Search results for: flame front
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 798

Search results for: flame front

648 Efficiency Enhancement of Photovoltaic Panels Using an Optimised Air Cooled Heat Sink

Authors: Wisam K. Hussam, Ali Alfeeli, Gergory J. Sheard

Abstract:

Solar panels that use photovoltaic (PV) cells are popular for converting solar radiation into electricity. One of the major problems impacting the performance of PV panels is the overheating caused by excessive solar radiation and high ambient temperatures, which degrades the efficiency of the PV panels remarkably. To overcome this issue, an aluminum heat sink was used to dissipate unwanted heat from PV cells. The dimensions of the heat sink were determined considering the optimal fin spacing that fulfils hot climatic conditions. In this study, the effects of cooling on the efficiency and power output of a PV panel were studied experimentally. Two PV modules were used: one without and one with a heat sink. The experiments ran for 11 hours from 6:00 a.m. to 5:30 p.m. where temperature readings in the rear and front of both PV modules were recorded at an interval of 15 minutes using sensors and an Arduino microprocessor. Results are recorded for both panels simultaneously for analysis, temperate comparison, and for power and efficiency calculations. A maximum increase in the solar to electrical conversion efficiency of 35% and almost 55% in the power output were achieved with the use of a heat sink, while temperatures at the front and back of the panel were reduced by 9% and 11%, respectively.

Keywords: photovoltaic cell, natural convection, heat sink, efficiency

Procedia PDF Downloads 122
647 Optimal Design of Composite Patch for a Cracked Pipe by Utilizing Genetic Algorithm and Finite Element Method

Authors: Mahdi Fakoor, Seyed Mohammad Navid Ghoreishi

Abstract:

Composite patching is a common way for reinforcing the cracked pipes and cylinders. The effects of composite patch reinforcement on fracture parameters of a cracked pipe depend on a variety of parameters such as number of layers, angle, thickness, and material of each layer. Therefore, stacking sequence optimization of composite patch becomes crucial for the applications of cracked pipes. In this study, in order to obtain the optimal stacking sequence for a composite patch that has minimum weight and maximum resistance in propagation of cracks, a coupled Multi-Objective Genetic Algorithm (MOGA) and Finite Element Method (FEM) process is proposed. This optimization process has done for longitudinal and transverse semi-elliptical cracks and optimal stacking sequences and Pareto’s front for each kind of cracks are presented. The proposed algorithm is validated against collected results from the existing literature.

Keywords: multi objective optimization, pareto front, composite patch, cracked pipe

Procedia PDF Downloads 287
646 Self-Assembling Layered Double Hydroxide Nanosheets on β-FeOOH Nanorods for Reducing Fire Hazards of Epoxy Resin

Authors: Wei Wang, Yuan Hu

Abstract:

Epoxy resins (EP), one of the most important thermosetting polymers, is widely applied in various fields due to its desirable properties, such as excellent electrical insulation, low shrinkage, outstanding mechanical stiffness, satisfactory adhesion and solvent resistance. However, like most of the polymeric materials, EP has the fatal drawbacks including inherent flammability and high yield of toxic smoke, which restricts its application in the fields requiring fire safety. So, it is still a challenge and an interesting subject to develop new flame retardants which can not only remarkably improve the flame retardancy, but also render modified resins low toxic gases generation. In recent work, polymer nanocomposites based on nanohybrids that contain two or more kinds of nanofillers have drawn intensive interest, which can realize performance enhancements. The realization of previous hybrids of carbon nanotubes (CNTs) and molybdenum disulfide provides us a novel route to decorate layered double hydroxide (LDH) nanosheets on the surface of β-FeOOH nanorods; the deposited LDH nanosheets can fill the network and promote the work efficiency of β-FeOOH nanorods. Moreover, the synergistic effects between LDH and β-FeOOH can be anticipated to have potential applications in reducing fire hazards of EP composites for the combination of condense-phase and gas-phase mechanism. As reported, β-FeOOH nanorods can act as a core to prepare hybrid nanostructures combining with other nanoparticles through electrostatic attraction through layer-by-layer assembly technique. In this work, LDH nanosheets wrapped β-FeOOH nanorods (LDH-β-FeOOH) hybrids was synthesized by a facile method, with the purpose of combining the characteristics of one dimension (1D) and two dimension (2D), to improve the fire resistance of epoxy resin. The hybrids showed a well dispersion in EP matrix and had no obvious aggregation. Thermogravimetric analysis and cone calorimeter tests confirmed that LDH-β-FeOOH hybrids into EP matrix with a loading of 3% could obviously improve the fire safety of EP composites. The plausible flame retardancy mechanism was explored by thermogravimetric infrared (TG-IR) and X-ray photoelectron spectroscopy. The reasons were concluded: condense-phase and gas-phase. Nanofillers were transferred to the surface of matrix during combustion, which could not only shield EP matrix from external radiation and heat feedback from the fire zone, but also efficiently retard transport of oxygen and flammable pyrolysis.

Keywords: fire hazards, toxic gases, self-assembly, epoxy

Procedia PDF Downloads 152
645 Active Linear Quadratic Gaussian Secondary Suspension Control of Flexible Bodied Railway Vehicle

Authors: Kaushalendra K. Khadanga, Lee Hee Hyol

Abstract:

Passenger comfort has been paramount in the design of suspension systems of high speed cars. To analyze the effect of vibration on vehicle ride quality, a vertical model of a six degree of freedom railway passenger vehicle, with front and rear suspension, is built. It includes car body flexible effects and vertical rigid modes. A second order linear shaping filter is constructed to model Gaussian white noise into random rail excitation. The temporal correlation between the front and rear wheels is given by a second order Pade approximation. The complete track and the vehicle model are then designed. An active secondary suspension system based on a Linear Quadratic Gaussian (LQG) optimal control method is designed. The results show that the LQG control method reduces the vertical acceleration, pitching acceleration and vertical bending vibration of the car body as compared to the passive system.

Keywords: active suspension, bending vibration, railway vehicle, vibration control

Procedia PDF Downloads 237
644 Investigations on Pyrolysis Model for Radiatively Dominant Diesel Pool Fire Using Fire Dynamic Simulator

Authors: Siva K. Bathina, Sudheer Siddapureddy

Abstract:

Pool fires are formed when the flammable liquid accidentally spills on the ground or water and ignites. Pool fire is a kind of buoyancy-driven and diffusion flame. There have been many pool fire accidents caused during processing, handling and storing of liquid fuels in chemical and oil industries. Such kind of accidents causes enormous damage to property as well as the loss of lives. Pool fires are complex in nature due to the strong interaction among the combustion, heat and mass transfers and pyrolysis at the fuel surface. Moreover, the experimental study of such large complex fires involves fire safety issues and difficulties in performing experiments. In the present work, large eddy simulations are performed to study such complex fire scenarios using fire dynamic simulator. A 1 m diesel pool fire is considered for the studied cases, and diesel is chosen as it is most commonly involved fuel in fire accidents. Fire simulations are performed by specifying two different boundary conditions: one the fuel is in liquid state and pyrolysis model is invoked, and the other by assuming the fuel is initially in a vapor state and thereby prescribing the mass loss rate. A domain of size 11.2 m × 11.2 m × 7.28 m with uniform structured grid is chosen for the numerical simulations. Grid sensitivity analysis is performed, and a non-dimensional grid size of 12 corresponding to 8 cm grid size is considered. Flame properties like mass burning rate, irradiance, and time-averaged axial flame temperature profile are predicted. The predicted steady-state mass burning rate is 40 g/s and is within the uncertainty limits of the previously reported experimental data (39.4 g/s). Though the profile of the irradiance at a distance from the fire along the height is somewhat in line with the experimental data and the location of the maximum value of irradiance is shifted to a higher location. This may be due to the lack of sophisticated models for the species transportation along with combustion and radiation in the continuous zone. Furthermore, the axial temperatures are not predicted well (for any of the boundary conditions) in any of the zones. The present study shows that the existing models are not sufficient enough for modeling blended fuels like diesel. The predictions are strongly dependent on the experimental values of the soot yield. Future experiments are necessary for generalizing the soot yield for different fires.

Keywords: burning rate, fire accidents, fire dynamic simulator, pyrolysis

Procedia PDF Downloads 166
643 Development of a Reduced Multicomponent Jet Fuel Surrogate for Computational Fluid Dynamics Application

Authors: Muhammad Zaman Shakir, Mingfa Yao, Zohaib Iqbal

Abstract:

This study proposed four Jet fuel surrogate (S1, S2 S3, and 4) with careful selection of seven large hydrocarbon fuel components, ranging from C₉-C₁₆ of higher molecular weight and higher boiling point, adapting the standard molecular distribution size of the actual jet fuel. The surrogate was composed of seven components, including n-propyl cyclohexane (C₉H₁₈), n- propylbenzene (C₉H₁₂), n-undecane (C₁₁H₂₄), n- dodecane (C₁₂H₂₆), n-tetradecane (C₁₄H₃₀), n-hexadecane (C₁₆H₃₄) and iso-cetane (iC₁₆H₃₄). The skeletal jet fuel surrogate reaction mechanism was developed by two approaches, firstly based on a decoupling methodology by describing the C₄ -C₁₆ skeletal mechanism for the oxidation of heavy hydrocarbons and a detailed H₂ /CO/C₁ mechanism for prediction of oxidation of small hydrocarbons. The combined skeletal jet fuel surrogate mechanism was compressed into 128 species, and 355 reactions and thereby can be used in computational fluid dynamics (CFD) simulation. The extensive validation was performed for individual single-component including ignition delay time, species concentrations profile and laminar flame speed based on various fundamental experiments under wide operating conditions, and for their blended mixture, among all the surrogate, S1 has been extensively validated against the experimental data in a shock tube, rapid compression machine, jet-stirred reactor, counterflow flame, and premixed laminar flame over wide ranges of temperature (700-1700 K), pressure (8-50 atm), and equivalence ratio (0.5-2.0) to capture the properties target fuel Jet-A, while the rest of three surrogate S2, S3 and S4 has been validated for Shock Tube ignition delay time only to capture the ignition characteristic of target fuel S-8 & GTL, IPK and RP-3 respectively. Based on the newly proposed HyChem model, another four surrogate with similar components and composition, was developed and parallel validations data was used as followed for previously developed surrogate but at high-temperature condition only. After testing the mechanism prediction performance of surrogates developed by the decoupling methodology, the comparison was done with the results of surrogates developed by the HyChem model. It was observed that all of four proposed surrogates in this study showed good agreement with the experimental measurements and the study comes to this conclusion that like the decoupling methodology HyChem model also has a great potential for the development of oxidation mechanism for heavy alkanes because of applicability, simplicity, and compactness.

Keywords: computational fluid dynamics, decoupling methodology Hychem, jet fuel, surrogate, skeletal mechanism

Procedia PDF Downloads 102
642 Effect of Minerals in Middlings on the Reactivity of Gasification-Coke by Blending a Large Proportion of Long Flame Coal

Authors: Jianjun Wu, Fanhui Guo, Yixin Zhang

Abstract:

In this study, gasification-coke were produced by blending the middlings (MC), and coking coal (CC) and a large proportion of long flame coal (Shenfu coal, SC), the effects of blending ratio were investigated. Mineral evolution and crystalline order obtained by XRD methods were reproduced within reasonable accuracy. Structure characteristics of partially gasification-coke such as surface area and porosity were determined using the N₂ adsorption and mercury porosimetry. Experimental data of gasification-coke was dominated by the TGA results provided trend, reactivity differences between gasification-cokes are discussed in terms of structure characteristic, crystallinity, and alkali index (AI). The first-order reaction equation was suitable for the gasification reaction kinetics of CO₂ atmosphere which was represented by the volumetric reaction model with linear correlation coefficient above 0.985. The differences in the microporous structure of gasification-coke and catalysis caused by the minerals in parent coals were supposed to be the main factors which affect its reactivity. The addition of MC made the samples enriched with a large amount of ash causing a higher surface area and a lower crystalline order to gasification-coke which was beneficial to gasification reaction. The higher SiO₂ and Al₂O₃ contents, causing a decreasing AI value and increasing activation energy, which reduced the gasification reaction activity. It was found that the increasing amount of MC got a better performance on the coke gasification reactivity by blending > 30% SC with this coking process.

Keywords: low-rank coal, middlings, structure characteristic, mineral evolution, alkali index, gasification-coke, gasification kinetics

Procedia PDF Downloads 130
641 Electoral Politics and Voting Behaviour in 2011 Assembly Election in West Bengal, India: A Case Study in Electoral Geography

Authors: Md Motibur Rahman

Abstract:

The present paper attempts to study the electoral politics and voting behavior of 2011 assembly election of West Bengal state in India. Electoral geography is considered as the study of geographical aspects of the organization, conduct, and result of elections. It deals with the spatial voting patterns/behaviour or the study of the spatial distribution of political phenomena of voting. Voting behavior is a form of political psychology which played a great role in political decision-making process. The voting behavior of the electorates is largely influenced by their perception that existing during the time of election. The main focus of the study will be to analyze the electoral politics of the party organizations and political profile of the electorates. The principle objectives of the present work are i) to study the spatial patterns of voting behavior in 2011 assembly election in West Bengal, ii) to analysis the result and finding of 2011 assembly election. The whole study based on the secondary source of data. The electoral data have taken from Election Commission of India, New Delhi and Centre for the study of Developing Societies (CSDS) in New Delhi. In the battle of 2011 Assembly election in West Bengal, the two major parties were Left Front and Trinamool Congress. This election witnessed the remarkable successes of Trinamool Congress and decline of 34 years longest ruler party that is Left Front. Trinamool Congress won a majority of seats that 227 out of 294 but Left Front won only 62 seats out of 294 seats. The significance of the present study is that it helps in understanding the voting pattern, voting behaviour, trends of voting and also helps for further study of electoral geography in West Bengal. The study would be highly significant and helpful to the planners, politicians, and administrators who are involved in the formulation of development plans and programmes for the people of the state.

Keywords: assembly election, electoral geography, electoral politics, voting behaviour

Procedia PDF Downloads 196
640 Towards Binder-Free and Self Supporting Flexible Supercapacitor from Carbon Nano-Onions and Their Composite with CuO Nanoparticles

Authors: Debananda Mohapatra, Subramanya Badrayyana, Smrutiranjan Parida

Abstract:

Recognizing the upcoming era of carbon nanostructures and their revolutionary applications, we investigated the formation and supercapacitor application of highly pure and hydrophilic carbon nano-onions (CNOs) by economical one-step flame-synthesis procedure. The facile and scalable method uses easily available organic carbon source such as clarified butter, restricting the use of any catalyst, sophisticated instrumentation, high vacuum and post processing purification procedure. The active material was conformally coated onto a locally available cotton wipe by “sonicating and drying” process to obtain novel, lightweight, inexpensive, flexible, binder-free electrodes with strong adhesion between nanoparticles and porous wipe. This interesting electrode with CNO as the active material delivers a specific capacitance of 102.16 F/g, the energy density of 14.18 Wh/kg and power density of 2448 W/kg which are the highest values reported so far in symmetrical two electrode cell configuration with 1M Na2SO4 as an electrolyte. Incorporation of CuO nanoparticles to these functionalized CNOs by one-step hydrothermal method add up to a significant specific capacitance of 420 F/g with deliverable energy and power density at 58.33 Wh/kg and 4228 W/kg, respectively. The free standing CNOs, as well as CNO-CuO composite electrode, showed an excellent cyclic performance and stability retaining 95 and 90% initial capacitance even after 5000 charge-discharge cycles at a current density of 5 A/g. This work presents a new platform for high performance supercapacitors for next generation wearable electronic devices.

Keywords: binder-free, flame synthesis, flexible, carbon nano-onion

Procedia PDF Downloads 167
639 Development of Basic Patternmaking Using Parametric Modelling and AutoLISP

Authors: Haziyah Hussin, Syazwan Abdul Samad, Rosnani Jusoh

Abstract:

This study is aimed towards the automisation of basic patternmaking for traditional clothes for the purpose of mass production using AutoCAD to apply AutoLISP feature under software Hazi Attire. A standard dress form (industrial form) with the size of small (S), medium (M) and large (L) size is measured using full body scanning machine. Later, the pattern for the clothes is designed parametrically based on the measured dress form. Hazi Attire program is used within the framework of AutoCAD to generate the basic pattern of front bodice, back bodice, front skirt, back skirt and sleeve block (sloper). The generation of pattern is based on the parameters inputted by user, whereby in this study, the parameters were determined based on the measured size of dress form. The finalized pattern parameter shows that the pattern fit perfectly on the dress form. Since the pattern is generated almost instantly, these proved that using the AutoLISP programming, the manufacturing lead time for the mass production of the traditional clothes can be decreased.

Keywords: apparel, AutoLISP, Malay traditional clothes, pattern ganeration

Procedia PDF Downloads 218
638 Combustion and Emissions Performance of Syngas Fuels Derived from Palm Kernel Shell and Polyethylene (PE) Waste via Catalytic Steam Gasification

Authors: Chaouki Ghenai

Abstract:

Computational fluid dynamics analysis of the burning of syngas fuels derived from biomass and plastic solid waste mixture through gasification process is presented in this paper. The syngas fuel is burned in gas turbine can combustor. Gas turbine can combustor with swirl is designed to burn the fuel efficiently and reduce the emissions. The main objective is to test the impact of the alternative syngas fuel compositions and lower heating value on the combustion performance and emissions. The syngas fuel is produced by blending Palm Kernel Shell (PKS) with Polyethylene (PE) waste via catalytic steam gasification (fluidized bed reactor). High hydrogen content syngas fuel was obtained by mixing 30% PE waste with PKS. The syngas composition obtained through the gasification process is 76.2% H2, 8.53% CO, 4.39% CO2 and 10.90% CH4. The lower heating value of the syngas fuel is LHV = 15.98 MJ/m3. Three fuels were tested in this study natural gas (100%CH4), syngas fuel and pure hydrogen (100% H2). The power from the combustor was kept constant for all the fuels tested in this study. The effect of syngas fuel composition and lower heating value on the flame shape, gas temperature, mass of carbon dioxide (CO2) and nitrogen oxides (NOX) per unit of energy generation is presented in this paper. The results show an increase of the peak flame temperature and NO mass fractions for the syngas and hydrogen fuels compared to natural gas fuel combustion. Lower average CO2 emissions at the exit of the combustor are obtained for the syngas compared to the natural gas fuel.

Keywords: CFD, combustion, emissions, gas turbine combustor, gasification, solid waste, syngas, waste to energy

Procedia PDF Downloads 565
637 Morphology and Risk Factors for Blunt Aortic Trauma in Car Accidents: An Autopsy Study

Authors: Ticijana Prijon, Branko Ermenc

Abstract:

Background: Blunt aortic trauma (BAT) includes various morphological changes that occur during deceleration, acceleration and/or body compression in traffic accidents. The various forms of BAT, from limited laceration of the intima to complete transection of the aorta, depends on the force acting on the vessel wall and the tolerance of the aorta to injury. The force depends on the change in velocity, the dynamics of the accident and of the seating position in the car. Tolerance to aortic injury depends on the anatomy, histological structure and pathomorphological alterations due to aging or disease of the aortic wall.An overview of the literature and medical documentation reveals that different terms are used to describe certain forms of BAT, which can lead to misinterpretation of findings or diagnoses. We therefore, propose a classification that would enable uniform systematic screening of all forms of BAT. We have classified BAT into three morphologycal types: TYPE I (intramural), TYPE II (transmural) and TYPE III (multiple) aortic ruptures with appropriate subtypes. Methods: All car accident casualties examined at the Institute of Forensic Medicine from 2001 to 2009 were included in this retrospective study. Autopsy reports were used to determine the occurrence of each morphological type of BAT in deceased drivers, front seat passengers and other passengers in cars and to define the morphology of BAT in relation to the accident dynamics and the age of the fatalities. Results: A total of 391 fatalities in car accidents were included in the study. TYPE I, TYPE II and TYPE III BAT were observed in 10,9%, 55,6% and 33,5%, respectively. The incidence of BAT in drivers, front seat and other passengers was 36,7%, 43,1% and 28,6%, respectively. In frontal collisions, the incidence of BAT was 32,7%, in lateral collisions 54,2%, and in other traffic accidents 29,3%. The average age of fatalities with BAT was 42,8 years and of those without BAT 39,1 years. Conclusion: Identification and early recognition of the risk factors of BAT following a traffic accident is crucial for successful treatment of patients with BAT. Front seat passengers over 50 years of age who have been injured in a lateral collision are the most at risk of BAT.

Keywords: aorta, blunt trauma, car accidents, morphology, risk factors

Procedia PDF Downloads 484
636 Pareidolia and Perception of Anger in Vehicle Styles: Survey Results

Authors: Alan S. Hoback

Abstract:

Most people see human faces in car front and back ends because of the process of pareidolia. 96 people were surveyed to see how many of them saw a face in the vehicle styling. Participants were aged 18 to 72 years. 94% of the participants saw faces in the front-end design of production models. All participants that recognized faces indicated that most styles showed some degree of an angry expression. It was found that women were more likely to see faces in inanimate objects. However, with respect to whether women were more likely to perceive anger in the vehicle design, the results need further clarification. Survey responses were correlated to the design features of vehicles to determine what cues the respondents were likely looking at when responding. Whether the features looked anthropomorphic was key to anger perception. Features such as the headlights which could represent eyes and the air intake that could represent a mouth had high correlations to trends in scores. Results are compared among models, makers, by groupings of body styles classifications for the top 12 brands sold in the US, and by year for the top 20 models sold in the US in 2016. All of the top models sold increased in perception of an angry expression over the last 20 years or since the model was introduced, but the relative change varied by body style grouping.

Keywords: aggressive driving, face recognition, road rage, vehicle styling

Procedia PDF Downloads 115
635 Compact LWIR Borescope Sensor for Thermal Imaging of 2D Surface Temperature in Gas-Turbine Engines

Authors: Andy Zhang, Awnik Roy, Trevor B. Chen, Bibik Oleksandar, Subodh Adhikari, Paul S. Hsu

Abstract:

The durability of a combustor in gas-turbine engines is a strong function of its component temperatures and requires good control of these temperatures. Since the temperature of combustion gases frequently exceeds the melting point of the combustion liner walls, an efficient air-cooling system with optimized flow rates of cooling air is significantly important to elongate the lifetime of liner walls. To determine the effectiveness of the air-cooling system, accurate two-dimensional (2D) surface temperature measurement of combustor liner walls is crucial for advanced engine development. Traditional diagnostic techniques for temperature measurement in this application include the rmocouples, thermal wall paints, pyrometry, and phosphors. They have shown some disadvantages, including being intrusive and affecting local flame/flow dynamics, potential flame quenching, and physical damages to instrumentation due to harsh environments inside the combustor and strong optical interference from strong combustion emission in UV-Mid IR wavelength. To overcome these drawbacks, a compact and small borescope long-wave-infrared (LWIR) sensor is developed to achieve 2D high-spatial resolution, high-fidelity thermal imaging of 2D surface temperature in gas-turbine engines, providing the desired engine component temperature distribution. The compactLWIRborescope sensor makes it feasible to promote the durability of a combustor in gas-turbine engines and, furthermore, to develop more advanced gas-turbine engines.

Keywords: borescope, engine, low-wave-infrared, sensor

Procedia PDF Downloads 97
634 Streamlining the Fuzzy Front-End and Improving the Usability of the Tools Involved

Authors: Michael N. O'Sullivan, Con Sheahan

Abstract:

Researchers have spent decades developing tools and techniques to aid teams in the new product development (NPD) process. Despite this, it is evident that there is a huge gap between their academic prevalence and their industry adoption. For the fuzzy front-end, in particular, there is a wide range of tools to choose from, including the Kano Model, the House of Quality, and many others. In fact, there are so many tools that it can often be difficult for teams to know which ones to use and how they interact with one another. Moreover, while the benefits of using these tools are obvious to industrialists, they are rarely used as they carry a learning curve that is too steep and they become too complex to manage over time. In essence, it is commonly believed that they are simply not worth the effort required to learn and use them. This research explores a streamlined process for the fuzzy front-end, assembling the most effective tools and making them accessible to everyone. The process was developed iteratively over the course of 3 years, following over 80 final year NPD teams from engineering, design, technology, and construction as they carried a product from concept through to production specification. Questionnaires, focus groups, and observations were used to understand the usability issues with the tools involved, and a human-centred design approach was adopted to produce a solution to these issues. The solution takes the form of physical toolkit, similar to a board game, which allows the team to play through an example of a new product development in order to understand the process and the tools, before using it for their own product development efforts. A complimentary website is used to enhance the physical toolkit, and it provides more examples of the tools being used, as well as deeper discussions on each of the topics, allowing teams to adapt the process to their skills, preferences and product type. Teams found the solution very useful and intuitive and experienced significantly less confusion and mistakes with the process than teams who did not use it. Those with a design background found it especially useful for the engineering principles like Quality Function Deployment, while those with an engineering or technology background found it especially useful for design and customer requirements acquisition principles, like Voice of the Customer. Products developed using the toolkit are added to the website as more examples of how it can be used, creating a loop which helps future teams understand how the toolkit can be adapted to their project, whether it be a small consumer product or a large B2B service. The toolkit unlocks the potential of these beneficial tools to those in industry, both for large, experienced teams and for inexperienced start-ups. It allows users to assess the market potential of their product concept faster and more effectively, arriving at the product design stage with technical requirements prioritized according to their customers’ needs and wants.

Keywords: new product development, fuzzy front-end, usability, Kano model, quality function deployment, voice of customer

Procedia PDF Downloads 87
633 Active Space Debris Removal by Extreme Ultraviolet Radiation

Authors: A. Anandha Selvan, B. Malarvizhi

Abstract:

In recent year the problem of space debris have become very serious. The mass of the artificial objects in orbit increased quite steadily at the rate of about 145 metric tons annually, leading to a total tally of approximately 7000 metric tons. Now most of space debris object orbiting in LEO region about 97%. The catastrophic collision can be mostly occurred in LEO region, where this collision generate the new debris. Thus, we propose a concept for cleaning the space debris in the region of thermosphere by passing the Extreme Ultraviolet (EUV) radiation to in front of space debris object from the re-orbiter. So in our concept the Extreme Ultraviolet (EUV) radiation will create the thermosphere expansion by reacting with atmospheric gas particles. So the drag is produced in front of the space debris object by thermosphere expansion. This drag force is high enough to slow down the space debris object’s relative velocity. Therefore the space debris object gradually reducing the altitude and finally enter into the earth’s atmosphere. After the first target is removed, the re-orbiter can be goes into next target. This method remove the space debris object without catching debris object. Thus it can be applied to a wide range of debris object without regard to their shapes or rotation. This paper discusses the operation of re-orbiter for removing the space debris in thermosphere region.

Keywords: active space debris removal, space debris, LEO, extreme ultraviolet, re-orbiter, thermosphere

Procedia PDF Downloads 431
632 Experimental and Numerical Study on the Effects of Oxygen Methane Flames with Water Dilution for Different Pressures

Authors: J. P. Chica Cano, G. Cabot, S. de Persis, F. Foucher

Abstract:

Among all possibilities to combat global warming, CO2 capture and sequestration (CCS) is presented as a great alternative to reduce greenhouse gas (GHG) emission. Several strategies for CCS from industrial and power plants are being considered. The concept of combined oxy-fuel combustion has been the most alternative solution. Nevertheless, due to the high cost of pure O2 production, additional ways recently emerged. In this paper, an innovative combustion process for a gas turbine cycle was studied: it was composed of methane combustion with oxygen enhanced air (OEA), exhaust gas recirculation (EGR) and H2O issuing from STIG (Steam Injection Gas Turbine), and the CO2 capture was realized by membrane separator. The effect on this combustion process was emphasized, and it was shown that a study of the influence of H2O dilution on the combustion parameters by experimental and numerical approaches had to be carried out. As a consequence, the laminar burning velocities measurements were performed in a stainless steel spherical combustion from atmospheric pressure to high pressure (up to 0.5 MPa), at 473 K for an equivalence ratio at 1. These experimental results were satisfactorily compared with Chemical Workbench v.4.1 package in conjunction with GRIMech 3.0 reaction mechanism. The good correlations so obtained between experimental and calculated flame speed velocities showed the validity of the GRIMech 3.0 mechanism in this domain of combustion: high H2O dilution, low N2, medium pressure. Finally, good estimations of flame speed and pollutant emissions were determined in other conditions compatible with real gas turbine. In particular, mixtures (composed of CH4/O2/N2/H2O/ or CO2) leading to the same adiabatic temperature were investigated. Influences of oxygen enrichment and H2O dilution (compared to CO2) were disused.

Keywords: CO₂ capture, oxygen enrichment, water dilution, laminar burning velocity, pollutants emissions

Procedia PDF Downloads 132
631 Linguistic Devices Reflecting Violence in Border–Provinces of Southern Thailand on the Front Page of Local and National Newspapers

Authors: Chanokporn Angsuviriya

Abstract:

The objective of the study is to analyse linguistic devices reflecting the violence in the south border provinces; namely Pattani, Yala, Narathiwat and Songkla on 1,344 front pages of three local newspapers; namely ChaoTai, Focus PhakTai and Samila Time and of two national newspapers, including ThaiRath and Matichon, between 2004 and 2005, and 2011 and 2012. The study shows that there are two important linguistic devices: 1) lexical choices consisting of the use of verbs describing violence, the use of quantitative words and the use of words naming someone who committed violent acts, and 2) metaphors consisting of “a violent problem is heat”, “a victim is a leaf”, and “a terrorist is a dog”. Comparing linguistic devices between two types of newspapers, national newspapers choose to use words more violently than local newspapers do. Moreover, they create more negative images of the south of Thailand by using stative verbs. In addition, in term of metaphors “a terrorist is a fox.” is only found in national newspapers. As regards naming terrorists “southern insurgents”, this noun phrase which is collectively called by national newspapers has strongly negative meaning. Moreover, “southern insurgents” have been perceived by the Thais in the whole country while “insurgents” that are not modified have been only used by local newspapers.

Keywords: linguistic devices, local newspapers, national newspapers, violence

Procedia PDF Downloads 211
630 Carbon based Smart Materials: Functional Carbon for Lightweight Automotive Component 3D Printing

Authors: Mohammad M. Garmabia, Peyman Shahia, Jimi Tjonga, Mohini Saina

Abstract:

Flame retardant composite filaments with functional carbon in the composition were fabricated, and printed parts showed enhancedcrash resistance pproperties and imporved EMI shielding. The negligible mass difference after prolonged immersion in automobile chemicals revealed the outstanding performance of parts for under-the-hood high-temperature applications.

Keywords: FDM, crash worthy, EMI Shield, lightweight, automotive parts

Procedia PDF Downloads 73
629 Beliefs in Auspicious Materials of Shop Entrepreneurs in Maung Hat Yai, Thailand

Authors: Punya Tepsing

Abstract:

This research aimed to study the beliefs in auspicious materials of entrepreneurs in Muang Hat Yai. The data were collected via documentary research and field work including interviews, observations shops in Hat Yai which used auspicious materials to bring lucks to the shops. The results were as follows. The beliefs in auspicious materials that the entrepreneurs had were of three areas: 1) The auspicious materials could correct the improperness of the shop location, for example, the shop situated opposite a branch road, a shrine, or a bank. The owner usually corrected it by putting Chinese auspicious materials in front of or in the shop, for example, a lion holding a sword in his mouth, or a mirror, etc. 2) The auspicious materials could bring in more income. The owner of the shop usually put the auspicious materials such as a cat beckoning and a bamboo fish trap believed to trap money in front of or inside the shop. 3) The auspicious materials like turtles, paired fish and a monster holding the moon in his mouth could solve life problems including health, family, and safety problems. The use of these auspicious materials showed the blending of the beliefs of the Chinese shop entrepreneurs with the Thai folk beliefs. What is interesting is that Hat Yai is located near the three southern border provinces which are the unrest area and this may cause the number of tourists to decline. This prompted them to build a mechanism in adjusting themselves both to save their lives and to increase the number of customers. Auspicious materials can make them feel more confident.

Keywords: belief, auspicious materials, shop, entrepreneur, Maung Hat Yai

Procedia PDF Downloads 213
628 Objective vs. Perceived Quality in the Cereal Industry

Authors: Albena Ivanova, Jill Kurp, Austin Hampe

Abstract:

Cereal products in the US contain rich information on the front of the package (FOP) as well as point-of-purchase (POP) summaries provided by the store. These summaries frequently are confusing and misleading to the consumer. This study explores the relationship between perceived quality, objective quality, price, and value in the cold cereal industry. A total of 270 cold cereal products were analyzed and the price, quality and value for different summaries were compared using ANOVA tests. The results provide evidence that the United States Department of Agriculture Organic FOP/POP are related to higher objective quality, higher price, but not to a higher value. Whole grain FOP/POP related to a higher objective quality, lower or similar price, and higher value. Heart-healthy POP related to higher objective quality, similar price, and higher value. Gluten-free FOP/POP related to lower objective quality, higher price, and lower value. Kid's cereals were of lower objective quality, same price, and lower value compared to family and adult markets. The findings point to a disturbing tendency of companies to continue to produce lower quality products for the kids’ market, pricing them the same as high-quality products. The paper outlines strategies that marketers and policymakers can utilize to contribute to the increased objective quality and value of breakfast cereal products in the United States.

Keywords: cereals, certifications, front-of-package claims, consumer health.

Procedia PDF Downloads 96
627 Developments and Implementation of Biomaterials in Textile Coating and Finishing

Authors: David De Smet, Myriam Vanneste

Abstract:

There is a constant need for the improvement of materials applied in textile industries. Nowadays there is a tendency for “bio, eco, natural and environmental friendly” consciousness of the consumer resulting in various textile labels. Materials, totally based on CO2-neutral renewable resources (biopolymers), respond very well to this tendency. Proteins and PLA were evaluated as binders for textile coatings. Much attention is paid to the functionalization of textiles, therefore bio-additves are examined to introduce abrasion resistance, antimicrobial and flame retardant properties.

Keywords: biomaterial, textile, coating, finishing

Procedia PDF Downloads 679
626 Low Power CMOS Amplifier Design for Wearable Electrocardiogram Sensor

Authors: Ow Tze Weng, Suhaila Isaak, Yusmeeraz Yusof

Abstract:

The trend of health care screening devices in the world is increasingly towards the favor of portability and wearability, especially in the most common electrocardiogram (ECG) monitoring system. This is because these wearable screening devices are not restricting the patient’s freedom and daily activities. While the demand of low power and low cost biomedical system on chip (SoC) is increasing in exponential way, the front end ECG sensors are still suffering from flicker noise for low frequency cardiac signal acquisition, 50 Hz power line electromagnetic interference, and the large unstable input offsets due to the electrode-skin interface is not attached properly. In this paper, a high performance CMOS amplifier for ECG sensors that suitable for low power wearable cardiac screening is proposed. The amplifier adopts the highly stable folded cascode topology and later being implemented into RC feedback circuit for low frequency DC offset cancellation. By using 0.13 µm CMOS technology from Silterra, the simulation results show that this front end circuit can achieve a very low input referred noise of 1 pV/√Hz and high common mode rejection ratio (CMRR) of 174.05 dB. It also gives voltage gain of 75.45 dB with good power supply rejection ratio (PSSR) of 92.12 dB. The total power consumption is only 3 µW and thus suitable to be implemented with further signal processing and classification back end for low power biomedical SoC.

Keywords: CMOS, ECG, amplifier, low power

Procedia PDF Downloads 215
625 Physicochemical Characterization of Asphalt Ridge Froth Bitumen

Authors: Nader Nciri, Suil Song, Namho Kim, Namjun Cho

Abstract:

Properties and compositions of bitumen and bitumen-derived liquids have significant influences on the selection of recovery, upgrading and refining processes. Optimal process conditions can often be directly related to these properties. The end uses of bitumen and bitumen products are thus related to their compositions. Because it is not possible to conduct a complete analysis of the molecular structure of bitumen, characterization must be made in other terms. The present paper focuses on physico-chemical analysis of two different types of bitumens. These bitumen samples were chosen based on: the original crude oil (sand oil and crude petroleum), and mode of process. The aim of this study is to determine both the manufacturing effect on chemical species and the chemical organization as a function of the type of bitumen sample. In order to obtain information on bitumen chemistry, elemental analysis (C, H, N, S, and O), heavy metal (Ni, V) concentrations, IATROSCAN chromatography (thin layer chromatography-flame ionization detection), FTIR spectroscopy, and 1H NMR spectroscopy have all been used. The characterization includes information about the major compound types (saturates, aromatics, resins and asphaltenes) which can be compared with similar data for other bitumens, more importantly, can be correlated with data from petroleum samples for which refining characteristics are known. Examination of Asphalt Ridge froth bitumen showed that it differed significantly from representative petroleum pitches, principally in their nonhydrocarbon content, heavy metal content and aromatic compounds. When possible, properties and composition were related to recovery and refining processes. This information is important because of the effects that composition has on recovery and processing reactions.

Keywords: froth bitumen, oil sand, asphalt ridge, petroleum pitch, thin layer chromatography-flame ionization detection, infrared spectroscopy, 1H nuclear magnetic resonance spectroscopy

Procedia PDF Downloads 377
624 A Three Step Approach Analysis of the Portrayal of Images of Women in Three Ghanaian Newspapers: Newsone, Ebony and the Mirror

Authors: H. K. Bonsu-Owu

Abstract:

Media portrayal of women in traditional stereotypical roles such as mothers, or seductress has been the norm for years. However, the changing socioeconomic and political environment and advancement of women in today’s society have given rise to questions on the appropriate portrayal of women in the media today. The purpose of the study is to analyze the portrayal of women in Ghanaian newspapers and find women’s perception on the issue. The study uses a three step approach in gathering data for analysis. Using the stratified sampling method, it analyzes front page images of women from 210 issues of the selected newspapers. Further, it administers questionnaires to 100 female students to find out how they relate to the images of women in the selected newspapers. Finally, editors of the newspapers are interviewed to find their rational for portraying women as seen on their front pages. The findings suggest that the newspapers portray women for varied reasons such as promoting sales and influencing the public agenda. Further, the female students claim that in spite of women’s vast contribution to the growth of society, the media continue to marginalize them. They add that such portrayals promote and reinforce social construct, however, refuse to see themselves through the male gaze concept. The study concludes that the stereotyped portrayal of women is likely to continue if the government, regulatory bodies, the media and society do not make a conscious effort to address this problem.

Keywords: women, newspaper, portrayal, social construct

Procedia PDF Downloads 112
623 Chemical Kinetics and Computational Fluid-Dynamics Analysis of H2/CO/CO2/CH4 Syngas Combustion and NOx Formation in a Micro-Pilot-Ignited Supercharged Dual Fuel Engine

Authors: Ulugbek Azimov, Nearchos Stylianidis, Nobuyuki Kawahara, Eiji Tomita

Abstract:

A chemical kinetics and computational fluid-dynamics (CFD) analysis was performed to evaluate the combustion of syngas derived from biomass and coke-oven solid feedstock in a micro-pilot ignited supercharged dual-fuel engine under lean conditions. For this analysis, a new reduced syngas chemical kinetics mechanism was constructed and validated by comparing the ignition delay and laminar flame speed data with those obtained from experiments and other detail chemical kinetics mechanisms available in the literature. The reaction sensitivity analysis was conducted for ignition delay at elevated pressures in order to identify important chemical reactions that govern the combustion process. The chemical kinetics of NOx formation was analyzed for H2/CO/CO2/CH4 syngas mixtures by using counter flow burner and premixed laminar flame speed reactor models. The new mechanism showed a very good agreement with experimental measurements and accurately reproduced the effect of pressure, temperature and equivalence ratio on NOx formation. In order to identify the species important for NOx formation, a sensitivity analysis was conducted for pressures 4 bar, 10 bar and 16 bar and preheat temperature 300 K. The results show that the NOx formation is driven mostly by hydrogen based species while other species, such as N2, CO2 and CH4, have also important effects on combustion. Finally, the new mechanism was used in a multidimensional CFD simulation to predict the combustion of syngas in a micro-pilot-ignited supercharged dual-fuel engine and results were compared with experiments. The mechanism showed the closest prediction of the in-cylinder pressure and the rate of heat release (ROHR).

Keywords: syngas, chemical kinetics mechanism, internal combustion engine, NOx formation

Procedia PDF Downloads 376
622 Characteristics and Challenges of Post-Burn Contractures in Adults and Children: A Descriptive Study

Authors: Hardisiswo Soedjana, Inne Caroline

Abstract:

Deep dermal or full thickness burns are inevitably lead to post-burn contractures. These contractures remain to be one of the most concerning late complications of burn injuries. Surgical management includes releasing the contracture followed by resurfacing the defect accompanied by post-operative rehabilitation. Optimal treatment of post-burn contractures depends on the characteristics of the contractures. This study is aimed to describe clinical characteristics, problems, and management of post-burn contractures in adults and children. A retrospective analysis was conducted from medical records of patients suffered from contractures after burn injuries admitted to Hasan Sadikin general hospital between January 2016 and January 2018. A total of 50 patients with post burn contractures were included in the study. There were 17 adults and 33 children. Most patients were male, whose age range within 15-59 years old and 5-9 years old. Educational background was mostly senior high school among adults, while there was only one third of children who have entered school. Etiology of burns was predominantly flame in adults (82.3%); whereas flame and scald were the leading cause of burn injury in children (11%). Based on anatomical regions, hands were the most common affected both in adults (35.2%) and children (48.5%). Contractures were identified in 6-12 months since the initial burns. Most post-burn hand contractures were resurfaced with full-thickness skin graft (FTSG) both in adults and children. There were 11 patients who presented with recurrent contracture after previous history of contracture release. Post-operative rehabilitation was conducted for all patients; however, it is important to highlight that it is still challenging to control splinting and exercise when patients are discharged and especially the compliance in children. In order to improve quality of life in patients with history of deep burn injuries, prevention of contractures should begin right after acute care has been established. Education for the importance of splinting and exercise should be administered as comprehensible as possible for adult patients and parents of pediatric patients.

Keywords: burn, contracture, education, exercise, splinting

Procedia PDF Downloads 96
621 The Design and Modeling of Intelligent Learners Assistance System (ILASS)

Authors: Jelili Kunle Adedeji, Toeb Akorede Akinbola

Abstract:

The problem of vehicle mishap as a result of miscalculation, recklessness, or malfunction of some part in a vehicle is acknowledged to be a global issue. In most of the cases, it results into death or life injuries, all over the world; the issue becomes a nightmare to the stakeholders on how to curb mishaps on our roads due to these endemic factors. Hence this research typically examined the design of a device, specifically for learners that can lead to a society of intelligent vehicles (traffic) without withdrawing the driving authority from them, unlike pre-existing systems. Though ILASS shears a lot of principle with existing advance drivers assistance systems, yet there are two fundamental differences between ILASS system and existing systems. Firstly ILASS is meant to accept continuous input from the throttle at all time such that the devices will not constraint the driving process unnecessarily and ensure a change of speed at any point in time. Secondly, it made use of a variable threshold distance between the host vehicle and front vehicle which can be set by the host driver under the constraint of road maintenance agency, who communicates the minimum possible threshold for a different lane to the host vehicle. The results obtained from the simulation of the ILASS system concluded that ILASS is a good solution to road accidents, particularly road accident which occurs as a result of driving at high speed.

Keywords: front-vehicle, host-speed, threshold-distance, ILASS

Procedia PDF Downloads 142
620 CFD Simulation of a Large Scale Unconfined Hydrogen Deflagration

Authors: I. C. Tolias, A. G. Venetsanos, N. Markatos

Abstract:

In the present work, CFD simulations of a large scale open deflagration experiment are performed. Stoichiometric hydrogen-air mixture occupies a 20 m hemisphere. Two combustion models are compared and are evaluated against the experiment. The Eddy Dissipation Model and a Multi-physics combustion model which is based on Yakhot’s equation for the turbulent flame speed. The values of models’ critical parameters are investigated. The effect of the turbulence model is also examined. k-ε model and LES approach were tested.

Keywords: CFD, deflagration, hydrogen, combustion model

Procedia PDF Downloads 469
619 Improving Radiation Efficiency Using Metamaterial in Pyramidal Horn Antenna

Authors: Amit Kumar Baghel, Sisir Kumar Nayak

Abstract:

The proposed metamaterial design help to increase the radiation efficiency at 2.9 GHz by reducing the side and back lobes by making the phase difference of the waves emerging from the phase center of the horn antenna same after passing through metamaterial array. The unit cell of the metamaterial is having concentric ring structure made of copper of 0.035 mm thickness on both sides of FR4 sheet. The inner ring diameter is kept as 3 mm, and the outer ring diameters are changed according to the path and tramission phase difference of the unit cell from the phase center of the antenna in both the horizontal and vertical direction, i.e., in x- and y-axis. In this case, the ring radius varies from 3.19 mm to 6.99 mm with the respective S21 phase difference of -62.25° to -124.64°. The total phase difference can be calculated by adding the path difference of the respective unit cell in the array to the phase difference of S21. Taking one of the unit cell as the reference, the total phase difference between the reference unit cell and other cells must be integer multiple of 360°. The variation of transmission coefficient S21 with the ring radius is greater than -6 dB. The array having 5 x 5 unit cell is kept inside the pyramidal horn antenna (L X B X H = 295.451 x 384.233 x 298.66 mm3) at a distance of 36.68 mm from the waveguide throat. There is an improvement in side lobe level in E-plane by 14.6 dB when the array is used. The front to back lobe ration is increased by 1 dB by using the array. The proposed antenna with metamaterial array can be used in beam shaping for wireless power transfer applications.

Keywords: metamaterial, side lobe level, front to back ratio, beam forming

Procedia PDF Downloads 218