Search results for: drug target
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4537

Search results for: drug target

4537 Functionalized Nanoparticles for Drug Delivery Applications

Authors: Temesgen Geremew

Abstract:

Functionalized nanoparticles have emerged as a revolutionary platform for drug delivery, offering significant advantages over traditional methods. By strategically modifying their surface properties, these nanoparticles can be designed to target specific tissues and cells, significantly reducing off-target effects and enhancing therapeutic efficacy. This targeted approach allows for lower drug doses, minimizing systemic exposure and potential side effects. Additionally, functionalization enables controlled release of the encapsulated drug, improving drug stability and reducing the frequency of administration, leading to improved patient compliance. This work explores the immense potential of functionalized nanoparticles in revolutionizing drug delivery, addressing limitations associated with conventional therapies and paving the way for personalized medicine with precise and targeted treatment strategies.

Keywords: nanoparticles, drug, nanomaterials, applications

Procedia PDF Downloads 66
4536 In Silico Studies on Selected Drug Targets for Combating Drug Resistance in Plasmodium Falcifarum

Authors: Deepika Bhaskar, Neena Wadehra, Megha Gulati, Aruna Narula, R. Vishnu, Gunjan Katyal

Abstract:

With drug resistance becoming widespread in Plasmodium falciparum infections, development of the alternative drugs is the desired strategy for prevention and cure of malaria. Three drug targets were selected to screen promising drug molecules from the GSK library of around 14000 molecules. Using an in silico structure-based drug designing approach, the differences in binding energies of the substrate and inhibitor were exploited between target sites of parasite and human to design a drug molecule against Plasmodium. The docking studies have shown several promising molecules from GSK library with more effective binding as compared to the already known inhibitors for the drug targets. Though stronger interaction has been shown by several molecules as compare to reference, few molecules have shown the potential as drug candidates though in vitro studies are required to validate the results.

Keywords: plasmodium, malaria, drug targets, in silico studies

Procedia PDF Downloads 445
4535 DeepLig: A de-novo Computational Drug Design Approach to Generate Multi-Targeted Drugs

Authors: Anika Chebrolu

Abstract:

Mono-targeted drugs can be of limited efficacy against complex diseases. Recently, multi-target drug design has been approached as a promising tool to fight against these challenging diseases. However, the scope of current computational approaches for multi-target drug design is limited. DeepLig presents a de-novo drug discovery platform that uses reinforcement learning to generate and optimize novel, potent, and multitargeted drug candidates against protein targets. DeepLig’s model consists of two networks in interplay: a generative network and a predictive network. The generative network, a Stack- Augmented Recurrent Neural Network, utilizes a stack memory unit to remember and recognize molecular patterns when generating novel ligands from scratch. The generative network passes each newly created ligand to the predictive network, which then uses multiple Graph Attention Networks simultaneously to forecast the average binding affinity of the generated ligand towards multiple target proteins. With each iteration, given feedback from the predictive network, the generative network learns to optimize itself to create molecules with a higher average binding affinity towards multiple proteins. DeepLig was evaluated based on its ability to generate multi-target ligands against two distinct proteins, multi-target ligands against three distinct proteins, and multi-target ligands against two distinct binding pockets on the same protein. With each test case, DeepLig was able to create a library of valid, synthetically accessible, and novel molecules with optimal and equipotent binding energies. We propose that DeepLig provides an effective approach to design multi-targeted drug therapies that can potentially show higher success rates during in-vitro trials.

Keywords: drug design, multitargeticity, de-novo, reinforcement learning

Procedia PDF Downloads 96
4534 Modeling Optimal Lipophilicity and Drug Performance in Ligand-Receptor Interactions: A Machine Learning Approach to Drug Discovery

Authors: Jay Ananth

Abstract:

The drug discovery process currently requires numerous years of clinical testing as well as money just for a single drug to earn FDA approval. For drugs that even make it this far in the process, there is a very slim chance of receiving FDA approval, resulting in detrimental hurdles to drug accessibility. To minimize these inefficiencies, numerous studies have implemented computational methods, although few computational investigations have focused on a crucial feature of drugs: lipophilicity. Lipophilicity is a physical attribute of a compound that measures its solubility in lipids and is a determinant of drug efficacy. This project leverages Artificial Intelligence to predict the impact of a drug’s lipophilicity on its performance by accounting for factors such as binding affinity and toxicity. The model predicted lipophilicity and binding affinity in the validation set with very high R² scores of 0.921 and 0.788, respectively, while also being applicable to a variety of target receptors. The results expressed a strong positive correlation between lipophilicity and both binding affinity and toxicity. The model helps in both drug development and discovery, providing every pharmaceutical company with recommended lipophilicity levels for drug candidates as well as a rapid assessment of early-stage drugs prior to any testing, eliminating significant amounts of time and resources currently restricting drug accessibility.

Keywords: drug discovery, lipophilicity, ligand-receptor interactions, machine learning, drug development

Procedia PDF Downloads 110
4533 Development of an Erodable Matrix Drug Delivery Platform for Controled Delivery of Non Steroidal Anti Inflamatory Drugs Using Melt Granulation Process

Authors: A. Hilsana, Vinay U. Rao, M. Sudhakar

Abstract:

Even though a number of non-steroidal anti-inflammatory drugs (NSAIDS) are available with different chemistries, they share a common solubility characteristic that is they are relatively more soluble in alkaline environment and practically insoluble in acidic environment. This work deals with developing a wax matrix drug delivery platform for controlled delivery of three model NSAIDS, Diclofenac sodium (DNa), Mefenamic acid (MA) and Naproxen (NPX) using the melt granulation technique. The aim of developing the platform was to have a general understanding on how an erodible matrix system modulates drug delivery rate and extent and how it can be optimized to give a delivery system which shall release the drug as per a common target product profile (TPP). Commonly used waxes like Cetostearyl alcohol and stearic acid were used singly an in combination to achieve a TPP of not 15 to 35% in 1 hour and not less than 80% Q in 24 hours. Full factorial design of experiments was followed for optimization of the formulation.

Keywords: NSAIDs, controlled delivery, target product profile, melt granulation

Procedia PDF Downloads 333
4532 Proposing an Architecture for Drug Response Prediction by Integrating Multiomics Data and Utilizing Graph Transformers

Authors: Nishank Raisinghani

Abstract:

Efficiently predicting drug response remains a challenge in the realm of drug discovery. To address this issue, we propose four model architectures that combine graphical representation with varying positions of multiheaded self-attention mechanisms. By leveraging two types of multi-omics data, transcriptomics and genomics, we create a comprehensive representation of target cells and enable drug response prediction in precision medicine. A majority of our architectures utilize multiple transformer models, one with a graph attention mechanism and the other with a multiheaded self-attention mechanism, to generate latent representations of both drug and omics data, respectively. Our model architectures apply an attention mechanism to both drug and multiomics data, with the goal of procuring more comprehensive latent representations. The latent representations are then concatenated and input into a fully connected network to predict the IC-50 score, a measure of cell drug response. We experiment with all four of these architectures and extract results from all of them. Our study greatly contributes to the future of drug discovery and precision medicine by looking to optimize the time and accuracy of drug response prediction.

Keywords: drug discovery, transformers, graph neural networks, multiomics

Procedia PDF Downloads 152
4531 Preparation and Evaluation of Zidovudine Nanoparticles

Authors: D. R. Rama Brahma Reddy, A. Vijaya Sarada Reddy

Abstract:

Nanoparticles represent a promising drug delivery system of controlled and targeted drug release. They are specially designed to release the drug in the vicinity of target tissue. The aim of this study was to prepare and evaluate polymethacrylic acid nanoparticles containing Zidovudine in different drug to polymer ratio by nanoprecipitation method. SEM indicated that nanoparticles have a discrete spherical structure without aggregation. The average particle size was found to be 120 ± 0.02 - 420 ± 0.05 nm. The particle size of the nanoparticles was gradually increased with increase in the proportion of polymethacrylic acid polymer. The drug content of the nanoparticles was increasing on increasing polymer concentration up to a particular concentration. No appreciable difference was observed in the extent of degradation of product during 60 days in which, nanoparticles were stored at various temperatures. FT-IR studies indicated that there was no chemical interaction between drug and polymer and stability of drug. The in-vitro release behavior from all the drug loaded batches was found to be zero order and provided sustained release over a period of 24 h. The developed formulation overcome and alleviates the drawbacks and limitations of Zidovudine sustained release formulations and could possibility be advantageous in terms of increased bio availability of Zidovudine.

Keywords: nanoparticles, zidovudine, biodegradable, polymethacrylic acid

Procedia PDF Downloads 622
4530 Detection of Important Biological Elements in Drug-Drug Interaction Occurrence

Authors: Reza Ferdousi, Reza Safdari, Yadollah Omidi

Abstract:

Drug-drug interactions (DDIs) are main cause of the adverse drug reactions and nature of the functional and molecular complexity of drugs behavior in human body make them hard to prevent and treat. With the aid of new technologies derived from mathematical and computational science the DDIs problems can be addressed with minimum cost and efforts. Market basket analysis is known as powerful method to identify co-occurrence of thing to discover patterns and frequency of the elements. In this research, we used market basket analysis to identify important bio-elements in DDIs occurrence. For this, we collected all known DDIs from DrugBank. The obtained data were analyzed by market basket analysis method. We investigated all drug-enzyme, drug-carrier, drug-transporter and drug-target associations. To determine the importance of the extracted bio-elements, extracted rules were evaluated in terms of confidence and support. Market basket analysis of the over 45,000 known DDIs reveals more than 300 important rules that can be used to identify DDIs, CYP 450 family were the most frequent shared bio-elements. We applied extracted rules over 2,000,000 unknown drug pairs that lead to discovery of more than 200,000 potential DDIs. Analysis of the underlying reason behind the DDI phenomena can help to predict and prevent DDI occurrence. Ranking of the extracted rules based on strangeness of them can be a supportive tool to predict the outcome of an unknown DDI.

Keywords: drug-drug interaction, market basket analysis, rule discovery, important bio-elements

Procedia PDF Downloads 308
4529 Numerical Investigation of Thermally Triggered Release Kinetics of Double Emulsion for Drug Delivery Using Phase Change Material

Authors: Yong Ren, Yaping Zhang

Abstract:

A numerical model has been developed to investigate the thermally triggered release kinetics for drug delivery using phase change material as shell of microcapsules. Biocompatible material n-Eicosane is used as demonstration. PCM shell of microcapsule will remain in solid form after the drug is taken, so the drug will be encapsulated by the shell, and will not be released until the target body part of lesion is exposed to external heat source, which will thermally trigger the release kinetics, leading to solid-to-liquid phase change. The findings can lead to better understanding on the key effects influencing the phase change process for drug delivery applications. The facile approach to release drug from core/shell structure of microcapsule can be well integrated with organic solvent free fabrication of microcapsules, using double emulsion as template in microfluidic aqueous two phase system.

Keywords: phase change material, drug release kinetics, double emulsion, microfluidics

Procedia PDF Downloads 356
4528 Screening of Phytochemicals Compounds from Chasmanthera dependens and Carissa edulis as Potential Inhibitors of Carbonic Anhydrases CA II (3HS4) Receptor using a Target-Based Drug Design

Authors: Owonikoko Abayomi Dele

Abstract:

Epilepsy is an unresolved disease that needs urgent attention. It is a brain disorder that affects over sixty-five (65) million people around the globe. Despite the availability of commercial anti-epileptic drugs, the war against this unmet condition is yet to be resolved. Most epilepsy patients are resistant to available anti-epileptic medications thus the need for affordable novel therapy against epilepsy is a necessity. Numerous phytochemicals have been reported for their potency, efficacy and safety as therapeutic agents against many diseases. This study investigated 99 isolated phytochemicals from Chasmanthera dependens and Carissa edulis against carbonic anhydrase (ii) drug target. The absorption, distribution, metabolism, excretion and toxicity (ADMET) of the isolated compounds were examined using admet SAR-2 web server while Swiss ADME was used to analyze the oral bioavailability, drug-likeness and lead-likeness properties of the selected leads. PASS web server was used to predict the biological activities of selected leads while other important physicochemical properties and interactions of the selected leads with the active site of the target after successful molecular docking simulation with the pyrx virtual screening tool were also examined. The results of these study identified seven lead compounds; C49- alpha-carissanol (-7.6 kcal/mol), C13- Catechin (-7.4 kcal/mol), C45- Salicin (-7.4 kcal/mol), C6- Bisnorargemonine (-7.3 kcal/mol), C36- Pallidine (-7.1 kcal/mol), S4- Lacosamide (-7.1 kcal/mol), and S7- Acetazolamide (-6.4 kcal/mol) for CA II (3HS4 receptor). These leads compounds are probable inhibitors of this drug target due to the observed good binding affinities and favourable interactions with the active site of the drug target, excellent ADMET profiles, PASS Properties, drug-likeness, lead-likeness and oral bioavailability properties. The identified leads have better binding energies as compared to the binding energies of the two standards. Thus, seven identified lead compounds can be developed further towards the development of new anti-epileptic medications.

Keywords: drug-likeness, phytochemicals, carbonic anhydrases, metalloeazymes, active site, ADMET

Procedia PDF Downloads 56
4527 Formulation and Evaluation of Colon-Specific Drug Delivery System of Zaltoprofen

Authors: Surajj Sarode, G. P. Vadnere, G. Vidya Sagar

Abstract:

Compression coating is one of the strategies for delivering drug to the colon based on Gastrointestinal PH and transit time concept. The main aim of these formulations to develop rapidly disintegrating Zaltoprofen core tablets compression-coated with a mixture of time-dependent hydrophilic swellable polymer HPMC K 15 and PH responsive soluble polymer Chitosan and Guar gum in different ratios. The effect of the proportion of HPMC, Chitosan and Guar gum in the coat on premature drug release in upper part (Stomach and small intestine) of GIT and the amount of drug release in colon target area was studied. The formulations are carried out by using Direct Compression method. Sodium starch Glycolate used for rapid disintegration. FTIR used for Drug-Polymer Interaction studies. The prepared tablets were evaluated for hardness, thickness, friability, in-vitro disintegration, in-Vitro dissolution and in-vitro kinetic study.

Keywords: zaltoprofen, chitosan, formulation, drug delivery

Procedia PDF Downloads 449
4526 Preparation of Polymer-Stabilized Magnetic Iron Oxide as Selective Drug Nanocarriers to Human Acute Myeloid Leukemia

Authors: Kheireddine El-Boubbou

Abstract:

Drug delivery to target human acute myeloid leukemia (AML) using a nanoparticulate chemotherapeutic formulation that can deliver drugs selectively to AML cancer is hugely needed. In this work, we report the development of a nanoformulation made of polymeric-stabilized multifunctional magnetic iron oxide nanoparticles (PMNP) loaded with the anticancer drug Doxorubicin (Dox) as a promising drug carrier to treat AML. Dox@PMNP conjugates simultaneously exhibited high drug content, maximized fluorescence, and excellent release properties. Nanoparticulate uptake and cell death following addition of Dox@PMNPs were then evaluated in different types of human AML target cells, as well as on normal human cells. While the unloaded MNPs were not toxic to any of the cells, Dox@PMNPs were found to be highly toxic to the different AML cell lines, albeit at different inhibitory concentrations (IC50 values), but showed very little toxicity towards the normal cells. In comparison, free Dox showed significant potency concurrently to all the cell lines, suggesting huge potentials for the use of Dox@PMNPs as selective AML anticancer cargos. Live confocal imaging, fluorescence and electron microscopy confirmed that Dox is indeed delivered to the nucleus in relatively short periods of time, causing apoptotic cell death. Importantly, this targeted payload may potentially enhance the effectiveness of the drug in AML patients and may further allow physicians to image leukemic cells exposed to Dox@PMNPs using MRI.

Keywords: magnetic nanoparticles, drug delivery, acute myeloid leukemia, iron oxide, cancer nanotherapy

Procedia PDF Downloads 228
4525 In silico Subtractive Genomics Approach for Identification of Strain-Specific Putative Drug Targets among Hypothetical Proteins of Drug-Resistant Klebsiella pneumoniae Strain 825795-1

Authors: Umairah Natasya Binti Mohd Omeershffudin, Suresh Kumar

Abstract:

Klebsiella pneumoniae, a Gram-negative enteric bacterium that causes nosocomial and urinary tract infections. Particular concern is the global emergence of multidrug-resistant (MDR) strains of Klebsiella pneumoniae. Characterization of antibiotic resistance determinants at the genomic level plays a critical role in understanding, and potentially controlling, the spread of multidrug-resistant (MDR) pathogens. In this study, drug-resistant Klebsiella pneumoniae strain 825795-1 was investigated with extensive computational approaches aimed at identifying novel drug targets among hypothetical proteins. We have analyzed 1099 hypothetical proteins available in genome. We have used in-silico genome subtraction methodology to design potential and pathogen-specific drug targets against Klebsiella pneumoniae. We employed bioinformatics tools to subtract the strain-specific paralogous and host-specific homologous sequences from the bacterial proteome. The sorted 645 proteins were further refined to identify the essential genes in the pathogenic bacterium using the database of essential genes (DEG). We found 135 unique essential proteins in the target proteome that could be utilized as novel targets to design newer drugs. Further, we identified 49 cytoplasmic protein as potential drug targets through sub-cellular localization prediction. Further, we investigated these proteins in the DrugBank databases, and 11 of the unique essential proteins showed druggability according to the FDA approved drug bank databases with diverse broad-spectrum property. The results of this study will facilitate discovery of new drugs against Klebsiella pneumoniae.

Keywords: pneumonia, drug target, hypothetical protein, subtractive genomics

Procedia PDF Downloads 172
4524 An Alternative Nano Design Strategy by Neutralized AMPS and Soy Bean Lecithin to Form Nanoparticles

Authors: Esra Cansever Mutlu, Muge Sennaroglu Bostan, Fatemeh Bahadori, Ebru Toksoy Oner, Mehmet S. Eroglu

Abstract:

Paclitaxel is used in treatment of different cancer types mainly breast, ovarian, lung and Kaposi’s sarcoma. It is poorly soluble in water; therefore, currently used formulations tremendously show side-effects and high toxicity. Encapsulation of the drug in a nano drug carrier which causes both reducing side effects and increasing drug activity is a desired new approach for the nano-medicine to target the site of cancer. In this study, synthesis of a novel nano paclitaxel formulation made of a new amphiphilic monomer was followed by the investigation of its pharmacological properties. UV radical polymerization was carried out by using the monomer Lecithin-2-Acrylamido-2-methylpropane (L-AMPS) and the drug-spacer, to obtain sterically high stabilized, biocompatible and biodegradable phospholipid nanoparticles, in which the drug paclitaxel (Pxl) was encapsulated (NanoPxl). Particles showed high drug loading capacity (68%) and also hydrodynamic size less than 200 nm with slight negative surface charge. The drug release profile was obtained and in vitro cytotoxicity test was performed on MCF-7 cell line. Consequently, these data indicated that paclitaxel loaded Lecithin-AMPS/PCL-MAC nanoparticles can be considered as a new, safe and effective nanocarrier for the treatment of breast cancer.

Keywords: paclitaxel, nanoparticle, drug delivery, L-AMPS

Procedia PDF Downloads 318
4523 Bioinformatics and Molecular Biological Characterization of a Hypothetical Protein SAV1226 as a Potential Drug Target for Methicillin/Vancomycin-Staphylococcus aureus Infections

Authors: Nichole Haag, Kimberly Velk, Tyler McCune, Chun Wu

Abstract:

Methicillin/multiple-resistant Staphylococcus aureus (MRSA) are infectious bacteria that are resistant to common antibiotics. A previous in silico study in our group has identified a hypothetical protein SAV1226 as one of the potential drug targets. In this study, we reported the bioinformatics characterization, as well as cloning, expression, purification and kinetic assays of hypothetical protein SAV1226 from methicillin/vancomycin-resistant Staphylococcus aureus Mu50 strain. MALDI-TOF/MS analysis revealed a low degree of structural similarity with known proteins. Kinetic assays demonstrated that hypothetical protein SAV1226 is neither a domain of an ATP dependent dihydroxyacetone kinase nor of a phosphotransferase system (PTS) dihydroxyacetone kinase, suggesting that the function of hypothetical protein SAV1226 might be misannotated on public databases such as UniProt and InterProScan 5.

Keywords: Methicillin-resistant Staphylococcus aureus, dihydroxyacetone kinase, essential genes, drug target, phosphoryl group donor

Procedia PDF Downloads 406
4522 Synthesis and Molecular Docking Studies of Hydrazone Derivatives Potent Inhibitors as a Human Carbonic Anhydrase IX

Authors: Sema Şenoğlu, Sevgi Karakuş

Abstract:

Hydrazone scaffold is important to design new drug groups and is found to possess numerous uses in pharmaceutical chemistry. Besides, hydrazone derivatives are also known for biological activities such as anticancer, antimicrobial, antiviral, and antifungal. Hydrazone derivatives are promising anticancer agents because they inhibit cancer proliferation and induce apoptosis. Human carbonic anhydrase IX has a high potential to be an antiproliferative drug target, and targeting this protein is also important for obtaining potential anticancer inhibitors. The protein construct was retrieved as a PDB file from the RCSB protein database. This binding interaction of proteins and ligands was performed using Discovery Studio Visualizer. In vitro inhibitory activity of hydrazone derivatives was tested against enzyme carbonic anhydrase IX on the PyRx programme. Most of these molecules showed remarkable human carbonic anhydrase IX inhibitory activity compared to the acetazolamide. As a result, these compounds appear to be a potential target in drug design against human carbonic anhydrase IX.

Keywords: cancer, carbonic anhydrase IX enzyme, docking, hydrazone

Procedia PDF Downloads 81
4521 BiFormerDTA: Structural Embedding of Protein in Drug Target Affinity Prediction Using BiFormer

Authors: Leila Baghaarabani, Parvin Razzaghi, Mennatolla Magdy Mostafa, Ahmad Albaqsami, Al Warith Al Rushaidi, Masoud Al Rawahi

Abstract:

Predicting the interaction between drugs and their molecular targets is pivotal for advancing drug development processes. Due to the time and cost limitations, computational approaches have emerged as an effective approach to drug-target interaction (DTI) prediction. Most of the introduced computational based approaches utilize the drug molecule and protein sequence as input. This study does not only utilize these inputs, it also introduces a protein representation developed using a masked protein language model. In this representation, for every individual amino acid residue within the protein sequence, there exists a corresponding probability distribution that indicates the likelihood of each amino acid being present at that particular position. Then, the similarity between each pair of amino acids is computed to create a similarity matrix. To encode the knowledge of the similarity matrix, Bi-Level Routing Attention (BiFormer) is utilized, which combines aspects of transformer-based models with protein sequence analysis and represents a significant advancement in the field of drug-protein interaction prediction. BiFormer has the ability to pinpoint the most effective regions of the protein sequence that are responsible for facilitating interactions between the protein and drugs, thereby enhancing the understanding of these critical interactions. Thus, it appears promising in its ability to capture the local structural relationship of the proteins by enhancing the understanding of how it contributes to drugprotein interactions, thereby facilitating more accurate predictions. To evaluate the proposed method, it was tested on two widely recognized datasets: Davis and KIBA. A comprehensive series of experiments was conducted to illustrate its effectiveness in comparison to cutting edge techniques.

Keywords: BiFormer, transformer, protein language processing, self-attention mechanism, binding affinity, drug target interaction, similarity matrix, protein masked representation, protein language model

Procedia PDF Downloads 6
4520 Virtual Screening and in Silico Toxicity Property Prediction of Compounds against Mycobacterium tuberculosis Lipoate Protein Ligase B (LipB)

Authors: Junie B. Billones, Maria Constancia O. Carrillo, Voltaire G. Organo, Stephani Joy Y. Macalino, Inno A. Emnacen, Jamie Bernadette A. Sy

Abstract:

The drug discovery and development process is generally known to be a very lengthy and labor-intensive process. Therefore, in order to be able to deliver prompt and effective responses to cure certain diseases, there is an urgent need to reduce the time and resources needed to design, develop, and optimize potential drugs. Computer-aided drug design (CADD) is able to alleviate this issue by applying computational power in order to streamline the whole drug discovery process, starting from target identification to lead optimization. This drug design approach can be predominantly applied to diseases that cause major public health concerns, such as tuberculosis. Hitherto, there has been no concrete cure for this disease, especially with the continuing emergence of drug resistant strains. In this study, CADD is employed for tuberculosis by first identifying a key enzyme in the mycobacterium’s metabolic pathway that would make a good drug target. One such potential target is the lipoate protein ligase B enzyme (LipB), which is a key enzyme in the M. tuberculosis metabolic pathway involved in the biosynthesis of the lipoic acid cofactor. Its expression is considerably up-regulated in patients with multi-drug resistant tuberculosis (MDR-TB) and it has no known back-up mechanism that can take over its function when inhibited, making it an extremely attractive target. Using cutting-edge computational methods, compounds from AnalytiCon Discovery Natural Derivatives database were screened and docked against the LipB enzyme in order to rank them based on their binding affinities. Compounds which have better binding affinities than LipB’s known inhibitor, decanoic acid, were subjected to in silico toxicity evaluation using the ADMET and TOPKAT protocols. Out of the 31,692 compounds in the database, 112 of these showed better binding energies than decanoic acid. Furthermore, 12 out of the 112 compounds showed highly promising ADMET and TOPKAT properties. Future studies involving in vitro or in vivo bioassays may be done to further confirm the therapeutic efficacy of these 12 compounds, which eventually may then lead to a novel class of anti-tuberculosis drugs.

Keywords: pharmacophore, molecular docking, lipoate protein ligase B (LipB), ADMET, TOPKAT

Procedia PDF Downloads 422
4519 Novel Aminoglycosides to Target Resistant Pathogens

Authors: Nihar Ranjan, Derrick Watkins, Dev P. Arya

Abstract:

Current methods in the study of antibiotic activity of ribosome targeted antibiotics are dependent on cell based bacterial inhibition assays or various forms of ribosomal binding assays. These assays are typically independent of each other and little direct correlation between the ribosomal binding and bacterial inhibition is established with the complementary assay. We have developed novel high-throughput capable assays for ribosome targeted drug discovery. One such assay examines the compounds ability to bind to a model ribosomal RNA A-site. We have also coupled this assay to other functional orthogonal assays. Such analysis can provide valuable understanding of the relationships between two complementary drug screening methods and could be used as standard analysis to correlate the affinity of a compound for its target and the effect the compound has on a cell.

Keywords: bacterial resistance, aminoglycosides, screening, drugs

Procedia PDF Downloads 370
4518 In-silico Design of Riboswitch Based Potent Inhibitors for Vibrio cholera

Authors: Somdutt Mujwar, Kamal Raj Pardasani

Abstract:

Cholera pandemics are caused by facultative pathogenic Vibrio cholera bacteria persisting in the countries having warmer climatic conditions as well as the presence of large water bodies with huge amount of organic matter, it is responsible for the millions of deaths annually. Presently the available therapy for cholera is Oral Rehydration Therapy (ORT) with an antibiotic drug. Excessive utilization of life saving antibiotics drugs leads to the development of resistance by the infectious micro-organism against the antibiotic drugs resulting in loss of effectiveness of these drugs. Also, many side effects are also associated with the use of these antibiotic drugs. This riboswitch is explored as an alternative drug target for Vibrio cholera bacteria to overcome the problem of drug resistance as well as side effects associated with the antibiotics drugs. The bacterial riboswitch is virtually screened with 24407 legends to get possible drug candidates. The 10 ligands showing best binding with the riboswitch are selected to design a pharmacophore, which can be utilized to design lead molecules by using the phenomenon of bioisosterism.

Keywords: cholera, drug design, ligand, riboswitch, pharmacophore

Procedia PDF Downloads 350
4517 Evaluation of the Cytotoxicity and Cellular Uptake of a Cyclodextrin-Based Drug Delivery System for Cancer Therapy

Authors: Caroline Mendes, Mary McNamara, Orla Howe

Abstract:

Drug delivery systems are proposed for use in cancer treatment to specifically target cancer cells and deliver a therapeutic dose without affecting normal cells. For that purpose, the use of folate receptors (FR) can be considered a key strategy, since they are commonly over-expressed in cancer cells. In this study, cyclodextrins (CD) have being used as vehicles to target FR and deliver the chemotherapeutic drug, methotrexate (MTX). CDs have the ability to form inclusion complexes, in which molecules of suitable dimensions are included within their cavities. Here, β-CD has been modified using folic acid so as to specifically target the FR. Thus, this drug delivery system consists of β-CD, folic acid and MTX (CDEnFA:MTX). Cellular uptake of folic acid is mediated with high affinity by folate receptors while the cellular uptake of antifolates, such as MTX, is mediated with high affinity by the reduced folate carriers (RFCs). This study addresses the gene (mRNA) and protein expression levels of FRs and RFCs in the cancer cell lines CaCo-2, SKOV-3, HeLa, MCF-7, A549 and the normal cell line BEAS-2B, quantified by real-time polymerase chain reaction (real-time PCR) and flow cytometry, respectively. From that, four cell lines with different levels of FRs, were chosen for cytotoxicity assays of MTX and CDEnFA:MTX using the MTT assay. Real-time PCR and flow cytometry data demonstrated that all cell lines ubiquitously express moderate levels of RFC. These experiments have also shown that levels of FR protein in CaCo-2 cells are high, while levels in SKOV-3, HeLa and MCF-7 cells are moderate. A549 and BEAS-2B cells express low levels of FR protein. FRs are highly expressed in all the cancer cell lines analysed when compared to the normal cell line BEAS-2B. The cell lines CaCo-2, MCF-7, A549 and BEAS-2B were used in the cell viability assays. 48 hours treatment with the free drug and the complex resulted in IC50 values of 93.9 µM ± 15.2 and 56.0 µM ± 4.0 for CaCo-2 for free MTX and CDEnFA:MTX respectively, 118.2 µM ± 16.8 and 97.8 µM ± 12.3 for MCF-7, 36.4 µM ± 6.9 and 75.0 µM ± 10.5 for A549 and 132.6 µM ± 16.1 and 288.1 µM ± 26.3 for BEAS-2B. These results demonstrate that free MTX is more toxic towards cell lines expressing low levels of FR, such as the BEAS-2B. More importantly, these results demonstrate that the inclusion complex CDEnFA:MTX showed greater cytotoxicity than the free drug towards the high FR expressing CaCo-2 cells, indicating that it has potential to target this receptor, enhancing the specificity and the efficiency of the drug. The use of cell imaging by confocal microscopy has allowed visualisation of FR targeting in cancer cells, as well as the identification of the interlisation pathway of the drug. Hence, the cellular uptake and internalisation process of this drug delivery system is being addressed.

Keywords: cancer treatment, cyclodextrins, drug delivery, folate receptors, reduced folate carriers

Procedia PDF Downloads 309
4516 Potential Drug-Drug Interactions at a Referral Hematology-Oncology Ward in Iran: A Cross-Sectional Study

Authors: Sara Ataei, Molouk Hadjibabaie, Shirinsadat Badri, Amirhossein Moslehi, Iman Karimzadeh, Ardeshir Ghavamzadeh

Abstract:

Purpose: To assess the pattern and probable risk factors for moderate and major drug–drug interactions in a referral hematology-oncology ward in Iran. Methods: All patients admitted to hematology–oncology ward of Dr. Shariati Hospital during a 6-month period and received at least two anti-cancer or non-anti-cancer medications simultaneously were included. All being scheduled anti-cancer and non-anti-cancer medications both prescribed and administered during ward stay were considered for drug–drug interaction screening by Lexi-Interact On- Desktop software. Results: One hundred and eighty-five drug–drug interactions with moderate or major severity were detected from 83 patients. Most of drug–drug interactions (69.73 %) were classified as pharmacokinetics. Fluconazole (25.95 %) was the most commonly offending medication in drug–drug interactions. Interaction of sulfamethoxazole-trimethoprim with fluconazole was the most common drug–drug interaction (27.27 %). Vincristine with imatinib was the only identified interaction between two anti-cancer agents. The number of administered medications during ward stay was considered as an independent risk factor for developing a drug–drug interaction. Conclusions: Potential moderate or major drug–drug interactions occur frequently in patients with hematological malignancies or related diseases. Performing larger standard studies are required to assess the real clinical and economical effects of drug–drug interactions on patients with hematological and non-hematological malignancies.

Keywords: drug–drug interactions, hematology–oncology ward, hematological malignancies

Procedia PDF Downloads 452
4515 Drug Use Knowledge and Antimicrobial Drug Use Behavior

Authors: Pimporn Thongmuang

Abstract:

The import value of antimicrobial drugs reached approximately fifteen million Baht in 2010, considered as the highest import value of all modern drugs, and this value is rising every year. Antimicrobials are considered the hazardous drugs by the Ministry of Public Health. This research was conducted in order to investigate the past knowledge of drug use and Antimicrobial drug use behavior. A total of 757 students were selected as the samples out of a population of 1,800 students. This selected students had the experience of Antimicrobial drugs use a year ago. A questionnaire was utilized in this research. The findings put on the view that knowledge gained by the students about proper use of antimicrobial drugs was not brought into practice. This suggests that the education procedure regarding drug use needs adjustment. And therefore the findings of this research are expected to be utilized as guidelines for educating people about the proper use of antimicrobial drugs. At a broader perspective, correct drug use behavior of the public may potentially reduce drug cost of the Ministry of Public Health of Thailand.

Keywords: drug use knowledge, antimicrobial drugs, drug use behavior, drug

Procedia PDF Downloads 279
4514 Iontophoretic Drug Transport of Some Anti-Diabetic Agents

Authors: Ashish Jain, Satish Nayak

Abstract:

Transdermal iontophoretic drug delivery system is viable drug delivery platform technology and has a strong market worldwide. Transdermal drug delivery system is particularly desirable for therapeutic agents that need prolonged administration at controlled plasma level. This makes appropriateness to antihypertensive and anti-diabetic agents for their transdermal development. Controlled zero order absorption, easily termination of drug delivery and easy to administration also support for popularity of transdermal delivery. In this current research iontophoretic delivery of various anti diabetic agents like glipizide, glibenclamide and glimepiride were carried out. The experiments were carried out at different drug concentrations and different current densities using cathodal iontophoresis. Diffusion cell for iontophoretic permeation study was modified according to Glikfield Design. Pig skin was used for in vitro permeation study and for the in-vivo study New Zealand rabbits were used. At all concentration level iontophoresis showed enhanced permeation rate compared to passive controls. Iontophoretic transports of selected drugs were found to be increased with the current densities. Results showed that target permeation rate for selected drugs could be achieved with the aid of iontophoresis by increasing the area in an appreciable range.

Keywords: transdermal, iontophoresis, pig skin, rabbits, glipizide, glibeclamide

Procedia PDF Downloads 381
4513 Population Pharmacokinetics of Levofloxacin and Moxifloxacin, and the Probability of Target Attainment in Ethiopian Patients with Multi-Drug Resistant Tuberculosis

Authors: Temesgen Sidamo, Prakruti S. Rao, Eleni Akllilu, Workineh Shibeshi, Yumi Park, Yong-Soon Cho, Jae-Gook Shin, Scott K. Heysell, Stellah G. Mpagama, Ephrem Engidawork

Abstract:

The fluoroquinolones (FQs) are used off-label for the treatment of multidrug-resistant tuberculosis (MDR-TB), and for evaluation in shortening the duration of drug-susceptible TB in recently prioritized regimens. Within the class, levofloxacin (LFX) and moxifloxacin (MXF) play a substantial role in ensuring success in treatment outcomes. However, sub-therapeutic plasma concentrations of either LFX or MXF may drive unfavorable treatment outcomes. To the best of our knowledge, the pharmacokinetics of LFX and MXF in Ethiopian patients with MDR-TB have not yet been investigated. Therefore, the aim of this study was to develop a population pharmacokinetic (PopPK) model of levofloxacin (LFX) and moxifloxacin (MXF) and assess the percent probability of target attainment (PTA) as defined by the ratio of the area under the plasma concentration-time curve over 24-h (AUC0-24) and the in vitro minimum inhibitory concentration (MIC) (AUC0-24/MIC) in Ethiopian MDR-TB patients. Steady-state plasma was collected from 39 MDR-TB patients enrolled in the programmatic treatment course and the drug concentrations were determined using optimized liquid chromatography-tandem mass spectrometry. In addition, the in vitro MIC of the patients' pretreatment clinical isolates was determined. PopPK and simulations were run at various doses, and PK parameters were estimated. The effect of covariates on the PK parameters and the PTA for maximum mycobacterial kill and resistance prevention was also investigated. LFX and MXF both fit in a one-compartment model with adjustments. The apparent volume of distribution (V) and clearance (CL) of LFX were influenced by serum creatinine (Scr), whereas the absorption constant (Ka) and V of MXF were influenced by Scr and BMI, respectively. The PTA for LFX maximal mycobacterial kill at the critical MIC of 0.5 mg/L was 29%, 62%, and 95% with the simulated 750 mg, 1000 mg, and 1500 mg doses, respectively, whereas the PTA for resistance prevention at 1500 mg was only 4.8%, with none of the lower doses achieving this target. At the critical MIC of 0.25 mg/L, there was no difference in the PTA (94.4%) for maximum bacterial kill among the simulated doses of MXF (600 mg, 800 mg, and 1000 mg), but the PTA for resistance prevention improved proportionately with dose. Standard LFX and MXF doses may not provide adequate drug exposure. LFX PopPK is more predictable for maximum mycobacterial kill, whereas MXF's resistance prevention target increases with dose. Scr and BMI are likely to be important covariates in dose optimization or therapeutic drug monitoring (TDM) studies in Ethiopian patients.

Keywords: population PK, PTA, moxifloxacin, levofloxacin, MDR-TB patients, ethiopia

Procedia PDF Downloads 120
4512 Drug-Drug Interaction Prediction in Diabetes Mellitus

Authors: Rashini Maduka, C. R. Wijesinghe, A. R. Weerasinghe

Abstract:

Drug-drug interactions (DDIs) can happen when two or more drugs are taken together. Today DDIs have become a serious health issue due to adverse drug effects. In vivo and in vitro methods for identifying DDIs are time-consuming and costly. Therefore, in-silico-based approaches are preferred in DDI identification. Most machine learning models for DDI prediction are used chemical and biological drug properties as features. However, some drug features are not available and costly to extract. Therefore, it is better to make automatic feature engineering. Furthermore, people who have diabetes already suffer from other diseases and take more than one medicine together. Then adverse drug effects may happen to diabetic patients and cause unpleasant reactions in the body. In this study, we present a model with a graph convolutional autoencoder and a graph decoder using a dataset from DrugBank version 5.1.3. The main objective of the model is to identify unknown interactions between antidiabetic drugs and the drugs taken by diabetic patients for other diseases. We considered automatic feature engineering and used Known DDIs only as the input for the model. Our model has achieved 0.86 in AUC and 0.86 in AP.

Keywords: drug-drug interaction prediction, graph embedding, graph convolutional networks, adverse drug effects

Procedia PDF Downloads 99
4511 Spray-Dried, Biodegradable, Drug-Loaded Microspheres for Use in the Treatment of Lung Diseases

Authors: Mazen AlGharsan

Abstract:

Objective: The Carbopol Microsphere of Linezolid, a drug used to treat lung disease (pulmonary disease), was prepared using Buchi B-90 nano spray-drier. Methods: Production yield, drug content, external morphology, particle size, and in vitro release pattern were performed. Results: The work was 79.35%, and the drug content was 66.84%. The surface of the particles was shriveled in shape, with particle size distribution with a mean diameter of 9.6 µm; the drug was released in a biphasic manner with an initial release of 25.2 ± 5.7% at 60 minutes. It later prolonged the release by 95.5 ± 2.5% up to 12 hours. Differential scanning calorimetry (DSC) revealed no change in the melting point of the formulation. Fourier-transform infrared (FT-IR) studies showed no polymer-drug interaction in the prepared nanoparticles.

Keywords: nanotechnology, drug delivery, Linezolid, lung disease

Procedia PDF Downloads 12
4510 Cytotoxicological Evaluation of a Folate Receptor Targeting Drug Delivery System Based on Cyclodextrins

Authors: Caroline Mendes, Mary McNamara, Orla Howe

Abstract:

For chemotherapy, a drug delivery system should be able to specifically target cancer cells and deliver the therapeutic dose without affecting normal cells. Folate receptors (FR) can be considered key targets since they are commonly over-expressed in cancer cells and they are the molecular marker used in this study. Here, cyclodextrin (CD) has being studied as a vehicle for delivering the chemotherapeutic drug, methotrexate (MTX). CDs have the ability to form inclusion complexes, in which molecules of suitable dimensions are included within the CD cavity. In this study, β-CD has been modified using folic acid so as to specifically target the FR molecular marker. Thus, the system studied here for drug delivery consists of β-CD, folic acid and MTX (CDEnFA:MTX). Cellular uptake of folic acid is mediated with high affinity by folate receptors while the cellular uptake of antifolates, such as MTX, is mediated with high affinity by the reduced folate carriers (RFCs). This study addresses the gene (mRNA) and protein expression levels of FRs and RFCs in the cancer cell lines CaCo-2, SKOV-3, HeLa, MCF-7, A549 and the normal cell line BEAS-2B, quantified by real-time polymerase chain reaction (real-time PCR) and flow cytometry, respectively. From that, four cell lines with different levels of FRs, were chosen for cytotoxicity assays of MTX and CDEnFA:MTX using the MTT assay. Real-time PCR and flow cytometry data demonstrated that all cell lines ubiquitously express moderate levels of RFC. These experiments have also shown that levels of FR protein in CaCo-2 cells are high, while levels in SKOV-3, HeLa and MCF-7 cells are moderate. A549 and BEAS-2B cells express low levels of FR protein. FRs are highly expressed in all the cancer cell lines analysed when compared to the normal cell line BEAS-2B. The cell lines CaCo-2, MCF-7, A549 and BEAS-2B were used in the cell viability assays. 48 hours treatment with the free drug and the complex resulted in IC50 values of 93.9 µM ± 9.2 and 56.0 µM ± 4.0 for CaCo-2 for free MTX and CDEnFA:MTX respectively, 118.2 µM ± 10.8 and 97.8 µM ± 12.3 for MCF-7, 36.4 µM ± 6.9 and 75.0 µM ± 8.5 for A549 and 132.6 µM ± 12.1 and 288.1 µM ± 16.3 for BEAS-2B. These results demonstrate that MTX is more toxic towards cell lines expressing low levels of FR, such as the BEAS-2B. More importantly, these results demonstrate that the inclusion complex CDEnFA:MTX showed greater cytotoxicity than the free drug towards the high FR expressing CaCo-2 cells, indicating that it has potential to target this receptor, enhancing the specificity and the efficiency of the drug.

Keywords: cyclodextrins, cancer treatment, drug delivery, folate receptors, reduced folate carriers

Procedia PDF Downloads 301
4509 Development of Drug Delivery Systems for Endoplasmic Reticulum Amino Peptidases Modulators Using Electrospinning

Authors: Filipa Vasconcelos

Abstract:

The administration of endoplasmic reticulum amino peptidases (ERAP1 or ERAP2) inhibitors can be used for therapeutic approaches against cancer and auto-immune diseases. However, one of the main shortcomings of drug delivery systems (DDS) is associated with the drug off-target distribution, which can lead to an increase in its side effects on the patient’s body. To overcome such limitations, the encapsulation of four representative compounds of ERAP inhibitors into Polycaprolactone (PCL), Polyvinyl-alcohol (PVA), crosslinked PVA, and PVA with nanoparticles (liposomes) electrospun fibrous meshes is proposed as a safe and controlled drug release system. The use of electrospun fibrous meshes as a DDS allows efficient solvent evaporation giving limited time to the encapsulated drug to recrystallize, continuous delivery of the drug while the fibers degrade, prevention of initial burst release (sustained release), tunable dosages, and the encapsulation of other agents. This is possible due to the fibers' small diameters and resemblance to the extracellular matrix (confirmed by scanning electron microscopy results), high specific surface area, and good mechanical strength/stability. Furthermore, release studies conducted on PCL, PVA, crosslinked PVA, and PVA with nanoparticles (liposomes) electrospun fibrous meshes with each of the ERAP compounds encapsulated demonstrated that they were capable of releasing >60%, 50%, 40%, and 45% of the total ERAP concentration, respectively. Fibrous meshes with ERAP_E compound encapsulated achieved higher released concentrations (75.65%, 62.41%, 56.05%, and 65.39%, respectively). Toxicity studies of fibrous meshes with encapsulated compounds are currently being accessed in vitro, as well as pharmacokinetics and dynamics studies. The last step includes the implantation of the drug-loaded fibrous meshes in vivo.

Keywords: drug delivery, electrospinning, ERAP inhibitors, liposomes

Procedia PDF Downloads 103
4508 Role of Social Support in Drug Cessation among Male Addicts in the West of Iran

Authors: Farzad Jalilian, Mehdi Mirzaei Alavijeh, Fazel Zinat Motlagh

Abstract:

Social support is an important benchmark of health for people in avoidance conditions. The main goal of this study was to determine the three kinds of social support (family, friend and other significant) to drug cessation among male addicts, in Kermanshah, the west of Iran. This cross-sectional study was conducted among 132 addicts, randomly selected to participate voluntarily in the study. Data were collected from conduct interviews based on standard questionnaire and analyzed by using SPSS-18 at 95% significance level. The majority of addicts were young (Mean: 30.4 years), and with little education. Opium (36.4%), Crack (21.2%), and Methamphetamine (12.9%) were the predominant drugs. Inabilities to reject the offer and having addict friends are the most often reasons for drug usage. Almost, 18.9% reported history of drug injection. 43.2% of the participants already did drug cessation at least once. Logistic regression showed the family support (OR = 1.110), age (OR = 1.106) and drug use initiation age (OR = 0.918) was predicting drug cessation. Our result showed; family support is a more important effect among types of social support in drug cessation. It seems that providing educational program to addict’s families for more support of patients at drug cessation can be beneficial.

Keywords: drug cessation, family support, drug use, initiation age

Procedia PDF Downloads 549