Search results for: emission inventory
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2132

Search results for: emission inventory

272 Performance and Specific Emissions of an SI Engine Using Anhydrous Ethanol–Gasoline Blends in the City of Bogota

Authors: Alexander García Mariaca, Rodrigo Morillo Castaño, Juan Rolón Ríos

Abstract:

The government of Colombia has promoted the use of biofuels in the last 20 years through laws and resolutions, which regulate their use, with the objective to improve the atmospheric air quality and to promote Colombian agricultural industry. However, despite the use of blends of biofuels with fossil fuels, the air quality in large cities does not get better, this deterioration in the air is mainly caused by mobile sources that working with spark ignition internal combustion engines (SI-ICE), operating with a mixture in volume of 90 % gasoline and 10 % ethanol called E10, that for the case of Bogota represent 84 % of the fleet. Another problem is that Colombia has big cities located above 2200 masl and there are no accurate studies on the impact that the E10 mixture could cause in the emissions and performance of SI-ICE. This study aims to establish the optimal blend between gasoline ethanol in which an SI engine operates more efficiently in urban centres located at 2600 masl. The test was developed on SI engine four-stroke, single cylinder, naturally aspirated and with carburettor for the fuel supply using blends of gasoline and anhydrous ethanol in different ratios E10, E15, E20, E40, E60, E85 and E100. These tests were conducted in the city of Bogota, which is located at 2600 masl, with the engine operating at 3600 rpm and at 25, 50, 75 and 100% of load. The results show that the performance variables as engine brake torque, brake power and brake thermal efficiency decrease, while brake specific fuel consumption increases with the rise in the percentage of ethanol in the mixture. On the other hand, the specific emissions of CO2 and NOx present increases while specific emissions of CO and HC decreases compared to those produced by gasoline. From the tests, it is concluded that the SI-ICE worked more efficiently with the E40 mixture, where was obtained an increases of the brake power of 8.81 % and a reduction on brake specific fuel consumption of 2.5 %, coupled with a reduction in the specific emissions of CO2, HC and CO in 9.72, 52.88 and 76.66 % respectively compared to the results obtained with the E10 blend. This behaviour is because the E40 mixture provides the appropriate amount of the oxygen for the combustion process, which leads to better utilization of available energy in this process, thus generating a comparable power output to the E10 mixing and producing lower emissions CO and HC with the other test blends. Nevertheless, the emission of NOx increases in 106.25 %.

Keywords: emissions, ethanol, gasoline, engine, performance

Procedia PDF Downloads 304
271 Stochastic Nuisance Flood Risk for Coastal Areas

Authors: Eva L. Suarez, Daniel E. Meeroff, Yan Yong

Abstract:

The U.S. Federal Emergency Management Agency (FEMA) developed flood maps based on experts’ experience and estimates of the probability of flooding. Current flood-risk models evaluate flood risk with regional and subjective measures without impact from torrential rain and nuisance flooding at the neighborhood level. Nuisance flooding occurs in small areas in the community, where a few streets or blocks are routinely impacted. This type of flooding event occurs when torrential rainstorm combined with high tide and sea level rise temporarily exceeds a given threshold. In South Florida, this threshold is 1.7 ft above Mean Higher High Water (MHHW). The National Weather Service defines torrential rain as rain deposition at a rate greater than 0.3-inches per hour or three inches in a single day. Data from the Florida Climate Center, 1970 to 2020, shows 371 events with more than 3-inches of rain in a day in 612 months. The purpose of this research is to develop a data-driven method to determine comprehensive analytical damage-avoidance criteria that account for nuisance flood events at the single-family home level. The method developed uses the Failure Mode and Effect Analysis (FMEA) method from the American Society of Quality (ASQ) to estimate the Damage Avoidance (DA) preparation for a 1-day 100-year storm. The Consequence of Nuisance Flooding (CoNF) is estimated from community mitigation efforts to prevent nuisance flooding damage. The Probability of Nuisance Flooding (PoNF) is derived from the frequency and duration of torrential rainfall causing delays and community disruptions to daily transportation, human illnesses, and property damage. Urbanization and population changes are related to the U.S. Census Bureau's annual population estimates. Data collected by the United States Department of Agriculture (USDA) Natural Resources Conservation Service’s National Resources Inventory (NRI) and locally by the South Florida Water Management District (SFWMD) track the development and land use/land cover changes with time. The intent is to include temporal trends in population density growth and the impact on land development. Results from this investigation provide the risk of nuisance flooding as a function of CoNF and PoNF for coastal areas of South Florida. The data-based criterion provides awareness to local municipalities on their flood-risk assessment and gives insight into flood management actions and watershed development.

Keywords: flood risk, nuisance flooding, urban flooding, FMEA

Procedia PDF Downloads 67
270 Effect of Ramp Rate on the Preparation of Activated Carbon from Saudi Date Tree Fronds (Agro Waste) by Physical Activation Method

Authors: Muhammad Shoaib, Hassan M Al-Swaidan

Abstract:

Saudi Arabia is the major date producer in the world. In order to maximize the production from date tree, pruning of the date trees is required annually. Large amount of this agriculture waste material (palm tree fronds) is available in Saudi Arabia and considered as an ideal source as a precursor for production of activated carbon (AC). The single step procedure for the preparation of micro porous activated carbon (AC) from Saudi date tree fronds using mixture of gases (N2 and CO2) is carried out at carbonization/activation temperature at 850°C and at different ramp rates of 10, 20 and 30 degree per minute. Alloy 330 horizontal reactor is used for tube furnace. Flow rate of nitrogen and carbon dioxide gases are kept at 150 ml/min and 50 ml/min respectively during the preparation. Characterization results reveal that the BET surface area, pore volume, and average pore diameter of the resulting activated carbon generally decreases with the increase in ramp rate. The activated carbon prepared at a ramp rate of 10 degrees/minute attains larger surface area and can offer higher potential to produce activated carbon of greater adsorption capacity from agriculture wastes such as date fronds. The BET surface areas of the activated carbons prepared at a ramp rate of 10, 20 and 30 degree/minute after 30 minutes activation time are 1094, 1020 and 515 m2/g, respectively. Scanning electron microscopy (SEM) for surface morphology, and FTIR for functional groups was carried out that also verified the same trend. Moreover, by increasing the ramp rate from 10 and 20 degrees/min the yield remains same, i.e. 18%, whereas at a ramp rate of 30 degrees/min the yield increases from 18 to 20%. Thus, it is feasible to produce high-quality micro porous activated carbon from date frond agro waste using N2 carbonization followed by physical activation with CO2 and N2 mixture. This micro porous activated carbon can be used as adsorbent of heavy metals from wastewater, NOx SOx emission adsorption from ambient air and electricity generation plants, purification of gases, sewage treatment and many other applications.

Keywords: activated carbon, date tree fronds, agricultural waste, applied chemistry

Procedia PDF Downloads 256
269 Application of Industrial Ecology to the INSPIRA Zone: Territory Planification and New Activities

Authors: Mary Hanhoun, Jilla Bamarni, Anne-Sophie Bougard

Abstract:

INSPIR’ECO is a 18-month research and innovation project that aims to specify and develop a tool to offer new services for industrials and territorial planners/managers based on Industrial Ecology Principles. This project is carried out on the territory of Salaise Sablons and the services are designed to be deployed on other territories. Salaise-Sablons area is located in the limit of 5 departments on a major European economic axis multimodal traffic (river, rail and road). The perimeter of 330 ha includes 90 hectares occupied by 20 companies, with a total of 900 jobs, and represents a significant potential basin of development. The project involves five multi-disciplinary partners (Syndicat Mixte INSPIRA, ENGIE, IDEEL, IDEAs Laboratory and TREDI). INSPIR’ECO project is based on the principles that local stakeholders need services to pool, share their activities/equipment/purchases/materials. These services aims to : 1. initiate and promote exchanges between existing companies and 2. identify synergies between pre-existing industries and future companies that could be implemented in INSPIRA. These eco-industrial synergies can be related to: the recovery / exchange of industrial flows (industrial wastewater, waste, by-products, etc.); the pooling of business services (collective waste management, stormwater collection and reuse, transport, etc.); the sharing of equipments (boiler, steam production, wastewater treatment unit, etc.) or resources (splitting jobs cost, etc.); and the creation of new activities (interface activities necessary for by-product recovery, development of products or services from a newly identified resource, etc.). These services are based on IT tool used by the interested local stakeholders that intends to allow local stakeholders to take decisions. Thus, this IT tool: - include an economic and environmental assessment of each implantation or pooling/sharing scenarios for existing or further industries; - is meant for industrial and territorial manager/planners - is designed to be used for each new industrial project. - The specification of the IT tool is made through an agile process all along INSPIR’ECO project fed with: - Users expectations thanks to workshop sessions where mock-up interfaces are displayed; - Data availability based on local and industrial data inventory. These input allow to specify the tool not only with technical and methodological constraints (notably the ones from economic and environmental assessments) but also with data availability and users expectations. A feedback on innovative resource management initiatives in port areas has been realized in the beginning of the project to feed the designing services step.

Keywords: development opportunities, INSPIR’ECO, INSPIRA, industrial ecology, planification, synergy identification

Procedia PDF Downloads 137
268 Identification of Fluorinated Methylsiloxanes in Environmental Matrices Near a Manufacturing Plant in Eastern China

Authors: Liqin Zhi, Lin Xu, Wenxia Wei, Yaqi Cai

Abstract:

Recently, replacing some of the methyl groups in polydimethylsiloxanes with other functional groups has been extensively explored to obtain modified polymethylsiloxanes with special properties that enable new industrial applications. Fluorinated polysiloxanes, one type of these modified polysiloxanes, are based on a siloxane backbone with fluorinated groups attached to the side chains of polysiloxanes. As a commercially significant material, poly[methyl(trifluoropropyl)siloxane] (PMTFPS) has sufficient fluorine content to be useful as a fuel-and oil-resistant elastomer, which combines both the chemical and solvent resistance of fluorocarbons and the wide temperature range applicability of organosilicones. PMTFPS products can be used in many applications in which resistance to fuel, oils and hydrocarbon solvents is required, including use as lubricants in bearings, sealants, and elastomers for aerospace and automotive fuel systems. Fluorinated methylsiloxanes, a type of modified methylsiloxane, include tris(trifluoropropyl)trimethylcyclotrisiloxane (D3F) and tetrakis(trifluoropropyl)tetramethylcyclotetrasiloxane (D4F), both of which contain trifluoropropyl groups in the side chains of cyclic methylsiloxanes. D3F, as an important monomer in the manufacture of PMTFPS, is often present as an impurity in PMTFPS. In addition, the synthesis of PMTFPS from D3F could form other fluorinated methylsiloxanes with low molecular weights (such as D4F). The yearly demand and production volumes of D3F increased rapidly all over world. Fluorinated methylsiloxanes might be released into the environment via different pathways during the production and application of PMTFPS. However, there is a lack of data concerning the emission, environmental occurrence and potential environmental impacts of fluorinated methylsiloxanes. Here, we report fluorinated methylsiloxanes (D3F and D4F) in surface water and sediment samples collected near a fluorinated methylsiloxane manufacturing plant in Weihai, China. The concentrations of D3F and D4F in surface water ranged from 3.29 to 291 ng/L and from 7.02 to 168 ng/L, respectively. The concentrations of D3F and D4F in sediment ranged from 11.8 to 5478 ng/g and from 17.2 to 6277 ng/g, respectively. In simulation experiment, the half-lives of D3F and D4F at different pH values (5.2, 6.4, 7.2, 8.3 and 9.2) varied from 80.6 to 154 h and from 267 to 533 h respectively. CF₃(CH₂)₂MeSi(OH)₂ was identified as one of the main hydrolysis products of fluorinated methylsiloxanes. It was also detected in the river samples at concentrations of 72.1-182.9 ng/L. In addition, the slow rearrangement of D3F (spiked concentration = 500 ng/L) to D4F (concentration = 11.0-22.7 ng/L) was also found during 336h hydrolysis experiment.

Keywords: fluorinated methylsiloxanes, environmental matrices, hydrolysis, sediment

Procedia PDF Downloads 95
267 LTE Modelling of a DC Arc Ignition on Cold Electrodes

Authors: O. Ojeda Mena, Y. Cressault, P. Teulet, J. P. Gonnet, D. F. N. Santos, MD. Cunha, M. S. Benilov

Abstract:

The assumption of plasma in local thermal equilibrium (LTE) is commonly used to perform electric arc simulations for industrial applications. This assumption allows to model the arc using a set of magneto-hydromagnetic equations that can be solved with a computational fluid dynamic code. However, the LTE description is only valid in the arc column, whereas in the regions close to the electrodes the plasma deviates from the LTE state. The importance of these near-electrode regions is non-trivial since they define the energy and current transfer between the arc and the electrodes. Therefore, any accurate modelling of the arc must include a good description of the arc-electrode phenomena. Due to the modelling complexity and computational cost of solving the near-electrode layers, a simplified description of the arc-electrode interaction was developed in a previous work to study a steady high-pressure arc discharge, where the near-electrode regions are introduced at the interface between arc and electrode as boundary conditions. The present work proposes a similar approach to simulate the arc ignition in a free-burning arc configuration following an LTE description of the plasma. To obtain the transient evolution of the arc characteristics, appropriate boundary conditions for both the near-cathode and the near-anode regions are used based on recent publications. The arc-cathode interaction is modeled using a non-linear surface heating approach considering the secondary electron emission. On the other hand, the interaction between the arc and the anode is taken into account by means of the heating voltage approach. From the numerical modelling, three main stages can be identified during the arc ignition. Initially, a glow discharge is observed, where the cold non-thermionic cathode is uniformly heated at its surface and the near-cathode voltage drop is in the order of a few hundred volts. Next, a spot with high temperature is formed at the cathode tip followed by a sudden decrease of the near-cathode voltage drop, marking the glow-to-arc discharge transition. During this stage, the LTE plasma also presents an important increase of the temperature in the region adjacent to the hot spot. Finally, the near-cathode voltage drop stabilizes at a few volts and both the electrode and plasma temperatures reach the steady solution. The results after some seconds are similar to those presented for thermionic cathodes.

Keywords: arc-electrode interaction, thermal plasmas, electric arc simulation, cold electrodes

Procedia PDF Downloads 91
266 Numerical Analysis of CO₂ Storage as Clathrates in Depleted Natural Gas Hydrate Formation

Authors: Sheraz Ahmad, Li Yiming, Li XiangFang, Xia Wei, Zeen Chen

Abstract:

Holding CO₂ at massive scale in the enclathrated solid matter called hydrate can be perceived as one of the most reliable methods for CO₂ sequestration to take greenhouse gases emission control measures and global warming preventive actions. In this study, a dynamically coupled mass and heat transfer mathematical model is developed which elaborates the unsteady behavior of CO₂ flowing into a porous medium and converting itself into hydrates. The combined numerical model solution by implicit finite difference method is explained and through coupling the mass, momentum and heat conservation relations, an integrated model can be established to analyze the CO₂ hydrate growth within P-T equilibrium conditions. CO₂ phase transition, effect of hydrate nucleation by exothermic heat release and variations of thermo-physical properties has been studied during hydrate nucleation. The results illustrate that formation pressure distribution becomes stable at the early stage of hydrate nucleation process and always remains stable afterward, but formation temperature is unable to keep stable and varies during CO₂ injection and hydrate nucleation process. Initially, the temperature drops due to cold high-pressure CO₂ injection since when the massive hydrate growth triggers and temperature increases under the influence of exothermic heat evolution. Intermittently, it surpasses the initial formation temperature before CO₂ injection initiates. The hydrate growth rate increases by increasing injection pressure in the long formation and it also expands overall hydrate covered length in the same induction period. The results also show that the injection pressure conditions and hydrate growth rate affect other parameters like CO₂ velocity, CO₂ permeability, CO₂ density, CO₂ and H₂O saturation inside the porous medium. In order to enhance the hydrate growth rate and expand hydrate covered length, the injection temperature is reduced, but it did not give satisfactory outcomes. Hence, CO₂ injection in vacated natural gas hydrate porous sediment may form hydrate under low temperature and high-pressure conditions, but it seems very challenging on a huge scale in lengthy formations.

Keywords: CO₂ hydrates, CO₂ injection, CO₂ Phase transition, CO₂ sequestration

Procedia PDF Downloads 100
265 Challenges of Blockchain Applications in the Supply Chain Industry: A Regulatory Perspective

Authors: Pardis Moslemzadeh Tehrani

Abstract:

Due to the emergence of blockchain technology and the benefits of cryptocurrencies, intelligent or smart contracts are gaining traction. Artificial intelligence (AI) is transforming our lives, and it is being embraced by a wide range of sectors. Smart contracts, which are at the heart of blockchains, incorporate AI characteristics. Such contracts are referred to as "smart" contracts because of the underlying technology that allows contracting parties to agree on terms expressed in computer code that defines machine-readable instructions for computers to follow under specific situations. The transmission happens automatically if the conditions are met. Initially utilised for financial transactions, blockchain applications have since expanded to include the financial, insurance, and medical sectors, as well as supply networks. Raw material acquisition by suppliers, design, and fabrication by manufacturers, delivery of final products to consumers, and even post-sales logistics assistance are all part of supply chains. Many issues are linked with managing supply chains from the planning and coordination stages, which can be implemented in a smart contract in a blockchain due to their complexity. Manufacturing delays and limited third-party amounts of product components have raised concerns about the integrity and accountability of supply chains for food and pharmaceutical items. Other concerns include regulatory compliance in multiple jurisdictions and transportation circumstances (for instance, many products must be kept in temperature-controlled environments to ensure their effectiveness). Products are handled by several providers before reaching customers in modern economic systems. Information is sent between suppliers, shippers, distributors, and retailers at every stage of the production and distribution process. Information travels more effectively when individuals are eliminated from the equation. The usage of blockchain technology could be a viable solution to these coordination issues. In blockchains, smart contracts allow for the rapid transmission of production data, logistical data, inventory levels, and sales data. This research investigates the legal and technical advantages and disadvantages of AI-blockchain technology in the supply chain business. It aims to uncover the applicable legal problems and barriers to the use of AI-blockchain technology to supply chains, particularly in the food industry. It also discusses the essential legal and technological issues and impediments to supply chain implementation for stakeholders, as well as methods for overcoming them before releasing the technology to clients. Because there has been little research done on this topic, it is difficult for industrial stakeholders to grasp how blockchain technology could be used in their respective operations. As a result, the focus of this research will be on building advanced and complex contractual terms in supply chain smart contracts on blockchains to cover all unforeseen supply chain challenges.

Keywords: blockchain, supply chain, IoT, smart contract

Procedia PDF Downloads 95
264 Feasibility Study for Implementation of Geothermal Energy Technology as a Means of Thermal Energy Supply for Medium Size Community Building

Authors: Sreto Boljevic

Abstract:

Heating systems based on geothermal energy sources are becoming increasingly popular among commercial/community buildings as management of these buildings looks for a more efficient and environmentally friendly way to manage the heating system. The thermal energy supply of most European commercial/community buildings at present is provided mainly by energy extracted from natural gas. In order to reduce greenhouse gas emissions and achieve climate change targets set by the EU, restructuring in the area of thermal energy supply is essential. At present, heating and cooling account for approx... 50% of the EU primary energy supply. Due to its physical characteristics, thermal energy cannot be distributed or exchange over long distances, contrary to electricity and gas energy carriers. Compared to electricity and the gas sectors, heating remains a generally black box, with large unknowns to a researcher and policymaker. Ain literature number of documents address policies for promoting renewable energy technology to facilitate heating for residential/community/commercial buildings and assess the balance between heat supply and heat savings. Ground source heat pump (GSHP) technology has been an extremely attractive alternative to traditional electric and fossil fuel space heating equipment used to supply thermal energy for residential/community/commercial buildings. The main purpose of this paper is to create an algorithm using an analytical approach that could enable a feasibility study regarding the implementation of GSHP technology in community building with existing fossil-fueled heating systems. The main results obtained by the algorithm will enable building management and GSHP system designers to define the optimal size of the system regarding technical, environmental, and economic impacts of the system implementation, including payback period time. In addition, an algorithm is created to be utilized for a feasibility study for many different types of buildings. The algorithm is tested on a building that was built in 1930 and is used as a church located in Cork city. The heating of the building is currently provided by a 105kW gas boiler.

Keywords: GSHP, greenhouse gas emission, low-enthalpy, renewable energy

Procedia PDF Downloads 189
263 A Comparative Study of Motion Events Encoding in English and Italian

Authors: Alfonsina Buoniconto

Abstract:

The aim of this study is to investigate the degree of cross-linguistic and intra-linguistic variation in the encoding of motion events (MEs) in English and Italian, these being typologically different languages both showing signs of disobedience to their respective types. As a matter of fact, the traditional typological classification of MEs encoding distributes languages into two macro-types, based on the preferred locus for the expression of Path, the main ME component (other components being Figure, Ground and Manner) characterized by conceptual and structural prominence. According to this model, Satellite-framed (SF) languages typically express Path information in verb-dependent items called satellites (e.g. preverbs and verb particles) with main verbs encoding Manner of motion; whereas Verb-framed languages (VF) tend to include Path information within the verbal locus, leaving Manner to adjuncts. Although this dichotomy is valid altogether, languages do not always behave according to their typical classification patterns. English, for example, is usually ascribed to the SF type due to the rich inventory of postverbal particles and phrasal verbs used to express spatial relations (i.e. the cat climbed down the tree); nevertheless, it is not uncommon to find constructions such as the fog descended slowly, which is typical of the VF type. Conversely, Italian is usually described as being VF (cf. Paolo uscì di corsa ‘Paolo went out running’), yet SF constructions like corse via in lacrime ‘She ran away in tears’ are also frequent. This paper will try to demonstrate that such a typological overlapping is due to the fact that the semantic units making up MEs are distributed within several loci of the sentence –not only verbs and satellites– thus determining a number of different constructions stemming from convergent factors. Indeed, the linguistic expression of motion events depends not only on the typological nature of languages in a traditional sense, but also on a series morphological, lexical, and syntactic resources, as well as on inferential, discursive, usage-related, and cultural factors that make semantic information more or less accessible, frequent, and easy to process. Hence, rather than describe English and Italian in dichotomic terms, this study focuses on the investigation of cross-linguistic and intra-linguistic variation in the use of all the strategies made available by each linguistic system to express motion. Evidence for these assumptions is provided by parallel corpora analysis. The sample texts are taken from two contemporary Italian novels and their respective English translations. The 400 motion occurrences selected (200 in English and 200 in Italian) were scanned according to the MODEG (an acronym for Motion Decoding Grid) methodology, which grants data comparability through the indexation and retrieval of combined morphosyntactic and semantic information at different levels of detail.

Keywords: construction typology, motion event encoding, parallel corpora, satellite-framed vs. verb-framed type

Procedia PDF Downloads 235
262 Evaluation of Arsenic Removal in Soils Contaminated by the Phytoremediation Technique

Authors: V. Ibujes, A. Guevara, P. Barreto

Abstract:

Concentration of arsenic represents a serious threat to human health. It is a bioaccumulable toxic element and is transferred through the food chain. In Ecuador, values of 0.0423 mg/kg As are registered in potatoes of the skirts of the Tungurahua volcano. The increase of arsenic contamination in Ecuador is mainly due to mining activity, since the process of gold extraction generates toxic tailings with mercury. In the Province of Azuay, due to the mining activity, the soil reaches concentrations of 2,500 to 6,420 mg/kg As whereas in the province of Tungurahua it can be found arsenic concentrations of 6.9 to 198.7 mg/kg due to volcanic eruptions. Since the contamination by arsenic, the present investigation is directed to the remediation of the soils in the provinces of Azuay and Tungurahua by phytoremediation technique and the definition of a methodology of extraction by means of analysis of arsenic in the system soil-plant. The methodology consists in selection of two types of plants that have the best arsenic removal capacity in synthetic solutions 60 μM As, a lower percentage of mortality and hydroponics resistance. The arsenic concentrations in each plant were obtained from taking 10 ml aliquots and the subsequent analysis of the ICP-OES (inductively coupled plasma-optical emission spectrometry) equipment. Soils were contaminated with synthetic solutions of arsenic with the capillarity method to achieve arsenic concentration of 13 and 15 mg/kg. Subsequently, two types of plants were evaluated to reduce the concentration of arsenic in soils for 7 weeks. The global variance for soil types was obtained with the InfoStat program. To measure the changes in arsenic concentration in the soil-plant system, the Rhizo and Wenzel arsenic extraction methodology was used and subsequently analyzed with the ICP-OES (optima 8000 Pekin Elmer). As a result, the selected plants were bluegrass and llanten, due to the high percentages of arsenic removal of 55% and 67% and low mortality rates of 9% and 8% respectively. In conclusion, Azuay soil with an initial concentration of 13 mg/kg As reached the concentrations of 11.49 and 11.04 mg/kg As for bluegrass and llanten respectively, and for the initial concentration of 15 mg/kg As reached 11.79 and 11.10 mg/kg As for blue grass and llanten after 7 weeks. For the Tungurahua soil with an initial concentration of 13 mg/kg As it reached the concentrations of 11.56 and 12.16 mg/kg As for the bluegrass and llanten respectively, and for the initial concentration of 15 mg/kg As reached 11.97 and 12.27 mg/kg Ace for bluegrass and llanten after 7 weeks. The best arsenic extraction methodology of soil-plant system is Wenzel.

Keywords: blue grass, llanten, phytoremediation, soil of Azuay, soil of Tungurahua, synthetic arsenic solution

Procedia PDF Downloads 81
261 Place Attachment as Basic Condition for Wellbeing and Life Satisfaction in East African Wetland Users

Authors: Sophie-Bo Heinkel, Andrea Rechenburg, Thomas Kistemann

Abstract:

The current status of wellbeing and life satisfaction of subsistence farmers in a wetland in Uganda and the contributing role of place attachment has been assessed. The aim of this study is to shed light on environmental factors supporting wellbeing in a wetland setting. Furthermore, it has been assessed, how the emotional bonding to the wetland as ‘place’ influences the peoples’ wellbeing and life satisfaction. The results shed light on the human-environment-relationship. A survey was carried out in three communities in urban and rural areas in a wetland basin in Uganda. A sample (n=235) provided information about the attachment to the wetland, the participants’ relation to the place of their residence and their emotional wellbeing. The Wellbeing Index (WHO-5) was assessed as well as the Perceived Stress Scale (PSS-10) and Rosenberg’s Self-Esteem scale (RSE). Furthermore, the Satisfaction With Life Scale (SWLS) was applied as well as the Place Attachment Inventory (PAI), which consists of the two intertwined dimensions of place identity and place dependence. Beside this, binary indicators as ‘feeling save’ and ‘feeling comfortable’ and ‘enjoying to live at the place of residence’ have been assessed. A bivariate correlation analysis revealed a high interconnectivity between all metric scales. Especially, the subscale ‘place identity’ showed significances with all other scales. A cluster analysis revealed three groups, which differed in the perception of place-related indicators and their attachment to the wetland as well as the status of wellbeing. First, a cluster whose majority is dissatisfied with their lives, but mainly had a good status of emotional well-being. This group does not feel attached to the wetland and lives in a town. Comparably less persons of this group feel safe and comfortable at their place of residence. In the second cluster, persons feel highly attached to the wetland and identify with it. This group was characterized by the high number of persons preferring their current place of residence and do not consider moving. All persons feel well and satisfied with their lives. The third group of persons is mainly living in rural areas and feels highly attached to the wetland. They are satisfied with their lives, but only a small minority is in a good emotional state of wellbeing. The emotional attachment to a place influences life satisfaction and, indirectly, the emotional wellbeing. In the present study it could be shown that subsistence farmers are attached to the wetland, as it is the source of their livelihood. While those living in areas with a good infrastructure are less dependent on the wetland and, therefore, less attached to. This feeling also was mirrored in the perception of a place as being safe and comfortable. The identification with a place is crucial for the feeling of being at “home”. Subsistence farmers feel attached to the ecosystem, but they also might be exposed to environmental and social stressors influencing their short-term emotional wellbeing. The provision of place identity is an ecosystem service provided by wetlands, which supports the status of wellbeing in human beings.

Keywords: mental health, positive environments, quality of life, wellbeing

Procedia PDF Downloads 372
260 Collaborative Management Approach for Logistics Flow Management of Cuban Medicine Supply Chain

Authors: Ana Julia Acevedo Urquiaga, Jose A. Acevedo Suarez, Ana Julia Urquiaga Rodriguez, Neyfe Sablon Cossio

Abstract:

Despite the progress made in logistics and supply chains fields, it is unavoidable the development of business models that use efficiently information to facilitate the integrated logistics flows management between partners. Collaborative management is an important tool for materializing the cooperation between companies, as a way to achieve the supply chain efficiency and effectiveness. The first face of this research was a comprehensive analysis of the collaborative planning on the Cuban companies. It is evident that they have difficulties in supply chains planning where production, supplies and replenishment planning are independent tasks, as well as logistics and distribution operations. Large inventories generate serious financial and organizational problems for entities, demanding increasing levels of working capital that cannot be financed. Problems were found in the efficient application of Information and Communication Technology on business management. The general objective of this work is to develop a methodology that allows the deployment of a planning and control system in a coordinated way on the medicine’s logistics system in Cuba. To achieve these objectives, several mechanisms of supply chain coordination, mathematical programming models, and other management techniques were analyzed to meet the requirements of collaborative logistics management in Cuba. One of the findings is the practical and theoretical inadequacies of the studied models to solve the current situation of the Cuban logistics systems management. To contribute to the tactical-operative management of logistics, the Collaborative Logistics Flow Management Model (CLFMM) is proposed as a tool for the balance of cycles, capacities, and inventories, always to meet the final customers’ demands in correspondence with the service level expected by these. The CLFMM has as center the supply chain planning and control system as a unique information system, which acts on the processes network. The development of the model is based on the empirical methods of analysis-synthesis and the study cases. Other finding is the demonstration of the use of a single information system to support the supply chain logistics management, allows determining the deadlines and quantities required in each process. This ensures that medications are always available to patients and there are no faults that put the population's health at risk. The simulation of planning and control with the CLFMM in medicines such as dipyrone and chlordiazepoxide, during 5 months of 2017, permitted to take measures to adjust the logistic flow, eliminate delayed processes and avoid shortages of the medicines studied. As a result, the logistics cycle efficiency can be increased to 91%, the inventory rotation would increase, and this results in a release of financial resources.

Keywords: collaborative management, medicine logistic system, supply chain planning, tactical-operative planning

Procedia PDF Downloads 154
259 Plasma-Assisted Decomposition of Cyclohexane in a Dielectric Barrier Discharge Reactor

Authors: Usman Dahiru, Faisal Saleem, Kui Zhang, Adam Harvey

Abstract:

Volatile organic compounds (VOCs) are atmospheric contaminants predominantly derived from petroleum spills, solvent usage, agricultural processes, automobile, and chemical processing industries, which can be detrimental to the environment and human health. Environmental problems such as the formation of photochemical smog, organic aerosols, and global warming are associated with VOC emissions. Research showed a clear relationship between VOC emissions and cancer. In recent years, stricter emission regulations, especially in industrialized countries, have been put in place around the world to restrict VOC emissions. Non-thermal plasmas (NTPs) are a promising technology for reducing VOC emissions by converting them into less toxic/environmentally friendly species. The dielectric barrier discharge (DBD) plasma is of interest due to its flexibility, moderate capital cost, and ease of operation under ambient conditions. In this study, a dielectric barrier discharge (DBD) reactor has been developed for the decomposition of cyclohexane (as a VOC model compound) using nitrogen, dry, and humidified air carrier gases. The effect of specific input energy (1.2-3.0 kJ/L), residence time (1.2-2.3 s) and concentration (220-520 ppm) were investigated. It was demonstrated that the removal efficiency of cyclohexane increased with increasing plasma power and residence time. The removal of cyclohexane decreased with increasing cyclohexane inlet concentration at fixed plasma power and residence time. The decomposition products included H₂, CO₂, H₂O, lower hydrocarbons (C₁-C₅) and solid residue. The highest removal efficiency (98.2%) was observed at specific input energy of 3.0 kJ/L and a residence time of 2.3 s in humidified air plasma. The effect of humidity was investigated to determine whether it could reduce the formation of solid residue in the DBD reactor. It was observed that the solid residue completely disappeared in humidified air plasma. Furthermore, the presence of OH radicals due to humidification not only increased the removal efficiency of cyclohexane but also improves product selectivity. This work demonstrates that cyclohexane can be converted to smaller molecules by a dielectric barrier discharge (DBD) non-thermal plasma reactor by varying plasma power (SIE), residence time, reactor configuration, and carrier gas.

Keywords: cyclohexane, dielectric barrier discharge reactor, non-thermal plasma, removal efficiency

Procedia PDF Downloads 108
258 Investigations on Geopolymer Concrete Slabs

Authors: Akhila Jose

Abstract:

The cement industry is one of the major contributors to the global warming due to the release of greenhouse gases. The primary binder in conventional concrete is Ordinary Portland cement (OPC) and billions of tons are produced annually all over the world. An alternative binding material to OPC is needed to reduce the environmental impact caused during the cement manufacturing process. Geopolymer concrete is an ideal material to substitute cement-based binder. Geopolymer is an inorganic alumino-silicate polymer. Geopolymer Concrete (GPC) is formed by the polymerization of aluminates and silicates formed by the reaction of solid aluminosilicates with alkali hydroxides or alkali silicates. Various Industrial bye- products like Fly Ash (FA), Rice Husk Ash (RHA), Ground granulated Blast Furnace Slag (GGBFS), Silica Fume (SF), Red mud (RM) etc. are rich in aluminates and silicates. Using by-products from other industries reduces the carbon dioxide emission and thus giving a sustainable way of reducing greenhouse gas emissions and also a way to dispose the huge wastes generated from the major industries like thermal plants, steel plants, etc. The earlier research about geopolymer were focused on heat cured fly ash based precast members and this limited its applications. The heat curing mechanism itself is highly cumbersome and costly even though they possess high compressive strength, low drying shrinkage and creep, and good resistance to sulphate and acid environments. GPC having comparable strength and durability characteristics of OPC were able to develop under ambient cured conditions is the solution making it a sustainable alternative in future. In this paper an attempt has been made to review and compare the feasibility of ambient cured GPC over heat cured geopolymer concrete with respect to strength and serviceability characteristics. The variation on the behavior of structural members is also reviewed to identify the research gaps for future development of ambient cured geopolymer concrete. The comparison and analysis of studies showed that GPC most importantly ambient cured type has a comparable behavior with respect to OPC based concrete in terms strength and durability criteria.

Keywords: geopolymer concrete, oven heated, durability properties, mechanical properties

Procedia PDF Downloads 160
257 A Conceptual Framework of Integrated Evaluation Methodology for Aquaculture Lakes

Authors: Robby Y. Tallar, Nikodemus L., Yuri S., Jian P. Suen

Abstract:

Research in the subject of ecological water resources management is full of trivial questions addressed and it seems, today to be one branch of science that can strongly contribute to the study of complexity (physical, biological, ecological, socio-economic, environmental, and other aspects). Existing literature available on different facets of these studies, much of it is technical and targeted for specific users. This study offered the combination all aspects in evaluation methodology for aquaculture lakes with its paradigm refer to hierarchical theory and to the effects of spatial specific arrangement of an object into a space or local area. Therefore, the process in developing a conceptual framework represents the more integrated and related applicable concept from the grounded theory. A design of integrated evaluation methodology for aquaculture lakes is presented. The method is based on the identification of a series of attributes which can be used to describe status of aquaculture lakes using certain indicators from aquaculture water quality index (AWQI), aesthetic aquaculture lake index (AALI) and rapid appraisal for fisheries index (RAPFISH). The preliminary preparation could be accomplished as follows: first, the characterization of study area was undertaken at different spatial scales. Second, an inventory data as a core resource such as city master plan, water quality reports from environmental agency, and related government regulations. Third, ground-checking survey should be completed to validate the on-site condition of study area. In order to design an integrated evaluation methodology for aquaculture lakes, finally we integrated and developed rating scores system which called Integrated Aquaculture Lake Index (IALI).The development of IALI are reflecting a compromise all aspects and it responds the needs of concise information about the current status of aquaculture lakes by the comprehensive approach. IALI was elaborated as a decision aid tool for stakeholders to evaluate the impact and contribution of anthropogenic activities on the aquaculture lake’s environment. The conclusion was while there is no denying the fact that the aquaculture lakes are under great threat from the pressure of the increasing human activities, one must realize that no evaluation methodology for aquaculture lakes can succeed by keeping the pristine condition. The IALI developed in this work can be used as an effective, low-cost evaluation methodology of aquaculture lakes for developing countries. Because IALI emphasizes the simplicity and understandability as it must communicate to decision makers and the experts. Moreover, stakeholders need to be helped to perceive their lakes so that sites can be accepted and valued by local people. For this site of lake development, accessibility and planning designation of the site is of decisive importance: the local people want to know whether the lake condition is safe or whether it can be used.

Keywords: aesthetic value, AHP, aquaculture lakes, integrated lakes, RAPFISH

Procedia PDF Downloads 211
256 Ultra-High Molecular Weight Polyethylene (UHMWPE) for Radiation Dosimetry Applications

Authors: Malik Sajjad Mehmood, Aisha Ali, Hamna Khan, Tariq Yasin, Masroor Ikram

Abstract:

Ultra-high molecular weight polyethylene (UHMWPE) is one of the polymers belongs to polyethylene (PE) family having monomer –CH2– and average molecular weight is approximately 3-6 million g/mol. Due its chemical, mechanical, physical and biocompatible properties, it has been extensively used in the field of electrical insulation, medicine, orthopedic, microelectronics, engineering, chemistry and the food industry etc. In order to alter/modify the properties of UHMWPE for particular application of interest, certain various procedures are in practice e.g. treating the material with high energy irradiations like gamma ray, e-beam, and ion bombardment. Radiation treatment of UHMWPE induces free radicals within its matrix, and these free radicals are the precursors of chain scission, chain accumulation, formation of double bonds, molecular emission, crosslinking etc. All the aforementioned physical and chemical processes are mainly responsible for the modification of polymers properties to use them in any particular application of our interest e.g. to fabricate LEDs, optical sensors, antireflective coatings, polymeric optical fibers, and most importantly for radiation dosimetry applications. It is therefore, to check the feasibility of using UHMWPE for radiation dosimetery applications, the compressed sheets of UHMWPE were irradiated at room temperature (~25°C) for total dose values of 30 kGy and 100 kGy, respectively while one were kept un-irradiated as reference. Transmittance data (from 400 nm to 800 nm) of e-beam irradiated UHMWPE and its hybrids were measured by using Muller matrix spectro-polarimeter. As a result significant changes occur in the absorption behavior of irradiated samples. To analyze these (radiation induced) changes in polymer matrix Urbach edge method and modified Tauc’s equation has been used. The results reveal that optical activation energy decreases with irradiation. The values of activation energies are 2.85 meV, 2.48 meV, and 2.40 meV for control, 30 kGy, and 100 kGy samples, respectively. Direct and indirect energy band gaps were also found to decrease with irradiation due to variation of C=C unsaturation in clusters. We believe that the reported results would open new horizons for radiation dosimetery applications.

Keywords: electron beam, radiation dosimetry, Tauc’s equation, UHMWPE, Urbach method

Procedia PDF Downloads 391
255 Development of Positron Emission Tomography (PET) Tracers for the in-Vivo Imaging of α-Synuclein Aggregates in α-Synucleinopathies

Authors: Bright Chukwunwike Uzuegbunam, Wojciech Paslawski, Hans Agren, Christer Halldin, Wolfgang Weber, Markus Luster, Thomas Arzberger, Behrooz Hooshyar Yousefi

Abstract:

There is a need to develop a PET tracer that will enable to diagnosis and track the progression of Alpha-synucleinopathies (Parkinson’s disease [PD], dementia with Lewy bodies [DLB], multiple system atrophy [MSA]) in living subjects over time. Alpha-synuclein aggregates (a-syn), which are present in all the stages of disease progression, for instance, in PD, are a suitable target for in vivo PET imaging. For this reason, we have developed some promising a-syn tracers based on a disarylbisthiazole (DABTA) scaffold. The precursors are synthesized via a modified Hantzsch thiazole synthesis. The precursors were then radiolabeled via one- or two-step radiofluorination methods. The ligands were initially screened using a combination of molecular dynamics and quantum/molecular mechanics approaches in order to calculate the binding affinity to a-syn (in silico binding experiments). Experimental in vitro binding assays were also performed. The ligands were further screened in other experiments such as log D, in vitro plasma protein binding & plasma stability, biodistribution & brain metabolite analyses in healthy mice. Radiochemical yields were up to 30% - 72% in some cases. Molecular docking revealed possible binding sites in a-syn and also the free energy of binding to those sites (-28.9 - -66.9 kcal/mol), which correlated to the high binding affinity of the DABTAs to a-syn (Ki as low as 0.5 nM) and selectivity (> 100-fold) over Aβ and tau, which usually co-exist with a-synin some pathologies. The log D values range from 2.88 - 2.34, which correlated with free-protein fraction of 0.28% - 0.5%. Biodistribution experiments revealed that the tracers are taken up (5.6 %ID/g - 7.3 %ID/g) in the brain at 5 min (post-injection) p.i., and cleared out (values as low as 0.39 %ID/g were obtained at 120 min p.i. Analyses of the mice brain 20 min p.i. Revealed almost no radiometabolites in the brain in most cases. It can be concluded that in silico study presents a new venue for the rational development of radioligands with suitable features. The results obtained so far are promising and encourage us to further validate the DABTAs in autoradiography, immunohistochemistry, and in vivo imaging in non-human primates and humans.

Keywords: alpha-synuclein aggregates, alpha-synucleinopathies, PET imaging, tracer development

Procedia PDF Downloads 208
254 Digital Phase Shifting Holography in a Non-Linear Interferometer using Undetected Photons

Authors: Sebastian Töpfer, Marta Gilaberte Basset, Jorge Fuenzalida, Fabian Steinlechner, Juan P. Torres, Markus Gräfe

Abstract:

This work introduces a combination of digital phase-shifting holography with a non-linear interferometer using undetected photons. Non-linear interferometers can be used in combination with a measurement scheme called quantum imaging with undetected photons, which allows for the separation of the wavelengths used for sampling an object and detecting it in the imaging sensor. This method recently faced increasing attention, as it allows to use of exotic wavelengths (e.g., mid-infrared, ultraviolet) for object interaction while at the same time keeping the detection in spectral areas with highly developed, comparable low-cost imaging sensors. The object information, including its transmission and phase influence, is recorded in the form of an interferometric pattern. To collect these, this work combines the method of quantum imaging with undetected photons with digital phase-shifting holography with a minimal sampling of the interference. With this, the quantum imaging scheme gets extended in its measurement capabilities and brings it one step closer to application. Quantum imaging with undetected photons uses correlated photons generated by spontaneous parametric down-conversion in a non-linear interferometer to create indistinguishable photon pairs, which leads to an effect called induced coherence without induced emission. Placing an object inside changes the interferometric pattern depending on the object’s properties. Digital phase-shifting holography records multiple images of the interference with determined phase shifts to reconstruct the complete interference shape, which can afterward be used to analyze the changes introduced by the object and conclude its properties. An extensive characterization of this method was done using a proof-of-principle setup. The measured spatial resolution, phase accuracy, and transmission accuracy are compared for different combinations of camera exposure times and the number of interference sampling steps. The current limits of this method are shown to allow further improvements. To summarize, this work presents an alternative holographic measurement method using non-linear interferometers in combination with quantum imaging to enable new ways of measuring and motivating continuing research.

Keywords: digital holography, quantum imaging, quantum holography, quantum metrology

Procedia PDF Downloads 69
253 Estimating CO₂ Storage Capacity under Geological Uncertainty Using 3D Geological Modeling of Unconventional Reservoir Rocks in Block nv32, Shenvsi Oilfield, China

Authors: Ayman Mutahar Alrassas, Shaoran Ren, Renyuan Ren, Hung Vo Thanh, Mohammed Hail Hakimi, Zhenliang Guan

Abstract:

The significant effect of CO₂ on global climate and the environment has gained more concern worldwide. Enhance oil recovery (EOR) associated with sequestration of CO₂ particularly into the depleted oil reservoir is considered the viable approach under financial limitations since it improves the oil recovery from the existing oil reservoir and boosts the relation between global-scale of CO₂ capture and geological sequestration. Consequently, practical measurements are required to attain large-scale CO₂ emission reduction. This paper presents an integrated modeling workflow to construct an accurate 3D reservoir geological model to estimate the storage capacity of CO₂ under geological uncertainty in an unconventional oil reservoir of the Paleogene Shahejie Formation (Es1) in the block Nv32, Shenvsi oilfield, China. In this regard, geophysical data, including well logs of twenty-two well locations and seismic data, were combined with geological and engineering data and used to construct a 3D reservoir geological modeling. The geological modeling focused on four tight reservoir units of the Shahejie Formation (Es1-x1, Es1-x2, Es1-x3, and Es1-x4). The validated 3D reservoir models were subsequently used to calculate the theoretical CO₂ storage capacity in the block Nv32, Shenvsi oilfield. Well logs were utilized to predict petrophysical properties such as porosity and permeability, and lithofacies and indicate that the Es1 reservoir units are mainly sandstone, shale, and limestone with a proportion of 38.09%, 32.42%, and 29.49, respectively. Well log-based petrophysical results also show that the Es1 reservoir units generally exhibit 2–36% porosity, 0.017 mD to 974.8 mD permeability, and moderate to good net to gross ratios. These estimated values of porosity, permeability, lithofacies, and net to gross were up-scaled and distributed laterally using Sequential Gaussian Simulation (SGS) and Simulation Sequential Indicator (SIS) methods to generate 3D reservoir geological models. The reservoir geological models show there are lateral heterogeneities of the reservoir properties and lithofacies, and the best reservoir rocks exist in the Es1-x4, Es1-x3, and Es1-x2 units, respectively. In addition, the reservoir volumetric of the Es1 units in block Nv32 was also estimated based on the petrophysical property models and fund to be between 0.554368

Keywords: CO₂ storage capacity, 3D geological model, geological uncertainty, unconventional oil reservoir, block Nv32

Procedia PDF Downloads 147
252 Possibilities of Psychodiagnostics in the Context of Highly Challenging Situations in Military Leadership

Authors: Markéta Chmelíková, David Ullrich, Iva Burešová

Abstract:

The paper maps the possibilities and limits of diagnosing selected personality and performance characteristics of military leadership and psychology students in the context of coping with challenging situations. Individuals vary greatly inter-individually in their ability to effectively manage extreme situations, yet existing diagnostic tools are often criticized mainly for their low predictive power. Nowadays, every modern army focuses primarily on the systematic minimization of potential risks, including the prediction of desirable forms of behavior and the performance of military commanders. The context of military leadership is well known for its life-threatening nature. Therefore, it is crucial to research stress load in the specific context of military leadership for the purpose of possible anticipation of human failure in managing extreme situations of military leadership. The aim of the submitted pilot study, using an experiment of 24 hours duration, is to verify the possibilities of a specific combination of psychodiagnostic to predict people who possess suitable equipment for coping with increased stress load. In our pilot study, we conducted an experiment of 24 hours duration with an experimental group (N=13) in the bomb shelter and a control group (N=11) in a classroom. Both groups were represented by military leadership students (N=11) and psychology students (N=13). Both groups were equalized in terms of study type and gender. Participants were administered the following test battery of personality characteristics: Big Five Inventory 2 (BFI-2), Short Dark Triad (SD-3), Emotion Regulation Questionnaire (ERQ), Fatigue Severity Scale (FSS), and Impulsive Behavior Scale (UPPS-P). This test battery was administered only once at the beginning of the experiment. Along with this, they were administered a test battery consisting of the Test of Attention (d2) and the Bourdon test four times overall with 6 hours ranges. To better simulate an extreme situation – we tried to induce sleep deprivation - participants were required to try not to fall asleep throughout the experiment. Despite the assumption that a stay in an underground bomb shelter will manifest in impaired cognitive performance, this expectation has been significantly confirmed in only one measurement, which can be interpreted as marginal in the context of multiple testing. This finding is a fundamental insight into the issue of stress management in extreme situations, which is crucial for effective military leadership. The results suggest that a 24-hour stay in a shelter, together with sleep deprivation, does not seem to simulate sufficient stress for an individual, which would be reflected in the level of cognitive performance. In the context of these findings, it would be interesting in future to extend the diagnostic battery with physiological indicators of stress, such as: heart rate, stress score, physical stress, mental stress ect.

Keywords: bomb shelter, extreme situation, military leadership, psychodiagnostic

Procedia PDF Downloads 68
251 Method for Requirements Analysis and Decision Making for Restructuring Projects in Factories

Authors: Rene Hellmuth

Abstract:

The requirements for the factory planning and the building concerned have changed in the last years. Factory planning has the task of designing products, plants, processes, organization, areas, and the building of a factory. Regular restructuring gains more importance in order to maintain the competitiveness of a factory. Restrictions regarding new areas, shorter life cycles of product and production technology as well as a VUCA (volatility, uncertainty, complexity and ambiguity) world cause more frequently occurring rebuilding measures within a factory. Restructuring of factories is the most common planning case today. Restructuring is more common than new construction, revitalization and dismantling of factories. The increasing importance of restructuring processes shows that the ability to change was and is a promising concept for the reaction of companies to permanently changing conditions. The factory building is the basis for most changes within a factory. If an adaptation of a construction project (factory) is necessary, the inventory documents must be checked and often time-consuming planning of the adaptation must take place to define the relevant components to be adapted, in order to be able to finally evaluate them. The different requirements of the planning participants from the disciplines of factory planning (production planner, logistics planner, automation planner) and industrial construction planning (architect, civil engineer) come together during reconstruction and must be structured. This raises the research question: Which requirements do the disciplines involved in the reconstruction planning place on a digital factory model? A subordinate research question is: How can model-based decision support be provided for a more efficient design of the conversion within a factory? Because of the high adaptation rate of factories and its building described above, a methodology for rescheduling factories based on the requirements engineering method from software development is conceived and designed for practical application in factory restructuring projects. The explorative research procedure according to Kubicek is applied. Explorative research is suitable if the practical usability of the research results has priority. Furthermore, it will be shown how to best use a digital factory model in practice. The focus will be on mobile applications to meet the needs of factory planners on site. An augmented reality (AR) application will be designed and created to provide decision support for planning variants. The aim is to contribute to a shortening of the planning process and model-based decision support for more efficient change management. This requires the application of a methodology that reduces the deficits of the existing approaches. The time and cost expenditure are represented in the AR tablet solution based on a building information model (BIM). Overall, the requirements of those involved in the planning process for a digital factory model in the case of restructuring within a factory are thus first determined in a structured manner. The results are then applied and transferred to a construction site solution based on augmented reality.

Keywords: augmented reality, digital factory model, factory planning, restructuring

Procedia PDF Downloads 102
250 Levels of Heavy Metals and Arsenic in Sediment and in Clarias Gariepinus, of Lake Ngami

Authors: Nashaat Mazrui, Oarabile Mogobe, Barbara Ngwenya, Ketlhatlogile Mosepele, Mangaliso Gondwe

Abstract:

Over the last several decades, the world has seen a rapid increase in activities such as deforestation, agriculture, and energy use. Subsequently, trace elements are being deposited into our water bodies, where they can accumulate to toxic levels in aquatic organisms and can be transferred to humans through fish consumption. Thus, though fish is a good source of essential minerals and omega-3 fatty acids, it can also be a source of toxic elements. Monitoring trace elements in fish is important for the proper management of aquatic systems and the protection of human health. The aim of this study was to determine concentrations of trace elements in sediment and muscle tissues of Clarias gariepinus at Lake Ngami, in the Okavango Delta in northern Botswana, during low floods. The fish were bought from local fishermen, and samples of muscle tissue were acid-digested and analyzed for iron, zinc, copper, manganese, molybdenum, nickel, chromium, cadmium, lead, and arsenic using inductively coupled plasma optical emission spectroscopy (ICP-OES). Sediment samples were also collected and analyzed for the elements and for organic matter content. Results show that in all samples, iron was found in the greatest amount while cadmium was below the detection limit. Generally, the concentrations of elements in sediment were higher than in fish except for zinc and arsenic. While the concentration of zinc was similar in the two media, arsenic was almost 3 times higher in fish than sediment. To evaluate the risk to human health from fish consumption, the target hazard quotient (THQ) and cancer risk for an average adult in Botswana, sub-Saharan Africa, and riparian communities in the Okavango Delta was calculated for each element. All elements were found to be well below regulatory limits and do not pose a threat to human health except arsenic. The results suggest that other benthic feeding fish species could potentially have high arsenic levels too. This has serious implications for human health, especially riparian households to whom fish is a key component of food and nutrition security.

Keywords: Arsenic, African sharp tooth cat fish, Okavango delta, trace elements

Procedia PDF Downloads 157
249 Climate Change Adaptation Strategy Recommended for the Conservation of Biodiversity in Western Ghats, India

Authors: Mukesh Lal Das, Muthukumar Muthuchamy

Abstract:

Climate change Adaptation strategy (AS) is a scientific approach to dealing with the impacts of climate change (CC). Efforts are being made to contain the global emission of greenhouse gas within threshold limits, thereby limiting the rise of global temperature to an optimal level. Global Climate change is a spontaneous process; therefore, reversing the damage would take decades. The climate change adaptation strategy recommended by various stakeholders could be a key to resilience for biodiversity. The Indian Government has constituted the panel to synthesize the climate change action report at the federal and state levels. This review scavenged the published literature on the Western Ghats hotspots. And highlight the adaptation strategy recommended by diverse scientific actors to conserve biodiversity. It also reviews the grey literature adopted by state and federal governments and its effectiveness in mitigating the impacts on biodiversity. We have narrowed the scope of interest to the state action report by 6 Indian states such as Gujarat, Maharashtra, Goa, Karnataka, Kerala and Tamil Nadu, which host Western Ghats global biodiversity hotspot. Western Ghats(WGs) act as the water tower to the peninsular part of India, and its extensive watershed caters to the water demand of the Industry sector, Agriculture and urban community. Conservation of WGs is the key to the prosperity of Peninsular India. The global scientific community suggested more than 600+ Climate change adaptation strategies for the policymakers, stakeholders, and other state actors to take proactive actions. The preliminary analysis of the federal and the state action plan on climate change in the wake of CC indicate inadequacy in motion as per recommended scientific adaptation strategies. Tamil Nadu and Kerala state constitute nine effective adaptation strategies out of the 40+ recommended for Western Ghats conservation. And other four states' adaptation strategies are deficient, confusing and vague. Western Ghats' resilience capacity will soon or might have reached its threshold, and the frequency of severe drought and flash floods might upsurge manifold in the decades to come. The lack of a clear roadmap to climate change adaptation strategies in the federal and state action stirred us to identify the gap and address it by offering a holistic approach to WGs biodiversity conservation.

Keywords: adaptation strategy, biodiversity conservation, climate change, resilience, Western Ghats

Procedia PDF Downloads 82
248 Comparison of GIS-Based Soil Erosion Susceptibility Models Using Support Vector Machine, Binary Logistic Regression and Artificial Neural Network in the Southwest Amazon Region

Authors: Elaine Lima Da Fonseca, Eliomar Pereira Da Silva Filho

Abstract:

The modeling of areas susceptible to soil loss by hydro erosive processes consists of a simplified instrument of reality with the purpose of predicting future behaviors from the observation and interaction of a set of geoenvironmental factors. The models of potential areas for soil loss will be obtained through binary logistic regression, artificial neural networks, and support vector machines. The choice of the municipality of Colorado do Oeste in the south of the western Amazon is due to soil degradation due to anthropogenic activities, such as agriculture, road construction, overgrazing, deforestation, and environmental and socioeconomic configurations. Initially, a soil erosion inventory map constructed through various field investigations will be designed, including the use of remotely piloted aircraft, orbital imagery, and the PLANAFLORO/RO database. 100 sampling units with the presence of erosion will be selected based on the assumptions indicated in the literature, and, to complement the dichotomous analysis, 100 units with no erosion will be randomly designated. The next step will be the selection of the predictive parameters that exert, jointly, directly, or indirectly, some influence on the mechanism of occurrence of soil erosion events. The chosen predictors are altitude, declivity, aspect or orientation of the slope, curvature of the slope, composite topographic index, flow power index, lineament density, normalized difference vegetation index, drainage density, lithology, soil type, erosivity, and ground surface temperature. After evaluating the relative contribution of each predictor variable, the erosion susceptibility model will be applied to the municipality of Colorado do Oeste - Rondônia through the SPSS Statistic 26 software. Evaluation of the model will occur through the determination of the values of the R² of Cox & Snell and the R² of Nagelkerke, Hosmer and Lemeshow Test, Log Likelihood Value, and Wald Test, in addition to analysis of the Confounding Matrix, ROC Curve and Accumulated Gain according to the model specification. The validation of the synthesis map resulting from both models of the potential risk of soil erosion will occur by means of Kappa indices, accuracy, and sensitivity, as well as by field verification of the classes of susceptibility to erosion using drone photogrammetry. Thus, it is expected to obtain the mapping of the following classes of susceptibility to erosion very low, low, moderate, very high, and high, which may constitute a screening tool to identify areas where more detailed investigations need to be carried out, applying more efficient social resources.

Keywords: modeling, susceptibility to erosion, artificial intelligence, Amazon

Procedia PDF Downloads 41
247 Advancing the Analysis of Physical Activity Behaviour in Diverse, Rapidly Evolving Populations: Using Unsupervised Machine Learning to Segment and Cluster Accelerometer Data

Authors: Christopher Thornton, Niina Kolehmainen, Kianoush Nazarpour

Abstract:

Background: Accelerometers are widely used to measure physical activity behavior, including in children. The traditional method for processing acceleration data uses cut points, relying on calibration studies that relate the quantity of acceleration to energy expenditure. As these relationships do not generalise across diverse populations, they must be parametrised for each subpopulation, including different age groups, which is costly and makes studies across diverse populations difficult. A data-driven approach that allows physical activity intensity states to emerge from the data under study without relying on parameters derived from external populations offers a new perspective on this problem and potentially improved results. We evaluated the data-driven approach in a diverse population with a range of rapidly evolving physical and mental capabilities, namely very young children (9-38 months old), where this new approach may be particularly appropriate. Methods: We applied an unsupervised machine learning approach (a hidden semi-Markov model - HSMM) to segment and cluster the accelerometer data recorded from 275 children with a diverse range of physical and cognitive abilities. The HSMM was configured to identify a maximum of six physical activity intensity states and the output of the model was the time spent by each child in each of the states. For comparison, we also processed the accelerometer data using published cut points with available thresholds for the population. This provided us with time estimates for each child’s sedentary (SED), light physical activity (LPA), and moderate-to-vigorous physical activity (MVPA). Data on the children’s physical and cognitive abilities were collected using the Paediatric Evaluation of Disability Inventory (PEDI-CAT). Results: The HSMM identified two inactive states (INS, comparable to SED), two lightly active long duration states (LAS, comparable to LPA), and two short-duration high-intensity states (HIS, comparable to MVPA). Overall, the children spent on average 237/392 minutes per day in INS/SED, 211/129 minutes per day in LAS/LPA, and 178/168 minutes in HIS/MVPA. We found that INS overlapped with 53% of SED, LAS overlapped with 37% of LPA and HIS overlapped with 60% of MVPA. We also looked at the correlation between the time spent by a child in either HIS or MVPA and their physical and cognitive abilities. We found that HIS was more strongly correlated with physical mobility (R²HIS =0.5, R²MVPA= 0.28), cognitive ability (R²HIS =0.31, R²MVPA= 0.15), and age (R²HIS =0.15, R²MVPA= 0.09), indicating increased sensitivity to key attributes associated with a child’s mobility. Conclusion: An unsupervised machine learning technique can segment and cluster accelerometer data according to the intensity of movement at a given time. It provides a potentially more sensitive, appropriate, and cost-effective approach to analysing physical activity behavior in diverse populations, compared to the current cut points approach. This, in turn, supports research that is more inclusive across diverse populations.

Keywords: physical activity, machine learning, under 5s, disability, accelerometer

Procedia PDF Downloads 180
246 Multi-Walled Carbon Nanotubes Doped Poly (3,4 Ethylenedioxythiophene) Composites Based Electrochemical Nano-Biosensor for Organophosphate Detection

Authors: Navpreet Kaur, Himkusha Thakur, Nirmal Prabhakar

Abstract:

One of the most publicized and controversial issue in crop production is the use of agrichemicals- also known as pesticides. This is evident in many reports that Organophosphate (OP) insecticides, among the broad range of pesticides are mainly involved in acute and chronic poisoning cases. Therefore, detection of OPs is very necessary for health protection, food and environmental safety. In our study, a nanocomposite of poly (3,4 ethylenedioxythiophene) (PEDOT) and multi-walled carbon nanotubes (MWCNTs) has been deposited electrochemically onto the surface of fluorine doped tin oxide sheets (FTO) for the analysis of malathion OP. The -COOH functionalization of MWCNTs has been done for the covalent binding with amino groups of AChE enzyme. The use of PEDOT-MWCNT films exhibited an excellent conductivity, enables fast transfer kinetics and provided a favourable biocompatible microenvironment for AChE, for the significant malathion OP detection. The prepared PEDOT-MWCNT/FTO and AChE/PEDOT-MWCNT/FTO nano-biosensors were characterized by Fourier transform infrared spectrometry (FTIR), Field emission-scanning electron microscopy (FE-SEM) and electrochemical studies. Electrochemical studies were done using Cyclic Voltammetry (CV) or Differential Pulse Voltammetry (DPV) and Electrochemical Impedance Spectroscopy (EIS). Various optimization studies were done for different parameters including pH (7.5), AChE concentration (50 mU), substrate concentration (0.3 mM) and inhibition time (10 min). The detection limit for malathion OP was calculated to be 1 fM within the linear range 1 fM to 1 µM. The activity of inhibited AChE enzyme was restored to 98% of its original value by 2-pyridine aldoxime methiodide (2-PAM) (5 mM) treatment for 11 min. The oxime 2-PAM is able to remove malathion from the active site of AChE by means of trans-esterification reaction. The storage stability and reusability of the prepared nano-biosensor is observed to be 30 days and seven times, respectively. The application of the developed nano-biosensor has also been evaluated for spiked lettuce sample. Recoveries of malathion from the spiked lettuce sample ranged between 96-98%. The low detection limit obtained by the developed nano-biosensor made them reliable, sensitive and a low cost process.

Keywords: PEDOT-MWCNT, malathion, organophosphates, acetylcholinesterase, nano-biosensor, oxime (2-PAM)

Procedia PDF Downloads 409
245 Pandemic-Related Disruption to the Home Environment and Early Vocabulary Acquisition

Authors: Matthew McArthur, Margaret Friend

Abstract:

The COVID-19 pandemic disrupted the stability of the home environment for families across the world. Potential disruptions include parent work modality (in-person vs. remote), levels of health anxiety, family routines, and caregiving. These disruptions may have interfered with the processes of early vocabulary acquisition, carrying lasting effects over the life course. Our justification for this research is as follows: First, early, stable, caregiver-child reciprocal interactions, which may have been disrupted during the pandemic, contribute to the development of the brain architecture that supports language, cognitive, and social-emotional development. Second, early vocabulary predicts several cognitive outcomes, such as numeracy, literacy, and executive function. Further, disruption in the home is associated with adverse cognitive, academic, socio-emotional, behavioral, and communication outcomes in young children. We are interested in how disruptions related to the COVID-19 pandemic are associated with vocabulary acquisition in children born during the first two waves of the pandemic. We are conducting a moderated online experiment to assess this question. Participants are 16 children (10F) ranging in age from 19 to 39 months (M=25.27) and their caregivers. All child participants were screened for language background, health history, and history of language disorders, and were typically developing. Parents completed a modified version of the COVID-19 Family Stressor Scale (CoFaSS), a published measure of COVID-19-related family stressors. Thirteen items from the original scale were replaced to better capture change in family organization and stability specifically related to disruptions in income, anxiety, family relations, and childcare. Following completion of the modified CoFaSS, children completed a Web-Based version of the Computerized Comprehension Task and the Receptive One Word Picture Vocabulary if 24 months or older or the MacArthur-Bates Communicative Development Inventory if younger than 24 months. We report our preliminary data as a partial correlation analysis controlling for age. Raw vocabulary scores on the CCT, ROWPVT-4, and MCDI were all negatively associated with pandemic-related disruptions related to anxiety (r12=-.321; r1=-.332; r9=-.509), family relations (r12=-.590*; r1=-.155; r9=-.468), and childcare (r12=-.294; r1=-.468; r9=-.177). Although the small sample size for these preliminary data limits our power to detect significance, this trend is in the predicted direction, suggesting that increased pandemic-related disruption across multiple domains is associated with lower vocabulary scores. We anticipate presenting data on a full sample of 50 monolingual English participants. A sample of 50 participants would provide sufficient statistical power to detect a moderate effect size, adhering to a nominal alpha of 0.05 and ensuring a power level of 0.80.

Keywords: COVID-19, early vocabulary, home environment, language acquisition, multiple measures

Procedia PDF Downloads 44
244 A Generation Outside: Afghan Refugees in Greece 2003-2016

Authors: Kristina Colovic, Mari Janikian, Nikolaos Takis, Fotini-Sonia Apergi

Abstract:

A considerable number of Afghan asylum seekers in Greece are still waiting for answers about their future and status for personal, social and societal advancement. Most have been trapped in a stalemate of continuously postponed or temporarily progressed levels of integration into the EU/Greek process of asylum. Limited quantitative research exists investigating the psychological effects of long-term displacement among Afghans refugees in Greece. The purpose of this study is to investigate factors that are associated with and predict psychological distress symptoms among this population. Data from a sample of native Afghan nationals (N > 70) living in Greece for approximately the last ten years will be collected from May to July 2016. Criteria for participation include the following: being 18 years of age or older, and emigration from Afghanistan to Greece from 2003 onwards (i.e., long-term refugees or part of the 'old system of asylum'). Snowball sampling will be used to recruit participants, as this is considered the most effective option when attempting to study refugee populations. Participants will complete self-report questionnaires, consisting of the Afghan Symptom Checklist (ASCL), a culturally validated measure of psychological distress, the World Health Organization Quality of Life scale (WHOQOL-BREF), an adapted version of the Comprehensive Trauma Inventory-104 (CTI-104), and a modified Psychological Acculturation Scale. All instruments will be translated in Greek, through the use of forward- and back-translations by bilingual speakers of English and Greek, following WHO guidelines. A pilot study with 5 Afghan participants will take place to check for discrepancies in understanding and for further adapting the instruments as needed. Demographic data, including age, gender, year of arrival to Greece and current asylum status will be explored. Three different types of analyses (descriptive statistics, bivariate correlations, and multivariate linear regression) will be used in this study. Descriptive findings for respondent demographics, psychological distress symptoms, traumatic life events and quality of life will be reported. Zero-order correlations will assess the interrelationships among demographic, traumatic life events, psychological distress, and quality of life variables. Lastly, a multivariate linear regression model will be estimated. The findings from the study will contribute to understanding the determinants of acculturation, distress and trauma on daily functioning for Afghans in Greece. The main implications of the current study will be to advocate for capacity building and empower communities through effective program evaluation and design for mental health services for all refugee populations in Greece.

Keywords: Afghan refugees, evaluation, Greece, mental health, quality of life

Procedia PDF Downloads 265
243 Safety and Maternal Anxiety in Mother's and Baby's Sleep: Cross-sectional Study

Authors: Rayanne Branco Dos Santos Lima, Lorena Pinheiro Barbosa, Kamila Ferreira Lima, Victor Manuel Tegoma Ruiz, Monyka Brito Lima Dos Santos, Maria Wendiane Gueiros Gaspar, Luzia Camila Coelho Ferreira, Leandro Cardozo Dos Santos Brito, Deyse Maria Alves Rocha

Abstract:

Introduction: The lack of regulation of the baby's sleep-wake pattern in the first years of life affects the health of thousands of women. Maternal sleep deprivation can trigger or aggravate psychosomatic problems such as depression, anxiety and stress that can directly influence maternal safety, with consequences for the baby's and mother's sleep. Such conditions can affect the family's quality of life and child development. Objective: To correlate maternal security with maternal state anxiety scores and the mother's and baby's total sleep time. Method: Cross-sectional study carried out with 96 mothers of babies aged 10 to 24 months, accompanied by nursing professionals linked to a Federal University in Northeast Brazil. Study variables were maternal security, maternal state anxiety scores, infant latency and sleep time, and total nocturnal sleep time of mother and infant. Maternal safety was calculated using a four-point Likert scale (1=not at all safe, 2=somewhat safe, 3=very safe, 4=completely safe). Maternal anxiety was measured by State-Trait Anxiety Inventory, state-anxiety subscale whose scores vary from 20 to 80 points, and the higher the score, the higher the anxiety levels. Scores below 33 are considered mild; from 33 to 49, moderate and above 49, high. As for the total nocturnal sleep time, values between 7-9 hours of sleep were considered adequate for mothers, and values between 9-12 hours for the baby, according to the guidelines of the National Sleep Foundation. For the sleep latency time, a time equal to or less than 20 min was considered adequate. It is noteworthy that the latency time and the time of night sleep of the mother and the baby were obtained by the mother's subjective report. To correlate the data, Spearman's correlation was used in the statistical package R version 3.6.3. Results: 96 women and babies participated, aged 22 to 38 years (mean 30.8) and 10 to 24 months (mean 14.7), respectively. The average of maternal security was 2.89 (unsafe); Mean maternal state anxiety scores were 43.75 (moderate anxiety). The babies' average sleep latency time was 39.6 min (>20 min). The mean sleep times of the mother and baby were, respectively, 6h and 42min and 8h and 19min, both less than the recommended nocturnal sleep time. Maternal security was positively correlated with maternal state anxiety scores (rh=266, p=0.009) and negatively correlated with infant sleep latency (rh= -0.30. P=0.003). Baby sleep time was positively correlated with maternal sleep time. (rh 0.46, p<0.001). Conclusion: The more secure the mothers considered themselves, the higher the anxiety scores and the shorter the baby's sleep latency. Also, the longer the baby sleeps, the longer the mother sleeps. Thus, interventions are needed to promote the quality and efficiency of sleep for both mother and baby.

Keywords: sleep, anxiety, infant, mother-child relations

Procedia PDF Downloads 73