Search results for: ferromagnetic shape memory
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3279

Search results for: ferromagnetic shape memory

3069 Post-Islamic Utopias, Contentious Memory and the Revolutionary Mobilization in Iran

Authors: Saeed Saffar-Heidari

Abstract:

This article aims to study the recent Iranian national uprising of “Women, Life, Freedom” as a site of memory which renders the political possibility of imagining the post-Islamic futures in Iran. “Women, Life, Freedom” movement in Iran has been arguably the most pervasive social movement since the Islamic Revolution (1979) as it has posed serious issues and conflicts for the present Islamic state in Iran. The core argument of this article, however, is oriented toward the critical role of collective memory as a means of political transition and revolutionary mobilization. “Women, Life, Freedom” movement, among other things, has revitalized the popular binary opposition of pre-1979 and post-1979 Iran through which the Ancien Régime or the pre-1979 era is likely to be interpreted, read, and remembered in terms of present post-1979 cultural and political demands. As remembering involves everyday participation in shaping and reshaping the past through new codes, criteria, and values, it is argued that the presentist refashioning and remembering of the pre-1979 monarchical era has been one of the major facilitatory forces for the on-going revolutionary mobilization in Iran. The construction of the pre-1979 memory and the return of the dynastic specter has played a significant role in revolutionary mobilization as it has provided the protesters with the possible perspectives of post-Islamic regime in Iran. Additionally, the question of compulsory “Hijab” (veiling) as the prime mover of "Women, Life, Freedom” movement in Iran has strongly contributed to the everyday comparative discourse of pre/post 1979 memory. According to this presentist remembering of pre-1979, the Pahlavi dynasty would be conceived as a symbol of modernization, westernization, secularization, and non-compulsory Hijab. While the memory of the pre-revolutionary Iran is genuinely an imaginative as well as a constructed entity that finally culminates in the public condemnation of the very Islamic revolution (1979), it serves the enrichment of the Iranian political imagination as it paves the ways for the revolutionary mobilization and then the overthrowing of the Islamic regime in Iran. This article makes a case for the ways that the public narrative and discourse around the Islamic regime (especially the Islamic Hijab) led to the refashioning of the memory of pre-1979 era and inspired he revolutionary mobilization in Iran.

Keywords: post-islamic, utopias, memory, revolutionary, mobilization, Iran

Procedia PDF Downloads 93
3068 Computational Aerodynamic Shape Optimisation Using a Concept of Control Nodes and Modified Cuckoo Search

Authors: D. S. Naumann, B. J. Evans, O. Hassan

Abstract:

This paper outlines the development of an automated aerodynamic optimisation algorithm using a novel method of parameterising a computational mesh by employing user–defined control nodes. The shape boundary movement is coupled to the movement of the novel concept of the control nodes via a quasi-1D-linear deformation. Additionally, a second order smoothing step has been integrated to act on the boundary during the mesh movement based on the change in its second derivative. This allows for both linear and non-linear shape transformations dependent on the preference of the user. The domain mesh movement is then coupled to the shape boundary movement via a Delaunay graph mapping. A Modified Cuckoo Search (MCS) algorithm is used for optimisation within the prescribed design space defined by the allowed range of control node displacement. A finite volume compressible NavierStokes solver is used for aerodynamic modelling to predict aerodynamic design fitness. The resulting coupled algorithm is applied to a range of test cases in two dimensions including the design of a subsonic, transonic and supersonic intake and the optimisation approach is compared with more conventional optimisation strategies. Ultimately, the algorithm is tested on a three dimensional wing optimisation case.

Keywords: mesh movement, aerodynamic shape optimization, cuckoo search, shape parameterisation

Procedia PDF Downloads 307
3067 Effect of Semantic Relational Cues in Action Memory Performance over School Ages

Authors: Farzaneh Badinlou, Reza Kormi-Nouri, Monika Knopf, Kamal Kharazi

Abstract:

Research into long-term memory has demonstrated that the richness of the knowledge base cues in memory tasks improves retrieval process, which in turn influences learning and memory performance. The present research investigated the idea that adding cues connected to knowledge can affect memory performance in the context of action memory in children. In action memory studies, participants are instructed to learn a series of verb–object phrases as verbal learning and experience-based learning (learning by doing and learning by observation). It is well established that executing action phrases is a more memorable way to learn than verbally repeating the phrases, a finding called enactment effect. In the present study, a total of 410 students from four grade groups—2nd, 4th, 6th, and 8th—participated in this study. During the study, participants listened to verbal action phrases (VTs), performed the phrases (SPTs: subject-performed tasks), and observed the experimenter perform the phrases (EPTs: experimenter-performed tasks). During the test phase, cued recall test was administered. Semantic relational cues (i.e., well-integrated vs. poorly integrated items) were manipulated in the present study. In that, the participants were presented two lists of action phrases with high semantic integration between verb and noun, e.g., “write with the pen” and with low semantic integration between verb and noun, e.g., “pick up the glass”. Results revealed that experience-based learning had a better results than verbal learning for both well-integrated and poorly integrated items, though manipulations of semantic relational cues can moderate the enactment effect. In addition, children of different grade groups outperformed for well- than poorly integrated items, in flavour of older children. The results were discussed in relation to the effect of knowledge-based information in facilitating retrieval process in children.

Keywords: action memory, enactment effect, knowledge-based cues, school-aged children, semantic relational cues

Procedia PDF Downloads 254
3066 Dynamic High-Rise Moment Resisting Frame Dissipation Performances Adopting Glazed Curtain Walls with Superelastic Shape Memory Alloy Joints

Authors: Lorenzo Casagrande, Antonio Bonati, Ferdinando Auricchio, Antonio Occhiuzzi

Abstract:

This paper summarizes the results of a survey on smart non-structural element dynamic dissipation when installed in modern high-rise mega-frame prototypes. An innovative glazed curtain wall was designed using Shape Memory Alloy (SMA) joints in order to increase the energy dissipation and enhance the seismic/wind response of the structures. The studied buildings consisted of thirty- and sixty-storey planar frames, extracted from reference three-dimensional steel Moment Resisting Frame (MRF) with outriggers and belt trusses. The internal core was composed of a CBF system, whilst outriggers were placed every fifteen stories to limit second order effects and inter-storey drifts. These structural systems were designed in accordance with European rules and numerical FE models were developed with an open-source code, able to account for geometric and material nonlinearities. With regard to the characterization of non-structural building components, full-scale crescendo tests were performed on aluminium/glass curtain wall units at the laboratory of the Construction Technologies Institute (ITC) of the Italian National Research Council (CNR), deriving force-displacement curves. Three-dimensional brick-based inelastic FE models were calibrated according to experimental results, simulating the fac¸ade response. Since recent seismic events and extreme dynamic wind loads have generated the large occurrence of non-structural components failure, which causes sensitive economic losses and represents a hazard for pedestrians safety, a more dissipative glazed curtain wall was studied. Taking advantage of the mechanical properties of SMA, advanced smart joints were designed with the aim to enhance both the dynamic performance of the single non-structural unit and the global behavior. Thus, three-dimensional brick-based plastic FE models were produced, based on the innovated non-structural system, simulating the evolution of mechanical degradation in aluminium-to-glass and SMA-to-glass connections when high deformations occurred. Consequently, equivalent nonlinear links were calibrated to reproduce the behavior of both tested and smart designed units, and implemented on the thirty- and sixty-storey structural planar frame FE models. Nonlinear time history analyses (NLTHAs) were performed to quantify the potential of the new system, when considered in the lateral resisting frame system (LRFS) of modern high-rise MRFs. Sensitivity to the structure height was explored comparing the responses of the two prototypes. Trends in global and local performance were discussed to show that, if accurately designed, advanced materials in non-structural elements provide new sources of energy dissipation.

Keywords: advanced technologies, glazed curtain walls, non-structural elements, seismic-action reduction, shape memory alloy

Procedia PDF Downloads 302
3065 Diamond-Like Carbon-Based Structures as Functional Layers on Shape-Memory Alloy for Orthopedic Applications

Authors: Piotr Jablonski, Krzysztof Mars, Wiktor Niemiec, Agnieszka Kyziol, Marek Hebda, Halina Krawiec, Karol Kyziol

Abstract:

NiTi alloys, possessing unique mechanical properties such as pseudoelasticity and shape memory effect (SME), are suitable for many applications, including implanthology and biomedical devices. Additionally, these alloys have similar values of elastic modulus to those of human bones, what is very important in orthopedics. Unfortunately, the environment of physiological fluids in vivo causes unfavorable release of Ni ions, which in turn may lead to metalosis as well as allergic reactions and toxic effects in the body. For these reasons, the surface properties of NiTi alloys should be improved to increase corrosion resistance, taking into account biological properties, i.e. excellent biocompatibility. The prospective in this respect are layers based on DLC (Diamond-Like Carbon) structures, which are an attractive solution for many applications in implanthology. These coatings (DLC), usually obtained by PVD (Physical Vapour Deposition) and PA CVD (Plasma Activated Chemical Vapour Deposition) methods, can be also modified by doping with other elements like silicon, nitrogen, oxygen, fluorine, titanium and silver. These methods, in combination with a suitably designed structure of the layers, allow the possibility co-decide about physicochemical and biological properties of modified surfaces. Mentioned techniques provide specific physicochemical properties of substrates surface in a single technological process. In this work, the following types of layers based on DLC structures (incl. Si-DLC or Si/N-DLC) were proposed as prospective and attractive approach in surface functionalization of shape memory alloy. Nitinol substrates were modified in plasma conditions, using RF CVD (Radio Frequency Chemical Vapour Deposition). The influence of plasma treatment on the useful properties of modified substrates after deposition DLC layers doped with silica and/or nitrogen atoms, as well as only pre-treated in O2 NH3 plasma atmosphere in a RF reactor was determined. The microstructure and topography of the modified surfaces were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Furthermore, the atomic structure of coatings was characterized by IR and Raman spectroscopy. The research also included the evaluation of surface wettability, surface energy as well as the characteristics of selected mechanical and biological properties of the layers. In addition, the corrosion properties of alloys after and before modification in the physiological saline were also investigated. In order to determine the corrosion resistance of NiTi in the Ringer solution, the potentiodynamic polarization curves (LSV – Linear Sweep Voltamperometry) were plotted. Furthermore, the evolution of corrosion potential versus immersion time of TiNi alloy in Ringer solution was performed. Based on all carried out research, the usefullness of proposed modifications of nitinol for medical applications was assessed. It was shown, inter alia, that the obtained Si-DLC layers on the surface of NiTi alloy exhibit a characteristic complex microstructure, increased surface development, which is an important aspect in improving the osteointegration of an implant. Furthermore, the modified alloy exhibits biocompatibility, the transfer of the metal (Ni, Ti) to Ringer’s solution is clearly limited.

Keywords: bioactive coatings, corrosion resistance, doped DLC structure, NiTi alloy, RF CVD

Procedia PDF Downloads 200
3064 Simulation of the Flow in Bilayer Coextrusion Dies with Gradually Changing Calibrator Profiles

Authors: Mahesh Gupta

Abstract:

The main goal in the design of a die for extrusion of a complex profile is to obtain a uniform velocity at the die exit. If the velocity at the exit of an extrusion die is not uniform, the shape of the extrudate profile can change significantly after the polymer exits the die. To rectify the extrudate distortion caused by non-uniform exit velocity, calibrators and sizers are often installed along the extrudate cooling system. Furthermore, the profile shape in calibrators and sizers is sometimes gradually changed to intentionally deform the extrudate to the required final product shape. This is exploited to simplify extrusion die design, because a relatively simple profile at the die exit can be modified to obtain a more complex profile by deforming it in calibrators or sizers. The gradual change in the shape of calibrator or sizer profiles can also be used to extrude slightly different profiles from the same die. In the present work, a combined flow, thermal and structural analysis is used to accurately predict distortion of extrudate profile after the polymer leaves a die. Simulations of the flow and extrudate deformation in two different bilayer coextrusion dies with gradually changing profile shape in successive calibrators and sizers will be presented. The effect of non-uniform exit velocity, cooling shrinkage and shape of sizer profiles on extrudate deformation is included in the simulation. The predicted extrudate shape and layer structure is found to match accurately with those in a coextruded product.

Keywords: coextrusion, extrusion die design, finite element method, polymers

Procedia PDF Downloads 16
3063 An Event Relationship Extraction Method Incorporating Deep Feedback Recurrent Neural Network and Bidirectional Long Short-Term Memory

Authors: Yin Yuanling

Abstract:

A Deep Feedback Recurrent Neural Network (DFRNN) and Bidirectional Long Short-Term Memory (BiLSTM) are designed to address the problem of low accuracy of traditional relationship extraction models. This method combines a deep feedback-based recurrent neural network (DFRNN) with a bi-directional long short-term memory (BiLSTM) approach. The method combines DFRNN, which extracts local features of text based on deep feedback recurrent mechanism, BiLSTM, which better extracts global features of text, and Self-Attention, which extracts semantic information. Experiments show that the method achieves an F1 value of 76.69% on the CEC dataset, which is 0.0652 better than the BiLSTM+Self-ATT model, thus optimizing the performance of the deep learning method in the event relationship extraction task.

Keywords: event relations, deep learning, DFRNN models, bi-directional long and short-term memory networks

Procedia PDF Downloads 102
3062 Meditation Based Brain Painting Promotes Foreign Language Memory through Establishing a Brain-Computer Interface

Authors: Zhepeng Rui, Zhenyu Gu, Caitilin de Bérigny

Abstract:

In the current study, we designed an interactive meditation and brain painting application to cultivate users’ creativity, promote meditation, reduce stress, and improve cognition while attempting to learn a foreign language. User tests and data analyses were conducted on 42 male and 42 female participants to better understand sex-associated psychological and aesthetic differences. Our method utilized brain-computer interfaces to import meditation and attention data to create artwork in meditation-based applications. Female participants showed statistically significantly different language learning outcomes following three meditation paradigms. The art style of brain painting helped females with language memory. Our results suggest that the most ideal methods for promoting memory attention were meditation methods and brain painting exercises contributing to language learning, memory concentration promotion, and foreign word memorization. We conclude that a short period of meditation practice can help in learning a foreign language. These findings provide new insights into meditation, creative language education, brain-computer interface, and human-computer interactions.

Keywords: brain-computer interface, creative thinking, meditation, mental health

Procedia PDF Downloads 94
3061 An Efficient FPGA Realization of Fir Filter Using Distributed Arithmetic

Authors: M. Iruleswari, A. Jeyapaul Murugan

Abstract:

Most fundamental part used in many Digital Signal Processing (DSP) application is a Finite Impulse Response (FIR) filter because of its linear phase, stability and regular structure. Designing a high-speed and hardware efficient FIR filter is a very challenging task as the complexity increases with the filter order. In most applications the higher order filters are required but the memory usage of the filter increases exponentially with the order of the filter. Using multipliers occupy a large chip area and need high computation time. Multiplier-less memory-based techniques have gained popularity over past two decades due to their high throughput processing capability and reduced dynamic power consumption. This paper describes the design and implementation of highly efficient Look-Up Table (LUT) based circuit for the implementation of FIR filter using Distributed arithmetic algorithm. It is a multiplier less FIR filter. The LUT can be subdivided into a number of LUT to reduce the memory usage of the LUT for higher order filter. Analysis on the performance of various filter orders with different address length is done using Xilinx 14.5 synthesis tool. The proposed design provides less latency, less memory usage and high throughput.

Keywords: finite impulse response, distributed arithmetic, field programmable gate array, look-up table

Procedia PDF Downloads 434
3060 Quranic Recitation Listening Relate to Memory Processing, Language Selectivity and Attentional Process

Authors: Samhani Ismail, Tahamina Begum, Faruque Reza, Zamzuri Idris, Hafizan Juahir, Jafri Malin Abdullah

Abstract:

Holy Quran, a rhymed prosed scripture has a complete literary structure that exemplifies the peak of literary beauty. Memorizing of its verses could enhance one’s memory capacity and cognition while those who are listening to its recitation it is also believed that the Holy Quran alter brainwave producing neuronal excitation engaging with cognitive processes. 28 normal healthy subjects (male =14 & female = 14) were recruited and EEG recording was done using 128-electrode sensor net (Electrical Geosics, Inc.) with the impedance of ≤ 50kΩ. They listened to Sura Fatiha recited by Sheikh Qari Abdul Basit bin Abdus Samad. Arabic news and no sound were chosen as positive and negative control, respectively. The waveform was analysed by Fast Fourier Transform (FFT) to get the power in frequency bands. Bilateral frontal (F7, F8) and temporal region (T7, T8) showed decreased power significantly in alpha wave band in respondent stimulated by Sura Fatihah recitation reflects acoustic attention processing. However, decreased in alpha power in selective attention to memorized, and in familial but not memorized language, reveals the memorial processing in long-term memory. As a conclusion, Quranic recitation relates both cognitive element of memory and language in its listeners and memorizers.

Keywords: auditory stimulation, cognition, EEG, linguistic, memory, Quranic recitation

Procedia PDF Downloads 313
3059 Relativistic Energy Analysis for Some q Deformed Shape Invariant Potentials in D Dimensions Using SUSYQM Approach

Authors: A. Suparmi, C. Cari, M. Yunianto, B. N. Pratiwi

Abstract:

D-dimensional Dirac equations of q-deformed shape invariant potentials were solved using supersymmetric quantum mechanics (SUSY QM) in the case of exact spin symmetry. The D dimensional radial Dirac equation for shape invariant potential reduces to one-dimensional Schrodinger type equation by an appropriate variable and parameter change. The relativistic energy spectra were analyzed by using SUSY QM and shape invariant properties from radial D dimensional Dirac equation that have reduced to one dimensional Schrodinger type equation. The SUSY operator was used to generate the D dimensional relativistic radial wave functions, the relativistic energy equation reduced to the non-relativistic energy in the non-relativistic limit.

Keywords: D-dimensional dirac equation, non-central potential, SUSY QM, radial wave function

Procedia PDF Downloads 322
3058 Explaining Listening Comprehension among L2 Learners of English: The Contribution of Vocabulary Knowledge and Working Memory Capacity

Authors: Ahmed Masrai

Abstract:

Listening comprehension constitutes a considerable challenge for the second language (L2) learners, but a little is known about the explanatory power of different variables in explaining variance in listening comprehension. Since research in this area, to the researcher's knowledge, is relatively small in comparison to that focusing on the relationship between reading comprehension and factors such as vocabulary and working memory, there is a need for studies that are seeking to fill the gap in our knowledge about the specific contribution of working memory capacity (WMC), aural vocabulary knowledge and written vocabulary knowledge to explaining listening comprehension. Among 130 English as foreign language learners, the present study examines what proportion of the variance in listening comprehension is explained by aural vocabulary knowledge, written vocabulary knowledge, and WMC. Four measures were used to collect the required data for the study: (1) A-Lex, a measure of aural vocabulary knowledge; (2) XK-Lex, a measure of written vocabulary knowledge; (3) Listening Span Task, a measure of WMC and; (4) IELTS Listening Test, a measure of listening comprehension. The results show that aural vocabulary knowledge is the strongest predictor of listening comprehension, followed by WMC, while written vocabulary knowledge is the weakest predictor. The study discusses implications for the explanatory power of aural vocabulary knowledge and WMC to listening comprehension and pedagogical practice in L2 classrooms.

Keywords: listening comprehension, second language, vocabulary knowledge, working memory

Procedia PDF Downloads 352
3057 A Novel Methodology for Browser Forensics to Retrieve Searched Keywords from Windows 10 Physical Memory Dump

Authors: Dija Sulekha

Abstract:

Nowadays, a good percentage of reported cybercrimes involve the usage of the Internet, directly or indirectly for committing the crime. Usually, Web Browsers leave traces of browsing activities on the host computer’s hard disk, which can be used by investigators to identify internet-based activities of the suspect. But criminals, who involve in some organized crimes, disable browser file generation feature to hide the evidence while doing illegal activities through the Internet. In such cases, even though browser files were not generated in the storage media of the system, traces of recent and ongoing activities were generated in the Physical Memory of the system. As a result, the analysis of Physical Memory Dump collected from the suspect's machine retrieves lots of forensically crucial information related to the browsing history of the Suspect. This information enables the cyber forensic investigators to concentrate on a few highly relevant selected artefacts while doing the Offline Forensics analysis of storage media. This paper addresses the reconstruction of web browsing activities by conducting live forensics to identify searched terms, downloaded files, visited sites, email headers, email ids, etc. from the physical memory dump collected from Windows 10 Systems. Well-known entry points are available for retrieving all the above artefacts except searched terms. The paper describes a novel methodology to retrieve the searched terms from Windows 10 Physical Memory. The searched terms retrieved in this way can be used for doing advanced file and keyword search in the storage media files reconstructed from the file system recovery in offline forensics.

Keywords: browser forensics, digital forensics, live Forensics, physical memory forensics

Procedia PDF Downloads 88
3056 Influence of Iron Content in Carbon Nanotubes on the Intensity of Hyperthermia in the Cancer Treatment

Authors: S. Wiak, L. Szymanski, Z. Kolacinski, G. Raniszewski, L. Pietrzak, Z. Staniszewska

Abstract:

The term ‘cancer’ is given to a collection of related diseases that may affect any part of the human body. It is a pathological behaviour of cells with the potential to undergo abnormal breakdown in the processes that control cell proliferation, differentiation, and death of particular cells. Although cancer is commonly considered as modern disease, there are beliefs that drastically growing number of new cases can be linked to the extensively prolonged life expectancy and enhanced techniques for cancer diagnosis. Magnetic hyperthermia therapy is a novel approach to cancer treatment, which may greatly contribute to higher efficiency of the therapy. Employing carbon nanotubes as nanocarriers for magnetic particles, it is possible to decrease toxicity and invasiveness of the treatment by surface functionalisation. Despite appearing in recent years, magnetic particle hyperthermia has already become of the highest interest in the scientific and medical environment. The reason why hyperthermia therapy brings so much hope for future treatment of cancer lays in the effect that it produces in malignant cells. Subjecting them to thermal shock results in activation of numerous degradation processes inside and outside the cell. The heating process initiates mechanisms of DNA destruction, protein denaturation and induction of cell apoptosis, which may lead to tumour shrinkage, and in some cases, it may even cause complete disappearance of cancer. The factors which have the major impact on the final efficiency of the treatment include temperatures generated inside the tissues, time of exposure to the heating process, and the character of an individual cancer cell type. The vast majority of cancer cells is characterised by lower pH, persistent hypoxia and lack of nutrients, which can be associated to abnormal microvasculature. Since in healthy tissues we cannot observe presence of these conditions, they should not be seriously affected by elevation of the temperature. The aim of this work is to investigate the influence of iron content in iron filled Carbon Nanotubes on the desired nanoparticles for cancer therapy. In the article, the development and demonstration of the method and the model device for hyperthermic selective destruction of cancer cells are presented. This method was based on the synthesis and functionalization of carbon nanotubes serving as ferromagnetic material nanocontainers. The methodology of the production carbon- ferromagnetic nanocontainers (FNCs) includes the synthesis of carbon nanotubes, chemical, and physical characterization, increasing the content of a ferromagnetic material and biochemical functionalization involving the attachment of the key addresses. The ferromagnetic nanocontainers were synthesised in CVD and microwave plasma system. The research work has been financed from the budget of science as a research project No. PBS2/A5/31/2013.

Keywords: hyperthermia, carbon nanotubes, cancer colon cells, radio frequency field

Procedia PDF Downloads 102
3055 Effectiveness of Medication and Non-Medication Therapy on Working Memory of Children with Attention Deficit and Hyperactivity Disorder

Authors: Mohaammad Ahmadpanah, Amineh Akhondi, Mohammad Haghighi, Ali Ghaleiha, Leila Jahangard, Elham Salari

Abstract:

Background: Working memory includes the capability to keep and manipulate information in a short period of time. This capability is the basis of complicated judgments and has been attended to as the specific and constant character of individuals. Children with attention deficit and hyperactivity are among the people suffering from deficiency in the active memory, and this deficiency has been attributed to the problem of frontal lobe. This study utilizes a new approach with suitable tasks and methods for training active memory and assessment of the effects of the trainings. Participants: The children participating in this study were of 7-15 year age, who were diagnosed by the psychiatrist and psychologist as hyperactive and attention deficit based on DSM-IV criteria. The intervention group was consisted of 8 boys and 6 girls with the average age of 11 years and standard deviation of 2, and the control group was consisted of 2 girls and 5 boys with an average age of 11.4 and standard deviation of 3. Three children in the test group and two in the control group were under medicinal therapy. Results: Working memory training meaningfully improved the performance in not-trained areas as visual-spatial working memory as well as the performance in Raven progressive tests which are a perfect example of non-verbal, complicated reasoning tasks. In addition, motional activities – measured based on the number of head movements during computerized measuring program – was meaningfully reduced in the medication group. The results of the second test showed that training similar exercise to teenagers and adults results in the improvement of cognition functions, as in hyperactive people. Discussion: The results of this study showed that the performance of working memory is improved through training, and these trainings are extended and generalized in other areas of cognition functions not receiving any training. Trainings resulted in the improvement of performance in the tasks related to prefrontal. They had also a positive and meaningful impact on the moving activities of hyperactive children.

Keywords: attention deficit hyperactivity disorder, working memory, non-medical treatment, children

Procedia PDF Downloads 339
3054 Security Design of Root of Trust Based on RISC-V

Authors: Kang Huang, Wanting Zhou, Shiwei Yuan, Lei Li

Abstract:

Since information technology develops rapidly, the security issue has become an increasingly critical for computer system. In particular, as cloud computing and the Internet of Things (IoT) continue to gain widespread adoption, computer systems need to new security threats and attacks. The Root of Trust (RoT) is the foundation for providing basic trusted computing, which is used to verify the security and trustworthiness of other components. Design a reliable Root of Trust and guarantee its own security are essential for improving the overall security and credibility of computer systems. In this paper, we discuss the implementation of self-security technology based on the RISC-V Root of Trust at the hardware level. To effectively safeguard the security of the Root of Trust, researches on security safeguard technology on the Root of Trust have been studied. At first, a lightweight and secure boot framework is proposed as a secure mechanism. Secondly, two kinds of memory protection mechanism are built to against memory attacks. Moreover, hardware implementation of proposed method has been also investigated. A series of experiments and tests have been carried on to verify to effectiveness of the proposed method. The experimental results demonstrated that the proposed approach is effective in verifying the integrity of the Root of Trust’s own boot rom, user instructions, and data, ensuring authenticity and enabling the secure boot of the Root of Trust’s own system. Additionally, our approach provides memory protection against certain types of memory attacks, such as cache leaks and tampering, and ensures the security of root-of-trust sensitive information, including keys.

Keywords: root of trust, secure boot, memory protection, hardware security

Procedia PDF Downloads 149
3053 Studying Projection Distance and Flow Properties by Shape Variations of Foam Monitor

Authors: Hyun-Kyu Cho, Jun-Su Kim, Choon-Geun Huh, Geon Lee Young-Chul Park

Abstract:

In this study, the relationship between flow properties and fluid projection distance look into connection for shape variations of foam monitor. A numerical analysis technique for fluid analysis of a foam monitor was developed for the prediction. Shape of foam monitor the flow path of fluid flow according to the shape, The fluid losses were calculated from flow analysis result.. The modified model used the length increase model of the flow path, and straight line of the model. Inlet pressure was 7 [bar] and external was atmosphere codition. am. The results showed that the length increase model of the flow path and straight line of the model was improved in the nozzle projection distance.

Keywords: injection performance, finite element method, foam monitor, Projection distance

Procedia PDF Downloads 313
3052 Micro-Milling Process Development of Advanced Materials

Authors: M. A. Hafiz, P. T. Matevenga

Abstract:

Micro-level machining of metals is a developing field which has shown to be a prospective approach to produce features on the parts in the range of a few to a few hundred microns with acceptable machining quality. It is known that the mechanics (i.e. the material removal mechanism) of micro-machining and conventional machining have significant differences due to the scaling effects associated with tool-geometry, tool material and work piece material characteristics. Shape memory alloys (SMAs) are those metal alloys which display two exceptional properties, pseudoelasticity and the shape memory effect (SME). Nickel-titanium (NiTi) alloys are one of those unique metal alloys. NiTi alloys are known to be difficult-to-cut materials specifically by using conventional machining techniques due to their explicit properties. Their high ductility, high amount of strain hardening, and unusual stress–strain behaviour are the main properties accountable for their poor machinability in terms of tool wear and work piece quality. The motivation of this research work was to address the challenges and issues of micro-machining combining with those of machining of NiTi alloy which can affect the desired performance level of machining outputs. To explore the significance of range of cutting conditions on surface roughness and tool wear, machining tests were conducted on NiTi. Influence of different cutting conditions and cutting tools on surface and sub-surface deformation in work piece was investigated. Design of experiments strategy (L9 Array) was applied to determine the key process variables. The dominant cutting parameters were determined by analysis of variance. These findings showed that feed rate was the dominant factor on surface roughness whereas depth of cut found to be dominant factor as far as tool wear was concerned. The lowest surface roughness was achieved at the feed rate of equal to the cutting edge radius where as the lowest flank wear was observed at lowest depth of cut. Repeated machining trials have yet to be carried out in order to observe the tool life, sub-surface deformation and strain induced hardening which are also expecting to be amongst the critical issues in micro machining of NiTi. The machining performance using different cutting fluids and strategies have yet to be studied.

Keywords: nickel titanium, micro-machining, surface roughness, machinability

Procedia PDF Downloads 318
3051 From the “Movement Language” to Communication Language

Authors: Mahmudjon Kuchkarov, Marufjon Kuchkarov

Abstract:

The origin of ‘Human Language’ is still a secret and the most interesting subject of historical linguistics. The core element is the nature of labeling or coding the things or processes with symbols and sounds. In this paper, we investigate human’s involuntary Paired Sounds and Shape Production (PSSP) and its contribution to the development of early human communication. Aimed at twenty-six volunteers who provided many physical movements with various difficulties, the research team investigated the natural, repeatable, and paired sounds and shape productions during human activities. The paper claims the involvement of Paired Sounds and Shape Production (PSSP) in the phonetic origin of some modern words and the existence of similarities between elements of PSSP with characters of the classic Latin alphabet. The results may be used not only as a supporting idea for existing theories but to create a closer look at some fundamental nature of the origin of the languages as well.

Keywords: body shape, body language, coding, Latin alphabet, merging method, movement language, movement sound, natural sound, origin of language, pairing, phonetics, sound and shape production, word origin, word semantic

Procedia PDF Downloads 163
3050 Loading Forces following Addition of 5% Cu in Nickel-Titanium Alloy Used for Orthodontics

Authors: Aphinan Phukaoluan, Surachai Dechkunakorn, Niwat Anuwongnukroh, Anak Khantachawana, Pongpan Kaewtathip, Julathep Kajornchaiyakul, Wassana Wichai

Abstract:

Aims: This study aims to address the amount of force delivered by a NiTiCu orthodontic wire with a ternary composition ratio of 46.0 Ni: 49.0 Ti: 5.0 Cu and to compare the results with a commercial NiTiCu 35 °C orthodontic archwire. Materials and Methods: Nickel (purity 99.9%), Titanium (purity 99.9%), and Copper (purity 99.9%) were used in this study with the atomic weight ratio 46.0 Ni: 49.0 Ti: 5.0 Cu. The elements were melted to form an alloy using an electrolytic arc furnace in argon gas atmosphere and homogenized at 800 °C for 1 hr. The alloys were subsequently sliced into thin plates (1.5mm) by EDM wire cutting machine to obtain the specimens and were cold-rolled with 30% followed by heat treatment in a furnace at 400 °C for 1 hour. Then, the three newly fabricated NiTiCu specimens were cut in nearly identical wire sizes of 0.016 inch x0.022 inch. Commercial preformed Ormco NiTiCu35 °C archwire with size 0.016 inch x 0.022 inches were used for comparative purposes. Three-point bending test was performed using a Universal Testing Machine to investigate the force of the load-deflection curve at oral temperature (36 °C+ 1) with deflection points at 0.25, 0.5, 0.75, 1.0. 1.25, and 1.5 mm. Descriptive statistics was used to evaluate each variables and independent t-test was used to analyze the differences between the groups. Results: Both NiTiCu wires presented typical superelastic properties as observed from the load-deflection curve. The average force was 341.70 g for loading, and 264.18 g for unloading for 46.0 Ni: 49.0 Ti: 5.0 Cu wire. Similarly, the values were 299.88 g for loading, and 201.96 g for unloading of Ormco NiTiCu35°C. There were significant differences (p < 0.05) in mean loading and unloading forces between the two NiTiCu wires. The deflection forces in loading and unloading force for Ormco NiTiCu at each point were less than 46.0 Ni: 49.0 Ti: 5.0 Cu wire, except at the deflection point of 0.25mm. Regarding the force difference between each deflection point of loading and unloading force, Ormco NiTiCu35 °C exerted less force than 46.0 Ni: 49.0 Ti: 5.0 Cu wire, except at difference deflection at 1.5-1.25 mm of unloading force. However, there were still within the acceptable limits for orthodontic use. Conclusion: The fabricated ternary alloy of 46.0 Ni: 49.0 Ti: 5.0 Cu (atomic weight) with 30% reduction and heat treatment at 400°C for 1 hr. and Ormco 35 °C NiTiCu presented the characteristics of the shape memory in their wire form. The unloading forces of both NiTiCu wires were in the range of orthodontic use. This should be a good foundation for further studies towards development of new orthodontic NiTiCu archwires.

Keywords: loading force, ternary alloy, NiTiCu, shape memory, orthodontic wire

Procedia PDF Downloads 260
3049 The Mitigation of Quercetin on Lead-Induced Neuroinflammation in a Rat Model: Changes in Neuroinflammatory Markers and Memory

Authors: Iliyasu Musa Omoyine, Musa Sunday Abraham, Oladele Sunday Blessing, Iliya Ibrahim Abdullahi, Ibegbu Augustine Oseloka, Nuhu Nana-Hawau, Animoku Abdulrazaq Amoto, Yusuf Abdullateef Onoruoiza, Sambo Sohnap James, Akpulu Steven Peter, Ajayi Abayomi

Abstract:

The neuroprotective role of inflammation from detrimental intrinsic and extrinsic factors has been reported. However, the overactivation of astrocytes and microglia due to lead toxicity produce excessive pro-inflammatory cytokines, mediating neurodegenerative diseases. The present study investigated the mitigatory effects of quercetin on neuroinflammation, correlating with memory function in lead-exposed rats. In this study, Wistar rats were administered orally with Quercetin (Q: 60 mg/kg) and Succimer as a standard drug (S: 10 mg/kg) for 21 days after lead exposure (Pb: 125 mg/kg) of 21 days or in combination with Pb, once daily for 42 days. Working and reference memory was assessed using an Eight-arm radial water maze (8-ARWM). The changes in brain lead level, the neuronal nitric oxide synthase (nNOS) activity, and the level of neuroinflammatory markers such as tumour necrosis factor-alpha (TNF-α) and Interleukin 1 Beta (IL-1β) were determined. Immunohistochemically, astrocyte expression was evaluated. The results showed that the brain level of lead was increased significantly in lead-exposed rats. The expression of astrocytes increased in the CA3 and CA1 regions of the hippocampus, and the levels of brain TNF-α and IL-1β increased in lead-exposed rats. Lead impaired reference and working memory by increasing reference memory errors and working memory incorrect errors in lead-exposed rats. However, quercetin treatment effectively improved memory and inhibited neuroinflammation by reducing astrocytes’ expression and the levels of TNF-α and IL-1β. The expression of astrocytes and the levels of TNF-α and IL-1β correlated with memory function. The possible explanation for quercetin’s anti-neuroinflammatory effect is that it modulates the activity of cellular proteins involved in the inflammatory response; inhibits the transcription factor of nuclear factor-kappa B (NF-κB), which regulates the expression of proinflammatory molecules; inhibits kinases required for the synthesis of Glial fibrillary acidic protein (GFAP) and modifies the phosphorylation of some proteins, which affect the structure and function of intermediate filament proteins; and, lastly, induces Cyclic-AMP Response Element Binding (CREB) activation and neurogenesis as a compensatory mechanism for memory deficits and neuronal cell death. In conclusion, the levels of neuroinflammatory markers negatively correlated with memory function. Thus, quercetin may be a promising therapy in neuroinflammation and memory dysfunction in populations prone to lead exposure.

Keywords: lead, quercetin, neuroinflammation, memory

Procedia PDF Downloads 15
3048 Extrudate Swell under the Effect of Radial Flow and Intrinsic Factors to the Polymer Upstream of the Die

Authors: Hela Krir, Abdelhak Ayadi, Chedly Bradaii

Abstract:

The influence of both intrinsic factors, elastic energy and memory effect, and radial flow on the appearance and the evolution of the extrudate swelling are investigated in the present work. The experiments have been performed with linear polydimethylsiloxane (PDMS) via a capillary rheometer in which a convergent radial flow was created upstream the contraction. The correspondence between the effects of radial flow, entry elastic stored energy and memory effect is discussed. In particular, as the influence of the considered radial flow, extrudate photographs showed that when the gap ratio is reduced, the extrudate swell is lessened than what it is when radial flow geometry is not installed. Moreover, with a narrower gap, the polymer stores less energy during its passage through the die which implies a lower extrudate swelling at the outlet of the die. Results previously mentioned may be related both to shear and elongational components of radial flow.

Keywords: elastic energy, extrudate swell, memory effect, radial flow

Procedia PDF Downloads 148
3047 Elemental and Magnetic Properties of Bed Sediment of Siang River, a Major River of Brahmaputra Basin

Authors: Abhishek Dixit, Sandip S. Sathe, Chandan Mahanta

Abstract:

The Siang river originates in Angsi glacier in southern Tibet (there known as the Yarlung Tsangpo). After traveling through Indus-Tsangpo suture zone and deep gorges near Namcha Barwa peak, it takes a south-ward turn and enters India, where it is known as Siang river and becomes a major tributary of the Brahmaputra in Assam plains. In this study, we have analyzed the bed sediment of the Siang river at two locations (one at extreme upstream near the India-China border and one downstream before Siang Brahmaputra confluence). We have also sampled bed sediment at the remote location of Yammeng river, an eastern tributary of Siang. The magnetic hysteresis properties show the combination of paramagnetic and weak ferromagnetic behavior with a multidomain state. Moreover, curie temperature analysis shows titanomagnetite solid solution series, which is causing the weak ferromagnetic signature. Given that the magnetic mineral was in a multidomain state, the presence of Ti, Fe carrying heave mineral, may be inferred. The Chemical index of alteration shows less weathered sediment. However, the Yammeng river sample being close to source shows fresh grains subjected to physical weathering and least chemically alteration. Enriched Ca and K and depleted Na and Mg with respect to upper continental crust concentration also points toward the less intense chemical weathering along with the dominance of calcite weathering.

Keywords: bed sediment, magnetic properties, Siang, weathering

Procedia PDF Downloads 99
3046 A Dirty Page Migration Method in Process of Memory Migration Based on Pre-copy Technology

Authors: Kang Zijian, Zhang Tingyu, Burra Venkata Durga Kumar

Abstract:

This article investigates the challenges in memory migration during the live migration of virtual machines. We found three challenges probably existing in pre-copy technology. One of the main challenges is the challenge of downtime migration. Decrease the downtime could promise the normal work for a virtual machine. Although pre-copy technology is greatly decreasing the downtime, we still need to shut down the machine in order to finish the last round of data transfer. This paper provides an optimization scheme for the problems existing in pro-copy technology, mainly the optimization of the dirty page migration mechanism. The typical pre-copy technology copy n-1th’s dirty pages in nth turn. However, our idea is to create a double iteration method to solve this problem.

Keywords: virtual machine, pre-copy technology, memory migration process, downtime, dirty pages migration method

Procedia PDF Downloads 96
3045 Interactive Garments: Flexible Technologies for Textile Integration

Authors: Anupam Bhatia

Abstract:

Upon reviewing the literature and the pragmatic work done in the field of E- textiles, it is observed that the applications of wearable technologies have found a steady growth in the field of military, medical, industrial, sports; whereas fashion is at a loss to know how to treat this technology and bring it to market. The purpose of this paper is to understand the practical issues of integration of electronics in garments; cutting patterns for mass production, maintaining the basic properties of textiles and daily maintenance of garments that hinder the wide adoption of interactive fabric technology within Fashion and leisure wear. To understand the practical hindrances an experimental and laboratory approach is taken. “Techno Meets Fashion” has been an interactive fashion project where sensor technologies have been embedded with textiles that result in set of ensembles that are light emitting garments, sound sensing garments, proximity garments, shape memory garments etc. Smart textiles, especially in the form of textile interfaces, are drastically underused in fashion and other lifestyle product design. Clothing and some other textile products must be washable, which subjects to the interactive elements to water and chemical immersion, physical stress, and extreme temperature. The current state of the art tends to be too fragile for this treatment. The process for mass producing traditional textiles becomes difficult in interactive textiles. As cutting patterns from larger rolls of cloth and sewing them together to make garments breaks and reforms electronic connections in an uncontrolled manner. Because of this, interactive fabric elements are integrated by hand into textiles produced by standard methods. The Arduino has surely made embedding electronics into textiles much easier than before; even then electronics are not integral to the daily wear garments. Soft and flexible interfaces of MEMS (micro sensors and Micro actuators) can be an option to make this possible by blending electronics within E-textiles in a way that’s seamless and still retains functions of the circuits as well as the garment. Smart clothes, which offer simultaneously a challenging design and utility value, can be only mass produced if the demands of the body are taken care of i.e. protection, anthropometry, ergonomics of human movement, thermo- physiological regulation.

Keywords: ambient intelligence, proximity sensors, shape memory materials, sound sensing garments, wearable technology

Procedia PDF Downloads 366
3044 Effector and Memory Immune Responses Induced by Total Extracts of Naegleria fowleri Co-Administered with Cholera Toxin

Authors: Q. B. Maria de la Luz Ortega Juárez, Saúl Rojas Hernández, Itzel Berenice Rodríguez Mera, María Maricela Carrasco Yépez, Mara Gutierrez Sánchez

Abstract:

Naegleria fowleri is a free-living amoeba found mainly in temperate freshwater and is the etiologic agent of primary amebic meningoencephalitis (PAM), a fatal acute disease with a mortality rate greater than 95%. At present, there are no treatments available for MAP, and the development of effective vaccines that generate long-term immunological memory allowing protection against MAP would be of great importance. The objective of this work was to analyze the effector and memory immune response in BALB/c mice immunized with total extract of N. fowleri co-administered with cholera toxin. In this study, BALB/c mice were immunized four times intranasally with ET of N. fowleri adjuvanted with CT with or without booster at three months and were challenged or not with the lethal dose of N. fowleri, determining survival, the humoral, effector and memory response, by ELISA and flow cytometry techniques. The results obtained showed that the survival of mice immunized with booster had 60% protection compared to the group without booster, which obtained 20% protection. Evaluating the humoral response, it was found that both IgG and IgA levels were higher in sera than in nasal washes in both treatments. In the cellular response, the increase in the percentage of positive cells was found for effector T and B lymphocytes in the nasal passages (NP) in the group with boost and nasopharynx-associated lymphoid tissue (NALT) in the group without boost and lymphocytes only. B in both treatments, as well as in memory cells treatment with boost T lymphocytes in PN and NALT and without boost in cervical lymph nodes (CG) with respect to B lymphocytes, in PN, GC and NALT in treatment with boost and NALT in treatment without booster. Therefore, the involvement of the effector immune response and memory play a fundamental role for protection against N. fowleri and for the development of vaccine candidates.

Keywords: immune response, immunological memory, naegleria fowleri, primary amebic meningoencephalitis

Procedia PDF Downloads 48
3043 Statistical Shape Analysis of the Human Upper Airway

Authors: Ramkumar Gunasekaran, John Cater, Vinod Suresh, Haribalan Kumar

Abstract:

The main objective of this project is to develop a statistical shape model using principal component analysis that could be used for analyzing the shape of the human airway. The ultimate goal of this project is to identify geometric risk factors for diagnosis and management of Obstructive Sleep Apnoea (OSA). Anonymous CBCT scans of 25 individuals were obtained from the Otago Radiology Group. The airways were segmented between the hard-palate and the aryepiglottic fold using snake active contour segmentation. The point data cloud of the segmented images was then fitted with a bi-cubic mesh, and pseudo landmarks were placed to perform PCA on the segmented airway to analyze the shape of the airway and to find the relationship between the shape and OSA risk factors. From the PCA results, the first four modes of variation were found to be significant. Mode 1 was interpreted to be the overall length of the airway, Mode 2 was related to the anterior-posterior width of the retroglossal region, Mode 3 was related to the lateral dimension of the oropharyngeal region and Mode 4 was related to the anterior-posterior width of the oropharyngeal region. All these regions are subjected to the risk factors of OSA.

Keywords: medical imaging, image processing, FEM/BEM, statistical modelling

Procedia PDF Downloads 483
3042 Structural Optimization of Shell and Arched Structures

Authors: Mitchell Gohnert, Ryan Bradley

Abstract:

This paper reviews some fundamental concepts of structural optimization of shell structures, which is based on the type of materials used in construction and the shape of the structure. The first step of structural optimization is to break down all internal forces into fundamental principal stresses. The stress patterns direct our selection of structural shapes and the most appropriate type of construction material. In our selection of materials, it is essential to understand that all construction materials have flaws, or micro-cracks, which reduce the capacity of the material. Because of material defects, many construction materials perform significantly better when subjected to compressive forces. Structures are also more efficient if bending moments are eliminated; thus, it is essential to select natural structures, or structures where the natural flow of stress follows the axis of the shell. The shape of the structure, therefore, has a profound effect on stress levels. Stress may be reduced dramatically by simply changing the shape. Catenary, triangular and linear shapes are the fundamental structural forms to achieve optimal stress flow. If the natural flow of stress matches the shape of the structures, the most optimal shape is determined.

Keywords: arches, economy of stresses, material strength, optimization, shells

Procedia PDF Downloads 72
3041 A Randomized Controlled Intervention Study of the Effect of Music Training on Mathematical and Working Memory Performances

Authors: Ingo Roden, Stefana Lupu, Mara Krone, Jasmin Chantah, Gunter Kreutz, Stephan Bongard, Dietmar Grube

Abstract:

The present experimental study examined the effects of music and math training on mathematical skills and visuospatial working memory capacity in kindergarten children. For this purpose, N = 54 children (mean age: 5.46 years; SD = .29) were randomly assigned to three groups. Children in the music group (n = 18) received weekly sessions of 60 min music training over a period of eight weeks, whereas children in the math group (n = 18) received the same amount of training focusing on mathematical basic skills, such as numeracy skills, quantity comparison, and counting objectives. The third group of children (n = 18) served as waiting controls. The groups were matched for sex, age, IQ and previous music experiences at baseline. Pre-Post intervention measurements revealed a significant interaction effect of group x time, showing that children in both music and math groups significantly improved their early numeracy skills, whereas children in the control group did not. No significant differences between groups were observed for the visuospatial working memory performances. These results confirm and extend previous findings on transfer effects of music training on mathematical abilities and visuospatial working memory capacity. They show that music and math interventions are similarly effective to enhance children’s mathematical skills. More research is necessary to establish, whether cognitive transfer effects arising from music interventions might facilitate children’s transition from kindergarten to first-grade.

Keywords: music training, mathematical skills, working memory, transfer

Procedia PDF Downloads 247
3040 Magnetic Braking System of an Elevator in the Event of Sudden Breakage of the Hoisting Cable

Authors: Amita Singha

Abstract:

The project describes the scope of magnetic braking. The potential applications of the braking system can be a de-accelerating system to increase the safety of an elevator or any guided rail transportation system.

Keywords: boost and buck converter, electromagnet, elevator, ferromagnetic material, sensor, solenoid, timer

Procedia PDF Downloads 414