Search results for: dry oxidation
883 Comparative Study of Isothermal and Cyclic Oxidation on Titanium Alloys
Authors: Poonam Yadav, Dong Bok Lee
Abstract:
Isothermal oxidation at 800°C for 50h and Cyclic oxidation at 600°C and 800°C for 40h of Pure Ti and Ti64 were performed in a muffle furnace. In Cyclic oxidation, massive scale spallation occurred, and the oxide scale cracks and peels off were observed at high temperature, it represents oxide scale that formed during cyclic oxidation was spalled out owing to stresses due to thermal shock generated during repetitive oxidation and subsequent cooling. The thickness of scale is larger in cyclic oxidation than the isothermal case. This is due to inward diffusion of oxygen through oxide scales and/or pores and cracks in cyclic oxidation.Keywords: cyclic, diffusion, isothermal, cyclic
Procedia PDF Downloads 917882 Isothermal and Cyclic Oxidation of the Ti-6Al-4V Alloy
Authors: Poonam Yadav, Dong Bok Lee
Abstract:
In this study, the Ti-6Al-4V alloy was isothermally and cyclically oxidized at 800oC for 40 hours in air, and its oxidation behavior was characterized in terms of its oxidation rate, scaling rate, and scale spallation tendency. The isothermal oxidation tests indicated that Ti-6Al-4V oxidized fast and almost linearly, forming thick oxide scales. However, the scales that formed during isothermal oxidation were adherent. The cyclic oxidation tests indicated that the scales that formed on Ti-6Al-4V were highly susceptible to spallation owing to the large growth stress arisen and the thermal stress imposed during thermal cyclings. The formed scales frequently delaminated into several pieces owing to the excessive stress aroused by the repetitive thermal shock. Particularly, excessive oxidation and heavy spallation occurred at the edge of Ti-6Al-4V during cyclic oxidation.Keywords: cyclic, isothermal, oxidation, spallation
Procedia PDF Downloads 369881 Effect of Oxidation on Wetting Behavior between Silicon and Silicon Carbide
Authors: Zineb Benouahmane, Zhang Lifeng
Abstract:
Experimental oxidation tests at high temperature (1300°C-1500°C) on α-SiC samples have been performed with different holding times and atmosphere (air, argon). Oxidized samples were then analyzed using X-ray photoelectron spectroscopy coupled to SEM and DAKTEK surface profiler verification. The oxidation rate and the mas gain were found to increase with temperature and holding times, corresponding to a passive oxidation regime which lead to the formation of SiO2 layer. The sessile drop method is employed in order to measure the wetting angles between Si/SiC system at high temperature (1430°C-1550°C). Contact angle can be varied between 44 °C to 85°C, by controlling the oxygen content in α-SiC. Increasing the temperature occurred the infiltration of liquid silicon and deoxidation of the coating.Keywords: oxidation, wettability, silicon, SiC
Procedia PDF Downloads 462880 Synthesis and Characterization of Zinc (II) Complex and Its Catalytic Activity on C(SP3)-H Oxidation Reactions
Authors: Yalçın Kılıç, İbrahim Kani
Abstract:
The conversion of hydrocarbons to carbonyl compounds by oxidation reaction is one of the most important reactions in the synthesis of fine chemicals. As a result of the oxidation of hydrocarbons containing aliphatic sp3-CH groups in their structures, aldehydes, ketones or carboxylic acids can be obtained. In this study, OSSO-type 2,2'-[1,4-butanedylbis(thio)]bis-benzoic acid (tsabutH2) ligand and [Zn(µ-tsabut)(phen)]n complex (where phen = 1,10-phenantroline) were synthesized and their structures were characterized by single crystal x-ray diffraction method. The catalytic efficiency of the complex in the catalytic oxidation studies of organic compounds such as cyclohexane, ethylbenzene, diphenylmethane, and p-xylene containing sp3-C-H in its structure was investigated.Keywords: metal complex, OSSO-type ligand, catalysis, oxidation
Procedia PDF Downloads 98879 Electro-Oxidation of Glycerol Using Nickel Deposited Carbon Ceramic Electrode and Product Analysis Using High Performance Liquid Chromatography
Authors: Mulatu Kassie Birhanu
Abstract:
Electro-oxidation of glycerol is an important process to convert the less price glycerol into other expensive (essential) and energy-rich chemicals. In this study, nickel was electro-deposited on laboratory-made carbon ceramic electrode (CCE) substrate using electrochemical techniques that is cyclic voltammetry (CV) to prepare an electro-catalyst (Ni/CCE) for electro-oxidation of glycerol. Carbon ceramic electrode was prepared from graphite and methyl tri-methoxy silane (MTMOS) through the processes called hydrolysis and condensation with methanol in acidic media (HCl) by a sol-gel technique. Physico-chemical characterization of bare CCE and modified (deposited) CCE (Ni/CCE) was measured and evaluated by Fourier Transform Infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD). Electro-oxidation of glycerol was performed in 0.1 M glycerol in alkaline media (0.5 M NaOH). High-Performance Liquid Chromatography (HPLC) technique was used to identify and determine the concentration of glycerol, reaction intermediates and oxidized products of glycerol after its electro-oxidation is performed. The conversion (%) of electro-oxidation of glycerol during 9-hour oxidation was 73% and 36% at 1.8V and 1.6V vs. RHE, respectively. Formate, oxalate, glycolate and glycerate are the main oxidation products of glycerol with selectivity (%) of 75%, 8.6%, 1.1% and 0.95 % at 1.8 V vs. RHE and 55.4%, 2.2%, 1.0% and 0.6% at 1.6 V vs. RHE respectively. The result indicates that formate is the main product in the electro-oxidation of glycerol on Ni/CCE using the indicated applied potentials.Keywords: carbon-ceramic electrode, electrodeposition, electro-oxidation, Methyltrimethoxysilane
Procedia PDF Downloads 233878 Catalytic Effect of Graphene Oxide on the Oxidation of Paraffin-Based Fuels
Authors: Lin-Lin Liu, Song-Qi Hu, Yin Wang
Abstract:
Paraffin-based fuels are regarded to be a promising fuel of hybrid rocked motor because of the high regression rate, low price, and environmental friendliness. Graphene Oxide (GO) is an attractive energetic material which is expected to be widely used in propellants, explosives, and some high energy fuels. Paraffin-based fuels with paraffin and GO as raw materials were prepared, and the oxidation process of the samples was investigated by thermogravimetric analysis differential scanning calorimetry (TG/DSC) under oxygen (O₂) and nitrous oxide (N₂O) atmospheres. The oxidation reaction kinetics of the fuels was estimated through the non-isothermal measurements and model-free isoconversional methods based on the experimental results of TGA. The results show that paraffin-based fuels are easier oxidized under O₂ rather than N₂O with atmospheres due to the lower activation energy; GO plays a catalytic role for the oxidation of paraffin-based fuels under the both atmospheres, and the activation energy of the oxidation process decreases with the increase of GO; catalytic effect of GO on the oxidation of paraffin-based fuels are more obvious under O₂ atmospheres than under N₂O atmospheres.Keywords: graphene oxide, paraffin-based fuels, oxidation, activation energy, TGA
Procedia PDF Downloads 399877 Optimizing Oxidation Process Parameters of Al-Li Base Alloys Using Taguchi Method
Authors: Muna K. Abbass, Laith A. Mohammed, Muntaha K. Abbas
Abstract:
The oxidation of Al-Li base alloy containing small amounts of rare earth (RE) oxides such as 0.2 wt% Y2O3 and 0.2wt% Nd2O3 particles have been studied at temperatures: 400ºC, 500ºC and 550°C for 60hr in a dry air. Alloys used in this study were prepared by melting and casting in a permanent steel mould under controlled atmosphere. Identification of oxidation kinetics was carried out by using weight gain/surface area (∆W/A) measurements while scanning electron microscopy (SEM) and x-ray diffraction analysis were used for micro structural morphologies and phase identification of the oxide scales. It was observed that the oxidation kinetic for all studied alloys follows the parabolic law in most experimental tests under the different oxidation temperatures. It was also found that the alloy containing 0.2 wt %Y 2O3 particles possess the lowest oxidation rate and shows great improvements in oxidation resistance compared to the alloy containing 0.2 wt % Nd2O3 particles and Al-Li base alloy. In this work, Taguchi method is performed to estimate the optimum weight gain /area (∆W/A) parameter in oxidation process of Al-Li base alloys to obtain a minimum thickness of oxidation layer. Taguchi method is used to formulate the experimental layout, to analyses the effect of each parameter (time, temperature and alloy type) on the oxidation generation and to predict the optimal choice for each parameter and analyzed the effect of these parameters on the weight gain /area (∆W/A) parameter. The analysis shows that, the temperature significantly affects on the (∆W/A) parameter.Keywords: Al-Li base alloy, oxidation, Taguchi method, temperature
Procedia PDF Downloads 370876 Microstructures of Si Surfaces Fabricated by Electrochemical Anodic Oxidation with Agarose Stamps
Abstract:
This paper investigates the fabrication of microstructures on Si surfaces by using electrochemical anodic oxidation with agarose stamps. The fabricating process is based on a selective anodic oxidation reaction that occurs in the contact area between a stamp and a Si substrate. The stamp which is soaked in electrolyte previously acts as a current flow channel. After forming the oxide patterns as an etching mask, a KOH aqueous is used for the wet etching of Si. A complicated microstructure array of 1 cm2 was fabricated by the method with high accuracy.Keywords: microstructures, anodic oxidation, silicon, agarose stamps
Procedia PDF Downloads 303875 Phenol Degradation via Photocatalytic Oxidation Using Fe Doped TiO₂
Authors: Sherif Ismail
Abstract:
Degradation of phenol-contaminated wastewater using Photocatalytic oxidation process was investigated in batch experiments using Fe doped TiO₂. Moreover, the effect of oxygen aeration on the performance of photocatalytic oxidation process by iron (Fe⁺²) doped titanium dioxide (TiO₂) was assessed. Photocatalytic oxidation using Fe doped TiO₂ effectively reduce the phenol concentration in wastewater with optimum condition of light intensity, pH, catalyst-dosing and initial concentration of phenol were 50 W/m2, 5.3, 600 mg/l and 10 mg/l respectively. The results obtained that removal efficiency of phenol was 88% after 180 min in case of N₂ addition. However, aeration by oxygen resulted in a 99% removal efficiency in 120 min. The results of photo-catalysis oxidation experiments fitted the pseudo-first-order kinetic equation with high correlation. Costs estimation of 30 m3/d full-scale photo-catalysis oxidation plant was assessed.Keywords: phenol degradation, Fe-doped TiO2, AOPs, cost analysis
Procedia PDF Downloads 161874 Microstructure and Oxidation Behaviors of Al, Y Modified Silicide Coatings Prepared on an Nb-Si Based Ultrahigh Temperature Alloy
Authors: Xiping Guo, Jing Li
Abstract:
The microstructure of an Si-Al-Y co-deposition coating prepared on an Nb-Si based ultra high temperature alloy by pack cementation process at 1250°C for eight hours was studied. The results showed that the coating was composed of a (Nb,X)Si₂ (X represents Ti, Cr and Hf elements) outer layer, a (Ti,Nb)₅Si₄ middle layer and an Al, Cr-rich inner layer. For comparison, the oxidation behaviors of the coating at 800, 1050 and 1350°C were investigated respectively. Linear oxidation kinetics was found with the parabolic rate constants of 5.29×10⁻², 9×10⁻²and 5.81 mg² cm⁻⁴ h⁻¹, respectively. Catastrophic pesting oxidation has not been found at 800°C even for 100 h. The surface of the scale was covered by compact glassy SiO₂ film. The coating was able to effectively protect the Nb-Si based alloy from oxidation at 1350°C for at least 100 h. The formation process of the scale was testified following an epitaxial growth mechanism. The mechanism responsible for the oxidation behavior of the Si-Al-Y co-deposition coating at 800, 1050 and 1350°C was proposed.Keywords: Nb-Si based ultra high temperature alloy, oxidation resistance, pack cementation, silicide coating, Al and Y modified
Procedia PDF Downloads 403873 Investigating Water-Oxidation Using a Ru(III) Carboxamide Water Coordinated Complex
Authors: Yosra M. Badiei, Evelyn Ortiz, Marisa Portenti, David Szalda
Abstract:
Water-oxidation half-reaction is a critical reaction that can be driven by a sustainable energy source (e.g., solar or wind) and be coupled with a chemical fuel making reaction which stores the released electrons and protons from water (e.g., H₂ or methanol). The use of molecular water-oxidation catalysts (WOC) allow the rationale design of redox active metal centers and provides a better understanding of their structure-activity-relationship. Herein, the structure of a Ru(III) complex bearing a doubly deprotonated N,N'-bis(aryl)pyridine-2,6-dicarboxamide ligand which contains a water molecule in its primary coordination sphere was elucidated by single-crystal X-ray diffraction. Further spectroscopic experimental data and pH-dependent electrochemical studies reveal its water-oxidation reactivity. Emphasis on mechanistic details for O₂ formation of this complex will be addressed.Keywords: water-oxidation, catalysis, ruthenium, artificial photosynthesis
Procedia PDF Downloads 199872 Theoretical Study of the Mechanism of the Oxidation of Linoleic Acid by 1O2
Authors: Rayenne Djemil
Abstract:
The mechanism of oxidation reaction of linoleic acid C18: 2 (9 cis12) by singlet oxygen 1O2 were theoretically investigated via using quantum chemical methods. We explored the four reaction pathways at PM3, Hartree-Fock HF and, B3LYP functional associated with the base 6-31G (d) level. The results are in favor of the first and the last reaction ways. The transition states were found by QST3 method. Thus the pathways between the transition state structures and their corresponding minima have been identified by the IRC calculations. The thermodynamic study showed that the four ways of oxidation of linoleic acid are spontaneous, exothermic and, the enthalpy values confirm that conjugate hydroperoxydes are the most favorable products.Keywords: echanism, quantum mechanics, oxidation, linoleic acid H
Procedia PDF Downloads 444871 Oxidation of Alcohols Types Using Nano-Graphene Oxide (NGO) as Heterogeneous Catalyst
Authors: Ali Gharib, Leila Vojdanifard, Nader Noroozi Pesyan, Mina Roshani
Abstract:
We describe an efficient method for oxidation of alcohols to related aldehydes and ketones by hydrogen peroxide as oxidizing agent, under reflux conditions. Nano-graphene oxide (NGO) as a heterogeneous catalyst was used and had their activity compared with other various catalysts. This catalyst was found to be an excellent catalyst for oxidation of alcohols. The effects of various parameters, including catalyst type, nature of the substituent in the alcohols and temperature, on the yield of the carboxylic acids were studied. Nano-graphene oxide was synthesized by the oxidation of graphite powders. This nanocatalyst was found to be highly efficient in this reaction and products were obtained in good to excellent yields. The recovered nano-catalyst was successfully reused for several runs without significant loss in its catalytic activity.Keywords: nano-graphene oxide, oxidation, aldehyde, ketone, catalyst
Procedia PDF Downloads 422870 Inter-Filling of CaO and MgO Mixed Layer in Surface Behavior of Al-Mg Alloys Containing Al2Ca
Authors: Seong-Ho Ha, Young-Ok Yoon, Shae K. Kim
Abstract:
Oxide layer of normal Al-Mg alloy can be characterized by upper MgO and lower MgAl2O4 spinel. The formation of the MgO outmost layer occurs by the surface segregation of Mg in the initial oxidation. After then, the oxidation is proceeded with the formation of MgA12O4 spinel beneath the MgO. Growth of the oxide layer is accelerated by constant formation of MgA12O4 spinel. On the other hand, the oxidation resistance of Al-Mg alloys can be significantly improved simply by Mg+Al2Ca master alloy use as the Mg alloying element and such an improvement is attributed to the CaO/MgO mixed layer. Al-Mg alloy containing Al2Ca shows CaO as the upper layer and MgO as the lower one without MgA12O4 spinel. Such a dense oxide film acts as a protective layer. However, the CaO/MgO scale has the outmost MgO, partly, after a long time exposure to a harsh oxidation condition. The aim of this study is to investigate the inter-filling behaviour of CaO and MgO mixed layer in oxidation resistance mechanism of Al-Mg alloys containing Al2Ca. The process of outmost MgO layer formation will be clarified.Keywords: Al-Mg alloy, Al2Ca, oxidation, MgO
Procedia PDF Downloads 281869 Comparison of Structure and Corrosion Properties of Titanium Oxide Films Prepared by Thermal Oxidation, DC Plasma Oxidation, and by the Sol-Gel
Authors: O. Çomaklı, M. Yazıcı, T. Yetim, A. F. Yetim, A. Çelik
Abstract:
In this work, TiO₂ films were deposited on Cp-Ti substrates by thermal oxidation, DC plasma oxidation, and by the sol-gel method. Microstructures of uncoated and TiO₂ film coated samples were examined by X-ray diffraction and SEM. Thin oxide film consisting of anatase (A) and rutile (R) TiO₂ structures was observed on the surface of CP-Ti by under three different treatments. Also, the more intense anatase and rutile peaks appeared at samples plasma oxidized at 700˚C. The thicknesses of films were about 1.8 μm at the TiO₂ film coated samples by sol-gel and about 2.7 μm at thermal oxidated samples, while it was measured as 3.9 μm at the plasma oxidated samples. Electrochemical corrosion behaviour of uncoated and coated specimens was mainly carried out by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) in simulated body fluid (SBF) solution. Results showed that at the plasma oxidated samples exhibited a better resistance property to corrosion than that of other treatments.Keywords: TiO₂, CP-Ti, corrosion properties, thermal oxidation, plasma oxidation, sol-gel
Procedia PDF Downloads 281868 The Effect of Oxidation Stability Improvement in Calophyllum Inophyllum Palm Oil Methyl Ester Production
Authors: Natalina, Hwai Chyuan Onga, W. T. Chonga
Abstract:
Oxidation stability of biodiesel is very important in fuel handling especially for remote location of biodiesel application. Variety of feedstocks and biodiesel production process resulted many variation of biodiesel oxidation stability. The current study relates to investigation of the impact of fatty acid composition that caused by natural and production process of calophyllum inophyllum palm oil methyl ester that correlated with improvement of biodiesel oxidation stability. Firstly, biodiesel was produced from crude oil of palm oil, calophyllum inophyllum and mixing of calophyllum inophyllum and palm oil. The production process of calophyllum inophyllum palm oil methyl ester (CIPOME) was divided by including washing process and without washing. Secondly, the oxidation stability was measured from the palm oil methyl ester (POME), calophyllum inophyllum methyl ester (CIME), CIPOME with washing process and CIPOME without washing process. Then, in order to find the differences of fatty acid compositions all of the biodiesels were measured by gas chromatography analysis. It was found that mixing calophyllum inophyllum into palm oil increased the oxidation stability. Washing process influenced the CIPOME fatty acid composition, and reduction of washing process during the production process gave significant oxidation stability number of CIPOME (38 h to 114 h).Keywords: biodiesel, oxidation stability, calophyllum inophyllum, water content
Procedia PDF Downloads 269867 Influence of Grain Shape, Size and Grain Boundary Diffusion on High Temperature Oxidation of Metal
Authors: Sneha Samal, Iva Petrikova, Bohdana Marvalova
Abstract:
Influence of grain size, shape and grain boundary diffusion at high temperature oxidation of pure metal is investigated as the function of microstructure evolution in this article. The oxidized scale depends on the geometrical parameter of the metal-scale system and grain shape, size, diffusion through boundary layers and influence of the contamination. The creation of the inner layer and the morphological structure develops from the internal stress generated during the growth of the scale. The oxidation rate depends on the cation and anion mobile transport of the metal in the inward and outward direction of the diffusion layer. Oxidation rate decreases with decreasing the grain size of the pure metal, whereas zinc deviates from this principle. A strong correlation between the surface roughness evolution, grain size, crystalline properties and oxidation mechanism of the oxidized metal was established.Keywords: high temperature oxidation, pure metals, grain size, shape and grain boundary
Procedia PDF Downloads 496866 Isolation of Soil Thiobacterii and Determination of Their Bio-Oxidation Activity
Authors: A. Kistaubayeva, I. Savitskaya, D. Ibrayeva, M. Abdulzhanova, N. Voronova
Abstract:
36 strains of sulfur-oxidizing bacteria were isolated in Southern Kazakhstan soda-saline soils and identified. Screening of strains according bio-oxidation (destruction thiosulfate to sulfate) and enzymatic (Thiosulfate dehydrogenises and thiosulfate reductase) activity was conducted. There were selected modes of aeration and culture conditions (pH, temperature), which provide optimum harvest cells. These strains can be used in bio-melioration technology.Keywords: elemental sulfur, oxidation activity, Тhiobacilli, fertilizers, heterotrophic S-oxidizers
Procedia PDF Downloads 382865 Effect of Particle Size and Concentration of Pomegranate (Punica granatum l.) Peel Powder on Suppression of Oxidation of Edible Plant Oils
Authors: D. G. D. C. L. Munasinghe, M. S. Gunawardana, P. H. P. Prasanna, C. S. Ranadheera, T. Madhujith
Abstract:
Lipid oxidation is an important process that affects the shelf life of edible oils. Oxidation produces off flavors, off odors and chemical compounds that lead to adverse health effects. Chemical mechanisms such as autoxidation, photo-oxidation and thermal oxidation are responsible for lipid oxidation. Refined, Bleached and Deodorized (RBD) coconut oil, Virgin Coconut Oil (VCO) and corn oil are widely used plant oils. Pomegranate fruit is known to possess high antioxidative efficacy. Peel of pomegranate contains high antioxidant activity than aril and pulp membrane. The study attempted to study the effect of particle size and concentration of pomegranate peel powder on suppression of oxidation of RBD coconut oil, VCO and corn oil. Pomegranate peel powder was incorporated into each oil sample as micro (< 250 µm) and nano particles (280 - 300 nm) at 100 ppm and 200 ppm concentrations. The control sample of each oil was prepared, devoid of pomegranate peel powder. The stability of oils against autoxidation was evaluated by storing oil samples at 60 °C for 28 days. The level of oxidation was assessed by peroxide value and thiobarbituric acid reactive substances on 0,1,3,5,7,14 and 28 day, respectively. VCO containing pomegranate particles of 280 - 300 nm at 200 ppm showed the highest oxidative stability followed by RBD coconut oil and corn oil. Results revealed that pomegranate peel powder with 280 - 300 nm particle size at 200 ppm concentration was the best in mitigating oxidation of RBD coconut oil, VCO and corn oil. There is a huge potential of utilizing pomegranate peel powder as an antioxidant agent in reducing oxidation of edible plant oils.Keywords: antioxidant, autoxidation, micro particles, nano particles, pomegranate peel powder
Procedia PDF Downloads 451864 Application of Tocopherol as Antioxidant to Reduce Decomposition Process on Palm Oil Biodiesel
Authors: Supriyono, Sumardiyono, Rendy J. Pramono
Abstract:
Biodiesel is one of the alternative fuels promising for substituting petrodiesel as energy source which has an advantage as it is sustainable and eco-friendly. Due to the raw material that tends to decompose during storage, biodiesel also has the same characteristic that tends to decompose during storage. Biodiesel decomposition will form higher acid value as the result of oxidation to double bond on a fatty acid compound on biodiesel. Thus, free fatty acid value could be used to evaluate degradation of biodiesel due to the oxidation process. High free fatty acid on biodiesel could impact on the engine performance. Decomposition of biodiesel due to oxidation reaction could prevent by introducing a small amount of antioxidant. The origin of raw materials and the process for producing biodiesel will determine the effectiveness of antioxidant. Biodiesel made from high free fatty acid (FFA) crude palm oil (CPO) by using two steps esterification is vulnerable to oxidation process which is resulted in increasing on the FFA value. Tocopherol also known as vitamin E is one of the antioxidant that could improve the stability of biodiesel due to decomposition by the oxidation process. Tocopherol 0.5% concentration on palm oil biodiesel could reduce 13% of increasing FFA under temperature 80 °C and exposing time 180 minute.Keywords: antioxidant, palm oil biodiesel, decomposition, oxidation, tocopherol
Procedia PDF Downloads 352863 High Temperature Oxidation Behavior of Aluminized Steel by Arc Spray and Cementation Techniques
Authors: Minoo Tavakoli, Alireza Kiani Rashid, Abbas Afrasiabi
Abstract:
An aluminum coating deposited on mild steel substrate by electric arc spray and diffused to the base steel material by diffusion treatment at 800 and 900°C for 1 and 3 hours in a static air. Alloy layers formed by diffusion at both temperatures were investigated, and their features were compared with those of pack cementation aluminized steel. High-temperature oxidation tests were carried out in air at 600 °C for 145 hours. Results indicated that the aluminide coatings obtained from this process have significantly improved the high-temperature oxidation resistance in both methods due to the Al2O3 scale formation. Furthermore, it showed that the isothermal oxidation resistance of arc spray technique is better than pack cementation method. This can be attributed to voids that formed at the intermetallic layer /Al layer interface which is increased in the pack cementation method.Keywords: electric arc spray, pack cementation, oxidation resistance, aluminized steel
Procedia PDF Downloads 466862 Formation of Protective Silicide-Aluminide Coating on Gamma-TiAl Advanced Material
Authors: S. Nouri
Abstract:
In this study, the Si-aluminide coating was prepared on gamma-TiAl [Ti-45Al-2Nb-2Mn-1B (at. %)] via liquid-phase slurry procedure. The high temperature oxidation resistance of this diffusion coating was evaluated at 1100 °C for 400 hours. The results of the isothermal oxidation showed that the formation of Si-aluminide coating can remarkably improve the high temperature oxidation of bare gamma-TiAl alloy. The identification of oxide scale microstructure showed that the formation of protective Al2O3+SiO2 mixed oxide scale along with a continuous, compact and uniform layer of Ti5Si3 beneath the surface oxide scale can act as an oxygen diffusion barrier during the high temperature oxidation. The other possible mechanisms related to the formation of Si-aluminide coating and oxide scales were also discussed.Keywords: Gamma-TiAl alloy, high temperature oxidation, Si-aluminide coating, slurry procedure
Procedia PDF Downloads 176861 Treatment of Cutting Oily-Wastewater by Sono-Fenton Process: Experimental Approach and Combined Process
Authors: Pisut Painmanakul, Thawatchai Chintateerachai, Supanid Lertlapwasin, Nusara Rojvilavan, Tanun Chalermsinsuwan, Nattawin Chawaloesphonsiya, Onanong Larpparisudthi
Abstract:
Conventional coagulation, advance oxidation process (AOPs), and the combined process were evaluated and compared for its suitability to treat the stabilized cutting-oil wastewater. The 90% efficiency was obtained from the coagulation at Al2(SO4)3 dosage of 150 mg/L and pH 7. On the other hands, efficiencies of AOPs for 30 minutes oxidation time were 10% for acoustic oxidation, 12% for acoustic oxidation with hydrogen peroxide, 76% for Fenton, and 92% sono-Fenton processes. The highest efficiency for effective oil removal of AOPs required large amount of chemical. Therefore, AOPs were studied as a post-treatment after conventional separation process. The efficiency was considerable as the effluent COD can pass the standard required for industrial wastewater discharge with less chemical and energy consumption.Keywords: cutting oily-wastewater, advance oxidation process, sono-fenton, combined process
Procedia PDF Downloads 353860 Ultra-Low NOx Combustion Technology of Liquid Fuel Burner
Authors: Sewon Kim, Changyeop Lee
Abstract:
A new concept of in-furnace partial oxidation combustion is successfully applied in this research. The burner is designed such that liquid fuel is prevaporized in the furnace then injected into a fuel rich combustion zone so that a partial oxidation reaction occurs. The effects of equivalence ratio, thermal load, injection distance and fuel distribution ratio on the NOx and CO are experimentally investigated. This newly developed burner showed very low NOx emission level, about 15 ppm when light oil is used as a fuel.Keywords: burner, low NOx, liquid fuel, partial oxidation
Procedia PDF Downloads 341859 Preparation of Heterogeneous Ferrite Catalysts and Their Application for Fenton-Like Oxidation of Radioactive Organic Wastewater
Authors: Hsien T. Hsieh, Chao R. Chen, Li C. Chuang, Chin C. Shen
Abstract:
Fenton oxidation technology is the general strategy for the treatment of organic compounds-contained wastewater. However, a considerable amount of ferric sludge was produced during the Fenton process as secondary wastes, which were needed to be further removed from the effluent and treated. In this study, heterogeneous catalysts based on ferrite oxide (Cu-Fe-Ce-O) were synthesized and characterized, and their application for Fenton-like oxidation of simulated and actual radioactive organic wastewater was investigated. The results of TOC decomposition efficiency around 54% ~ 99% were obtained when the catalyst loading, H2O2 loading, pH, temperature, and reaction time were controlled. In this case, no secondary wastes formed and the given catalysts were able to be separated by magnetic devices and reused again.Keywords: fenton, oxidation, heterogeneous catalyst, wastewater
Procedia PDF Downloads 360858 Near-Infrared Spectrometry as an Alternative Method for Determination of Oxidation Stability for Biodiesel
Authors: R. Velvarska, A. Vrablik, M. Fiedlerova, R. Cerny
Abstract:
Near-infrared spectrometry (NIR) was tested as a rapid and alternative tool for determination of biodiesel oxidation stability. A PetroOxy method is standardly used for the determination, but this method is hazardous due to the possibility of explosion and ignition of flammable fuels. The second disadvantage is time consuming. The near-infrared spectrometry served for the development of the calibration model which was composed of 133 real samples (calibration standards). The reference values of these standards were obtained by PetroOxy method. Many chemometric diagnostics were used for the development of the final NIR model with the aim to have accurate prediction of the oxidation stability. The final NIR model was validated by 30 validation standards. The repeatability was determined as well with the acceptable residual standard deviation (8.59 %). The NIR spectrometry has proved to be an accurate alternative method for the determination of biodiesel oxidation stability with advantages as the time and cost saving, non-destructive character of analyzing and the possibility of online monitoring in safe mode.Keywords: biodiesel, fatty acid methyl ester, NIR, oxidation stability
Procedia PDF Downloads 174857 Effect of Red Cabbage Antioxidant Extracts on Lipid Oxidation of Fresh Tilapia
Authors: Ayse Demirbas, Bruce A. Welt, Yavuz Yagiz
Abstract:
Oxidation of polyunsaturated fatty acids (PUFA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in fish causes loss of product quality. Oxidative rancidity causes loss of nutritional value and undesirable color changes. Therefore, powerful antioxidant extracts may provide a relatively low cost and natural means to reduce oxidation, resulting in longer, higher quality and higher value shelf life of foods. In this study, we measured effects of red cabbage antioxidant on lipid oxidation in fresh tilapia filets using thiobarbituric acid reactive substances (TBARS) assay, peroxide value (PV) and color assesment analysis. Extraction of red cabbage was performed using an efficient microwave method. Fresh tilapia filets were dipped in or sprayed with solutions containing different concentrations of extract. Samples were stored for up to 9 days at 4°C and analyzed every other day for color and lipid oxidation. Results showed that treated samples had lower oxidation than controls. Lipid peroxide values on treated samples showed benefits through day-7. Only slight differences were observed between spraying and dipping methods. This work shows that red cabbage antioxidant extracts may represent an inexpensive and all natural method for reducing oxidative spoilage of fresh fish.Keywords: antioxidant, shelf life, fish, red cabbage, lipid oxidation
Procedia PDF Downloads 328856 The Experiment and Simulation Analysis of the Effect of CO₂ and Steam Addition on Syngas Composition of Natural Gas Non-Catalyst Partial Oxidation
Authors: Zhenghua Dai, Jianliang Xu, Fuchen Wang
Abstract:
Non-catalyst partial oxidation technology has been widely used to produce syngas by reforming of hydrocarbon, including gas (natural gas, shale gas, refinery gas, coalbed gas, coke oven gas, pyrolysis gas, etc.) and liquid (residual oil, asphalt, deoiled asphalt, biomass oil, etc.). For natural gas non-catalyst partial oxidation, the H₂/CO(v/v) of syngas is about 1.8, which is agreed well with the request of FT synthesis. But for other process, such as carbonylation and glycol, the H₂/CO(v/v) should be close to 1 and 2 respectively. So the syngas composition of non-catalyst partial oxidation should be adjusted to satisfy the request of different chemical synthesis. That means a multi-reforming method by CO₂ and H₂O addition. The natural gas non-catalytic partial oxidation hot model was established. The effects of O₂/CH4 ratio, steam, and CO₂ on the syngas composition were studied. The results of the experiment indicate that the addition of CO₂ and steam into the reformer can be applied to change the syngas H₂/CO ratio. The reactor network model (RN model) was established according to the flow partition of industrial reformer and GRI-Mech 3.0. The RN model results agree well with the industrial data. The effects of steam, CO₂ on the syngas compositions were studied with the RN model.Keywords: non-catalyst partial oxidation, natural gas, H₂/CO, CO₂ and H₂O addition, multi-reforming method
Procedia PDF Downloads 210855 Nanohybride Porphyrin and Silver as an Efficient Catalyst for Oxidation of Alcohols by Tetrabutylammonium Peroxomonosulfate
Authors: Atena Naeimi, Asghar Amiri, Zahra Ghasemi
Abstract:
A stable suspension of nanocomposite simple manganese(III) meso-tetraphenylporphyrin nanoaggregates and Ag was prepared by a host–guest procedure, in which ethanol and water are used as ‘green’ solvents. The oxidation of alcohols by tetrabutylammonium Peroxomonosulfate(TP) were efficiently enhanced with excellent selectivity under the influence of simple Mn(TPP)OAc (TPP = meso-tetraphenylporphyrin) nanoparticles. Enhanced stabilities and activities were achieved with nanostructured Mn catalysts compared to those of the individual counterparts in solution according to turnover numbers and UV/Vis studies. The title nanocatalyst facilitates a greener reaction because the reaction solvent is water and TP is safe to use. The efficiency of the oxidation system depends critically upon the steric hindrances and electronic structures of both nitrogen donor ligand sand porphyrin nanoparticles.Keywords: oxidation, nanoaggregates, porphyrinoids, silver
Procedia PDF Downloads 292854 Kinetics and Mechanism of Oxidation of Dimethylglyoxime Chromium (III) Complex by Periodate
Authors: Ahmed A. Abdel-Khalek, Reham A. Mohamed
Abstract:
The kinetics of oxidation of binary complex [CrIII(DMG)2(H2O)4 ]+ to Cr(VI) by periodate has been investigated spectrophotometrically where, [DMG= Dimethylglyoxime] at 370nm under pseudo first order reaction conditions in aqueous medium over 20- 40ºC range, PH 2-3, and I=0.07 mol dm-3. The reaction is first order with respect to both [IO4-] and Cr(III), and the reaction increased with PH increased. Thermodymanic activation parameters have been calculated. It is suggested that electron transfer proceeds through an inner sphere mechanism via coordination of IO4- to Cr (III). The reaction obeys the following rate law Rate= {k1 K5+ k2 K6 K2 } [Cr III (DMG)2(H2O)4 ]+ [H5IO6].Keywords: chromium, dimethylglyoxime, kinetics, oxidation, periodate
Procedia PDF Downloads 421