Search results for: flying capacitor inverter
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 372

Search results for: flying capacitor inverter

372 A Comparative Analysis of Multicarrier SPWM Strategies for Five-Level Flying Capacitor Inverter

Authors: Bachir Belmadani, Rachid Taleb, Zinelaabidine Boudjema, Adil Yahdou

Abstract:

Carrier-based methods have been used widely for switching of multilevel inverters due to their simplicity, flexibility and reduced computational requirements compared to space vector modulation (SVM). This paper focuses on Multicarrier Sinusoidal Pulse Width Modulation (MCSPWM) strategy for the three phase Five-Level Flying Capacitor Inverter (5LFCI). The inverter is simulated for Induction Motor (IM) load and Total Harmonic Distortion (THD) for output waveforms is observed for different controlling schemes.

Keywords: flying capacitor inverter, multicarrier sinusoidal pulse width modulation, space vector modulation, total harmonic distortion, induction motor

Procedia PDF Downloads 381
371 Improved Multilevel Inverter with Hybrid Power Selector and Solar Panel Cleaner in a Solar System

Authors: S. Oladoyinbo, A. A. Tijani

Abstract:

Multilevel inverters (MLI) are used at high power application based on their operation. There are 3 main types of multilevel inverters (MLI); diode clamped, flying capacitor and cascaded MLI. A cascaded MLI requires the least number of components to achieve same number of voltage levels when compared to other types of MLI while the flying capacitor has the minimum harmonic distortion. However, maximizing the advantage of cascaded H-bridge MLI and flying capacitor MLI, an improved MLI can be achieved with fewer components and better performance. In this paper an improved MLI is presented by asymmetrically integrating a flying capacitor to a cascaded H-bridge MLI also integrating an auxiliary transformer to the main transformer to decrease the total harmonics distortion (THD) with increased number of output voltage levels. Furthermore, the system is incorporated with a hybrid time and climate based solar panel cleaner and power selector which intelligently manage the input of the MLI and clean the solar panel weekly ensuring the environmental factor effect on the panel is reduced to minimum.

Keywords: multilevel inverter, total harmonics distortion, cascaded h-bridge inverter, flying capacitor

Procedia PDF Downloads 330
370 Reduced Switch Count Asymmetrical Multilevel Inverter Topology

Authors: Voodi Kalandhar, Veera Reddy, Yuva Tejasree

Abstract:

Researchers have become interested in multilevel inverters (MLI) because of their potential for medium- and high-power applications. MLIs are becoming more popular as a result of their ability to generate higher voltage levels, minimal power losses, small size, and low price. These inverters used in high voltage and high-power applications because the stress on the switch is low. Even though many traditional topologies, such as the cascaded H-bridge MLI, the flying capacitor MLI, and the diode clamped MLI, exist, they all have some drawbacks. A complicated control system is needed for the flying capacitor MLI to balance the voltage across the capacitor and diode clamped MLI requires more no of diodes when no of levels increases. Even though the cascaded H-Bridge MLI is popular in terms of modularity and simple control, it requires more no of isolated DC source. Therefore, a topology with fewer devices has always been necessary for greater efficiency and reliability. A new single-phase MLI topology has been introduced to minimize the required switch count in the circuit and increase output levels. With 3 dc voltage sources, 8 switches, and 13 levels at the output, this new single- phase MLI topology was developed. To demonstrate the proposed converter's superiority over the other MLI topologies currently in use, a thorough analysis of the proposed topology will be conducted.

Keywords: DC-AC converter, multi-level inverter (MLI), diodes, H-bridge inverter, switches

Procedia PDF Downloads 48
369 Modelling and Simulation of Cascaded H-Bridge Multilevel Single Source Inverter Using PSIM

Authors: Gaddafi Sani Shehu, Tankut Yalcınoz, Abdullahi Bala Kunya

Abstract:

Multilevel inverters such as flying capacitor, diode-clamped, and cascaded H-bridge inverters are very popular particularly in medium and high power applications. This paper focuses on a cascaded H-bridge module using a single direct current (DC) source in order to generate an 11-level output voltage. The noble approach reduces the number of switches and gate drivers, in comparison with a conventional method. The anticipated topology produces more accurate result with an isolation transformer at high switching frequency. Different modulation techniques can be used for the multilevel inverter, but this work features modulation techniques known as selective harmonic elimination (SHE).This modulation approach reduces the number of carriers with reduction in Switching Losses, Total Harmonic Distortion (THD), and thereby increasing Power Quality (PQ). Based on the simulation result obtained, it appears SHE has the ability to eliminate selected harmonics by chopping off the fundamental output component. The performance evaluation of the proposed cascaded multilevel inverter is performed using PSIM simulation package and THD of 0.94% is obtained.

Keywords: cascaded H-bridge multilevel inverter, power quality, selective harmonic elimination

Procedia PDF Downloads 373
368 Switched Ultracapacitors for Maximizing Energy Supply

Authors: Nassouh K. Jaber

Abstract:

Supercapacitors (S.C.) are presently attracting attention for driving general purpose (12VDC to 220VAC) inverters in renewable energy systems. Unfortunately, when the voltage of the S.C supplying the inverter reaches the minimal threshold of 7-8VDC the inverter shuts down leaving the remaining 40% of the valuable energy stored inside the ultracapacitor un-usable. In this work a power electronic circuit is proposed which switches 2 banks of supercapacitors from parallel connection when both are fully charged at 14VDC to serial connection when their voltages drop down to 7 volts, thus keeping the inverter working within its operating limits for a longer time and advantageously tapping almost 92% of the stored energy in the supercapacitors.

Keywords: ultra capacitor, switched ultracapacitors, inverter, supercapacitor, parallel connection, serial connection, battery limitation

Procedia PDF Downloads 381
367 156vdc to 110vac Sinusoidal Inverter Simulation and Implementation

Authors: Phinyo Mueangmeesap

Abstract:

This paper describes about pure sinusoidal inverter simulation and implementation from high voltage DC (156 Vdc). This simulation is to study and improve the efficiency of the inverter. By reducing the loss of power from boost converter in current inverter. The simulation is done by using the H-bridge circuit with pulse width modulate (PWM) signal and low-pass filter circuit. To convert the DC into AC. This paper used the PSCad for simulation. The result of simulation can be used to create prototype inverter by converting 156 Vdc to 110Vac. The inverter gives the output signal similar to the output from a simulation.

Keywords: inverter simulation, PWM signal, single-phase inverter, sinusoidal inverter

Procedia PDF Downloads 386
366 Contribution to Improving the DFIG Control Using a Multi-Level Inverter

Authors: Imane El Karaoui, Mohammed Maaroufi, Hamid Chaikhy

Abstract:

Doubly Fed Induction Generator (DFIG) is one of the most reliable wind generator. Major problem in wind power generation is to generate Sinusoidal signal with very low THD on variable speed caused by inverter two levels used. This paper presents a multi-level inverter whose objective is to reduce the THD and the dimensions of the output filter. This work proposes a three-level NPC-type inverter, the results simulation are presented demonstrating the efficiency of the proposed inverter.

Keywords: DFIG, multilevel inverter, NPC inverter, THD, induction machine

Procedia PDF Downloads 205
365 Capacitive Coupling Wireless Power Transfer System with 6.78 MHz Class D Inverter

Authors: Kang Hyun Yi

Abstract:

Wireless power transfer technologies are inductive coupling, magnetic resonance, and capacitive coupling methods, typically. Among them, the capacitive coupling wireless power transfer, also named Capacitive Coupling Wireless Power Transfer (CCWPT), has been researched to overcome the drawbacks of other approaches. The CCWPT has many advantages such as a simple structure, low standing power loss, reduced Electromagnetic Interference (EMI) and the ability to transfer power through metal barriers. In this paper, the CCWPT system with 6.78MHz class D inverter is proposed and analyzed. The proposed system is consisted of the 6.78MHz class D inverter with the LC low pass filter, the capacitor between a transmitter and a receiver and impedance transformers. The system is verified with a prototype for charging mobile devices.

Keywords: wireless power transfer, capacitive coupling power transfer, class D inverter, 6.78MHz

Procedia PDF Downloads 622
364 Behaviour of an RC Circuit near Extreme Point

Authors: Tribhuvan N. Soorya

Abstract:

Charging and discharging of a capacitor through a resistor can be shown as exponential curve. Theoretically, it takes infinite time to fully charge or discharge a capacitor. The flow of charge is due to electrons having finite and fixed value of charge. If we carefully examine the charging and discharging process after several time constants, the points on q vs t graph become discrete and curve become discontinuous. Moreover for all practical purposes capacitor with charge (q0-e) can be taken as fully charged, as it introduces an error less than one part per million. Similar is the case for discharge of a capacitor, where the capacitor with the last electron (charge e) can be taken as fully discharged. With this, we can estimate the finite value of time for fully charging and discharging a capacitor.

Keywords: charging, discharging, RC Circuit, capacitor

Procedia PDF Downloads 413
363 Innovative Three Wire Capacitor Circuit System for Efficiency and Comfort Improvement of Ceiling Fans

Authors: R. K. Saket, K. S. Anand Kumar

Abstract:

This paper presents an innovative 3-wire capacitor circuit system used to increase the efficiency and comfort improvement of permanent split-capacitor ceiling fan. In this innovative circuit, current has been reduced to save electrical power. The system could be used to replace standard single phase motor 2-wire capacitor configuration by cost effective split value X rated of optimized AC capacitors with the auxiliary winding to provide reliable ceiling fan operation and improved machine performance to save power. In basic system operations, comparisons with conventional ceiling fan are described.

Keywords: permanent split-capacitor motor, innovative 3-wire capacitor circuit system, standard 2-wire capacitor circuit system, metalized film X-rated capacitor

Procedia PDF Downloads 485
362 Research on Space Discharge Flying Saucers Cruising Between Planets

Authors: Jiang Hua Zhou

Abstract:

According to the article "New Theoretical System of Physics in the 21st Century" published by the author, it is proposed to use the "scientific principle" of the "balanced distance" between "gravity" and "repulsion" between "planets" to "research" - "space flying saucer", and The formula for the law of universal repulsion between substances is proposed. Under the guidance of the new theoretical system, according to the principle of "planet" gravitational and repulsive force, the research and development idea of developing discharge-type "space flying saucer" is put forward. This paper expounds the reasons why flying saucers have the following characteristics: Flying Saucers can fly at high speed, change direction immediately, hover at any height on the earth, and there is no sound when flying. With the birth of the theoretical system of physics in the 21st century advocated by the author, a era of interstellar "space flying saucer" research will be created.

Keywords: planet, attraction, repulsive force, balance spacing, scientific principles, research, space, flying saucer

Procedia PDF Downloads 88
361 Cascaded Multi-Level Single-Phase Switched Boost Inverter

Authors: Van-Thuan Tran, Minh-Khai Nguyen, Geum-Bae Cho

Abstract:

Recently, multilevel inverters have become more attractive for researchers due to low total harmonic distortion (THD) in the output voltage and low electromagnetic interference (EMI). This paper proposes a single-phase cascaded H-bridge quasi switched boost inverter (CHB-qSBI) for renewable energy sources applications. The proposed inverter has the advantage over the cascaded H-bridge quasi-Z-source inverter (CHB-qZSI) in reducing two capacitors and two inductors. As a result, cost, weight, and size are reduced. Furthermore, the dc-link voltage of each module is controlled by individual shoot-through duty cycle to get the same values. Therefore, the proposed inverter solves the imbalance problem of dc-link voltage in traditional CHB inverter. This paper shows the operating principles and analysis of the single-phase cascaded H-bridge quasi switched boost inverter. Also, a control strategy for the proposed inverter is shown. Experimental and simulation results are shown to verify the operating principle of the proposed inverter.

Keywords: renewable energy sources, cascaded h-bridge inverter, quasi switched boost inverter, quasi z-source inverter, multilevel inverter

Procedia PDF Downloads 300
360 Analysis and Comparison of Asymmetric H-Bridge Multilevel Inverter Topologies

Authors: Manel Hammami, Gabriele Grandi

Abstract:

In recent years, multilevel inverters have become more attractive for single-phase photovoltaic (PV) systems, due to their known advantages over conventional H-bridge pulse width-modulated (PWM) inverters. They offer improved output waveforms, smaller filter size, lower total harmonic distortion (THD), higher output voltages and others. The most common multilevel converter topologies, presented in literature, are the neutral-point-clamped (NPC), flying capacitor (FC) and Cascaded H-Bridge (CHB) converters. In both NPC and FC configurations, the number of components drastically increases with the number of levels what leads to complexity of the control strategy, high volume, and cost. Whereas, increasing the number of levels in case of the cascaded H-bridge configuration is a flexible solution. However, it needs isolated power sources for each stage, and it can be applied to PV systems only in case of PV sub-fields. In order to improve the ratio between the number of output voltage levels and the number of components, several hybrids and asymmetric topologies of multilevel inverters have been proposed in the literature such as the FC asymmetric H-bridge (FCAH) and the NPC asymmetric H-bridge (NPCAH) topologies. Another asymmetric multilevel inverter configuration that could have interesting applications is the cascaded asymmetric H-bridge (CAH), which is based on a modular half-bridge (two switches and one capacitor, also called level doubling network, LDN) cascaded to a full H-bridge in order to double the output voltage level. This solution has the same number of switches as the above mentioned AH configurations (i.e., six), and just one capacitor (as the FCAH). CAH is becoming popular, due to its simple, modular and reliable structure, and it can be considered as a retrofit which can be added in series to an existing H-Bridge configuration in order to double the output voltage levels. In this paper, an original and effective method for the analysis of the DC-link voltage ripple is given for single-phase asymmetric H-bridge multilevel inverters based on level doubling network (LDN). Different possible configurations of the asymmetric H-Bridge multilevel inverters have been considered and the analysis of input voltage and current are analytically determined and numerically verified by Matlab/Simulink for the case of cascaded asymmetric H-bridge multilevel inverters. A comparison between FCAH and the CAH configurations is done on the basis of the analysis of the DC and voltage ripple for the DC source (i.e., the PV system). The peak-to-peak DC and voltage ripple amplitudes are analytically calculated over the fundamental period as a function of the modulation index. On the basis of the maximum peak-to-peak values of low frequency and switching ripple voltage components, the DC capacitors can be designed. Reference is made to unity output power factor, as in case of most of the grid-connected PV generation systems. Simulation results will be presented in the full paper in order to prove the effectiveness of the proposed developments in all the operating conditions.

Keywords: asymmetric inverters, dc-link voltage, level doubling network, single-phase multilevel inverter

Procedia PDF Downloads 178
359 Replacing MOSFETs with Single Electron Transistors (SET) to Reduce Power Consumption of an Inverter Circuit

Authors: Ahmed Shariful Alam, Abu Hena M. Mustafa Kamal, M. Abdul Rahman, M. Nasmus Sakib Khan Shabbir, Atiqul Islam

Abstract:

According to the rules of quantum mechanics there is a non-vanishing probability of for an electron to tunnel through a thin insulating barrier or a thin capacitor which is not possible according to the laws of classical physics. Tunneling of electron through a thin insulating barrier or tunnel junction is a random event and the magnitude of current flowing due to the tunneling of electron is very low. As the current flowing through a Single Electron Transistor (SET) is the result of electron tunneling through tunnel junctions of its source and drain the supply voltage requirement is also very low. As a result, the power consumption across a Single Electron Transistor is ultra-low in comparison to that of a MOSFET. In this paper simulations have been done with PSPICE for an inverter built with both SETs and MOSFETs. 35mV supply voltage was used for a SET built inverter circuit and the supply voltage used for a CMOS inverter was 3.5V.

Keywords: ITRS, enhancement type MOSFET, island, DC analysis, transient analysis, power consumption, background charge co-tunneling

Procedia PDF Downloads 496
358 A CMOS Capacitor Array for ESPAR with Fast Switching Time

Authors: Jin-Sup Kim, Se-Hwan Choi, Jae-Young Lee

Abstract:

A 8-bit CMOS capacitor array is designed for using in electrically steerable passive array radiator (ESPAR). The proposed capacitor array shows the fast response time in rising and falling characteristics. Compared to other works in silicon-on-insulator (SOI) or silicon-on-sapphire (SOS) technologies, it shows a comparable tuning range and switching time with low power consumption. Using the 0.18um CMOS, the capacitor array features a tuning range of 1.5 to 12.9 pF at 2.4GHz. Including the 2X4 decoder for control interface, the Chip size is 350um X 145um. Current consumption is about 80 nA at 1.8 V operation.

Keywords: CMOS capacitor array, ESPAR, SOI, SOS, switching time

Procedia PDF Downloads 560
357 An Approach For Evolving a Relaible Low Power Ultra Wide Band Transmitter with Capacitve Sensing

Authors: N.Revathy, C.Gomathi

Abstract:

This work aims for a tunable capacitor as a sensor which can vary the control voltage of a voltage control oscillator in a ultra wide band (UWB) transmitter. In this paper power consumption is concentrated. The reason for choosing a capacitive sensing is it give slow temperature drift, high sensitivity and robustness. Previous works report a resistive sensing in a voltage control oscillator (VCO) not aiming at power consumption. But this work aims for power consumption of a capacitive sensing in ultra wide band transmitter. The ultra wide band transmitter to be used is a direct modulation of pulses. The VCO which is the heart of pulse generator of UWB transmitter works on the principle of voltage to frequency conversion. The VCO has and odd number of inverter stages which works on the control voltage input this input is now from a variable capacitor and the buffer stages is reduced from the previous work to maintain the oscillating frequency. The VCO is also aimed to consume low power. Then the concentration in choosing a variable capacitor is aimed. A compact model of a capacitor with the transient characteristics is to be designed with a movable dielectric and multi metal membranes. Previous modeling of the capacitor transient characteristics is with a movable membrane and a fixed membrane. This work aims at a membrane with a wide tuning suitable for ultra wide band transmitter.This is used in this work because a capacitive in a ultra wide transmitter need to be tuned in such a way that all satisfies FCC regulations.

Keywords: capacitive sensing, ultra wide band transmitter, voltage control oscillator, FCC regulation

Procedia PDF Downloads 370
356 Effect of Inductance Ratio on Operating Frequencies of a Hybrid Resonant Inverter

Authors: Mojtaba Ghodsi, Hamidreza Ziaifar, Morteza Mohammadzaheri, Payam Soltani

Abstract:

In this paper, the performance of a medium power (25 kW/25 kHz) hybrid inverter with a reactive transformer is investigated. To analyze the sensitivity of the inverster, the RSM technique is employed to manifest the effective factors in the inverter to minimize current passing through the Insulated Bipolar Gate Transistors (IGBTs) (current stress). It is revealed that the ratio of the axillary inductor to the effective inductance of resonant inverter (N), is the most effective parameter to minimize the current stress in this type of inverter. In practice, proper selection of N mitigates the current stress over IGBTs by five times. This reduction is very helpful to keep the IGBTs at normal temperatures.

Keywords: analytical analysis, hybrid resonant inverter, reactive transformer, response surface method

Procedia PDF Downloads 176
355 Design of Control Systems for Grid Interconnection and Power Control of a Grid Tie Inverter for Micro-Grid Application

Authors: Deepak Choudhary

Abstract:

COEP-Microgrid, a project by the students of College of Engineering Pune aims at establishing a micro grid in the college campus serving as a living laboratory for research and development of novel grid technologies. Proposed micro grid has an AC-bus and DC-bus, interconnected together with a tie line DC-AC converter. In grid-connected mode AC bus of microgrid is synchronized with utility grid. Synchronization with utility grid requires grid and AC bus to have synchronism in frequency, phase sequence and voltage. Power flow requires phase difference between grid and AC bus. Control System is required to effectively regulate power flow between the grid and AC bus. The grid synchronizing control system is composed of frequency and phase control for regulated power flow and voltage control system for reduction of reactive power flow. The control system involves automatic active power flow control. It takes the feedback of DC link Capacitor and changes the power angle accordingly. Control system incorporating voltage, phase and power control was developed for grid-tie inverter. This paper discusses the design, simulation and practical implementation of control system described in various micro grid scenarios.

Keywords: microgrid, Grid-tie inverter, voltage control, automatic power control

Procedia PDF Downloads 630
354 Single Phase PV Inverter Applying a Dual Boost Technology

Authors: Sudha Bhutada, S. R. Nigam

Abstract:

In this paper, a single-phase PV inverter applying a dual boost converter circuit inverter is proposed for photovoltaic (PV) generation system and PV grid connected system. This system is designed to improve integration of a Single phase inverter with Photovoltaic panel. The DC 24V is converted into to 86V DC and then 86V DC to 312V DC. The 312 V DC is then successfully inverted to AC 220V. Hence, solar energy is powerfully converted into electrical energy for fulfilling the necessities of the home load, or to link with the grid. Matlab Simulation software was used for simulation of the circuit and outcome are presented in this paper.

Keywords: H bridge inverter, dual boost converter, PWM, SPWM

Procedia PDF Downloads 605
353 Three Phase PWM Inverter for Low Rating Energy Efficient Systems

Authors: Nelson Lujara

Abstract:

The paper presents a practical three-phase PWM inverter suitable for low voltage, low rating energy efficient systems. The work in the paper is conducted with the view to establishing the significance of the loss contribution from the PWM inverter in the determination of the complete losses of a photovoltaic (PV) array-powered induction motor drive water pumping system. Losses investigated include; conduction and switching loss of the devices and gate drive losses. It is found that the PWM inverter operates at a reasonable variable efficiency that does not fall below 92% depending on the load. The results between the simulated and experimental results for the system with or without a maximum power tracker (MPT) compares very well, within an acceptable range of 2% margin.

Keywords: energy, inverter, losses, photovoltaic

Procedia PDF Downloads 609
352 Study and Design of Solar Inverter System

Authors: Khaled A. Madi, Abdulalhakim O. Naji, Hassouna A. Aalaoh, Elmahdi Eldeeb

Abstract:

Solar energy is one of the cleanest energy sources with no environmental impact. Due to rapid increase in industrial as well as domestic needs, solar energy becomes a good candidate for safe and easy to handle energy source, especially after it becomes available due to reduction of manufacturing price. The main part of the solar inverter system is the inverter where the DC is inverted to AC, where we try to minimize the loss of power to the minimum possible level by the use of microcontroller. In this work, a deep investigation is made experimentally as well as theoretically for a microcontroller based variable frequency power inverter. The microcontroller will provide the variable frequency Pulse Width Modulation (PWM) signal that will control the switching of the gate of the Insulating Gate Bipolar Transistor (IGBT) with less harmonics at the output of power inverter which can be fed to the public grid at high quality. The proposed work for single phase as well as three phases is also simulated using Matlab/Simulink where we found a good agreement between the simulated and the practical results, even though the experimental work were done in the laboratory of the academy.

Keywords: solar, inverter, PV, solar inverter system

Procedia PDF Downloads 418
351 Three-Dimensional Optimal Path Planning of a Flying Robot for Terrain Following/Terrain Avoidance

Authors: Amirreza Kosari, Hossein Maghsoudi, Malahat Givar

Abstract:

In this study, the three-dimensional optimal path planning of a flying robot for Terrain Following / Terrain Avoidance (TF/TA) purposes using Direct Collocation has been investigated. To this purpose, firstly, the appropriate equations of motion representing the flying robot translational movement have been described. The three-dimensional optimal path planning of the flying vehicle in terrain following/terrain avoidance maneuver is formulated as an optimal control problem. The terrain profile, as the main allowable height constraint has been modeled using Fractal Generation Method. The resulting optimal control problem is discretized by applying Direct Collocation numerical technique, and then transformed into a Nonlinear Programming Problem (NLP). The efficacy of the proposed method is demonstrated by extensive simulations, and in particular, it is verified that this approach could produce a solution satisfying almost all performance and environmental constraints encountering a low-level flying maneuver

Keywords: path planning, terrain following, optimal control, nonlinear programming

Procedia PDF Downloads 158
350 Recent Advances in Pulse Width Modulation Techniques and Multilevel Inverters

Authors: Satish Kumar Peddapelli

Abstract:

This paper presents advances in pulse width modulation techniques which refers to a method of carrying information on train of pulses and the information be encoded in the width of pulses. Pulse Width Modulation is used to control the inverter output voltage. This is done by exercising the control within the inverter itself by adjusting the ON and OFF periods of inverter. By fixing the DC input voltage we get AC output voltage. In variable speed AC motors the AC output voltage from a constant DC voltage is obtained by using inverter. Recent developments in power electronics and semiconductor technology have lead improvements in power electronic systems. Hence, different circuit configurations namely multilevel inverters have become popular and considerable interest by researcher are given on them. A fast Space-Vector Pulse Width Modulation (SVPWM) method for five-level inverter is also discussed. In this method, the space vector diagram of the five-level inverter is decomposed into six space vector diagrams of three-level inverters. In turn, each of these six space vector diagrams of three-level inverter is decomposed into six space vector diagrams of two-level inverters. After decomposition, all the remaining necessary procedures for the three-level SVPWM are done like conventional two-level inverter. The proposed method reduces the algorithm complexity and the execution time. It can be applied to the multilevel inverters above the five-level also. The experimental setup for three-level diode-clamped inverter is developed using TMS320LF2407 DSP controller and the experimental results are analysed.

Keywords: five-level inverter, space vector pulse wide modulation, diode clamped inverter, electrical engineering

Procedia PDF Downloads 359
349 Design and Analysis of Highly Efficient and Reliable Single-Phase Transformerless Inverter for PV Systems

Authors: L. Ashok Kumar, N. Sujith Kumar

Abstract:

Most of the PV systems are designed with transformer for safety purpose with galvanic isolation. However, the transformer is big, heavy and expensive. Also, it reduces the overall frequency of the conversion stage. Generally PV inverter with transformer is having efficiency around 92%–94% only. To overcome these problems, transformerless PV system is introduced. It is smaller, lighter, cheaper and higher in efficiency. However, dangerous leakage current will flow between PV array and the grid due to the stray capacitance. There are different types of configurations available for transformerless inverters like H5, H6, HERIC, oH5, and Dual paralleled buck inverter. But each configuration is suffering from its own disadvantages like high conduction losses, shoot-through issues of switches, dead-time requirements at zero crossing instants of grid voltage to avoid grid shoot-through faults and MOSFET reverse recovery issues. The main objective of the proposed transformerless inverter is to address two key issues: One key issue for a transformerless inverter is that it is necessary to achieve high efficiency compared to other existing inverter topologies. Another key issue is that the inverter configuration should not have any shoot-through issues for higher reliability.

Keywords: grid-connected, photovoltaic (PV) systems, transformerless inverter, stray capacitance, common-mode, leakage current, pulse width modulation (PWM)

Procedia PDF Downloads 467
348 3D Numerical Studies on External Aerodynamics of a Flying Car

Authors: Sasitharan Ambicapathy, J. Vignesh, P. Sivaraj, Godfrey Derek Sams, K. Sabarinath, V. R. Sanal Kumar

Abstract:

The external flow simulation of a flying car at take off phase is a daunting task owing to the fact that the prediction of the transient unsteady flow features during its deployment phase is very complex. In this paper 3D numerical simulations of external flow of Ferrari F430 proposed flying car with different NACA 9618 rectangular wings have been carried. Additionally, the aerodynamics characteristics have been generated for optimizing its geometry for achieving the minimum take off velocity with better overall performance in both road and air. The three-dimensional standard k-omega turbulence model has been used for capturing the intrinsic flow physics during the take off phase. In the numerical study, a fully implicit finite volume scheme of the compressible, Reynolds-Averaged, Navier-Stokes equations is employed. Through the detailed parametric analytical studies we have conjectured that Ferrari F430 flying car facilitated with high wings having three different deployment histories during the take off phase is the best choice for accomplishing its better performance for the commercial applications.

Keywords: aerodynamics of flying car, air taxi, negative lift, roadable airplane

Procedia PDF Downloads 385
347 Design and Implementation of Grid-Connected Photovoltaic Inverter

Authors: B. H. Lee

Abstract:

Nowadays, a grid-connected photovoltaic (PV) inverter is adopted in various places like as home, factory, because grid-connected PV inverter can reduce total power consumption by supplying electricity from PV array. In this paper, design and implementation of a 300 W grid-connected PV inverter are described. It is implemented with TI Piccolo DSP core and operated at 100 kHz switching frequency in order to reduce harmonic contents. The maximum operating input voltage is up to 45 V. The characteristics of the designed system that include maximum power point tracking (MPPT), single operation and battery charging are verified by simulation and experimental results.

Keywords: design, grid-connected, implementation, photovoltaic

Procedia PDF Downloads 390
346 Digital Signal Processor Implementation of a Novel Sinusoidal Pulse Width Modulation Algorithm Algorithm for a Reduced Delta Inverter

Authors: Asma Ben Rhouma, Mahmoud Hamouda

Abstract:

The delta inverter is considered as the reduced three-phase dc/ac converter topology. It contains only three two-quadrant power switches compared to six in the conventional one. This reduced power conversion topology is widely considered in many industrial applications, such as electric traction and large photovoltaic systems. This paper is focused on a new sinusoidal pulse width modulation algorithm (SPWM) developed for the delta inverter. As an unconventional inverter’s structure, irregular modulating functions waveforms of the SPWM switching technique are generated. The performances of the proposed SPWM technique was proven through computer simulations carried out on a delta inverter feeding a three-phase RL load. Digital Signal Processor (DSP) implementation of the novel SPWM algorithm have been realized on a laboratory prototype of the delta inverter feeding an RL load and a squirrel cage induction motor. Experimental results have highlighted its high performances under the proposed SPWM method.

Keywords: delta inverter, SPWM, simulation, DSP implementation

Procedia PDF Downloads 129
345 Grid Connected Photovoltaic Micro Inverter

Authors: S. J. Bindhu, Edwina G. Rodrigues, Jijo Balakrishnan

Abstract:

A grid-connected photovoltaic (PV) micro inverter with good performance properties is proposed in this paper. The proposed inverter with a quadrupler, having more efficiency and less voltage stress across the diodes. The stress that come across the diodes that use in the inverter section is considerably low in the proposed converter, also the protection scheme that we provided can eliminate the chances of the error due to fault. The proposed converter is implemented using perturb and observe algorithm so that the fluctuation in the voltage can be reduce and can attain maximum power point. Finally, some simulation and experimental results are also presented to demonstrate the effectiveness of the proposed converter.

Keywords: DC-DC converter, MPPT, quadrupler, PV panel

Procedia PDF Downloads 809
344 A Strategy of Direct Power Control for PWM Rectifier Reducing Ripple in Instantaneous Power

Authors: T. Mohammed Chikouche, K. Hartani

Abstract:

Based on the analysis of basic direct torque control, a parallel master slave for four in-wheel permanent magnet synchronous motors (PMSM) fed by two three phase inverters used in electric vehicle is proposed in this paper. A conventional system with multi-inverter and multi-machine comprises a three phase inverter for each machine to be controlled. Another approach consists in using only one three-phase inverter to supply several permanent magnet synchronous machines. A modified direct torque control (DTC) algorithm is used for the control of the bi-machine traction system. Simulation results show that the proposed control strategy is well adapted for the synchronism of this system and provide good speed tracking performance.

Keywords: electric vehicle, multi-machine single-inverter system, multi-machine multi-inverter control, in-wheel motor, master-slave control

Procedia PDF Downloads 190
343 A Multilevel-Synthesis Approach with Reduced Number of Switches for 99-Level Inverter

Authors: P. Satish Kumar, V. Ramu, K. Ramakrishna

Abstract:

In this paper, an efficient multilevel wave form synthesis technique is proposed and applied to a 99-level inverter. The basic principle of the proposed scheme is that the continuous output voltage levels can be synthesized by the addition or subtraction of the instantaneous voltages generated from different voltage levels. This synthesis technique can be realized by an array of switching devices composing full-bridge inverter modules and proper mixing of each bi-directional switch modules. The most different aspect, compared to the conventional approach, in the synthesis of the multilevel output waveform is the utilization of a combination of bidirectional switches and full bridge inverter modules with reduced number of components. A 99-level inverter consists of three full-bridge modules and six bi-directional switch modules. The validity of the proposed scheme is verified by the simulation.

Keywords: cascaded connection, multilevel inverter, synthesis, total harmonic distortion

Procedia PDF Downloads 494