrochemical phenomena occurring within the fuel cell were modelled, with the assumption of uniform temperature throughout all cell compartments. Parametric identification was carried out, resulting in a remarkable mean error of only 1.62% when the model results were compared to experimental data documented in the literature. The dynamic model that was developed enabled the scrutiny of the fuel cell's response in terms of temperature and voltage under varying current conditions.

Keywords: fuel cell, modelling, dynamic, thermal model, PEMFC

Procedia PDF Downloads 54
5588 Correlation between Fuel Consumption and Voyage Related Ship Operational Energy Efficiency Measures: An Analysis from Noon Data

Authors: E. Bal Beşikçi, O. Arslan

Abstract:

Fuel saving has become one of the most important issue for shipping in terms of fuel economy and environmental impact. Lowering fuel consumption is possible for both new ships and existing ships through enhanced energy efficiency measures, technical and operational respectively. The limitations of applying technical measures due to the long payback duration raise the potential of operational changes for energy efficient ship operations. This study identifies operational energy efficiency measures related voyage performance management. We use ‘noon’ data to examine the correlation between fuel consumption and operational parameters- revolutions per minute (RPM), draft, trim, (beaufort number) BN and relative wind direction, which are used as measures of ship energy efficiency. The results of this study reveal that speed optimization is the most efficient method as fuel consumption depends heavily on RPM. In conclusion, this study will provide ship operators with the strategic approach for evaluating the priority of the operational energy efficiency measures against high fuel prices and carbon emissions.

Keywords: ship, voyage related operational energy Efficiency measures, fuel consumption, pearson's correlation coefficient

Procedia PDF Downloads 588
5587 Simulation Research of City Bus Fuel Consumption during the CUEDC Australian Driving Cycle

Authors: P. Kacejko, M. Wendeker

Abstract:

The fuel consumption of city buses depends on a number of factors that characterize the technical properties of the bus and driver, as well as traffic conditions. This parameter related to greenhouse gas emissions is regulated by law in many countries. This applies to both fuel consumption and exhaust emissions. Simulation studies are a way to reduce the costs of optimization studies. The paper describes simulation research of fuel consumption city bus driving. Parameters of the developed model are based on experimental results obtained on chassis dynamometer test stand and road tests. The object of the study was a city bus equipped with a compression-ignition engine. The verified model was applied to simulate the behavior of a bus during the CUEDC Australian Driving Cycle. The results of the calculations showed a direct influence of driving dynamics on fuel consumption.

Keywords: Australian Driving Cycle, city bus, diesel engine, fuel consumption

Procedia PDF Downloads 96
5586 Energy Loss Reduction in Oil Refineries through Flare Gas Recovery Approaches

Authors: Majid Amidpour, Parisa Karimi, Marzieh Joda

Abstract:

For the last few years, release of burned undesirable by-products has become a challenging issue in oil industries. Flaring, as one of the main sources of air contamination, involves detrimental and long-lasting effects on human health and is considered a substantial reason for energy losses worldwide. This research involves studying the implications of two main flare gas recovery methods at three oil refineries, all in Iran as the case I, case II, and case III in which the production capacities are increasing respectively. In the proposed methods, flare gases are converted into more valuable products, before combustion by the flare networks. The first approach involves collecting, compressing and converting the flare gas to smokeless fuel which can be used in the fuel gas system of the refineries. The other scenario includes utilizing the flare gas as a feed into liquefied petroleum gas (LPG) production unit already established in the refineries. The processes of these scenarios are simulated, and the capital investment is calculated for each procedure. The cumulative profits of the scenarios are evaluated using Net Present Value method. Furthermore, the sensitivity analysis based on total propane and butane mole fraction is carried out to make a rational comparison for LPG production approach, and the results are illustrated for different mole fractions of propane and butane. As the mole fraction of propane and butane contained in LPG differs in summer and winter seasons, the results corresponding to LPG scenario are demonstrated for each season. The results of the simulations show that cumulative profit in fuel gas production scenario and LPG production rate increase with the capacity of the refineries. Moreover, the investment return time in LPG production method experiences a decline, followed by a rising trend with an increase in C3 and C4 content. The minimum value of time return occurs at propane and butane sum concentration values of 0.7, 0.6, and 0.7 in case I, II, and III, respectively. Based on comparison of the time of investment return and cumulative profit, fuel gas production is the superior scenario for three case studies.

Keywords: flare gas reduction, liquefied petroleum gas, fuel gas, net present value method, sensitivity analysis

Procedia PDF Downloads 125
5585 Modelling Vehicle Fuel Consumption Utilising Artificial Neural Networks

Authors: Aydin Azizi, Aburrahman Tanira

Abstract:

The main source of energy used in this modern age is fossil fuels. There is a myriad of problems that come with the use of fossil fuels, out of which the issues with the greatest impact are its scarcity and the cost it imposes on the planet. Fossil fuels are the only plausible option for many vital functions and processes; the most important of these is transportation. Thus, using this source of energy wisely and as efficiently as possible is a must. The aim of this work was to explore utilising mathematical modelling and artificial intelligence techniques to enhance fuel consumption in passenger cars by focusing on the speed at which cars are driven. An artificial neural network with an error less than 0.05 was developed to be applied practically as to predict the rate of fuel consumption in vehicles.

Keywords: mathematical modeling, neural networks, fuel consumption, fossil fuel

Procedia PDF Downloads 370
5584 Multidisciplinary Approach to the Effects of Generator Exhaust Fumes on Air: Case Study of Onitsha

Authors: U. V. Okpala, C. C. Okpala

Abstract:

The effect of generator exhaust fumes on air, a case study of Onitsha was considered in this work. A sample of 400 respondents was randomly chosen in the study area based on the population. Questionnaire was designed and administered to inhabitants of the study area to enable the researchers ascertain information on the effect of generator exhaust fumes on air and possible remedies. The issue of the types of generators owned by residents, quantity of fuel products purchased per day and the number of years of generator ownership were discussed. The Pearson’s product moment analysis correlation and Chi-square test were applied in the hypothesis testing. The result shows that huge amount of effluents are discharged on the environment thereby polluting the air. This leads to radiative forcing, depletion of ozone layer and precipitation of acid rain. This has untold effect on the climate system. To ensure proper recovery, the study recommends that government makes available alternative energy sources in addition to the conventional power to save the environment; with this, waste becomes wealth towards a sustainable economy in Nigeria.

Keywords: Onitsha, generator, fuel products, exhaust fumes and remedies, energy systems

Procedia PDF Downloads 197
5583 Production of Alcohol from Sweet Potato

Authors: Abhishek S. Shete

Abstract:

There is nothing new in the use of alcohol made from root crops as a motor fuel. Alcohol is an excellent alternative motor fuel for petrol engines. The reason alcohol fuel has not been fully exploited is that, up until now; gasoline has been cheap, available, and easy to produce. However, nowadays, crude oil is getting scarce, and the historic price difference between alcohol and gasoline is getting narrower. Alcohol fuel can be an important part of the solution for Rwanda because there is tremendous scope to use bulk production of sweet potato into alcohol. The total sweet potato production in both seasons is found to be 1.607.296 tones/year. The average productivity of sweet potato in the country irrespective of seasons is found to be 8.9 tones/ha. If all of the available agricultural surplus were converted to ethanol, alcohol would supply less than 5% of motor fuel needs.

Keywords: root crops, sweet potato, surplus, alcohol

Procedia PDF Downloads 391
5582 Measurement of Coal Fineness, Air Fuel Ratio, and Fuel Weight Distribution in a Vertical Spindle Mill’s Pulverized Fuel Pipes at Classifier Vane 40%

Authors: Jayasiler Kunasagaram

Abstract:

In power generation, coal fineness is crucial to maintain flame stability, ensure combustion efficiency, and lower emissions to the environment. In order for the pulverized coal to react effectively in the boiler furnace, the size of coal particles needs to be at least 70% finer than 74 μm. This paper presents the experiment results of coal fineness, air fuel ratio and fuel weight distribution in pulverized fuel pipes at classifier vane 40%. The aim of this experiment is to extract the pulverized coal is kinetically and investigate the data accordingly. Dirty air velocity, coal sample extraction, and coal sieving experiments were performed to measure coal fineness. The experiment results show that required coal fineness can be achieved at 40 % classifier vane. However, this does not surpass the desired value by a great margin.

Keywords: coal power, emissions, isokinetic sampling, power generation

Procedia PDF Downloads 572
5581 Renewable Natural Gas Production from Biomass and Applications in Industry

Authors: Sarah Alamolhoda, Kevin J. Smith, Xiaotao Bi, Naoko Ellis

Abstract:

For millennials, biomass has been the most important source of fuel used to produce energy. Energy derived from biomass is renewable by re-growth of biomass. Various technologies are used to convert biomass to potential renewable products including combustion, gasification, pyrolysis and fermentation. Gasification is the incomplete combustion of biomass in a controlled environment that results in valuable products such as syngas, biooil and biochar. Syngas is a combustible gas consisting of hydrogen (H₂), carbon monoxide (CO), carbon dioxide (CO₂), and traces of methane (CH₄) and nitrogen (N₂). Cleaned syngas can be used as a turbine fuel to generate electricity, raw material for hydrogen and synthetic natural gas production, or as the anode gas of solid oxide fuel cells. In this work, syngas as a product of woody biomass gasification in British Columbia, Canada, was introduced to two consecutive fixed bed reactors to perform a catalytic water gas shift reaction followed by a catalytic methanation reaction. The water gas shift reaction is a well-established industrial process and used to increase the hydrogen content of the syngas before the methanation process. Catalysts were used in the process since both reactions are reversible exothermic, and thermodynamically preferred at lower temperatures while kinetically favored at elevated temperatures. The water gas shift reactor and the methanation reactor were packed with Cu-based catalyst and Ni-based catalyst, respectively. Simulated syngas with different percentages of CO, H₂, CH₄, and CO₂ were fed to the reactors to investigate the effect of operating conditions in the unit. The water gas shift reaction experiments were done in the temperature of 150 ˚C to 200 ˚C, and the pressure of 550 kPa to 830 kPa. Similarly, methanation experiments were run in the temperature of 300 ˚C to 400 ˚C, and the pressure of 2340 kPa to 3450 kPa. The Methanation reaction reached 98% of CO conversion at 340 ˚C and 3450 kPa, in which more than half of CO was converted to CH₄. Increasing the reaction temperature caused reduction in the CO conversion and increase in the CH₄ selectivity. The process was designed to be renewable and release low greenhouse gas emissions. Syngas is a clean burning fuel, however by going through water gas shift reaction, toxic CO was removed, and hydrogen as a green fuel was produced. Moreover, in the methanation process, the syngas energy was transformed to a fuel with higher energy density (per volume) leading to reduction in the amount of required fuel that flows through the equipment and improvement in the process efficiency. Natural gas is about 3.5 times more efficient (energy/ volume) than hydrogen and easier to store and transport. When modification of existing infrastructure is not practical, the partial conversion of renewable hydrogen to natural gas (with up to 15% hydrogen content), the efficiency would be preserved while greenhouse gas emission footprint is eliminated.

Keywords: renewable natural gas, methane, hydrogen, gasification, syngas, catalysis, fuel

Procedia PDF Downloads 75
5580 Study on Novel Reburning Process for NOx Reduction by Oscillating Injection of Reburn Fuel

Authors: Changyeop Lee, Sewon Kim, Jongho Lee

Abstract:

Reburning technology has been developed to adopt various commercial combustion systems. Fuel lean reburning is an advanced reburning method to reduce NOx economically without using burnout air, however it is not easy to get high NOx reduction efficiency. In the fuel lean reburning system, the localized fuel rich eddies are used to establish partial fuel rich regions so that the NOx can react with hydrocarbon radical restrictively. In this paper, a new advanced reburning method which supplies reburn fuel with oscillatory motion is introduced to increase NOx reduction rate effectively. To clarify whether forced oscillating injection of reburn fuel can effectively reduce NOx emission, experimental tests were conducted in vertical combustion furnace. Experiments were performed in flames stabilized by a gas burner, which was mounted at the bottom of the furnace. The natural gas is used as both main and reburn fuel and total thermal input is about 40kW. The forced oscillating injection of reburn fuel is realized by electronic solenoid valve, so that fuel rich region and fuel lean region is established alternately. In the fuel rich region, NOx is converted to N2 by reburning reaction, however unburned hydrocarbon and CO is oxidized in fuel lean zone and mixing zone at downstream where slightly fuel lean region is formed by mixing of two regions. This paper reports data on flue gas emissions and temperature distribution in the furnace for a wide range of experimental conditions. All experimental data has been measured at steady state. The NOx reduction rate increases up to 41% by forced oscillating reburn motion. The CO emissions were shown to be kept at very low level. And this paper makes clear that in order to decrease NOx concentration in the exhaust when oscillating reburn fuel injection system is adopted, the control of factors such as frequency and duty ratio is very important.

Keywords: NOx, CO, reburning, pollutant

Procedia PDF Downloads 267
5579 Comparative Parametric and Emission Characteristics of Single Cylinder Spark Ignition Engine Using Gasoline, Ethanol, and H₂O as Micro Emulsion Fuels

Authors: Ufaith Qadri, M Marouf Wani

Abstract:

In this paper, the performance and emission characteristics of a Single Cylinder Spark Ignition engine have been investigated. The research is based on micro emulsion application as fuel in a gasoline engine. We have analyzed many micro emulsion compositions in various proportions, for predicting the performance of the Spark Ignition engine. This new technology of fuel modifications is emerging very rapidly as lot of research is going on in the field of micro emulsion fuels in Compression Ignition engines, but the micro emulsion fuel used in a Gasoline engine is very rare. The use of micro emulsion as fuel in a Spark Ignition engine is virtually unexplored. So, our main goal is to see the performance and emission characteristics of micro emulsions as fuel, in Spark Ignition engines, and finding which composition is more efficient. In this research, we have used various micro emulsion fuels whose composition varies for all the three blends, and their performance and emission characteristic were predicted in AVL Boost software. Conventional Gasoline fuel 90%, 80% and 85% were blended with co-surfactant Ethanol in different compositions, and water was used as an additive for making it crystal clear transparent micro emulsion fuel, which is thermodynamically stable. By comparing the performances of engines, the power has shown similarity for micro emulsion fuel and conventional Gasoline fuel. On the other hand, Torque and BMEP shows increase for all the micro emulsion fuels. Micro emulsion fuel shows higher thermal efficiency and lower Specific Fuel Consumption for all the compositions as compared to the Gasoline fuel. Carbon monoxide and Hydro carbon emissions were also measured. The result shows that emissions decrease for all the composition of micro emulsion fuels, and proved to be the most efficient fuel both in terms of performance and emission characteristics.

Keywords: AVL Boost, emissions, microemulsions, performance, Spark Ignition (SI) engine

Procedia PDF Downloads 236