Search results for: electronic components
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5469

Search results for: electronic components

249 Enhancing Archaeological Sites: Interconnecting Physically and Digitally

Authors: Eleni Maistrou, D. Kosmopoulos, Carolina Moretti, Amalia Konidi, Katerina Boulougoura

Abstract:

InterArch is an ongoing research project that has been running since September 2020. It aims to propose the design of a site-based digital application for archaeological sites and outdoor guided tours, supporting virtual and augmented reality technology. The research project is co‐financed by the European Union and Greek national funds, through the Operational Program Competitiveness, Entrepreneurship, and Innovation, under the call RESEARCH - CREATE – INNOVATE (project code: Τ2ΕΔΚ-01659). It involves mutual collaboration between academic and cultural institutions and the contribution of an IT applications development company. The research will be completed by July 2023 and will run as a pilot project for the city of Ancient Messene, a place of outstanding natural beauty in the west of Peloponnese, which is considered one of the most important archaeological sites in Greece. The applied research project integrates an interactive approach to the natural environment, aiming at a manifold sensory experience. It combines the physical space of the archaeological site with the digital space of archaeological and cultural data while at the same time, it embraces storytelling processes by engaging an interdisciplinary approach that familiarizes the user with multiple semantic interpretations. The mingling of the real-world environment with its digital and cultural components by using augmented reality techniques could potentially transform the visit on-site into an immersive multimodal sensory experience. To this purpose, an extensive spatial analysis along with a detailed evaluation of the existing digital and non-digital archives is proposed in our project, intending to correlate natural landscape morphology (including archaeological material remains and environmental characteristics) with the extensive historical records and cultural digital data. On-site research was carried out, during which visitors’ itineraries were monitored and tracked throughout the archaeological visit using GPS locators. The results provide our project with useful insight concerning the way visitors engage and interact with their surroundings, depending on the sequence of their itineraries and the duration of stay at each location. InterArch aims to propose the design of a site-based digital application for archaeological sites and outdoor guided tours, supporting virtual and augmented reality technology. Extensive spatial analysis, along with a detailed evaluation of the existing digital and non-digital archives, is used in our project, intending to correlate natural landscape morphology with the extensive historical records and cultural digital data. The results of the on-site research provide our project with useful insight concerning the way visitors engage and interact with their surroundings, depending on the sequence of their itineraries and the duration of stay at each location.

Keywords: archaeological site, digital space, semantic interpretations, cultural heritage

Procedia PDF Downloads 46
248 Analysis of the Potential of Biomass Residues for Energy Production and Applications in New Materials

Authors: Sibele A. F. Leite, Bernno S. Leite, José Vicente H. D´Angelo, Ana Teresa P. Dell’Isola, Julio CéSar Souza

Abstract:

The generation of bioenergy is one of the oldest and simplest biomass applications and is one of the safest options for minimizing emissions of greenhouse gasses and replace the use of fossil fuels. In addition, the increasing development of technologies for energy biomass conversion parallel to the advancement of research in biotechnology and engineering has enabled new opportunities for exploitation of biomass. Agricultural residues offer great potential for energy use, and Brazil is in a prominent position in the production and export of agricultural products such as banana and rice. Despite the economic importance of the growth prospects of these activities and the increasing of the agricultural waste, they are rarely explored for energy and production of new materials. Brazil products almost 10.5 million tons/year of rice husk and 26.8 million tons/year of banana stem. Thereby, the aim of this study was to analysis the potential of biomass residues for energy production and applications in new materials. Rice husk (specify the type) and banana stem (specify the type) were characterized by physicochemical analyses using the following parameters: organic carbon, nitrogen (NTK), proximate analyses, FT-IR spectroscopy, thermogravimetric analyses (TG), calorific values and silica content. Rice husk and banana stem presented attractive superior calorific (from 11.5 to 13.7MJ/kg), and they may be compared to vegetal coal (21.25 MJ/kg). These results are due to the high organic matter content. According to the proximate analysis, biomass has high carbon content (fixed and volatile) and low moisture and ash content. In addition, data obtained by Walkley–Black method point out that most of the carbon present in the rice husk (50.5 wt%) and in banana stalk (35.5 wt%) should be understood as organic carbon (readily oxidizable). Organic matter was also detected by Kjeldahl method which gives the values of nitrogen (especially on the organic form) for both residues: 3.8 and 4.7 g/kg of rice husk and banana stem respectively. TG and DSC analyses support the previous results, as they can provide information about the thermal stability of the samples allowing a correlation between thermal behavior and chemical composition. According to the thermogravimetric curves, there were two main stages of mass-losses. The first and smaller one occurred below 100 °C, which was suitable for water losses and the second event occurred between 200 and 500 °C which indicates decomposition of the organic matter. At this broad peak, the main loss was between 250-350 °C, and it is because of sugar decomposition (components readily oxidizable). Above 350 °C, mass loss of the biomass may be associated with lignin decomposition. Spectroscopic characterization just provided qualitative information about the organic matter, but spectra have shown absorption bands around 1030 cm-1 which may be identified as species containing silicon. This result is expected for the rice husk and deserves further investigation to the stalk of banana, as it can bring a different perspective for this biomass residue.

Keywords: rice husk, banana stem, bioenergy, renewable feedstock

Procedia PDF Downloads 250
247 Inputs and Outputs of Innovation Processes in the Colombian Services Sector

Authors: Álvaro Turriago-Hoyos

Abstract:

Most research tends to see innovation as an explanatory factor in achieving high levels of competitiveness and productivity. More recent studies have begun to analyze the determinants of innovation in the services sector as opposed to the much-discussed industrial sector of a country’s economy. This research paper focuses on the services sector in Colombia, one of Latin America’s fastest growing and biggest economies. Over the past decade, much of Colombia’s economic expansion has relied on commodity exports (mainly oil and coffee) whilst the industrial sector has performed relatively poorly. Such developments highlight the potential of the innovative role played by the services sector of the Colombian economy and its future growth prospects. This research paper analyzes the relationship between inputs, which at the same time are internal sources of innovation (such as R&D activities), and external sources that are improved by technology acquisition. The outputs are basically the four kinds of innovation that the OECD Oslo Manual recognizes: product, process, marketing and organizational innovations. The instrument used to measure this input-output relationship is based on Knowledge Production Function approaches. We run Probit models in order to identify the existing relationships between the above inputs and outputs, but also to identify spill-overs derived from interactions of the components of the value chain of the services firms analyzed: customers, suppliers, competitors, and complementary firms. Data are obtained from the Colombian National Administrative Department of Statistics for the period 2008 to 2013 published in the II and III Colombian National Innovation Survey. A short summary of the results obtained lead to conclude that firm size and a firm’s level of technological development turn out to be important discriminating factors for the description of the innovative process at the firm level. The model’s outcomes show a positive impact on the probability of introducing any kind of innovation both on R&D and Technology Acquisition investment. Also, cooperation agreements with customers, research institutes, competitors, and the suppliers are significant. Belonging to a particular industrial group is an important determinant but only to product and organizational innovation. It is possible to establish that Health Services, Education, Computer, Wholesale trade, and Financial Intermediation are the ISIC sectors, which report the highest number of frequencies of the considered set of firms. Those five sectors of the sixteen considered, in all cases, explained more than half of the total of all kinds of innovations. Product Innovation, which is followed by Marketing Innovation, gets the highest results. Displaying the same set of firms distinguishing by size, and belonging to high and low tech services sector shows that the larger the firms the larger a number of innovations, but also that always high-tech firms show a better innovation performance.

Keywords: Colombia, determinants of innovation, innovation, services sector

Procedia PDF Downloads 243
246 Embracing Diverse Learners: A Way Towards Effective Learning

Authors: Mona Kamel Hassan

Abstract:

Teaching a class of diverse learners poses a great challenge not only for foreign and second language teachers, but also for teachers in different disciplines as well as for curriculum designers. Thus, to contribute to previous research tackling language diversity, the current paper shares the experience of teaching a reading, writing and vocabulary building course to diverse Arabic as a Foreign Language learners in their advanced language proficiency level. Diversity is represented in students’ motivation, their prior knowledge, their various needs and interests, their level of anxiety, and their different learning styles and skills. While teaching this course the researcher adopted the universal design for learning (UDL) framework, which is a means to meet the various needs of diverse learners. UDL stresses the importance of enabling the entire diverse students to gain skills, knowledge, and enthusiasm to learn through the employment of teaching methods that respond to students' individual differences. Accordingly, the educational curriculum developed for this course and the teaching methods employed is modified. First, the researcher made the language curriculum vivid and attractive to inspire students' learning and to keep them engaged in their learning process. The researcher encouraged the entire students, from the first day, to suggest topics of their interest; political, social, cultural, etc. The authentic Arabic texts chosen are those that best meet students’ needs, interests, lives, and sociolinguistic issues, together with the linguistic and cultural components. In class and under the researcher’s guidance, students dig into these topics to find solutions for the tackled issues while working with their peers. Second, to gain equal opportunities to demonstrate learning, role-playing was encouraged to give students the opportunity to perform different linguistic tasks, to reflect and share their diverse interests and cultural backgrounds with their peers. Third, to bring the UDL into the classroom, students were encouraged to work on interactive, collaborative activities through technology to improve their reading and writing skills and reinforce their mastery of the accumulated vocabulary, idiomatic expressions, and collocations. These interactive, collaborative activities help to facilitate student-student communication and student-teacher communication and to increase comfort in this class of diverse learners. Detailed samples of the educational curriculum and interactive, collaborative activities developed, accompanied by methods of teaching employed to teach these diverse learners, are presented for illustration. Results revealed that students are responsive to the educational materials which are developed for this course. Therefore, they engaged in the learning process and classroom activities and discussions effectively. They also appreciated their instructor’s willingness to differentiate the teaching methods to suit students of diverse background knowledge, learning styles, level of anxiety, etc. Finally, the researcher believes that sharing this experience in teaching diverse learners will help both language teachers and teachers in other disciplines to develop a better understanding to meet their students' diverse needs. Results will also pave the way for curriculum designers to develop educational material that meets the needs of diverse learners.

Keywords: teaching, language, diverse, learners

Procedia PDF Downloads 75
245 Electromagnetic Modeling of a MESFET Transistor Using the Moments Method Combined with Generalised Equivalent Circuit Method

Authors: Takoua Soltani, Imen Soltani, Taoufik Aguili

Abstract:

The communications' and radar systems' demands give rise to new developments in the domain of active integrated antennas (AIA) and arrays. The main advantages of AIA arrays are the simplicity of fabrication, low cost of manufacturing, and the combination between free space power and the scanner without a phase shifter. The integrated active antenna modeling is the coupling between the electromagnetic model and the transport model that will be affected in the high frequencies. Global modeling of active circuits is important for simulating EM coupling, interaction between active devices and the EM waves, and the effects of EM radiation on active and passive components. The current review focuses on the modeling of the active element which is a MESFET transistor immersed in a rectangular waveguide. The proposed EM analysis is based on the Method of Moments combined with the Generalised Equivalent Circuit method (MOM-GEC). The Method of Moments which is the most common and powerful software as numerical techniques have been used in resolving the electromagnetic problems. In the class of numerical techniques, MOM is the dominant technique in solving of Maxwell and Transport’s integral equations for an active integrated antenna. In this situation, the equivalent circuit is introduced to the development of an integral method formulation based on the transposition of field problems in a Generalised equivalent circuit that is simpler to treat. The method of Generalised Equivalent Circuit (MGEC) was suggested in order to represent integral equations circuits that describe the unknown electromagnetic boundary conditions. The equivalent circuit presents a true electric image of the studied structures for describing the discontinuity and its environment. The aim of our developed method is to investigate the antenna parameters such as the input impedance and the current density distribution and the electric field distribution. In this work, we propose a global EM modeling of the MESFET AsGa transistor using an integral method. We will begin by describing the modeling structure that allows defining an equivalent EM scheme translating the electromagnetic equations considered. Secondly, the projection of these equations on common-type test functions leads to a linear matrix equation where the unknown variable represents the amplitudes of the current density. Solving this equation resulted in providing the input impedance, the distribution of the current density and the electric field distribution. From electromagnetic calculations, we were able to present the convergence of input impedance for different test function number as a function of the guide mode numbers. This paper presents a pilot study to find the answer to map out the variation of the existing current evaluated by the MOM-GEC. The essential improvement of our method is reducing computing time and memory requirements in order to provide a sufficient global model of the MESFET transistor.

Keywords: active integrated antenna, current density, input impedance, MESFET transistor, MOM-GEC method

Procedia PDF Downloads 174
244 Co-Evolution of Urban Lake System and Rapid Urbanization: Case of Raipur, Chhattisgarh

Authors: Kamal Agrawal, Ved Prakash Nayak, Akshay Patil

Abstract:

Raipur is known as a city of water bodies. The city had around 200 man-made and natural lakes of varying sizes. These structures were constructed to collect rainwater and control flooding in the city. Due to the transition from community participation to state government, as well as rapid urbanisation, Raipur now has only about 80 lakes left. Rapid and unplanned growth has resulted in pollution, encroachment, and eutrophication of the city's lakes. The state government keeps these lakes in good condition by cleaning them and proposing lakefront developments. However, maintaining individual lakes is insufficient because urban lakes are not distinct entities. It is a system comprised of the lake, shore, catchment, and other components. While Urban lake system (ULS) is a combination of multiple such lake systems interacting in a complex urban setting. Thus, the project aims to propose a co-evolution model for urban lake systems (ULS) and rapid urbanization in Raipur. The goals are to comprehend the ULS and to identify elements and dimensions of urbanization that influence the ULS. Evaluate the impact of rapid urbanization on the ULS & vice versa in the study area. Determine how to maximize the positive impact while minimizing the negative impact identified in the study area. Propose short-, medium-, and long-term planning interventions to support the ULS's co-evolution with rapid urbanization. A complexity approach is used to investigate the ULS. It is a technique for understanding large, complex systems. A complex system is one with many interconnected and interdependent elements and dimensions. Thus, elements of ULS and rapid urbanization are identified through a literature study to evaluate statements of their impacts (Beneficial/ Adverse) on one another. Rapid urbanization has been identified as having elements such as demography, urban legislation, informal settlement, urban infrastructure, and tourism. Similarly, the catchment area of the lake, the lake's water quality, the water spread area, and lakefront developments are all being impacted by rapid urbanisation. These nine elements serve as parameters for the subsequent analysis. Elements are limited to physical parameters only. The city has designated a study area based on the definition provided by the National Plan for the Conservation of Aquatic Ecosystems. Three lakes are discovered within a one-kilometer radius, establishing a tiny urban lake system. Because the condition of a lake is directly related to the condition of its catchment area, the catchment area of these three lakes is delineated as the study area. Data is collected to identify impact statements, and the interdependence diagram generated between the parameters yields results in terms of interlinking between each parameter and their impact on the system as a whole. The planning interventions proposed for the ULS and rapid urbanisation co-evolution model include spatial proposals as well as policy recommendations for the short, medium, and long term. This study's next step will be to determine how to implement the proposed interventions based on the availability of resources, funds, and governance patterns.

Keywords: urban lake system, co-evolution, rapid urbanization, complex system

Procedia PDF Downloads 52
243 Ruta graveolens Fingerprints Obtained with Reversed-Phase Gradient Thin-Layer Chromatography with Controlled Solvent Velocity

Authors: Adrian Szczyrba, Aneta Halka-Grysinska, Tomasz Baj, Tadeusz H. Dzido

Abstract:

Since prehistory, plants were constituted as an essential source of biologically active substances in folk medicine. One of the examples of medicinal plants is Ruta graveolens L. For a long time, Ruta g. herb has been famous for its spasmolytic, diuretic, or anti-inflammatory therapeutic effects. The wide spectrum of secondary metabolites produced by Ruta g. includes flavonoids (eg. rutin, quercetin), coumarins (eg. bergapten, umbelliferone) phenolic acids (eg. rosmarinic acid, chlorogenic acid), and limonoids. Unfortunately, the presence of produced substances is highly dependent on environmental factors like temperature, humidity, or soil acidity; therefore standardization is necessary. There were many attempts of characterization of various phytochemical groups (eg. coumarins) of Ruta graveolens using the normal – phase thin-layer chromatography (TLC). However, due to the so-called general elution problem, usually, some components remained unseparated near the start or finish line. Therefore Ruta graveolens is a very good model plant. Methanol and petroleum ether extract from its aerial parts were used to demonstrate the capabilities of the new device for gradient thin-layer chromatogram development. The development of gradient thin-layer chromatograms in the reversed-phase system in conventional horizontal chambers can be disrupted by problems associated with an excessive flux of the mobile phase to the surface of the adsorbent layer. This phenomenon is most likely caused by significant differences between the surface tension of the subsequent fractions of the mobile phase. An excessive flux of the mobile phase onto the surface of the adsorbent layer distorts the flow of the mobile phase. The described effect produces unreliable, and unrepeatable results, causing blurring and deformation of the substance zones. In the prototype device, the mobile phase solution is delivered onto the surface of the adsorbent layer with controlled velocity (by moving pipette driven by 3D machine). The delivery of the solvent to the adsorbent layer is equal to or lower than that of conventional development. Therefore chromatograms can be developed with optimal linear mobile phase velocity. Furthermore, under such conditions, there is no excess of eluent solution on the surface of the adsorbent layer so the higher performance of the chromatographic system can be obtained. Directly feeding the adsorbent layer with eluent also enables to perform convenient continuous gradient elution practically without the so-called gradient delay. In the study, unique fingerprints of methanol and petroleum ether extracts of Ruta graveolens aerial parts were obtained with stepwise gradient reversed-phase thin-layer chromatography. Obtained fingerprints under different chromatographic conditions will be compared. The advantages and disadvantages of the proposed approach to chromatogram development with controlled solvent velocity will be discussed.

Keywords: fingerprints, gradient thin-layer chromatography, reversed-phase TLC, Ruta graveolens

Procedia PDF Downloads 263
242 Decorative Plant Motifs in Traditional Art and Craft Practices: Pedagogical Perspectives

Authors: Geetanjali Sachdev

Abstract:

This paper explores the decorative uses of plant motifs and symbols in traditional Indian art and craft practices in order to assess their pedagogical significance within the context of plant study in higher education in art and design. It examines existing scholarship on decoration and plants in Indian art and craft practices. The impulse to elaborate upon an existing form or surface is an intrinsic part of many Indian traditional art and craft traditions where a deeply ingrained love for decoration exists. Indian craftsmen use an array of motifs and embellishments to adorn surfaces across a range of practices, and decoration is widely seen in textiles, jewellery, temple sculptures, vehicular art, architecture, and various other art, craft, and design traditions. Ornamentation in Indian cultural traditions has been attributed to religious and spiritual influences in the lives of India’s art and craft practitioners. Through adornment, surfaces and objects were ritually transformed to function both spiritually and physically. Decorative formations facilitate spiritual development and attune our minds to concepts that support contemplation. Within practices of ornamentation and adornment, there is extensive use of botanical motifs as Indian art and craft practitioners have historically been drawn towards nature as a source of inspiration. This is due to the centrality of agriculture in the lives of Indian people as well as in religion, where plants play a key role in religious rituals and festivals. Plant representations thus abound in two-dimensional and three-dimensional surface designs and patterns where the motifs range from being realistic, highly stylized, and curvilinear forms to geometric and abstract symbols. Existing scholarship reveals that these botanical embellishments reference a wide range of plants that include native and non-indigenous plants, as well as imaginary and mythical plants. Structural components of plant anatomy, such as leaves, stems, branches and buds, and flowers, are part of the repertoire of design motifs used, as are plant forms indicating different stages of growth, such as flowering buds and flowers in full bloom. Symmetry is a characteristic feature, and within the decorative register of various practices, plants are part of border zones and bands, connecting corners and all-over patterns, used as singular motifs and floral sprays on panels, and as elements within ornamental scenes. The results of the research indicate that decoration as a mode of inquiry into plants can serve as a platform to learn about local and global biodiversity and plant anatomy and develop artistic modes of thinking symbolically, metaphorically, imaginatively, and relationally about the plant world. The conclusion is drawn that engaging with ornamental modes of plant representation in traditional Indian art and craft practices is pedagogically significant for two reasons. Decoration as a mode of engagement cultivates both botanical and artistic understandings of plants. It also links learners with the indigenous art and craft traditions of their own culture.

Keywords: art and design pedagogy, decoration, plant motifs, traditional art and craft

Procedia PDF Downloads 59
241 Clinically-Based Improvement Project Focused on Reducing Risks Associated with Diabetes Insipidus, Syndrome of Inappropriate ADH, and Cerebral Salt Wasting in Paediatric Post-Neurosurgical and Traumatic Brain Injury Patients

Authors: Shreya Saxena, Felix Miller-Molloy, Phillipa Bowen, Greg Fellows, Elizabeth Bowen

Abstract:

Background: Complex fluid balance abnormalities are well-established post-neurosurgery and traumatic brain injury (TBI). The triple-phase response requires fluid management strategies reactive to urine output and sodium homeostasis as patients shift between Diabetes Insipidus (DI) and Syndrome of Inappropriate ADH (SIADH). It was observed, at a tertiary paediatric center, a relatively high prevalence of the above complications within a cohort of paediatric post-neurosurgical and TBI patients. An audit of the clinical practice against set institutional guidelines was undertaken and analyzed to understand why this was occurring. Based on those results, new guidelines were developed with structured educational packages for the specialist teams involved. This was then reaudited, and the findings were compared. Methods: Two independent audits were conducted across two time periods, pre and post guideline change. Primary data was collected retrospectively, including both qualitative and quantitative data sets from the CQUIN neurosurgical database and electronic medical records. All paediatric patients post posterior fossa (PFT) or supratentorial surgery or with a TBI were included. A literature review of evidence-based practice, initial audit data, and stakeholder feedback was used to develop new clinical guidelines and nursing standard operation procedures. Compliance against these newly developed guidelines was re-assessed and a thematic, trend-based analysis of the two sets of results was conducted. Results: Audit-1 January2017-June2018, n=80; Audit-2 January2020-June2021, n=30 (reduced operative capacity due to COVID-19 pandemic). Overall, improvements in the monitoring of both fluid balance and electrolyte trends were demonstrated; 51% vs. 77% and 78% vs. 94%, respectively. The number of clear fluid management plans documented postoperatively also increased (odds ratio of 4), leading to earlier recognition and management of evolving fluid-balance abnormalities. The local paediatric endocrine team was involved in the care of all complex cases and notified sooner for those considered to be developing DI or SIADH (14% to 35%). However, significant Na fluctuations (>12mmol in 24 hours) remained similar – 5 vs six patients – found to be due to complex pituitary hypothalamic pathology – and the recommended adaptive fluid management strategy was still not always used. Qualitative data regarding useability and understanding of fluid-balance abnormalities and the revised guidelines were obtained from health professionals via surveys and discussion in the specialist teams providing care. The feedback highlighted the new guidelines provided a more consistent approach to the post-operative care of these patients and was a better platform for communication amongst the different specialist teams involved. The potential limitation to our study would be the small sample size on which to conduct formal analyses; however, this reflects the population that we were investigating, which we cannot control. Conclusion: The revised clinical guidelines, based on audited data, evidence-based literature review and stakeholder consultations, have demonstrated an improvement in understanding of the neuro-endocrine complications that are possible, as well as increased compliance to post-operative monitoring of fluid balance and electrolytes in this cohort of patients. Emphasis has been placed on preventative rather than treatment of DI and SIADH. Consequently, this has positively impacted patient safety for the center and highlighted the importance of educational awareness and multi-disciplinary team working.

Keywords: post-operative, fluid-balance management, neuro-endocrine complications, paediatric

Procedia PDF Downloads 71
240 An Adaptive Decomposition for the Variability Analysis of Observation Time Series in Geophysics

Authors: Olivier Delage, Thierry Portafaix, Hassan Bencherif, Guillaume Guimbretiere

Abstract:

Most observation data sequences in geophysics can be interpreted as resulting from the interaction of several physical processes at several time and space scales. As a consequence, measurements time series in geophysics have often characteristics of non-linearity and non-stationarity and thereby exhibit strong fluctuations at all time-scales and require a time-frequency representation to analyze their variability. Empirical Mode Decomposition (EMD) is a relatively new technic as part of a more general signal processing method called the Hilbert-Huang transform. This analysis method turns out to be particularly suitable for non-linear and non-stationary signals and consists in decomposing a signal in an auto adaptive way into a sum of oscillating components named IMFs (Intrinsic Mode Functions), and thereby acts as a bank of bandpass filters. The advantages of the EMD technic are to be entirely data driven and to provide the principal variability modes of the dynamics represented by the original time series. However, the main limiting factor is the frequency resolution that may give rise to the mode mixing phenomenon where the spectral contents of some IMFs overlap each other. To overcome this problem, J. Gilles proposed an alternative entitled “Empirical Wavelet Transform” (EWT) which consists in building from the segmentation of the original signal Fourier spectrum, a bank of filters. The method used is based on the idea utilized in the construction of both Littlewood-Paley and Meyer’s wavelets. The heart of the method lies in the segmentation of the Fourier spectrum based on the local maxima detection in order to obtain a set of non-overlapping segments. Because linked to the Fourier spectrum, the frequency resolution provided by EWT is higher than that provided by EMD and therefore allows to overcome the mode-mixing problem. On the other hand, if the EWT technique is able to detect the frequencies involved in the original time series fluctuations, EWT does not allow to associate the detected frequencies to a specific mode of variability as in the EMD technic. Because EMD is closer to the observation of physical phenomena than EWT, we propose here a new technic called EAWD (Empirical Adaptive Wavelet Decomposition) based on the coupling of the EMD and EWT technics by using the IMFs density spectral content to optimize the segmentation of the Fourier spectrum required by EWT. In this study, EMD and EWT technics are described, then EAWD technic is presented. Comparison of results obtained respectively by EMD, EWT and EAWD technics on time series of ozone total columns recorded at Reunion island over [1978-2019] period is discussed. This study was carried out as part of the SOLSTYCE project dedicated to the characterization and modeling of the underlying dynamics of time series issued from complex systems in atmospheric sciences

Keywords: adaptive filtering, empirical mode decomposition, empirical wavelet transform, filter banks, mode-mixing, non-linear and non-stationary time series, wavelet

Procedia PDF Downloads 111
239 Coupled Field Formulation – A Unified Method for Formulating Structural Mechanics Problems

Authors: Ramprasad Srinivasan

Abstract:

Engineers create inventions and put their ideas in concrete terms to design new products. Design drivers must be established, which requires, among other things, a complete understanding of the product design, load paths, etc. For Aerospace Vehicles, weight/strength ratio, strength, stiffness and stability are the important design drivers. A complex built-up structure is made up of an assemblage of primitive structural forms of arbitrary shape, which include 1D structures like beams and frames, 2D structures like membranes, plate and shell structures, and 3D solid structures. Justification through simulation involves a check for all the quantities of interest, namely stresses, deformation, frequencies, and buckling loads and is normally achieved through the finite element (FE) method. Over the past few decades, Fiber-reinforced composites are fast replacing the traditional metallic structures in the weight-sensitive aerospace and aircraft industries due to their high specific strength, high specific stiffness, anisotropic properties, design freedom for tailoring etc. Composite panel constructions are used in aircraft to design primary structure components like wings, empennage, ailerons, etc., while thin-walled composite beams (TWCB) are used to model slender structures like stiffened panels, helicopter, and wind turbine rotor blades, etc. The TWCB demonstrates many non-classical effects like torsional and constrained warping, transverse shear, coupling effects, heterogeneity, etc., which makes the analysis of composite structures far more complex. Conventional FE formulations to model 1D structures suffer from many limitations like shear locking, particularly in slender beams, lower convergence rates due to material coupling in composites, inability to satisfy, equilibrium in the domain and natural boundary conditions (NBC) etc. For 2D structures, the limitations of conventional displacement-based FE formulations include the inability to satisfy NBC explicitly and many pathological problems such as shear and membrane locking, spurious modes, stress oscillations, lower convergence due to mesh distortion etc. This mandates frequent re-meshing to even achieve an acceptable mesh (satisfy stringent quality metrics) for analysis leading to significant cycle time. Besides, currently, there is a need for separate formulations (u/p) to model incompressible materials, and a single unified formulation is missing in the literature. Hence coupled field formulation (CFF) is a unified formulation proposed by the author for the solution of complex 1D and 2D structures addressing the gaps in the literature mentioned above. The salient features of CFF and its many advantages over other conventional methods shall be presented in this paper.

Keywords: coupled field formulation, kinematic and material coupling, natural boundary condition, locking free formulation

Procedia PDF Downloads 49
238 Analytical, Numerical, and Experimental Research Approaches to Influence of Vibrations on Hydroelastic Processes in Centrifugal Pumps

Authors: Dinara F. Gaynutdinova, Vladimir Ya Modorsky, Nikolay A. Shevelev

Abstract:

The problem under research is that of unpredictable modes occurring in two-stage centrifugal hydraulic pump as a result of hydraulic processes caused by vibrations of structural components. Numerical, analytical and experimental approaches are considered. A hypothesis was developed that the problem of unpredictable pressure decrease at the second stage of centrifugal pumps is caused by cavitation effects occurring upon vibration. The problem has been studied experimentally and theoretically as of today. The theoretical study was conducted numerically and analytically. Hydroelastic processes in dynamic “liquid – deformed structure” system were numerically modelled and analysed. Using ANSYS CFX program engineering analysis complex and computing capacity of a supercomputer the cavitation parameters were established to depend on vibration parameters. An influence domain of amplitudes and vibration frequencies on concentration of cavitation bubbles was formulated. The obtained numerical solution was verified using CFM program package developed in PNRPU. The package is based on a differential equation system in hyperbolic and elliptic partial derivatives. The system is solved by using one of finite-difference method options – the particle-in-cell method. The method defines the problem solution algorithm. The obtained numerical solution was verified analytically by model problem calculations with the use of known analytical solutions of in-pipe piston movement and cantilever rod end face impact. An infrastructure consisting of an experimental fast hydro-dynamic processes research installation and a supercomputer connected by a high-speed network, was created to verify the obtained numerical solutions. Physical experiments included measurement, record, processing and analysis of data for fast processes research by using National Instrument signals measurement system and Lab View software. The model chamber end face oscillated during physical experiments and, thus, loaded the hydraulic volume. The loading frequency varied from 0 to 5 kHz. The length of the operating chamber varied from 0.4 to 1.0 m. Additional loads weighed from 2 to 10 kg. The liquid column varied from 0.4 to 1 m high. Liquid pressure history was registered. The experiment showed dependence of forced system oscillation amplitude on loading frequency at various values: operating chamber geometrical dimensions, liquid column height and structure weight. Maximum pressure oscillation (in the basic variant) amplitudes were discovered at loading frequencies of approximately 1,5 kHz. These results match the analytical and numerical solutions in ANSYS and CFM.

Keywords: computing experiment, hydroelasticity, physical experiment, vibration

Procedia PDF Downloads 227
237 The Connection between Qom Seminaries and Interpretation of Sacred Sources in Ja‘farī Jurisprudence

Authors: Sumeyra Yakar, Emine Enise Yakar

Abstract:

Iran presents itself as Islamic, first and foremost, and thus, it can be said that sharī’a is the political and social centre of the states. However, actual practice reveals distinct interpretations and understandings of the sharī’a. The research can be categorised inside the framework of logic in Islamic law and theology. The first task of this paper will be to identify how the sharī’a is understood in Iran by mapping out how the judges apply the law in their respective jurisdictions. The attention will then move from a simple description of the diversity of sharī’a understandings to the question of how that diversity relates to social concepts and cultures. This, of course, necessitates a brief exploration of Iran’s historical background which will also allow for an understanding of sectarian influences and the significance of certain events. The main purpose is to reach an understanding of the process of applying sources to formulate solutions which are in accordance with sharī’a and how religious education is pursued in order to become official judges. Ultimately, this essay will explore the attempts to gain an understanding by linking the practices to the secondary sources of Islamic law. It is important to emphasise that these cultural components of Islamic law must be compatible with the aims of Islamic law and their fundamental sources. The sharī’a consists of more than just legal doctrines (fiqh) and interpretive activities (ijtihād). Its contextual and theoretical framework reveals a close relationship with cultural and historical elements of society. This has meant that its traditional reproduction over time has relied on being embedded into a highly particular form of life. Thus, as acknowledged by pre-modern jurists, the sharī’a encompasses a comprehensive approach to the requirements of justice in legal, historical and political contexts. In theological and legal areas that have the specific authority of tradition, Iran adheres to Shīa’ doctrine, and this explains why the Shīa’ religious establishment maintains a dominant position in matters relating to law and the interpretation of sharī’a. The statements and interpretations of the tradition are distinctly different from sunnī interpretations, and so the use of different sources could be understood as the main reason for the discrepancies in the application of sharī’a between Iran and other Muslim countries. The sharī’a has often accommodated prevailing customs; moreover, it has developed legal mechanisms to all for its adaptation to particular needs and circumstances in society. While jurists may operate within the realm of governance and politics, the moral authority of the sharī’a ensures that these actors legitimate their actions with reference to God’s commands. The Iranian regime enshrines the principle of vilāyāt-i faqīh (guardianship of the jurist) which enables jurists to solve the conflict between law as an ideal system, in theory, and law in practice. The paper aims to show how the religious, educational system works in harmony with the governmental authorities with the concept of vilāyāt-i faqīh in Iran and contributes to the creation of religious custom in the society.

Keywords: guardianship of the jurist (vilāyāt-i faqīh), imitation (taqlīd), seminaries (hawza), Shi’i jurisprudence

Procedia PDF Downloads 198
236 Seasonal Variability of Picoeukaryotes Community Structure Under Coastal Environmental Disturbances

Authors: Benjamin Glasner, Carlos Henriquez, Fernando Alfaro, Nicole Trefault, Santiago Andrade, Rodrigo De La Iglesia

Abstract:

A central question in ecology refers to the relative importance that local-scale variables have over community composition, when compared with regional-scale variables. In coastal environments, strong seasonal abiotic influence dominates these systems, weakening the impact of other parameters like micronutrients. After the industrial revolution, micronutrients like trace metals have increased in ocean as pollutants, with strong effects upon biotic entities and biological processes in coastal regions. Coastal picoplankton communities had been characterized as a cyanobacterial dominated fraction, but in recent years the eukaryotic component of this size fraction has gained relevance due to their high influence in carbon cycle, although, diversity patterns and responses to disturbances are poorly understood. South Pacific upwelling coastal environments represent an excellent model to study seasonal changes due to a strong influence in the availability of macro- and micronutrients between seasons. In addition, some well constrained coastal bays of this region have been subjected to strong disturbances due to trace metal inputs. In this study, we aim to compare the influence of seasonality and trace metals concentrations, on the community structure of planktonic picoeukaryotes. To describe seasonal patterns in the study area, satellite data in a 6 years time series and in-situ measurements with a traditional oceanographic approach such as CTDO equipment were performed. In addition, trace metal concentrations were analyzed trough ICP-MS analysis, for the same region. For biological data collection, field campaigns were performed in 2011-2012 and the picoplankton community was described by flow cytometry and taxonomical characterization with next-generation sequencing of ribosomal genes. The relation between the abiotic and biotic components was finally determined by multivariate statistical analysis. Our data show strong seasonal fluctuations in abiotic parameters such as photosynthetic active radiation and superficial sea temperature, with a clear differentiation of seasons. However, trace metal analysis allows identifying strong differentiation within the study area, dividing it into two zones based on trace metals concentration. Biological data indicate that there are no major changes in diversity but a significant fluctuation in evenness and community structure. These changes are related mainly with regional parameters, like temperature, but by analyzing the metal influence in picoplankton community structure, we identify a differential response of some plankton taxa to metal pollution. We propose that some picoeukaryotic plankton groups respond differentially to metal inputs, by changing their nutritional status and/or requirements under disturbances as a derived outcome of toxic effects and tolerance.

Keywords: Picoeukaryotes, plankton communities, trace metals, seasonal patterns

Procedia PDF Downloads 141
235 The Quantitative SWOT-Analysis of Service Blood Activity of Kazakhstan

Authors: Alua Massalimova

Abstract:

Situation analysis of Blood Service revealed that the strengths dominated over the weak 1.4 times. The possibilities dominate over the threats by 1.1 times. It follows that by using timely the possibility the Service, it is possible to strengthen its strengths and avoid threats. Priority directions of the resulting analysis are the use of subjective factors, such as personal management capacity managers of the Blood Center in the field of possibilities of legal activity of administrative decisions and the mobilization of stable staff in general market conditions. We have studied for the period 2011-2015 retrospectively indicators of Blood Service of Kazakhstan. Strengths of Blood Service of RK(Ps4,5): 1) indicators of donations for 1000 people is higher than in some countries of the CIS (in Russia 14, Kazakhstan - 17); 2) the functioning science centre of transfusiology; 3) the legal possibility of additional financing blood centers in the form of paid services; 4) the absence of competitors; 5) training on specialty Transfusiology; 6) the stable management staff of blood centers, a high level of competence; 7) increase in the incidence requiring transfusion therapy (oncohematology); 8) equipment upgrades; 9) the opening of a reference laboratory; 10) growth of the proportion of issued high-quality blood components; 11) governmental organization 'Drop of Life'; 12) the functioning bone marrow register; 13) equipped with modern equipment HLA-laboratory; 14) High categorization of average medical workers; 15) availability of own specialized scientific journal; 16) vivarium. The weaknesses (Ps = 3.5): 1) the incomplete equipping of blood centers and blood transfusion cabinets according to standards; 2) low specific weight of paid services of the CC; 3) low categorization of doctors; 4) high staff turnover; 5) the low scientific potential of industrial and clinical of transfusiology; 6) the low wages paid; 7) slight growth of harvested donor blood; 8) the weak continuity with offices blood transfusion; 9) lack of agitation work; 10) the formally functioning of Transfusion Association; 11) the absence of scientific laboratories; 12) high standard deviation from the average for donations in the republic. The possibilities (Ps = 2,7): 1): international grants; 2) organization of international seminars on clinical of transfusiology; 3) cross-sectoral cooperation; 4) to increase scientific research in the field of clinical of transfusiology; 5) reduce the share of donation unsuitable for transfusion and processing; 6) strengthening marketing management in the development of fee-based services; 7) advertising paid services; 8) strengthening the publishing of teaching aids; 9) team-building staff. The threats (Ps = 2.1): 1) an increase of staff turnover; 2) the risk of litigation; 3) reduction gemoprodukts based on evidence-based medicine; 4) regression of scientific capacity; 5) organization of marketing; 6) transfusiologist marketing; 7) reduction in the quality of the evidence base transfusions.

Keywords: blood service, healthcare, Kazakhstan, quantative swot analysis

Procedia PDF Downloads 207
234 A Multipurpose Inertial Electrostatic Magnetic Confinement Fusion for Medical Isotopes Production

Authors: Yasser R. Shaban

Abstract:

A practical multipurpose device for medical isotopes production is most wanted for clinical centers and researches. Unfortunately, the major supply of these radioisotopes currently comes from aging sources, and there is a great deal of uneasiness in the domestic market. There are also many cases where the cost of certain radioisotopes is too high for their introduction on a commercial scale even though the isotopes might have great benefits for society. The medical isotopes such as radiotracers PET (Positron Emission Tomography), Technetium-99 m, and Iodine-131, Lutetium-177 by is feasible to be generated by a single unit named IEMC (Inertial Electrostatic Magnetic Confinement). The IEMC fusion vessel is the upgrading unit of the Inertial Electrostatic Confinement IEC fusion vessel. Comprehensive experimental works on IEC were carried earlier with promising results. The principle of inertial electrostatic magnetic confinement IEMC fusion is based on forcing the binary fuel ions to interact in the opposite directions in ions cyclotrons orbits with different kinetic energies in order to have equal compression (forces) and with different ion cyclotron frequency ω in order to increase the rate of intersection. The IEMC features greater fusion volume than IEC by several orders of magnitude. The particles rate from the IEMC approach are projected to be 8.5 x 10¹¹ (p/s), ~ 0.2 microampere proton, for D/He-3 fusion reaction and 4.2 x 10¹² (n/s) for D/T fusion reaction. The projected values of particles yield (neutrons and protons) are suitable for medical isotope productions on-site by a single unit without any change in the fusion vessel but only the fuel gas. The PET radiotracers are usually produced on-site by medical ion accelerator whereas Technetium-99m (Tc-99m) is usually produced off-site from the irradiation facilities of nuclear power plants. Typically, hospitals receive molybdenum-99 isotope container; the isotope decays to Tc-99mwith half-life time 2.75 days. Even though the projected current from IEMC is lesser than the proton current from the medical ion accelerator but still the IEMC vessel is simpler, and reduced in components and power consumption which add a new value of populating the PET radiotracers in most clinical centers. On the other hand, the projected neutrons flux from the IEMC is lesser than the thermal neutron flux at the irradiation facilities of nuclear power plants, but in the IEMC case the productions of Technetium-99m is suggested to be at the resonance region of which the resonance integral cross section is two orders of magnitude higher than the thermal flux. Thus it can be said the net activity from both is evened. Besides, the particle accelerator cannot be considered a multipurpose particles production unless a significant change is made to the accelerator to change from neutrons mode to protons mode or vice versa. In conclusion, the projected fusion yield from IEMC is a straightforward since slightly change in the primer IEC and ion source is required.

Keywords: electrostatic versus magnetic confinement fusion vessel, ion source, medical isotopes productions, neutron activation

Procedia PDF Downloads 326
233 The Efficiency Analysis in the Health Sector: Marmara Region

Authors: Hale Kirer Silva Lecuna, Beyza Aydin

Abstract:

Health is one of the main components of human capital and sustainable development, and it is very important for economic growth. Health economics, which is an indisputable part of the science of economics, has five stages in general. These are health and development, financing of health services, economic regulation in the health, allocation of resources and efficiency of health services. A well-developed and efficient health sector plays a major role by increasing the level of development of countries. The most crucial pillars of the health sector are the hospitals that are divided into public and private. The main purpose of the hospitals is to provide more efficient services. Therefore the aim is to meet patients’ satisfaction by increasing the service quality. Health-related studies in Turkey date back to the Ottoman and Seljuk Empires. In the near past, Turkey applied 'Health Sector Transformation Programs' under different titles between 2003 and 2010. Our aim in this paper is to measure how effective these transformation programs are for the health sector, to see how much they can increase the efficiency of hospitals over the years, to see the return of investments, to make comments and suggestions on the results, and to provide a new reference for the literature. Within this framework, the public and private hospitals in Balıkesir, Bilecik, Bursa, Çanakkale, Edirne, Istanbul, Kirklareli, Kocaeli, Sakarya, Tekirdağ, Yalova will be examined by using Data Envelopment Analysis (DEA) for the years between 2000 and 2019. DEA is a linear programming-based technique, which gives relatively good results in multivariate studies. DEA basically estimates an efficiency frontier and make a comparison. Constant returns to scale and variable returns to scale are two most commonly used DEA methods. Both models are divided into two as input and output-oriented. To analyze the data, the number of personnel, number of specialist physicians, number of practitioners, number of beds, number of examinations will be used as input variables; and the number of surgeries, in-patient ratio, and crude mortality rate as output variables. 11 hospitals belonging to the Marmara region were included in the study. It is seen that these hospitals worked effectively only in 7 provinces (Balıkesir, Bilecik, Bursa, Edirne, İstanbul, Kırklareli, Yalova) for the year 2001 when no transformation program was implemented. After the transformation program was implemented, for example, in 2014 and 2016, 10 hospitals (Balıkesir, Bilecik, Bursa, Çanakkale, Edirne, İstanbul, Kocaeli, Kırklareli, Tekirdağ, Yalova) were found to be effective. In 2015, ineffective results were observed for Sakarya, Tekirdağ and Yalova. However, since these values are closer to 1 after the transformation program, we can say that the transformation program has positive effects. For Sakarya alone, no effective results have been achieved in any year. When we look at the results in general, it shows that the transformation program has a positive effect on the effectiveness of hospitals.

Keywords: data envelopment analysis, efficiency, health sector, Marmara region

Procedia PDF Downloads 107
232 Investigations on the Fatigue Behavior of Welded Details with Imperfections

Authors: Helen Bartsch, Markus Feldmann

Abstract:

The dimensioning of steel structures subject to fatigue loads, such as wind turbines, bridges, masts and towers, crane runways and weirs or components in crane construction, is often dominated by fatigue verification. The fatigue details defined by the welded connections, such as butt or cruciform joints, longitudinal welds, welded-on or welded-in stiffeners, etc., are decisive. In Europe, the verification is usually carried out according to EN 1993-1-9 on a nominal stress basis. The basis is the detailed catalog, which specifies the fatigue strength of the various weld and construction details according to fatigue classes. Until now, a relation between fatigue classes and weld imperfection sizes is not included. Quality levels for imperfections in fusion-welded joints in steel, nickel, titanium and their alloys are regulated in EN ISO 5817, which, however, doesn’t contain direct correlations to fatigue resistances. The question arises whether some imperfections might be tolerable to a certain extent since they may be present in the test data used for detail classifications dating back decades ago. Although current standardization requires proof of satisfying limits of imperfection sizes, it would also be possible to tolerate welds with certain irregularities if these can be reliably quantified by non-destructive testing. Fabricators would be prepared to undertake carefully and sustained weld inspection in view of the significant economic consequences of such unfavorable fatigue classes. This paper presents investigations on the fatigue behavior of common welded details containing imperfections. In contrast to the common nominal stress concept, local fatigue concepts were used to consider the true stress increase, i.e., local stresses at the weld toe and root. The actual shape of a weld comprising imperfections, e.g., gaps or undercuts, can be incorporated into the fatigue evaluation, usually on a numerical basis. With the help of the effective notch stress concept, the fatigue resistance of detailed local weld shapes is assessed. Validated numerical models serve to investigate notch factors of fatigue details with different geometries. By utilizing parametrized ABAQUS routines, detailed numerical studies have been performed. Depending on the shape and size of different weld irregularities, fatigue classes can be defined. As well load-carrying welded details, such as the cruciform joint, as non-load carrying welded details, e.g., welded-on or welded-in stiffeners, are regarded. The investigated imperfections include, among others, undercuts, excessive convexity, incorrect weld toe, excessive asymmetry and insufficient or excessive throat thickness. Comparisons of the impact of different imperfections on the different types of fatigue details are made. Moreover, the influence of a combination of crucial weld imperfections on the fatigue resistance is analyzed. With regard to the trend of increasing efficiency in steel construction, the overall aim of the investigations is to include a more economical differentiation of fatigue details with regard to tolerance sizes. In the long term, the harmonization of design standards, execution standards and regulations of weld imperfections is intended.

Keywords: effective notch stress, fatigue, fatigue design, weld imperfections

Procedia PDF Downloads 238
231 Giving Children with Osteogenesis Imperfecta a Voice: Overview of a Participatory Approach for the Development of an Interactive Communication Tool

Authors: M. Siedlikowski, F. Rauch, A. Tsimicalis

Abstract:

Osteogenesis Imperfecta (OI) is a genetic disorder of childhood onset that causes frequent fractures after minimal physical stress. To date, OI research has focused on medically- and surgically-oriented outcomes with little attention on the perspective of the affected child. It is a challenge to elicit the child’s voice in health care, in other words, their own perspective on their symptoms, but software development offers a way forward. Sisom (Norwegian acronym derived from ‘Si det som det er’ meaning ‘Tell it as it is’) is an award-winning, rigorously tested, interactive, computerized tool that helps children with chronic illnesses express their symptoms to their clinicians. The successful Sisom software tool, that addresses the child directly, has not yet been adapted to attend to symptoms unique to children with OI. The purpose of this study was to develop a Sisom paper prototype for children with OI by seeking the perspectives of end users, particularly, children with OI and clinicians. Our descriptive qualitative study was conducted at Shriners Hospitals for Children® – Canada, which follows the largest cohort of children with OI in North America. Purposive sampling was used to recruit 12 children with OI over three cycles. Nine clinicians oversaw the development process, which involved determining the relevance of current Sisom symptoms, vignettes, and avatars, as well as generating new Sisom OI components. Data, including field notes, transcribed audio-recordings, and drawings, were deductively analyzed using content analysis techniques. Guided by the following framework, data pertaining to symptoms, vignettes, and avatars were coded into five categories: a) Relevant; b) Irrelevant; c) To modify; d) To add; e) Unsure. Overall, 70.8% of Sisom symptoms were deemed relevant for inclusion, with 49.4% directly incorporated, and 21.3% incorporated with changes to syntax, and/or vignette, and/or location. Three additions were made to the ‘Avatar’ island. This allowed children to celebrate their uniqueness: ‘Makes you feel like you’re not like everybody else.’ One new island, ‘About Me’, was added to capture children’s worldviews. One new sub-island, ‘Getting Around’, was added to reflect accessibility issues. These issues were related to the children’s independence, their social lives, as well as the perceptions of others. In being consulted as experts throughout the co-creation of the Sisom OI paper prototype, children coded the Sisom symptoms and provided sound rationales for their chosen codes. In rationalizing their codes, all children shared personal stories about themselves and their relationships, insights about their OI, and an understanding of the strengths and challenges they experience on a day-to-day basis. The child’s perspective on their health is a basic right, and allowing it to be heard is the next frontier in the care of children with genetic diseases. Sisom OI, a methodological breakthrough within OI research, will offer clinicians an innovative and child-centered approach to capture this neglected perspective. It will provide a tool for the delivery of health care in the center that established the worldwide standard of care for children with OI.

Keywords: child health, interactive computerized communication tool, participatory approach, symptom management

Procedia PDF Downloads 135
230 Investigating the Online Effect of Language on Gesture in Advanced Bilinguals of Two Structurally Different Languages in Comparison to L1 Native Speakers of L2 and Explores Whether Bilinguals Will Follow Target L2 Patterns in Speech and Co-speech

Authors: Armita Ghobadi, Samantha Emerson, Seyda Ozcaliskan

Abstract:

Being a bilingual involves mastery of both speech and gesture patterns in a second language (L2). We know from earlier work in first language (L1) production contexts that speech and co-speech gesture form a tightly integrated system: co-speech gesture mirrors the patterns observed in speech, suggesting an online effect of language on nonverbal representation of events in gesture during the act of speaking (i.e., “thinking for speaking”). Relatively less is known about the online effect of language on gesture in bilinguals speaking structurally different languages. The few existing studies—mostly with small sample sizes—suggests inconclusive findings: some show greater achievement of L2 patterns in gesture with more advanced L2 speech production, while others show preferences for L1 gesture patterns even in advanced bilinguals. In this study, we focus on advanced bilingual speakers of two structurally different languages (Spanish L1 with English L2) in comparison to L1 English speakers. We ask whether bilingual speakers will follow target L2 patterns not only in speech but also in gesture, or alternatively, follow L2 patterns in speech but resort to L1 patterns in gesture. We examined this question by studying speech and gestures produced by 23 advanced adult Spanish (L1)-English (L2) bilinguals (Mage=22; SD=7) and 23 monolingual English speakers (Mage=20; SD=2). Participants were shown 16 animated motion event scenes that included distinct manner and path components (e.g., "run over the bridge"). We recorded and transcribed all participant responses for speech and segmented it into sentence units that included at least one motion verb and its associated arguments. We also coded all gestures that accompanied each sentence unit. We focused on motion event descriptions as it shows strong crosslinguistic differences in the packaging of motion elements in speech and co-speech gesture in first language production contexts. English speakers synthesize manner and path into a single clause or gesture (he runs over the bridge; running fingers forward), while Spanish speakers express each component separately (manner-only: el corre=he is running; circle arms next to body conveying running; path-only: el cruza el puente=he crosses the bridge; trace finger forward conveying trajectory). We tallied all responses by group and packaging type, separately for speech and co-speech gesture. Our preliminary results (n=4/group) showed that productions in English L1 and Spanish L1 differed, with greater preference for conflated packaging in L1 English and separated packaging in L1 Spanish—a pattern that was also largely evident in co-speech gesture. Bilinguals’ production in L2 English, however, followed the patterns of the target language in speech—with greater preference for conflated packaging—but not in gesture. Bilinguals used separated and conflated strategies in gesture in roughly similar rates in their L2 English, showing an effect of both L1 and L2 on co-speech gesture. Our results suggest that online production of L2 language has more limited effects on L2 gestures and that mastery of native-like patterns in L2 gesture might take longer than native-like L2 speech patterns.

Keywords: bilingualism, cross-linguistic variation, gesture, second language acquisition, thinking for speaking hypothesis

Procedia PDF Downloads 49
229 Determinants of Life Satisfaction in Canada: A Causal Modelling Approach

Authors: Rose Branch-Allen, John Jayachandran

Abstract:

Background and purpose: Canada is a pluralistic, multicultural society with an ethno-cultural composition that has been shaped over time by immigrants and their descendants. Although Canada welcomes these immigrants, many will endure hardship and assimilation difficulties. Despite these life hurdles, surveys consistently disclose high life satisfaction for all Canadians. Most research studies on Life Satisfaction/ Subjective Wellbeing (SWB) have focused on one main determinant and a variety of social demographic variables to delineate the determinants of life satisfaction. However, very few research studies examine life satisfaction from a holistic approach. In addition, we need to understand the causal pathways leading to life satisfaction, and develop theories that explain why certain variables differentially influence the different components of SWB. The aim this study was to utilize a holistic approach to construct a causal model and identify major determinants of life satisfaction. Data and measures: This study utilized data from the General Social Survey, with a sample size of 19, 597. The exogenous concepts included age, gender, marital status, household size, socioeconomic status, ethnicity, location, immigration status, religiosity, and neighborhood. The intervening concepts included health, social contact, leisure, enjoyment, work-family balance, quality time, domestic labor, and sense of belonging. The endogenous concept life satisfaction was measured by multiple indicators (Cronbach’s alpha = .83). Analysis: Several multiple regression models were run sequentially to estimate path coefficients for the causal model. Results: Overall, above average satisfaction with life was reported for respondents with specific socio-economic, demographic and lifestyle characteristics. With regard to exogenous factors, respondents who were female, younger, married, from high socioeconomic status background, born in Canada, very religious, and demonstrated high level of neighborhood interaction had greater satisfaction with life. Similarly, intervening concepts suggested respondents had greater life satisfaction if they had better health, more social contact, less time on passive leisure activities and more time on active leisure activities, more time with family and friends, more enjoyment with volunteer activities, less time on domestic labor and a greater sense of belonging to the community. Conclusions and Implications: Our results suggest that a holistic approach is necessary for establishing determinants of life satisfaction, and that life satisfaction is not merely comprised of positive or negative affect rather understanding the causal process of life satisfaction. Even though, most of our findings are consistent with previous studies, a significant number of causal connections contradict some of the findings in literature today. We have provided possible explanation for these anomalies researchers encounter in studying life satisfaction and policy implications.

Keywords: causal model, holistic approach, life satisfaction, socio-demographic variables, subjective well-being

Procedia PDF Downloads 333
228 Ternary Organic Blend for Semitransparent Solar Cells with Enhanced Short Circuit Current Density

Authors: Mohammed Makha, Jakob Heier, Frank Nüesch, Roland Hany

Abstract:

Organic solar cells (OSCs) have made rapid progress and currently achieve power conversion efficiencies (PCE) of over 10%. OSCs have several merits over other direct light-to-electricity generating cells and can be processed at low cost from solution on flexible substrates over large areas. Moreover, combining organic semiconductors with transparent and conductive electrodes allows for the fabrication of semitransparent OSCs (SM-OSCs). For SM-OSCs the challenge is to achieve a high average visible transmission (AVT) while maintaining a high short circuit current (Jsc). Typically, Jsc of SM-OSCs is smaller than when using an opaque metal top electrode. This is because the non-absorbed light during the first transit through the active layer and the transparent electrode is forward-transmitted out of the device. Recently, OSCs using a ternary blend of organic materials have received attention. This strategy was pursued to extend the light harvesting over the visible range. However, it is a general challenge to manipulate the performance of ternary OSCs in a predictable way, because many key factors affect the charge generation and extraction in ternary solar cells. Consequently, the device performance is affected by the compatibility between the blend components and the resulting film morphology, the energy levels and bandgaps, the concentration of the guest material and its location in the active layer. In this work, we report on a solvent-free lamination process for the fabrication of efficient and semitransparent ternary blend OSCs. The ternary blend was composed of PC70BM and the electron donors PBDTTT-C and an NIR cyanine absorbing dye (Cy7T). Using an opaque metal top electrode, a PCE of 6% was achieved for the optimized binary polymer: fullerene blend (AVT = 56%). However, the PCE dropped to ~2% when decreasing (to 30 nm) the active film thickness to increase the AVT value (75%). Therefore we resorted to the ternary blend and measured for non-transparent cells a PCE of 5.5% when using an active polymer: dye: fullerene (0.7: 0.3: 1.5 wt:wt:wt) film of 95 nm thickness (AVT = 65% when omitting the top electrode). In a second step, the optimized ternary blend was used of the fabrication of SM-OSCs. We used a plastic/metal substrate with a light transmission of over 90% as a transparent electrode that was applied via a lamination process. The interfacial layer between the active layer and the top electrode was optimized in order to improve the charge collection and the contact with the laminated top electrode. We demonstrated a PCE of 3% with AVT of 51%. The parameter space for ternary OSCs is large and it is difficult to find the best concentration ratios by trial and error. A rational approach for device optimization is the construction of a ternary blend phase diagram. We discuss our attempts to construct such a phase diagram for the PBDTTT-C: Cy7T: PC70BM system via a combination of using selective Cy7T selective solvents and atomic force microscopy. From the ternary diagram suitable morphologies for efficient light-to-current conversion can be identified. We compare experimental OSC data with these predictions.

Keywords: organic photovoltaics, ternary phase diagram, ternary organic solar cells, transparent solar cell, lamination

Procedia PDF Downloads 244
227 Fuels and Platform Chemicals Production from Lignocellulosic Biomass: Current Status and Future Prospects

Authors: Chandan Kundu, Sankar Bhattacharya

Abstract:

A significant disadvantage of fossil fuel energy production is the considerable amount of carbon dioxide (CO₂) released, which is one of the contributors to climate change. Apart from environmental concerns, changing fossil fuel prices have pushed society gradually towards renewable energy sources in recent years. Biomass is a plentiful and renewable resource and a source of carbon. Recent years have seen increased research interest in generating fuels and chemicals from biomass. Unlike fossil-based resources, biomass is composed of lignocellulosic material, which does not contribute to the increase in atmospheric CO₂ over a longer term. These considerations contribute to the current move of the chemical industry from non-renewable feedstock to renewable biomass. This presentation focuses on generating bio-oil and two major platform chemicals that can potentially improve the environment. Thermochemical processes such as pyrolysis are considered viable methods for producing bio-oil and biomass-based platform chemicals. Fluidized bed reactors, on the other hand, are known to boost bio-oil yields during pyrolysis due to their superior mixing and heat transfer features, as well as their scalability. This review and the associated experimental work are focused on the thermochemical conversion of biomass to bio-oil and two high-value platform chemicals, Levoglucosenone (LGO) and 5-Chloromethyl furfural (5-CMF), in a fluidized bed reactor. These two active molecules with distinct features can potentially be useful monomers in the chemical and pharmaceutical industries since they are well adapted to the manufacture of biologically active products. This process took several meticulous steps. To begin, the biomass was delignified using a peracetic acid pretreatment to remove lignin. Because of its complicated structure, biomass must be pretreated to remove the lignin, increasing access to the carbohydrate components and converting them to platform chemicals. The biomass was then characterized by Thermogravimetric analysis, Synchrotron-based THz spectroscopy, and in-situ DRIFTS in the laboratory. Based on the results, a continuous-feeding fluidized bed reactor system was constructed to generate platform chemicals from pretreated biomass using hydrogen chloride acid-gas as a catalyst. The procedure also yields biochar, which has a number of potential applications, including soil remediation, wastewater treatment, electrode production, and energy resource utilization. Consequently, this research also includes a preliminary experimental evaluation of the biochar's prospective applications. The biochar obtained was evaluated for its CO₂ and steam reactivity. The outline of the presentation will comprise the following: Biomass pretreatment for effective delignification Mechanistic study of the thermal and thermochemical conversion of biomass Thermochemical conversion of untreated and pretreated biomass in the presence of an acid catalyst to produce LGO and CMF A thermo-catalytic process for the production of LGO and 5-CMF in a continuously-fed fluidized bed reactor and efficient separation of chemicals Use of biochar generated from the platform chemicals production through gasification

Keywords: biomass, pretreatment, pyrolysis, levoglucosenone

Procedia PDF Downloads 100
226 Induction Machine Design Method for Aerospace Starter/Generator Applications and Parametric FE Analysis

Authors: Wang Shuai, Su Rong, K. J.Tseng, V. Viswanathan, S. Ramakrishna

Abstract:

The More-Electric-Aircraft concept in aircraft industry levies an increasing demand on the embedded starter/generators (ESG). The high-speed and high-temperature environment within an engine poses great challenges to the operation of such machines. In view of such challenges, squirrel cage induction machines (SCIM) have shown advantages due to its simple rotor structure, absence of temperature-sensitive components as well as low torque ripples etc. The tight operation constraints arising from typical ESG applications together with the detailed operation principles of SCIMs have been exploited to derive the mathematical interpretation of the ESG-SCIM design process. The resultant non-linear mathematical treatment yielded unique solution to the SCIM design problem for each configuration of pole pair number p, slots/pole/phase q and conductors/slot zq, easily implemented via loop patterns. It was also found that not all configurations led to feasible solutions and corresponding observations have been elaborated. The developed mathematical procedures also proved an effective framework for optimization among electromagnetic, thermal and mechanical aspects by allocating corresponding degree-of-freedom variables. Detailed 3D FEM analysis has been conducted to validate the resultant machine performance against design specifications. To obtain higher power ratings, electrical machines often have to increase the slot areas for accommodating more windings. Since the available space for embedding such machines inside an engine is usually short in length, axial air gap arrangement appears more appealing compared to its radial gap counterpart. The aforementioned approach has been adopted in case studies of designing series of AFIMs and RFIMs respectively with increasing power ratings. Following observations have been obtained. Under the strict rotor diameter limitation AFIM extended axially for the increased slot areas while RFIM expanded radially with the same axial length. Beyond certain power ratings AFIM led to long cylinder geometry while RFIM topology resulted in the desired short disk shape. Besides the different dimension growth patterns, AFIMs and RFIMs also exhibited dissimilar performance degradations regarding power factor, torque ripples as well as rated slip along with increased power ratings. Parametric response curves were plotted to better illustrate the above influences from increased power ratings. The case studies may provide a basic guideline that could assist potential users in making decisions between AFIM and RFIM for relevant applications.

Keywords: axial flux induction machine, electrical starter/generator, finite element analysis, squirrel cage induction machine

Procedia PDF Downloads 435
225 Impact of Electric Field on the Optical Properties of Hydrophilic Quantum Dots

Authors: Valentina V. Goftman, Vladislav A. Pankratov, Alexey V. Markin, Tangi Aubert, Zeger Hens, Sarah De Saeger, Irina Yu. Goryacheva

Abstract:

The most important requirements for biochemical applicability of quantum dots (QDs) are: 1) the surface cap should render intact or improved optical properties; 2) mono-dispersion and good stability in aqueous phase in a wide range of pH and ionic strength values; 3) presence of functional groups, available for bioconjugation; 4) minimal impact from the environment on the QDs’ properties and, vice versa, minimal influence of the QDs’ components on the environment; and 5) stability against chemical/biochemical/physical influence. The latter is especially important for in vitro and in vivo applications. For example, some physical intracellular delivery strategies (e.g., electroporation) imply a rapid high-voltage electric field impulse in order to temporarily generate hydrophilic pores in the cell plasma membrane, necessary for the passive transportation of QDs into the cell. In this regard, it is interesting to investigate how different capping layers, which can provide high stability and sufficient fluorescent properties of QDs in a water solution, behave under these abnormal conditions. In this contribution, hydrophobic core-shell CdSe/CdS/CdZnS/ZnS QDs (λem=600 nm), produced by means of the Successive Ion Layer Adsorption and Reaction (SILAR) technique, were transferred to a water solution using two of the most commonly used methods: (i) encapsulation in an amphiphilic brush polymer based on poly(maleic anhydride-alt-1-octadecene) (PMAO) modified with polyethylene glycol (PEG) chains and (ii) silica covering. Polymer encapsulation preserves the initial ligands on the QDs’ surface owing to the hydrophobic attraction between the hydrophobic groups of the amphiphilic molecules and the surface hydrophobic groups of the QDs. This covering process allows maintaining the initial fluorescent properties, but it leads to a considerable increase of the QDs’ size. However, covering with a silica shell, by means of the reverse microemulsion method, allows maintaining both size and fluorescent properties of the initial QDs. The obtained water solutions of polymer covered and silica-coated QDs in three different concentrations were exposed to a low-voltage electric field for a short time and the fluorescent properties were investigated. It is shown that the PMAO-PEG polymer acquires some additional charges in the presence of the electric field, which causes repulsion between the polymer and the QDs’ surface. This process destroys the homogeneity of the whole amphiphilic shell and it dramatically decreases the fluorescent properties (dropping to 10% from its initial value) because of the direct contact of the QDs with the strongly oxidative environment (water). In contrast, a silica shell possesses dielectric properties which allow retaining 90% of its initial fluorescence intensity, even after a longer electric impact. Thus, silica shells are clearly a preferable covering for bio-application of QDs, because – besides the high uniform morphology, controlled size and biocompatibility – it allows protecting QDs from oxidation, even under the influence of an electric field.

Keywords: electric field, polymer coating, quantum dots, silica covering, stability

Procedia PDF Downloads 440
224 Altering the Solid Phase Speciation of Arsenic in Paddy Soil: An Approach to Reduce Rice Grain Arsenic Uptake

Authors: Supriya Majumder, Pabitra Banik

Abstract:

Fates of Arsenic (As) on the soil-plant environment belong to the critical emerging issue, which in turn to appraises the threatening implications of a human health risk — assessing the dynamics of As in soil solid components are likely to impose its potential availability towards plant uptake. In the present context, we introduced an improved Sequential Extraction Procedure (SEP) questioning to identify solid-phase speciation of As in paddy soil under variable soil environmental conditions during two consecutive seasons of rice cultivation practices. We coupled gradients of water management practices with the addition of fertilizer amendments to assess the changes in a partition of As through a field experimental study during monsoon and post-monsoon season using two rice cultivars. Water management regimes were varied based on the methods of cultivation of rice by Conventional (waterlogged) vis-a-vis System of Rice Intensification-SRI (saturated). Fertilizer amendment through the nutrient treatment of absolute control, NPK-RD, NPK-RD + Calcium silicate, NPK-RD + Ferrous sulfate, Farmyard manure (FYM), FYM + Calcium silicate, FYM + Ferrous sulfate, Vermicompost (VC), VC + Calcium silicate, VC + Ferrous sulfate were selected to construct the study. After harvest, soil samples were sequentially extracted to estimate partition of As among the different fractions such as: exchangeable (F1), specifically sorbed (F2), As bound to amorphous Fe oxides (F3), crystalline Fe oxides (F4), organic matter (F5) and residual phase (F6). Results showed that the major proportions of As were found in F3, F4 and F6, whereas F1 exhibited the lowest proportion of total soil As. Among the nutrient treatment mediated changes on As fractions, the application of organic manure and ferrous sulfate were significantly found to restrict the release of As from exchangeable phase. Meanwhile, conventional practice produced much higher release of As from F1 as compared to SRI, which may substantially increase the environmental risk. In contrast, SRI practice was found to retain a significantly higher proportion of As in F2, F3, and F4 phase resulting restricted mobilization of As. This was critically reflected towards rice grain As bioavailability where the reduction in grain As concentration of 33% and 55% in SRI concerning conventional treatment (p <0.05) during monsoon and post-monsoon season respectively. Also, prediction assay for rice grain As bioavailability based on the linear regression model was performed. Results demonstrated that rice grain As concentration was positively correlated with As concentration in F1 and negatively correlated with F2, F3, and F4 with a satisfactory level of variation being explained (p <0.001). Finally, we conclude that F1, F2, F3 and F4 are the major soil. As fractions critically may govern the potential availability of As in soil and suggest that rice cultivation with the SRI treatment is particularly at less risk of As availability in soil. Such exhaustive information may be useful for adopting certain management practices for rice grown in contaminated soil concerning to the environmental issues in particular.

Keywords: arsenic, fractionation, paddy soil, potential availability

Procedia PDF Downloads 103
223 Motivation and Multiglossia: Exploring the Diversity of Interests, Attitudes, and Engagement of Arabic Learners

Authors: Anna-Maria Ramezanzadeh

Abstract:

Demand for Arabic language is growing worldwide, driven by increased interest in the multifarious purposes the language serves, both for the population of heritage learners and those studying Arabic as a foreign language. The diglossic, or indeed multiglossic nature of the language as used in Arabic speaking communities however, is seldom represented in the content of classroom courses. This disjoint between the nature of provision and students’ expectations can severely impact their engagement with course material, and their motivation to either commence or continue learning the language. The nature of motivation and its relationship to multiglossia is sparsely explored in current literature on Arabic. The theoretical framework here proposed aims to address this gap by presenting a model and instruments for the measurement of Arabic learners’ motivation in relation to the multiple strands of the language. It adopts and develops the Second Language Motivation Self-System model (L2MSS), originally proposed by Zoltan Dörnyei, which measures motivation as the desire to reduce the discrepancy between leaners’ current and future self-concepts in terms of the second language (L2). The tripartite structure incorporates measures of the Current L2 Self, Future L2 Self (consisting of an Ideal L2 Self, and an Ought-To Self), and the L2 Learning Experience. The strength of the self-concepts is measured across three different domains of Arabic: Classical, Modern Standard and Colloquial. The focus on learners’ self-concepts allows for an exploration of the effect of multiple factors on motivation towards Arabic, including religion. The relationship between Islam and Arabic is often given as a prominent reason behind some students’ desire to learn the language. Exactly how and why this factor features in learners’ L2 self-concepts has not yet been explored. Specifically designed surveys and interview protocols are proposed to facilitate the exploration of these constructs. The L2 Learning Experience component of the model is operationalized as learners’ task-based engagement. Engagement is conceptualised as multi-dimensional and malleable. In this model, situation-specific measures of cognitive, behavioural, and affective components of engagement are collected via specially designed repeated post-task self-report surveys on Personal Digital Assistant over multiple Arabic lessons. Tasks are categorised according to language learning skill. Given the domain-specific uses of the different varieties of Arabic, the relationship between learners’ engagement with different types of tasks and their overall motivational profiles will be examined to determine the extent of the interaction between the two constructs. A framework for this data analysis is proposed and hypotheses discussed. The unique combination of situation-specific measures of engagement and a person-oriented approach to measuring motivation allows for a macro- and micro-analysis of the interaction between learners and the Arabic learning process. By combining cross-sectional and longitudinal elements with a mixed-methods design, the model proposed offers the potential for capturing a comprehensive and detailed picture of the motivation and engagement of Arabic learners. The application of this framework offers a number of numerous potential pedagogical and research implications which will also be discussed.

Keywords: Arabic, diglossia, engagement, motivation, multiglossia, sociolinguistics

Procedia PDF Downloads 145
222 Bio-Functionalized Silk Nanofibers for Peripheral Nerve Regeneration

Authors: Kayla Belanger, Pascale Vigneron, Guy Schlatter, Bernard Devauchelle, Christophe Egles

Abstract:

A severe injury to a peripheral nerve leads to its degeneration and the loss of sensory and motor function. To this day, there still lacks a more effective alternative to the autograft which has long been considered the gold standard for nerve repair. In order to overcome the numerous drawbacks of the autograft, tissue engineered biomaterials may be effective alternatives. Silk fibroin is a favorable biomaterial due to its many advantageous properties such as its biocompatibility, its biodegradability, and its robust mechanical properties. In this study, bio-mimicking multi-channeled nerve guidance conduits made of aligned nanofibers achieved by electrospinning were functionalized with signaling biomolecules and were tested in vitro and in vivo for nerve regeneration support. Silk fibroin (SF) extracted directly from silkworm cocoons was put in solution at a concentration of 10wt%. Poly(ethylene oxide) (PEO) was added to the resulting SF solution to increase solution viscosity and the following three electrospinning solutions were made: (1) SF/PEO solution, (2) SF/PEO solution with nerve growth factor and ciliary neurotrophic factor, and (3) SF/PEO solution with nerve growth factor and neurotrophin-3. Each of these solutions was electrospun into a multi-layer architecture to obtain mechanically optimized aligned nanofibrous mats. For in vitro studies, aligned fibers were treated to induce β-sheet formation and thoroughly rinsed to eliminate presence of PEO. Each material was tested using rat embryo neuron cultures to evaluate neurite extension and the interaction with bio-functionalized or non-functionalized aligned fibers. For in vivo studies, the mats were rolled into 5mm long multi-, micro-channeled conduits then treated and thoroughly rinsed. The conduits were each subsequently implanted between a severed rat sciatic nerve. The effectiveness of nerve repair over a period of 8 months was extensively evaluated by cross-referencing electrophysiological, histological, and movement analysis results to comprehensively evaluate the progression of nerve repair. In vitro results show a more favorable interaction between growing neurons and bio-functionalized silk fibers compared to pure silk fibers. Neurites can also be seen having extended unidirectionally along the alignment of the nanofibers which confirms a guidance factor for the electrospun material. The in vivo study has produced positive results for the regeneration of the sciatic nerve over the length of the study, showing contrasts between the bio-functionalized material and the non-functionalized material along with comparisons to the experimental control. Nerve regeneration has been evaluated not only by histological analysis, but also by electrophysiological assessment and motion analysis of two separate natural movements. By studying these three components in parallel, the most comprehensive evaluation of nerve repair for the conduit designs can be made which can, therefore, more accurately depict their overall effectiveness. This work was supported by La Région Picardie and FEDER.

Keywords: electrospinning, nerve guidance conduit, peripheral nerve regeneration, silk fibroin

Procedia PDF Downloads 222
221 Home Garden: A Food-Based Strategy to Achieve Sustainable Impact on Household Nutrition of Resource-Poor Families in Nepal

Authors: Purushottam P. Khatiwada, Bikash Paudel, Ram B. Rana, Parshuram Biswakarma, Roshan Pudasaini

Abstract:

Nepal has been putting its efforts into securing food and nutrition security for its citizens adopting different models and approaches. Home Garden approach, that integrates vegetables, fruits, small livestock, poultry along with other components like fish, honeybee, mushroom, spices for the promotion of nutritional security of resource-poor and disadvantaged groups was implemented during March 2009 to July 2013 spreading over 16 districts of Nepal covering 115 farmers groups, directly working with 3500 households. Sustained long-term impact of development interventions targeted to the resource-poor and disadvantaged groups has been a recurrent issue for donors, policymakers and practitioners alike. Considering the issue, a post-project evaluation was carried out in a selected project group (Dangibari of Jhapa) after four years of project completion in 2017 in order to evaluate the impact and understand the factors associated with its success. Qualitative information was collected through focus group discussion with group members and associated local institutions. For quantitative information, a quick survey was carried out to the same group members only selecting few indicators. The results are compared with the data obtained from the baseline study conducted by the project in March 2009. The impact of project intervention was evident as compared to the benchmarks established during the baseline, even after four years of project completion. The area under home garden is increased to 729 m² from 386 m² and average food self-sufficiency months increased to 10.22 from 8.11. Seven to eleven fruit species are maintained in the home gardens. An average number of vegetable species grown increased to 15.85 from 9.86. It has resulted in an increase in vegetables self-sufficient month to 8.74 from 4.74 and a huge increase in cash income NPR 6142.8 (USD 59.6) from NPR 385.7 (USD 3.9) from the sale of surplus vegetables. Coaching and mentoring including nutrition sensitization by the project staff at the beginning, inputs and technical support during the project implementation phase and projects effort on the institutional building of disadvantaged farmers were the key drivers of home garden sustainability and expansion. Specifically, package of home garden management trainings provided by the project staff, availability of group funds for buying inputs even after the project, uniting home garden group members in a cooperative, resource leveraging by local institutions through group lobbying, farmers innovations for maintaining home garden diversity and continuous backstopping support by few active members as local resource persons to other members are some additional factors contributing to sustain and/or improve the home garden status by the resource-poor and disadvantaged group.

Keywords: food-based nutrition, home garden, resource-poor and disadvantaged group, sustained impact

Procedia PDF Downloads 114
220 A Protocol Study of Accessibility: Physician’s Perspective Regarding Disability and Continuum of Care

Authors: Sidra Jawed

Abstract:

The accessibility constructs and the body privilege discourse has been a major problem while dealing with health inequities and inaccessibility. The inherent problem in this arbitrary view of disability is that disability would never be the productive way of living. For past thirty years, disability activists have been working to differentiate ‘impairment’ from ‘disability’ and probing for more understanding of limitation imposed by society, this notion is ultimately known as the Social Model of Disability. The vulnerable population as disability community remains marginalized and seen relentlessly fighting to highlight the importance of social factors. It does not only constitute physical architectural barriers and famous blue symbol of access to the healthcare but also invisible, intangible barriers as attitudes and behaviours. Conventionally the idea of ‘disability’ has been laden with prejudiced perception amalgamating with biased attitude. Equity in contemporary setup necessitates the restructuring of organizational structure. Apparently simple, the complex interplay of disability and contemporary healthcare set up often ends up at negotiating vital components of basic healthcare needs. The role of society is indispensable when it comes to people with disability (PWD), everything from the access to healthcare to timely interventions are strongly related to the set up in place and the attitude of healthcare providers. It is vital to understand the association between assumptions and the quality of healthcare PWD receives in our global healthcare setup. Most of time the crucial physician-patient relationship with PWD is governed by the negative assumptions of the physicians. The multifaceted, troubled patient-physicians’ relationship has been neglected in past. To compound it, insufficient work has been done to explore physicians’ perspective about the disability and access to healthcare PWD have currently. This research project is directed towards physicians’ perspective on the intersection of health and access of healthcare for PWD. The principal aim of the study is to explore the perception of disability in family medicine physicians, highlighting the underpinning of medical perspective in healthcare institution. In the quest of removing barriers, the first step must be to identify the barriers and formulate a plan for future policies, involving all the stakeholders. There would be semi-structured interviews to explore themes as accessibility, medical training, construct of social model and medical model of disability, time limitations, financial constraints. The main research interest is to identify the obstacles to inclusion and marginalization continuing from the basic living necessities to wide health inequity in present society. Physicians point of view is largely missing from the research landscape and the current forum of knowledge with regards to physicians’ standpoint. This research will provide policy makers with a starting point and comprehensive background knowledge that can be a stepping stone for future researches and furthering the knowledge translation process to strengthen healthcare. Additionally, it would facilitate the process of knowledge translation between the much needed medical and disability community.

Keywords: disability, physicians, social model, accessibility

Procedia PDF Downloads 192