Search results for: discrete wavelet transform
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2116

Search results for: discrete wavelet transform

556 In Vivo Assessment of Biogenically Synthesized Silver Nanoparticles

Authors: Muhammad Shahzad Tufail, Iram Liaqat

Abstract:

Silver nanoparticles (AgNPs) have wider biomedical applications due to their intensive antimicrobial activities. However, toxicity and side effects of nanomaterials like AgNPs is a subject of great controversy towards the further studies in this direction. In this study, biogenically synthesized AgNPs, previously characterized via ultraviolet (UV) visible spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD) and fourier transform infrared spectroscopy (FTIR), were subjected to toxicity evaluation using mice model. Albino male mice (BALB/c) were administered with 50 mgkg-1, 100 mgkg-1 and 150 mgkg-1 of AgNPs, respectively, except for control for 30 days. Log-probit regression analysis was used to measure the dosage response to determine the median lethal dose (LD50). Exposure to AgNPs caused significant changes in the levels of serum AST (P ˂ 0.05) at the 100mgkg-1 and 150mgkg-1 of AgNPs exposure, while ALT and serum creatinine (P ˃ 0.05) levels remained normal. Histopathology of male albino mice liver and kidney was studied after 30 days experimental period. Results revealed that mice exposed to heavy dose (150 mgkg-1) of AgNPs showed cell distortion, necrosis and detachment of hepatocytes in the liver. Regarding kidney, at lower concentration, normal renal structure with normal glomeruli was observed. However, at higher concentration (150 mgkg-1), kidneys showed smooth surface and dark red colour with proliferation of podocytes. It can be concluded from present study that biologically synthesized AgNPs are small to be eliminated easily by kidney and therefore the liver and kidney did not show toxicity at low concentrations.

Keywords: silver nanoparticles, pseudomonas aeruginosa, male albino mice, toxicity assessment

Procedia PDF Downloads 45
555 Quartz Crystal Microbalance Based Hydrophobic Nanosensor for Lysozyme Detection

Authors: F. Yılmaz, Y. Saylan, A. Derazshamshir, S. Atay, A. Denizli

Abstract:

Quartz crystal microbalance (QCM), high-resolution mass-sensing technique, measures changes in mass on oscillating quartz crystal surface by measuring changes in oscillation frequency of crystal in real time. Protein adsorption techniques via hydrophobic interaction between protein and solid support, called hydrophobic interaction chromatography (HIC), can be favorable in many cases. Some nanoparticles can be effectively applied for HIC. HIC takes advantage of the hydrophobicity of proteins by promoting its separation on the basis of hydrophobic interactions between immobilized hydrophobic ligands and nonpolar regions on the surface of the proteins. Lysozyme is found in a variety of vertebrate cells and secretions, such as spleen, milk, tears, and egg white. Its common applications are as a cell-disrupting agent for extraction of bacterial intracellular products, as an antibacterial agent in ophthalmologic preparations, as a food additive in milk products and as a drug for treatment of ulcers and infections. Lysozyme has also been used in cancer chemotherapy. The aim of this study is the synthesis of hydrophobic nanoparticles for Lysozyme detection. For this purpose, methacryoyl-L-phenylalanine was chosen as a hydrophobic matrix. The hydrophobic nanoparticles were synthesized by micro-emulsion polymerization method. Then, hydrophobic QCM nanosensor was characterized by Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, atomic force microscopy (AFM) and zeta size analysis. Hydrophobic QCM nanosensor was tested for real-time detection of Lysozyme from aqueous solution. The kinetic and affinity studies were determined by using Lysozyme solutions with different concentrations. The responses related to a mass (Δm) and frequency (Δf) shifts were used to evaluate adsorption properties.

Keywords: nanosensor, HIC, lysozyme, QCM

Procedia PDF Downloads 323
554 Characterization of Biogenic Silver Nanoparticles by Salvadora persica Leaves Extract and its Application Against Some MDR Pathogens E. Coli and S. Aureus

Authors: Mudawi M. Nour

Abstract:

Background: Now a days, the multidisciplinary scientific research conception in the field of nanotechnology has witnessed development with regard to the numerous applications and synthesis of nanomaterials. Objective: The current investigation has been conducted with the main focus on the green synthesis of silver nanoparticles from the leaves of Salvadora persica and its antibacterial activity against MDR pathogens E. coli and S. aureus. Methodology: Silver nanoparticles (AgNPs) were prepared after addition of aqueous extract of Salvadora persica leaves. The UV-Vis spectrophotometer, Transmission Electron Microscopy (TEM), zeta potential and Scanning Electron Microscopy (SEM) were employed to detect the particle size and morphology, besides Fourier transform infra-red spectrometer (FTIR) analysis was performed to determine the capping and stabilizing agents in the extract. Antibacterial assay for the biogenic AgNPs was conducted against E. coli and S. aureus. Results: Color change of the mixture from yellow to dark brown is the first indication to AgNPs formation. Furthermore, 420 nm was the peak value for UV-Vis spectroscopy absorption of the mixture. Besides, TEM and SEM micrographs showed wide variability in the diameter of smaller NPs aggregated together with spherical shapes, and zeta sizer showed about 153.3 nm as an average size of nanoparticles. Microbial suppression was noticed for the tested microorganisms. Furthermore, with the help of FTIR analysis, the biomolecules that act as capping and stabilizing agents of AgNPs are proteins and phenols present in the plant extract. Conclusion: Salvadora persica leaves extract act as a reducing and stabilizing agent for the synthesis of AgNPs, keeping its ability to suppress the MDR pathogen.

Keywords: green synthesis, FTIR, MDR pathogen, salvadora persica

Procedia PDF Downloads 44
553 Winning the Future of Education in Africa through Project Base Learning: How the Implementation of PBL Pedagogy Can Transform Africa’s Educational System from Theory Base to Practical Base in School Curriculum

Authors: Bismark Agbemble

Abstract:

This paper talks about how project-based learning (PBL) is being infused or implemented in the educational sphere of Africa. The paper navigates through the liminal aspects of PBL as a pedagogical approach to bridge the divide between theoretical knowledge and its application within school curriculums. Given that contextualized learning can be embodied, the abstract vehemently discusses that PBL creates an opportunity for students to work on projects that are of academic relevance in their local settings. It presents PBL’s growth of critical thinking, problem-solving, cooperation, and communications, which is vital in getting young citizens to prepare for the 21st-century revolution. In addition, the abstract stresses the possibility that PBL could become a stimulus to creativity and innovation wherein learning becomes motivated from within by intrinsic motivations. The paper advocates for a holistic approach that is based on teacher’s professional development with the provision of adequate infrastructural facilities and resource allocation, thus ensuring the success and sustainability of PBLs in African education systems. In the end, the paper positions this as a transformative educational methodology that has great potential in helping to shape an African generation that is prepared for a great future.

Keywords: student centered pedagogy, constructivist learning theory, self-directed learning, active exploration, real world challenges, STEM, 21st century skills, curriculum design, classroom management, project base learning curriculum, global intelligence, social and communication skills, transferable skills, critical thinking, investigatable learning, life skills

Procedia PDF Downloads 23
552 Sorption of Cesium Ions from Aqueous Solutions by Magnetic Multi-Walled Carbon Nanotubes Functionalized with Zinc Hexacyanoferrate

Authors: H. H. Lee, D. Y. Kim, S. W. Lee, J. H. Kim, J. H. Kim, W. Z. Oh, S. J. Choi

Abstract:

In recent years, carbon nanotubes (CNTs) have been widely employed as a sorbent for the removal of various metal ions from water due to their unique properties such as large surface area, light mass density, high porous and hollow structure, and strong interaction between the pollutant molecules and CNTs. To apply CNTs to the sorption of Cs+ from aqueous solutions, they must first be functionalized to increase their hydrophilicity and therefore, enhance their applicability to the sorption of polar and relatively low-molecular-weight species. The objective of this study is to investigate the preparation of magnetically separable multi-walled carbon nanotubes (MWCNTs-m) as a sorbents for the removal of Cs+ from aqueous solutions. The MWCNTs-m was prepared using pristine MWCNTs and iron precursor Fe(acac)3. For the selective removal of Cs+ from aqueous solutions, the MWCNTs-m was functionalized with zinc hexacyanoferrate (MWCNTs-m-ZnFC). The physicochemical properties of the synthesized sorbents were characterized with various techniques, including transmission electron microscopy (TEM), specific surface area analysis, Fourier transform-infrared (FT-IR) spectroscopy, and vibrating-sample magnetometer. The MWCNTs-m-ZnFC was found to be easily separated from aqueous solutions by using magnetic field. The MWCNTs-m-ZnFC exhibited a high capacity for sorbing Cs+ from aqueous solutions because of their strong affinity for Cs+ and specific surface area. The sorption ability of the MWCNTs-m-ZnFC for Cs+ was maintained even in the presence of co-existing ions (Na+). Considering these results, the CNT-m-ZnFCs have great potential for use as an effective sorbent for the selective removal of radioactive Cs+ ions from aqueous solutions.

Keywords: multi-walled carbon nanotubes, magnetic materials, cesium, zinc hexacyanoferrate, sorption

Procedia PDF Downloads 299
551 The Seedlings Pea (Pisum Sativum L.) Have A High Potential To Be Used As A Promising Condidate For The Study Of Phytoremediation Mechanisms Following An Aromatic Polycyclic Hydrocarbon (Hap) Contamination Such As Naphtalene

Authors: Agoun-bahar Salima

Abstract:

The environmental variations to which plants are subjected require them to have a strong capacity for adaptation. Some plants are affected by pollutants and are used as pollution indicators; others have the capacity to block, extract, accumulate, transform or degrade the xenobiotic. The diversity of the legume family includes around 20 000 species and offers opportunities for exploitation through their agronomic, dietary and ecological interests. The lack of data on the bioavailability of the Aromatic Polycyclic Hydrocarbon (PAH) in polluted environments, as their passage in the food chains and on the effects of interaction with other pollutants, justifies priority research on this vast family of hydrocarbons. Naphthalene is a PAH formed from two aromatic rings, it is listed and classified as priority pollutant in the list of 16 PAH by the United States Environmental Protection Agency. The aim of this work was to determinate effect of naphthalene at different concentrations on morphological and physiological responses of pea seedlings. At the same time, the behavior of the pollutant in the soil and its fate at the different parts of plant (roots, stems, leaves and fruits) were also recorded by Gas Chromatography/ Mass Spectrometry (GC / MS). In it controlled laboratory studies, plants exposed to naphthalene were able to grow efficiently. From a quantitative analysis, 67% of the naphthalene was removed from the soil and then found on the leaves of the seedlings in just three weeks of cultivation. Interestingly, no trace of naphthalene or its derivatives were detected on the chromatograms corresponding to the dosage of the pollutant at the fruit level after ten weeks of cultivating the seedlings and this for all the pollutant concentrations used. The pea seedlings seem to tolerate the pollutant when it is applied to the soil. In conclusion, the pea represents an interesting biological model in the study of phytoremediation mechanisms.

Keywords: naphtalene, PAH, Pea, phytoremediation, pollution

Procedia PDF Downloads 37
550 Promotional Effects of Zn in Cu-Zn/Core-Shell Al-MCM-41 for Selective Catalytic Reduction of NO with NH3: Acidic Properties, NOx Adsorption Properties, and Nature of Copper

Authors: Thidarat Imyen, Paisan Kongkachuichay

Abstract:

Cu-Zn/core-shell Al-MCM-41 catalyst with various copper species, prepared by a combination of three methods—substitution, ion-exchange, and impregnation, was studied for the selective catalytic reduction (SCR) of NO with NH3 at 300 °C for 150 min. In order to investigate the effects of Zn introduction on the nature of the catalyst, Cu/core-shell Al-MCM-41 and Zn/core-shell Al-MCM-41 catalysts were also studied. The roles of Zn promoter in the acidity and the NOx adsorption properties of the catalysts were investigated by in situ Fourier transform infrared spectroscopy (FTIR) of NH3 and NOx adsorption, and temperature-programmed desorption (TPD) of NH3 and NOx. The results demonstrated that the acidity of the catalyst was enhanced by the Zn introduction, as exchanged Zn(II) cations loosely bonded with Al-O-Si framework could create Brønsted acid sites by interacting with OH groups. Moreover, Zn species also provided the additional sites for NO adsorption in the form of nitrite (NO2–) and nitrate (NO3–) species, which are the key intermediates for SCR reaction. In addition, the effect of Zn on the nature of copper was studied by in situ FTIR of CO adsorption and in situ X-ray adsorption near edge structure (XANES). It was found that Zn species hindered the reduction of Cu(II) to Cu(0), resulting in higher Cu(I) species in the Zn promoted catalyst. The Cu-Zn/core-shell Al-MCM-41 exhibited higher catalytic activity compared with that of the Cu/core-shell Al-MCM-41 for the whole reaction time, as it possesses the highest amount of Cu(I) sites, which are responsible for SCR catalytic activity. The Cu-Zn/core-shell Al-MCM-41 catalyst also reached the maximum NO conversion of 100% with the average NO conversion of 76 %. The catalytic performance of the catalyst was further improved by using Zn promoter in the form of ZnO instead of reduced Zn species. The Cu-ZnO/core-shell Al-MCM-41 catalyst showed better catalytic performance with longer working reaction time, and achieved the average NO conversion of 81%.

Keywords: Al-MCM-41, copper, nitrogen oxide, selective catalytic reduction, zinc

Procedia PDF Downloads 266
549 Facile Fabrication of TiO₂NT/Fe₂O₃@Ag₂CO₃ Nanocomposite and Its Highly Efficient Visible Light Photocatalytic and Antibacterial Activity

Authors: Amal A. Al-Kahlawy, Heba H. El-Maghrabi

Abstract:

Due to the increasing need to environment protection in real time need to energize new materials are under extensive investigations. Between others, TiO2 nanotubes (TNTs) nanocomposite with iron oxide and silver carbonate, are promising alternatives as high-efficiency visible light photocatalyst due to their unique properties and their superior charge transport properties. Our efforts in this domain aim the construction of novel nanocomposite of TiO2NT/Fe2O3@Ag2CO3. The structure, surface morphology, chemical composition and optical properties were characterized by X-ray diffraction (XRD), Raman, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and UV–vis diffuse reflectance spectroscopy (DRS). XRD results confirm the interaction of TiO2-NT with iron oxide. This novel nanocomposite shows remarkably enhanced performance for phenol compounds photodegradation. The experimental data shows a promising photocatalytic activity. In particular, a maximum value of 450 mg/g was removed within 60 min at solar light irradiation with degradation efficiency of 99.5%. The high photocatalytic activity of the nanocomposite is found to be related to the increased adsorption toward chemical species, enhanced light absorption and efficient charge separation and transfer. Finally, the designed TiO2NT/Fe2O3@Ag2CO3 nanocomposite has a great degree of sustainability and could has a potential application for the industrial treatment of wastewater containing toxic organic materials.

Keywords: nanocomposite, photocatalyst, solar energy, titanium dioxide nanotubes

Procedia PDF Downloads 215
548 The Effect of Simultaneous Doping of Silicate Bioglass with Alkaline and Alkaline-Earth Elements on Biological Behavior

Authors: Tannaz Alimardani, Amirhossein Moghanian, Morteza Elsa

Abstract:

Bioactive glasses (BGs) are a group of surface-reactive biomaterials used in clinical applications as implants or filler materials in the human body to repair and replace diseased or damaged bone. Sol-gel technique was employed to prepare a SiO₂-CaO-P₂O₅ glass with a nominal composition of 58S BG with the addition of Sr and Li modifiers which imparts special properties to the BG. The effect of simultaneous addition of Sr and Li on bioactivity and biocompatibility, proliferation, alkaline phosphatase (ALP) activity of osteoblast cell line MC3T3-E1 and antibacterial property against methicillin-resistant Staphylococcus aureus (MRSA) bacteria were examined. BGs were characterized by X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy before and after soaking the samples in the simulated body fluid (SBF) for different time intervals to characterize the formation of hydroxyapatite (HA) formed on the surface of BGs. Structural characterization indicated that the simultaneous presence of 5% Sr and 5% Li in 58S-BG composition not only did not retard HA formation because of the opposite effect of Sr and Li of the dissolution of BG in the SBF, but also stimulated the differentiation and proliferation of MC3T3-E1s. Moreover, the presence of Sr and Li on the dissolution of the ions resulted in an increase in the mean number of DAPI-labeled nuclei which was in good agreement with the live/dead assay. The result of antibacterial tests revealed that Sr and Li-substituted 58S bioactive glass exhibited a potential antibacterial effect against MRSA bacteria. Because of optimal proliferation and ALP activity of MC3T3-E1cells, proper bioactivity and high antibacterial potential against MRSA, BG-5/5 is suggested as a multifunctional candidate for bone tissue engineering.

Keywords: alkaline, alkaline earth, bioglass, co-doping, ion release

Procedia PDF Downloads 176
547 Examining the Notion of Duality: The Interaction between Neo-Academicism and University Teachers' Agency within the Performativity Context Defined by Public Managerialism

Authors: Tien Hui Chiang

Abstract:

Along with the predominant influence of neo-liberalism, public managerialism is viewed as a panacea for curing the institutionalized weakness caused by the monopoly of the public sector. In the name of efficiency, its outcome-led approach acquires a legitimate status and, in turn, it transforms into the discourse of performativity, reformulating the souls of individual members into the form of docile bodies who are willing to demonstrate their own ability in organizational contributions. The evaluation system and the organizational reconstruction are viewed as the crucial means for achieving this mission. Inevitably, university teachers are confined within a rigid and bureaucratic setting, in which they do not have too much latitude but are subject to the commands of senior administrators. However, the notion of duality highlights the interaction between structural constraints and agency. If the actor discovers the rules or properties of social structure, he/she is able to transform structural constraints into resources for developing creative actions, conceptualized as an agency. This study was designed for examining how duality operates within this hierarchical arrangement formed by public managerialism. Fourteen informants were interviewed from February to August 2014. The findings show that the evaluation system created the culture of neo-academicalism, addressing excellence in research and, in turn, motivating academic-oriented teachers. This correspondence provided a gateway for them to win honor, dignity, and prestige in groups. However, unlike the concept of duality, this agency was operating within the institutionalized context, regulated by structural constraint. Furthermore, complying with the rule/property of social structure was able to secure their advantages.

Keywords: public managerialism, social discourse, neo-academicalism, duality, structural constraint, agency

Procedia PDF Downloads 210
546 Role of Cellulose Fibers in Tuning the Microstructure and Crystallographic Phase of α-Fe₂O₃ and α-FeOOH Nanoparticles

Authors: Indu Chauhan, Bhupendra S. Butola, Paritosh Mohanty

Abstract:

It is very well known that properties of material changes as their size approach to nanoscale level due to the high surface area to volume ratio. However, in last few decades, a tenet ‘structure dictates function’ is quickly being adopted by researchers working with nanomaterials. The design and exploitation of nanoparticles with tailored shape and size has become one of the primary goals of materials science researchers to expose the properties of nanostructures. To date, various methods, including soft/hard template/surfactant assisted route hydrothermal reaction, seed mediated growth method, capping molecule-assisted synthesis, polyol process, etc. have been adopted to synthesize the nanostructures with controlled size and shape and monodispersity. However controlling the shape and size of nanoparticles is an ultimate challenge of modern material research. In particular, many efforts have been devoted to rational and skillful control of hierarchical and complex nanostructures. Thus in our research work, role of cellulose in manipulating the nanostructures has been discussed. Nanoparticles of α-Fe₂O₃ (diameter ca. 15 to 130 nm) were immobilized on the cellulose fiber surface by a single step in situ hydrothermal method. However, nanoflakes of α-FeOOH having thickness ca. ~25 nm and length ca. ~250 nm were obtained by the same method in absence of cellulose fibers. A possible nucleation and growth mechanism of the formation of nanostructures on cellulose fibers have been proposed. The covalent bond formation between the cellulose fibers and nanostructures has been discussed with supporting evidence from the spectroscopic and other analytical studies such as Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The role of cellulose in manipulating the nanostructures has been discussed.

Keywords: cellulose fibers, α-Fe₂O₃, α-FeOOH, hydrothermal, nanoflakes, nanoparticles

Procedia PDF Downloads 121
545 Characterization and Monitoring of the Yarn Faults Using Diametric Fault System

Authors: S. M. Ishtiaque, V. K. Yadav, S. D. Joshi, J. K. Chatterjee

Abstract:

The DIAMETRIC FAULTS system has been developed that captures a bi-directional image of yarn continuously in sequentially manner and provides the detailed classification of faults. A novel mathematical framework developed on the acquired bi-directional images forms the basis of fault classification in four broad categories, namely, Thick1, Thick2, Thin and Normal Yarn. A discretised version of Radon transformation has been used to convert the bi-directional images into one-dimensional signals. Images were divided into training and test sample sets. Karhunen–Loève Transformation (KLT) basis is computed for the signals from the images in training set for each fault class taking top six highest energy eigen vectors. The fault class of the test image is identified by taking the Euclidean distance of its signal from its projection on the KLT basis for each sample realization and fault class in the training set. Euclidean distance applied using various techniques is used for classifying an unknown fault class. An accuracy of about 90% is achieved in detecting the correct fault class using the various techniques. The four broad fault classes were further sub classified in four sub groups based on the user set boundary limits for fault length and fault volume. The fault cross-sectional area and the fault length defines the total volume of fault. A distinct distribution of faults is found in terms of their volume and physical dimensions which can be used for monitoring the yarn faults. It has been shown from the configurational based characterization and classification that the spun yarn faults arising out of mass variation, exhibit distinct characteristics in terms of their contours, sizes and shapes apart from their frequency of occurrences.

Keywords: Euclidean distance, fault classification, KLT, Radon Transform

Procedia PDF Downloads 242
544 Effect of Ultrasound-Assisted Pretreatment on Saccharification of Spent Coffee Grounds

Authors: Shady S. Hassan, Brijesh K. Tiwari, Gwilym A. Williams, Amit K. Jaiswal

Abstract:

EU is known as the destination with the highest rate of the coffee consumption per capita in the world. Spent coffee grounds (SCG) are the main by-product of coffee brewing. SCG is either disposed as a solid waste or employed as compost, although the polysaccharides from such lignocellulosic biomass might be used as feedstock for fermentation processes. However, SCG as a lignocellulose have a complex structure and pretreatment process is required to facilitate an efficient enzymatic hydrolysis of carbohydrates. However, commonly used pretreatment methods, such as chemical, physico-chemical and biological techniques are still insufficient to meet optimal industrial production requirements in a sustainable way. Ultrasound is a promising candidate as a sustainable green pretreatment solution for lignocellulosic biomass utilization in a large scale biorefinery. Thus, ultrasound pretreatment of SCG without adding harsh chemicals investigated as a green technology to enhance enzyme hydrolysis. In the present work, ultrasound pretreatment experiments were conducted on SCG using different ultrasound frequencies (25, 35, 45, 130, and 950 kHz) for 60 min. Regardless of ultrasound power, low ultrasound frequency is more effective than high ultrasound frequency in pretreatment of biomass. Ultrasound pretreatment of SCG (at ultrasound frequency of 25 kHz for 60 min) followed by enzymatic hydrolysis resulted in total reducing sugars of 56.1 ± 2.8 mg/g of biomass. Fourier transform Infrared Spectroscopy (FTIR) was employed to investigate changes in functional groups of biomass after pretreatment, while high-performance liquid chromatography (HPLC) was employed for determination of glucose. Pretreatment of lignocellulose by low frequency ultrasound in water only was found to be an effective green approach for SCG to improve saccharification and glucose yield compared to native biomass. Pretreatment conditions will be optimized, and the enzyme hydrolysate will be used as media component substitute for the production of ethanol.

Keywords: lignocellulose, ultrasound, pretreatment, spent coffee grounds

Procedia PDF Downloads 291
543 Impact of Ethnoscience-Based Teaching Approach: Thinking Relevance, Effectiveness and Learner Retention in Physics Concepts of Optics

Authors: Rose C.Anamezie, Mishack T. Gumbo

Abstract:

Physics learners’ poor retention, which culminates in poor achievement due to teaching approaches that are unrelated to learners’ in non-Western cultures, warranted the study. The tenet of this study was to determine the effectiveness of the ethnoscience-based teaching (EBT) approach on learners’ retention in the Physics concept of Optics in the Awka Education zone of Anambra State- Nigeria. Two research questions and three null hypotheses tested at a 0.05 level of significance guided the study. The design adopted for the study was Quasi-experimental. Specifically, a non-equivalent control group design was adopted. The population for the study was 4,825 SS2 Physics learners in the zone. 160 SS2 learners were sampled using purposive and random sampling. The experimental group was taught rectilinear propagation of light (RPL) using the EBT approach, while the control group was taught the same topic using the lecture method. The instrument for data collection was the 50 Physics Retention Test (PRT) which was validated by three experts and tested for reliability using Kuder-Richardson’s formula-20, which yielded coefficients of 0.81. The data were analysed using mean, standard deviation and analysis of co-variance (p< .05). The results showed higher retention for the use of the EBT approach than the lecture method, while there was no significant gender-based factor in the learners’ retention in Physics. It was recommended that the EBT approach, which bridged the gender gap in Physics retention, be adopted in secondary school teaching and learning since it could transform science teaching, enhance learners’ construction of new science concepts based on their existing knowledge and bridge the gap between Western science and learners’ worldviews.

Keywords: Ethnoscience-based teaching, optics, rectilinear propagation of light, retention

Procedia PDF Downloads 58
542 A Numerical Investigation of Segmental Lining Joints Interactions in Tunnels

Authors: M. H. Ahmadi, A. Mortazavi, H. Zarei

Abstract:

Several authors have described the main mechanism of formation of cracks in the segment lining during the construction of tunnels with tunnel boring machines. A comprehensive analysis of segmental lining joints may help to guarantee a safe construction during Tunneling and serviceable stages. The most frequent types of segment damage are caused by a condition of uneven segment matching due to contact deficiencies. This paper investigated the interaction mechanism of precast concrete lining joints in tunnels. The Discrete Element Method (DEM) was used to analyze a typical segmental lining model consisting of six segment rings. In the analyses, typical segmental lining design parameters of the Ghomrood water conveyance tunnel, Iran were employed in the study. In the conducted analysis, the worst-case scenario of loading faced during the boring of Ghomrood tunnel was considered. This was associated with the existence of a crushed zone dipping at 75 degree at the location of the key segment. In the analysis, moreover, the effect of changes in horizontal stress ratio on the loads on the segment was assessed. The boundary condition associated with K (ratio of the horizontal to the vertical stress) values of 0.5, 1, 1.5 and 2 were applied to the model and separate analysis was conducted for each case. Important parameters such as stress, moments, and displacements were measured at joint locations and the surrounding rock. Accordingly, the segment joint interactions were assessed and analyzed. Moreover, rock mass properties of the Ghomrood in Ghom were adopted. In this study, the load acting on segments joints are included a crushed zone stratum force that intersect tunnel with 75 slopes in the location of the key segment, gravity force of segments and earth pressures. A numerical investigation was used for different coefficients of stress concentration of 0.5, 1, 1.5, 2 and different geological conditions of saturated crushed zone under the critical scenario. The numerical results also demonstrate that maximum bending moments in longitudinal joints occurred for crushed zone with the weaken strengths (Sandstone). Besides that, increasing the load in segment-stratum interfaces affected radial stress in longitudinal joints and finally the opening of joints occurred.

Keywords: joint, interface, segment, contact

Procedia PDF Downloads 239
541 The Impact of Social Media on Urban E-planning: A Review of the Literature

Authors: Farnoosh Faal

Abstract:

The rapid growth of social media has brought significant changes to the field of urban e-planning. This study aims to review the existing literature on the impact of social media on urban e-planning processes. The study begins with a discussion of the evolution of social media and its role in urban e-planning. The review covers research on the use of social media for public engagement, citizen participation, stakeholder communication, decision-making, and monitoring and evaluation of urban e-planning initiatives. The findings suggest that social media has the potential to enhance public participation and improve decision-making in urban e-planning processes. Social media platforms such as Facebook, Twitter, and Instagram can provide a platform for citizens to engage with planners and policymakers, express their opinions, and provide feedback on planning proposals. Social media can also facilitate the collection and analysis of data, including real-time data, to inform urban e-planning decision-making. However, the literature also highlights some challenges associated with the use of social media in urban e-planning. These challenges include issues related to the representativeness of social media users, the quality of information obtained from social media, the potential for bias and manipulation of social media content, and the need for effective data management and analysis. The study concludes with recommendations for future research on the use of social media in urban e-planning. The recommendations include the need for further research on the impact of social media on equity and social justice in planning processes, the need for more research on effective strategies for engaging underrepresented groups, and the development of guidelines for the use of social media in urban e-planning processes. Overall, the study suggests that social media has the potential to transform urban e-planning processes but that careful consideration of the opportunities and challenges associated with its use is essential for effective and ethical planning practice.

Keywords: social media, Urban e-planning, public participation, citizen engagement

Procedia PDF Downloads 194
540 Comparative Study of Calcium Content on in vitro Biological and Antibacterial Properties of Silicon-Based Bioglass

Authors: Morteza Elsa, Amirhossein Moghanian

Abstract:

The major aim of this study was to evaluate the effect of CaO content on in vitro hydroxyapatite formation, MC3T3 cells cytotoxicity and proliferation as well as antibacterial efficiency of sol-gel derived SiO2–CaO–P2O5 ternary system. For this purpose, first two grades of bioactive glass (BG); BG-58s (mol%: 60%SiO2–36%CaO–4%P2O5) and BG-68s (mol%: 70%SiO2–26%CaO–4%P2O5)) were synthesized by sol-gel method. Second, the effect of CaO content in their composition on in vitro bioactivity was investigated by soaking the BG-58s and BG-68s powders in simulated body fluid (SBF) for time periods up to 14 days and followed by characterization inductively coupled plasma atomic emission spectrometry (ICP-AES), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) techniques. Additionally, live/dead staining, 3-(4,5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), and alkaline phosphatase (ALP) activity assays were conducted respectively, as qualitatively and quantitatively assess for cell viability, proliferation and differentiations of MC3T3 cells in presence of 58s and 68s BGs. Results showed that BG-58s with higher CaO content showed higher in vitro bioactivity with respect to BG-68s. Moreover, the dissolution rate was inversely proportional to oxygen density of the BG. Live/dead assay revealed that both 58s and 68s increased the mean number live cells which were in good accordance with MTT assay. Furthermore, BG-58s showed more potential antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) bacteria. Taken together, BG-58s with enhanced MC3T3 cells proliferation and ALP activity, acceptable bioactivity and significant high antibacterial effect against MRSA bacteria is suggested as a suitable candidate in order to further functionalizing for delivery of therapeutic ions and growth factors in bone tissue engineering.

Keywords: antibacterial, bioactive glass, hydroxyapatite, proliferation, sol-gel processes

Procedia PDF Downloads 120
539 Investigation of Electrospun Composites Nanofiber of Poly (Lactic Acid)/Hazelnut Shell Powder/Zinc Oxide

Authors: Ibrahim Sengor, Sumeyye Cesur, Ilyas Kartal, Faik Nuzhet Oktar, Nazmi Ekren, Ahmet Talat Inan, Oguzhan Gunduz

Abstract:

In recent years, many researchers focused on nano-size fiber production. Nanofibers have been studied due to their different and superior physical, chemical and mechanical properties. Poly (lactic acid) (PLA), is a type of biodegradable thermoplastic polyester derived from renewable sources used in biomedical owing to its biocompatibility and biodegradability. In addition, zinc oxide is an antibacterial material and hazelnut shell powder is a filling material. In this study, nanofibers were obtained by adding of different ratio Zinc oxide, (ZnO) and hazelnut shell powder at different concentration into Poly (lactic acid) (PLA) by using electrospinning method which is the most common method to obtain nanofibers. After dissolving the granulated polylactic acids in % 1,% 2,% 3 and% 4 with chloroform solvent, they are homogenized by adding tween and hazelnut shell powder at different ratios and then by electrospinning, nanofibers are obtained. Scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), Differential scanning calorimeter (DSC) and physical analysis such as density, electrical conductivity, surface tension, viscosity measurement and antimicrobial test were carried out after production process. The resulting structures of the nanofiber possess antimicrobial and antiseptic properties, which are attractive for biomedical applications. The resulting structures of the nanofiber possess antimicrobial, non toxic, self-cleaning and rigid properties, which are attractive for biomedical applications.

Keywords: electrospinning, hazelnut shell powder, nanofibers, poly (lactic acid), zinc oxide

Procedia PDF Downloads 137
538 The Systems Theoretic Accident Model and Process (Stamp) as the New Trend to Promote Safety Culture in Construction

Authors: Natalia Ortega

Abstract:

Safety Culture (SCU) involves various perceptual, psychological, behavioral, and managerial factors. It has been shown that creating and maintaining an SCU is one way to reduce and prevent accidents and fatalities. In the construction sector, safety attitude, knowledge, and a supportive environment are predictors of safety behavior. The highest possible proportion of safety behavior among employees can be achieved by improving their safety attitude and knowledge. Accordingly, top management's commitment to safety is vital in shaping employees' safety attitude; therefore, the first step to improving employees' safety attitude is the genuine commitment of top management to safety. One of the factors affecting the successful implementation of health and safety promotion programs is the construction industry's subcontracting model. The contractual model's complexity, combined with the need for coordination among diverse stakeholders, makes it challenging to implement, manage, and follow up on health and well-being initiatives. The Systems theoretic accident model and process (STAMP) concept has expanded global consideration in recent years, increasing research attention. STAMP focuses attention on the role of constraints in safety management. The findings discover a growth of the research field from the definition in 2004 by Leveson and is being used across multiple domains. A systematic literature review of this novel model aims to meet the safety goals for human space exploration with a powerful and different approach to safety management, safety-driven design, and decision-making. Around two hundred studies have been published about applying the model. However, every single model for safety requires time to transform into research and practice, be tested and debated, and grow further and mature.

Keywords: stamp, risk management, accident prevention, safety culture, systems thinking, construction industry, safety

Procedia PDF Downloads 52
537 FT-NIR Method to Determine Moisture in Gluten Free Rice-Based Pasta during Drying

Authors: Navneet Singh Deora, Aastha Deswal, H. N. Mishra

Abstract:

Pasta is one of the most widely consumed food products around the world. Rapid determination of the moisture content in pasta will assist food processors to provide online quality control of pasta during large scale production. Rapid Fourier transform near-infrared method (FT-NIR) was developed for determining moisture content in pasta. A calibration set of 150 samples, a validation set of 30 samples and a prediction set of 25 samples of pasta were used. The diffuse reflection spectra of different types of pastas were measured by FT-NIR analyzer in the 4,000-12,000 cm-1 spectral range. Calibration and validation sets were designed for the conception and evaluation of the method adequacy in the range of moisture content 10 to 15 percent (w.b) of the pasta. The prediction models based on partial least squares (PLS) regression, were developed in the near-infrared. Conventional criteria such as the R2, the root mean square errors of cross validation (RMSECV), root mean square errors of estimation (RMSEE) as well as the number of PLS factors were considered for the selection of three pre-processing (vector normalization, minimum-maximum normalization and multiplicative scatter correction) methods. Spectra of pasta sample were treated with different mathematic pre-treatments before being used to build models between the spectral information and moisture content. The moisture content in pasta predicted by FT-NIR methods had very good correlation with their values determined via traditional methods (R2 = 0.983), which clearly indicated that FT-NIR methods could be used as an effective tool for rapid determination of moisture content in pasta. The best calibration model was developed with min-max normalization (MMN) spectral pre-processing (R2 = 0.9775). The MMN pre-processing method was found most suitable and the maximum coefficient of determination (R2) value of 0.9875 was obtained for the calibration model developed.

Keywords: FT-NIR, pasta, moisture determination, food engineering

Procedia PDF Downloads 233
536 Simulation of Focusing of Diamagnetic Particles in Ferrofluid Microflows with a Single Set of Overhead Permanent Magnets

Authors: Shuang Chen, Zongqian Shi, Jiajia Sun, Mingjia Li

Abstract:

Microfluidics is a technology that small amounts of fluids are manipulated using channels with dimensions of tens to hundreds of micrometers. At present, this significant technology is required for several applications in some fields, including disease diagnostics, genetic engineering, and environmental monitoring, etc. Among these fields, manipulation of microparticles and cells in microfluidic device, especially separation, have aroused general concern. In magnetic field, the separation methods include positive and negative magnetophoresis. By comparison, negative magnetophoresis is a label-free technology. It has many advantages, e.g., easy operation, low cost, and simple design. Before the separation of particles or cells, focusing them into a single tight stream is usually a necessary upstream operation. In this work, the focusing of diamagnetic particles in ferrofluid microflows with a single set of overhead permanent magnets is investigated numerically. The geometric model of the simulation is based on the configuration of previous experiments. The straight microchannel is 24mm long and has a rectangular cross-section of 100μm in width and 50μm in depth. The spherical diamagnetic particles of 10μm in diameter are suspended into ferrofluid. The initial concentration of the ferrofluid c₀ is 0.096%, and the flow rate of the ferrofluid is 1.8mL/h. The magnetic field is induced by five identical rectangular neodymium−iron− boron permanent magnets (1/8 × 1/8 × 1/8 in.), and it is calculated by equivalent charge source (ECS) method. The flow of the ferrofluid is governed by the Navier–Stokes equations. The trajectories of particles are solved by the discrete phase model (DPM) in the ANSYS FLUENT program. The positions of diamagnetic particles are recorded by transient simulation. Compared with the results of the mentioned experiments, our simulation shows consistent results that diamagnetic particles are gradually focused in ferrofluid under magnetic field. Besides, the diamagnetic particle focusing is studied by varying the flow rate of the ferrofluid. It is in agreement with the experiment that the diamagnetic particle focusing is better with the increase of the flow rate. Furthermore, it is investigated that the diamagnetic particle focusing is affected by other factors, e.g., the width and depth of the microchannel, the concentration of the ferrofluid and the diameter of diamagnetic particles.

Keywords: diamagnetic particle, focusing, microfluidics, permanent magnet

Procedia PDF Downloads 104
535 Transport Medium That Prevents the Conversion of Helicobacter Pylori to the Coccoid Form

Authors: Eldar Mammadov, Konul Mammadova, Aytaj Ilyaszada

Abstract:

Background: According to many studies, it is known that H. pylori transform into the coccoid form, which cannot be cultured and has poor metabolic activity.In this study, we succeeded in preserving the spiral shape of H.pylori for a long time by preparing a biphase transport medium with a hard bottom (Muller Hinton with 7% HRBC (horse red blood cells) agar 5ml) and liquid top part (BH (brain heart) broth + HS (horse serum)+7% HRBC+antibiotics (Vancomycin 5 mg, Trimethoprim lactate 25 mg, Polymyxin B 1250 I.U.)) in cell culture flasks with filter caps. For comparison, we also used a BH broth medium with 7% HRBC used for the transport of H.pylori. Methods: Rapid urease test positive 7 biopsy specimens were also inoculated into biphasic and BH broth medium with 7% HRBC, then put in CO2 Gaspak packages and sent to the laboratory. Then both mediums were kept in the thermostat at 37 °C for 1 day. After microscopic, PCR and urease test diagnosis, they were transferred to Columbia Agar with 7% HRBC. Incubated at 37°C for 5-7 days, cultures were examined for colony characteristics and bacterial morphology. E-test antimicrobial susceptibility test was performed. Results: There were 3 growths from biphasic transport medium passed to Columbia agar with 7% HRBC and only 1 growth from BH broth medium with 7% HRBC. It was also observed that after the first 3 days in BH broth medium with 7%, H.pylori passed into coccoid form and its biochemical activity weakened, while its spiral shape did not change for 2-3 weeks in the biphase transport medium. Conclusions: By using the biphase transport medium we have prepared; we can culture the bacterium by preventing H.pylori from spiraling into the coccoid form. In our opinion, this may result in the wide use of culture method for diagnosis of H.pylori, study of antibiotic susceptibility and molecular genetic analysis.

Keywords: clinical trial, H.pylori, coccoid form, transport medium

Procedia PDF Downloads 45
534 Magnetized Cellulose Nanofiber Extracted from Natural Resources for the Application of Hexavalent Chromium Removal Using the Adsorption Method

Authors: Kebede Gamo Sebehanie, Olu Emmanuel Femi, Alberto Velázquez Del Rosario, Abubeker Yimam Ali, Gudeta Jafo Muleta

Abstract:

Water pollution is one of the most serious worldwide issues today. Among water pollution, heavy metals are becoming a concern to the environment and human health due to their non-biodegradability and bioaccumulation. In this study, a magnetite-cellulose nanocomposite derived from renewable resources is employed for hexavalent chromium elimination by adsorption. Magnetite nanoparticles were synthesized directly from iron ore using solvent extraction and co-precipitation technique. Cellulose nanofiber was extracted from sugarcane bagasse using the alkaline treatment and acid hydrolysis method. Before and after the adsorption process, the MNPs-CNF composites were evaluated using X-ray diffraction (XRD), Scanning electron microscope (SEM), Fourier transform infrared (FTIR), and Vibrator sample magnetometer (VSM), and Thermogravimetric analysis (TGA). The impacts of several parameters such as pH, contact time, initial pollutant concentration, and adsorbent dose on adsorption efficiency and capacity were examined. The kinetic and isotherm adsorption of Cr (VI) was also studied. The highest removal was obtained at pH 3, and it took 80 minutes to establish adsorption equilibrium. The Langmuir and Freundlich isotherm models were used, and the experimental data fit well with the Langmuir model, which has a maximum adsorption capacity of 8.27 mg/g. The kinetic study of the adsorption process using pseudo-first-order and pseudo-second-order equations revealed that the pseudo-second-order equation was more suited for representing the adsorption kinetic data. Based on the findings, pure MNPs and MNPs-CNF nanocomposites could be used as effective adsorbents for the removal of Cr (VI) from wastewater.

Keywords: magnetite-cellulose nanocomposite, hexavalent chromium, adsorption, sugarcane bagasse

Procedia PDF Downloads 77
533 Economic Recession and its Psychological Effects on Educated Youth: A Case Study of Pakistan

Authors: Aroona Hashmi

Abstract:

An economic recession can lead people to feel more insecure about their financial situation. The series of events leading into a recession can be especially distressing for Educated Youth. One of the most salient factors linking economic recession to psychological distress is unemployment. It is proved that a large number of educated young people are facing higher unemployment rate in Pakistan. Young people are likely to get frustrated at the lack of opportunities made available to them. If the young population increases more rapidly than job opportunities, then number of unemployment is likely to increase. The aim of present study was to investigate the relationship between economic instability, growing rate of aggression and frustration among educated youth. The study aimed to find out the impact of increased economic instability on the learning abilities of the students. Data was gathered from six university students of Punjab, Pakistan. The sample of the study consisted of three hundred male and female university students. The data was analyzed by applying Chi -square test. The results of the research indicate that there is a significant relationship between low household income and growing rate of aggression among educated youth. The increasing trend of economic instability significantly influences the learning abilities of the students. The study concludes that feeling of deprivation produce frustration and could be expressed through aggression. Therefore, if factors that are responsible for youth unemployment in Pakistan are addressed, psychological effects will be reduced. The right way of tackling the youth bulge is to turn the youth into a productive workforce. There is a dire need to transform the education system to societal needs. At the same time creating demand for the young workforce is achieved through dynamic changes in the economic structure.

Keywords: psychological effects, economic recession, educated youth, environmental factors

Procedia PDF Downloads 351
532 Role of Green Ecology in Business Development

Authors: Ashfaq Ahmed Kharal

Abstract:

The study asserts that environment-friendly practices are increasingly being used by businesses throughout the world. Today, there is a great deal of interest in green management from both practitioners and academics. People expect managers to use resources intelligently and responsibly and to minimize the use of water, minerals, and other components in the finished products, as a crucial factor in this passion. The ethical or moral relevance of green management cannot be overstated. Employee Green Behavior (EGB) and environmental sustainability were shown to be significantly influenced by green human resource management (GHRM) in this study. Environmental issues, such as climate change, global warming, and resource conservation have a direct impact on business activities. The environment, society, and economy all suffer as a result of such obstacles. The depletion of natural resources needs immediate replenishment. As a result of government, non-governmental organizations (NGOs), environmental activists, and labor unions putting pressure on businesses and firms are now required to operate in ecologically responsible ways. Organizations are increasingly concerned about environmental sustainability in light of contemporary environmental circumstances and commercial marketplaces. Companies that emphasize long-term viability will benefit from integrating green employee behavior, green human resource management techniques, and environmental sustainability. Competition drives firms to respond to external causes, adapt, and evolve in response to changing conditions in the marketplace. Organizations develop strategic capabilities to transform their resources and acquire a competitive edge while implementing a business plan. The study of GHRM's function is being prioritized since environmental sustainability is becoming a more important strategic goal.

Keywords: EGB, GHRM, environment sustainability, green ecology

Procedia PDF Downloads 80
531 Ex-Offenders’ Labelling, Stigmatisation and Unsuccessful Re-Integration as Factors Leading into Recidivism: A South African Context

Authors: Tshimangadzo Oscar Magadze

Abstract:

For successful re-integration, the individual offender must adapt and transform, which requires that the offender should adopt and internalise socially approved norms, attitudes, values, and beliefs. However, the offender’s labelling and community stigmatisation decide the destination of the offender. Community involvement in ex-offenders’ re-integration is an important issue in efforts to reduce recidivism and to control overcrowding in our correctional facilities. Crime is a social problem that requires society to come together to fight against it. This study was conducted in the Limpopo Province in Vhembe District Municipality within four local municipalities, namely Musina, Makhado, Mutale, and Thulamela. A total number of 30 participants were interviewed, and all were members of the Community Corrections Forums. This was necessitated by the fact that Musina is a very small area, which compelled the Department of Correctional Services to combine the two (Musina and Makhado) into one social re-integration entity. This is a qualitative research study where participants were selected through the use of purposive sampling. Participants were selected based on the value they would add to this study in order to achieve the objectives. The data collection method of this study was the focus group, which comprised of three groups of 10 participants each. Thulamela and Mutale local municipalities formed a group with (10) participants each, whereas Musina (2) and Makhado (8) formed another. Results indicate that the current situation is not conducive for re-integration to be successful. Participants raised many factors that need serious redress, namely offenders’ discrimination, lack of forgiveness by members of the community, which is fuelled by lack of community awareness due to the failure of the Department of Correctional Services in educating communities on ex-offenders’ re-integration.

Keywords: ex-offender, labeling, re-integration, stigmatization

Procedia PDF Downloads 118
530 Non-Invasive Data Extraction from Machine Display Units Using Video Analytics

Authors: Ravneet Kaur, Joydeep Acharya, Sudhanshu Gaur

Abstract:

Artificial Intelligence (AI) has the potential to transform manufacturing by improving shop floor processes such as production, maintenance and quality. However, industrial datasets are notoriously difficult to extract in a real-time, streaming fashion thus, negating potential AI benefits. The main example is some specialized industrial controllers that are operated by custom software which complicates the process of connecting them to an Information Technology (IT) based data acquisition network. Security concerns may also limit direct physical access to these controllers for data acquisition. To connect the Operational Technology (OT) data stored in these controllers to an AI application in a secure, reliable and available way, we propose a novel Industrial IoT (IIoT) solution in this paper. In this solution, we demonstrate how video cameras can be installed in a factory shop floor to continuously obtain images of the controller HMIs. We propose image pre-processing to segment the HMI into regions of streaming data and regions of fixed meta-data. We then evaluate the performance of multiple Optical Character Recognition (OCR) technologies such as Tesseract and Google vision to recognize the streaming data and test it for typical factory HMIs and realistic lighting conditions. Finally, we use the meta-data to match the OCR output with the temporal, domain-dependent context of the data to improve the accuracy of the output. Our IIoT solution enables reliable and efficient data extraction which will improve the performance of subsequent AI applications.

Keywords: human machine interface, industrial internet of things, internet of things, optical character recognition, video analytics

Procedia PDF Downloads 82
529 Meta Model for Optimum Design Objective Function of Steel Frames Subjected to Seismic Loads

Authors: Salah R. Al Zaidee, Ali S. Mahdi

Abstract:

Except for simple problems of statically determinate structures, optimum design problems in structural engineering have implicit objective functions where structural analysis and design are essential within each searching loop. With these implicit functions, the structural engineer is usually enforced to write his/her own computer code for analysis, design, and searching for optimum design among many feasible candidates and cannot take advantage of available software for structural analysis, design, and searching for the optimum solution. The meta-model is a regression model used to transform an implicit objective function into objective one and leads in turn to decouple the structural analysis and design processes from the optimum searching process. With the meta-model, well-known software for structural analysis and design can be used in sequence with optimum searching software. In this paper, the meta-model has been used to develop an explicit objective function for plane steel frames subjected to dead, live, and seismic forces. Frame topology is assumed as predefined based on architectural and functional requirements. Columns and beams sections and different connections details are the main design variables in this study. Columns and beams are grouped to reduce the number of design variables and to make the problem similar to that adopted in engineering practice. Data for the implicit objective function have been generated based on analysis and assessment for many design proposals with CSI SAP software. These data have been used later in SPSS software to develop a pure quadratic nonlinear regression model for the explicit objective function. Good correlations with a coefficient, R2, in the range from 0.88 to 0.99 have been noted between the original implicit functions and the corresponding explicit functions generated with meta-model.

Keywords: meta-modal, objective function, steel frames, seismic analysis, design

Procedia PDF Downloads 217
528 A Multi-Templated Fe-Ni-Cu Ion Imprinted Polymer for the Selective and Simultaneous Removal of Toxic Metallic Ions from Wastewater

Authors: Morlu Stevens, Bareki Batlokwa

Abstract:

The use of treated wastewater is widely employed to compensate for the scarcity of safe and uncontaminated freshwater. However, the existence of toxic heavy metal ions in the wastewater pose a health hazard to animals and the environment, hence, the importance for an effective technique to tackle the challenge. A multi-templated ion imprinted sorbent (Fe,Ni,Cu-IIP) for the simultaneous removal of heavy metal ions from waste water was synthesised employing molecular imprinting technology (MIT) via thermal free radical bulk polymerization technique. Methacrylic acid (MAA) was employed as the functional monomer, and ethylene glycol dimethylacrylate (EGDMA) as cross-linking agent, azobisisobutyronitrile (AIBN) as the initiator, Fe, Ni, Cu ions as template ions, and 1,10-phenanthroline as the complexing agent. The template ions were exhaustively washed off the synthesized polymer by solvent extraction in several washing steps, while periodically increasing solvent (HCl) concentration from 1.0 M to 10.0 M. The physical and chemical properties of the sorbents were investigated using Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD) and Atomic Force Microscopy (AFM) were employed. Optimization of operational parameters such as time, pH and sorbent dosage to evaluate the effectiveness of sorbents were investigated and found to be 15 min, 7.5 and 666.7 mg/L respectively. Selectivity of ion-imprinted polymers and competitive sorption studies between the template and similar ions were carried out and showed good selectivity towards the targeted metal ion by removing 90% - 98% of the templated ions as compared to 58% - 62% of similar ions. The sorbents were further applied for the selective removal of Fe, Ni and Cu from real wastewater samples and recoveries of 92.14 ± 0.16% - 106.09 ± 0.17% and linearities of R2 = 0.9993 - R2 = 0.9997 were achieved.

Keywords: ion imprinting, ion imprinted polymers, heavy metals, wastewater

Procedia PDF Downloads 284
527 Chrysin-Loaded PLGA-PEG Nanoparticles Designed for Enhanced Inhibitory Effect on the Breast Cancer Cell Line

Authors: Faraz Zarghami, Elham Anari, Nosratollah Zarghami, Yones Pilehvar-Soltanahmadi, Abolfazl Akbarzadeh, Sepideh Jalilzadeh-Tabrizi

Abstract:

The development of nanotherapy has presented a new method of drug delivery targeted directly to the neoplasmic tissues, to maximize the action with fewer dose requirements. In the past two decades, poly(lactic-co-glycolic acid) (PLGA) has frequently been investigated by many researchers and is a popular polymeric candidate, due to its biocompatibility and biodegradability, exhibition of a wide range of erosion times, tunable mechanical properties, and most notably, because it is a FDA-approved polymer. Chrysin is a natural flavonoid which has been reported to have some significant biological effects on the processes of chemical defense, nitrogen fixation, inflammation, and oxidation. However, the low solubility in water decreases its bioavailability and consequently disrupts the biomedical benefits. Being loaded with PLGA-PEG increases chrysin solubility and drug tolerance, and decreases the discordant effects of the drug. The well-structured chrysin efficiently accumulates in the breast cancer cell line (T47D). In the present study, the structure and chrysin loading were delineated using proton nuclear magnetic resonance (HNMR), Fourier-transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM), and the in vitro cytotoxicity of pure and nanochrysin was studied by the MTT assay. Next, the RNA was exploited and the cytotoxic effects of chrysin were studied by real-time PCR. In conclusion, the nanochrysin therapy developed is a novel method that could increase cytotoxicity to cancer cells without damaging the normal cells, and would be promising in breast cancer therapy.

Keywords: MTT assay, chrysin, flavonoids, nanotherapy

Procedia PDF Downloads 228