Search results for: dermal plates arapaima gigas
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 611

Search results for: dermal plates arapaima gigas

431 Biotechnology Approach: A Tool of Enhancement of Sticky Mucilage of Pulicaria Incisa (Medicinal Plant) for Wounds Treatment

Authors: Djamila Chabane, Asma Rouane, Karim Arab

Abstract:

Depending of the chemical substances responsible for the pharmacological effects, a future therapeutic drug might be produced by extraction from whole plants or by callus initiated from some parts. The optimized callus culture protocols now offer the possibility to use cell culture techniques for vegetative propagation and open minds for further studies on secondary metabolites and drug establishment. In Algerian traditional medicine, Pulicaria incisa (Asteraceae) is used in the treatment of daily troubles (stomachache, headhache., cold, sore throat and rheumatic arthralgia). Field findings revealed that many healers use some fresh parts (leaves, flowers) of this plant to treat skin wounds. This study aims to evaluate the healing efficiency of artisanal cream prepared from sticky mucilage isolated from calluses on dermal wounds of animal models. Callus cultures were initiated from reproductive explants (young inflorescences) excised from adult plants and transferred to a MS basal medium supplemented with growth regulators and maintained under dark for for months. Many calluses types were obtained with various color and aspect (friable, compact). Several subcultures of calli were performed to enhance the mucilage accumulation. After extraction, the mucilage extracts were tested on animal models as follows. The wound healing potential was studied by causing dermal wounds (1 cm diameter) at the dorsolumbar part of Rattus norvegicus; different samples of the cream were applied after hair removal on three rats each, including two controls (one treated by Vaseline and one without any treatment), two experimental groups (experimental group 1, treated with a reference ointment "Madecassol® and experimental group 2 treated by callus mucilage cream for a period of seventeen days. The evolution of the healing activity was estimated by calculating the percentage reduction of the area wounds treated by all compounds tested compared to the controls by using AutoCAD software. The percentage of healing effect of the cream prepared from callus mucilage was (99.79%) compared to that of Madecassol® (99.76%). For the treatment time, the significant healing activity was observed after 17 days compared to that of the reference pharmaceutical products without any wound infection. The healing effect of Madecassol® is more effective because it stimulates and regulates the production of collagen, a fibrous matrix essential for wound healing. Mucilage extracts also showed a high capacity to heal the skin without any infection. According to this pharmacological activity, we suggest to use calluses produced by in vitro culture to producing new compounds for the skin care and treatment.

Keywords: calluses, Pulicaria incisa, mucilage, Wounds

Procedia PDF Downloads 97
430 Preparation of Low-Molecular-Weight 6-Amino-6-Deoxychitosan (LM6A6DC) for Immobilization of Growth Factor

Authors: Koo-Yeon Kim, Eun-Hye Kim, Tae-Il Son

Abstract:

Epidermal Growth Factor (EGF, Mw=6,045) has been reported to have high efficiency of wound repair and anti-wrinkle effect. However, the half-life of EGF in the body is too short to exert the biological activity effectively when applied in free form. Growth Factors can be stabilized by immobilization with carbohydrates from thermal and proteolytic degradation. Low molecular weight chitosan (LMCS) and its derivate prepared by hydrogen peroxide has high solubility. LM6A6DC was successfully prepared as a reactive carbohydrate for the stabilization of EGF by the reactions of LMCS with alkalization, tosylation, azidation and reduction. The structure of LM6A6DC was confirmed by FT-IR, 1H NMR and elementary analysis. For enhancing the stability of free EGF, EGF was attached with LM6A6DC by using water-soluble carbodiimide. EGF-LM6A6DC conjugates did not show any cytotoxicity on the Normal Human Dermal Fibroblast(NHDF) 3T3 proliferation at least under 100 ㎍/㎖. In the result, it was considered that LM6A6DC is suitable to immobilize of growth factor.

Keywords: epidermal growth factor (EGF), low-molecular-weight chitosan, immobilization

Procedia PDF Downloads 445
429 Formulation of Film Forming Transdermal Spray Containing Fluconazole Using Full Factorial Design

Authors: Paresh M. Patel, Amit A. Patel, R. H. Parikh

Abstract:

The present investigation was undertaken to fabricate modified transport fluconazole that belongs to BCS class II and have a poor applicability on topical infection. So to improve topical application, transdermal spray could play a vital role by using ethyl cellulose and Eudragit® S100 as film-forming polymers. Concentration of Eudragit® S100, ethyl cellulose and permeation enhancer (camphor and menthol) were selected as independent variables, whereas drying time, viscosity and in-vitro drug release were selected as dependent variables in factorial design. The viscosity, drying time and in-vitro drug release of the optimize batch B15 was 40.1 cps, 47 sec. and 90.79% respectively. The film of optimized batch was flexible and dermal-adhesive.

Keywords: Eudragit, ethyl cellulose, fluconazole, transdermal spray

Procedia PDF Downloads 427
428 Free Vibration Analysis of Timoshenko Beams at Higher Modes with Central Concentrated Mass Using Coupled Displacement Field Method

Authors: K. Meera Saheb, K. Krishna Bhaskar

Abstract:

Complex structures used in many fields of engineering are made up of simple structural elements like beams, plates etc. These structural elements, sometimes carry concentrated masses at discrete points, and when subjected to severe dynamic environment tend to vibrate with large amplitudes. The frequency amplitude relationship is very much essential in determining the response of these structural elements subjected to the dynamic loads. For Timoshenko beams, the effects of shear deformation and rotary inertia are to be considered to evaluate the fundamental linear and nonlinear frequencies. A commonly used method for solving vibration problem is energy method, or a finite element analogue of the same. In the present Coupled Displacement Field method the number of undetermined coefficients is reduced to half when compared to the famous Rayleigh Ritz method, which significantly simplifies the procedure to solve the vibration problem. This is accomplished by using a coupling equation derived from the static equilibrium of the shear flexible structural element. The prime objective of the present paper here is to study, in detail, the effect of a central concentrated mass on the large amplitude free vibrations of uniform shear flexible beams. Accurate closed form expressions for linear frequency parameter for uniform shear flexible beams with a central concentrated mass was developed and the results are presented in digital form.

Keywords: coupled displacement field, coupling equation, large amplitude vibrations, moderately thick plates

Procedia PDF Downloads 200
427 Oncological Consequences of Heavy Metal Deposits in Jos East, Plateau State, Nigeria

Authors: Jasini Waida, Usman Rilwan, S. I. Ikpughul, E. I. Ugwu

Abstract:

Carcinogenic substances are those that induce tumours (benign or malignant), increase their incidence or malignancy, or shorten the time of tumour occurrence when they get into the body through inhalation, injection, dermal application, or ingestion. Using X-Ray Fluorescence, this study reveals the accumulation of heavy metals in Jos East. The results of this study showed that the Geo-Accumulation Index (Igeo) of water for different heavy metals decreased in the order of Cd (0.15) > Cr and As (0.03) > Pb (-0.13) > Ni (-0.6). The soil content for different heavy metals decreased in the order of As and Cd (0.4) > Ni, Cr and Pb (0.2). The edible plants for different heavy metals decreased in the order of Cd (0.512) > As (0.25) > Pb (0.23) > Ni (0.01) > Ni (-0.06). 21% of these points are uncontaminated, except for a few points that are found within the uncontaminated to moderately contaminated level. It is possible to conclude that the area is uncontaminated to moderately contaminated, necessitating regulation. Hence, this study can be used as reference data for regulatory bodies like the Nigerian Nuclear Regulatory Authority (NNRA) and the rest.

Keywords: heavy metals, soil, plants, water, contamination factor

Procedia PDF Downloads 55
426 Pilomatrixoma of the Left Infra-Orbital Region in a 9 Year Old

Authors: Zainab Shaikh, Yusuf Miyanji

Abstract:

Pilomatrixoma is a benign neoplasm of the hair follicle matrix that is not commonly diagnosed in general practice. This is a case report of a 9-year-old boy who presented with a one-year history of a 19mm x 11 mm swelling in the left infra-orbital region. This was previously undiagnosed in Spain, where the patient resided at the time of initial presentation, due to the language barrier the patient’s family encountered. An ultrasound and magnetic resonance imaging gave useful information regarding surrounding structures for complete tumor excision and indicated that the risk of facial nerve palsy is low. The lesion was surgically excised and a definitive diagnosis was made after histopathology. Pilomatrixoma, although not rare in its occurrence, is rarely this large at the time of excision due to early presentation. This case highlights the importance of including pilomatrixoma in the differential diagnosis of dermal and subcutaneous lesions in the head and neck region, as it is often misdiagnosed due to the lack of awareness of its clinical presentation.

Keywords: pilomatrixoma, swelling, infra-orbital, facial swelling

Procedia PDF Downloads 112
425 Shear Strength of Reinforced Web Openings in Steel Beams

Authors: K. S. Sivakumaran, Bo Chen

Abstract:

The floor beams of steel buildings, cold-formed steel floor joists, in particular, often require large web openings, which may affect their shear capacities. A cost effective way to mitigate the detrimental effects of such openings is to weld/fasten reinforcements. A difficulty associated with an experimental investigation to establish suitable reinforcement schemes for openings in shear zone is that moment always coexists with the shear, and thus, it is impossible to create pure shear state in experiments, resulting in moment influenced results. However, finite element analysis can be conveniently used to investigate the pure shear behaviour of webs including webs with reinforced opening. This paper presents that the details associated with the finite element analysis of thick/thin-plates (representing the web of hot-rolled steel beam, and the web of a cold-formed steel member) having a large reinforced openings. The study considered thin simply supported rectangular plates subjected to inplane shear loadings until failure (including post-buckling behaviour). The plate was modelled using geometrically non-linear quadrilateral shell elements, and non-linear stress-strain relationship based on experiments. Total Lagrangian (TL) with large displacement/small strain formulation was used for such analysis. The model also considered the initial geometric imperfections. This study considered three reinforcement schemes, namely, flat, lip, and angle reinforcements. This paper discusses the modelling considerations and presents the results associated with the various reinforcement schemes under consideration. The paper briefly compares the analysis results with the experimental results.

Keywords: cold-formed steel, finite element analysis, opening, reinforcement, shear resistance

Procedia PDF Downloads 255
424 Comparison between the Quadratic and the Cubic Linked Interpolation on the Mindlin Plate Four-Node Quadrilateral Finite Elements

Authors: Dragan Ribarić

Abstract:

We employ the so-called problem-dependent linked interpolation concept to develop two cubic 4-node quadrilateral Mindlin plate finite elements with 12 external degrees of freedom. In the problem-independent linked interpolation, the interpolation functions are independent of any problem material parameters and the rotation fields are not expressed in terms of the nodal displacement parameters. On the contrary, in the problem-dependent linked interpolation, the interpolation functions depend on the material parameters and the rotation fields are expressed in terms of the nodal displacement parameters. Two cubic 4-node quadrilateral plate elements are presented, named Q4-U3 and Q4-U3R5. The first one is modelled with one displacement and two rotation degrees of freedom in every of the four element nodes and the second element has five additional internal degrees of freedom to get polynomial completeness of the cubic form and which can be statically condensed within the element. Both elements are able to pass the constant-bending patch test exactly as well as the non-zero constant-shear patch test on the oriented regular mesh geometry in the case of cylindrical bending. In any mesh shape, the elements have the correct rank and only the three eigenvalues, corresponding to the solid body motions are zero. There are no additional spurious zero modes responsible for instability of the finite element models. In comparison with the problem-independent cubic linked interpolation implemented in Q9-U3, the nine-node plate element, significantly less degrees of freedom are employed in the model while retaining the interpolation conformity between adjacent elements. The presented elements are also compared to the existing problem-independent quadratic linked-interpolation element Q4-U2 and to the other known elements that also use the quadratic or the cubic linked interpolation, by testing them on several benchmark examples. Simple functional upgrading from the quadratic to the cubic linked interpolation, implemented in Q4-U3 element, showed no significant improvement compared to the quadratic linked form of the Q4-U2 element. Only when the additional bubble terms are incorporated in the displacement and rotation function fields, which complete the full cubic linked interpolation form, qualitative improvement is fulfilled in the Q4-U3R5 element. Nevertheless, the locking problem exists even for the both presented elements, like in all pure displacement elements when applied to very thin plates modelled by coarse meshes. But good and even slightly better performance can be noticed for the Q4-U3R5 element when compared with elements from the literature, if the model meshes are moderately dense and the plate thickness not extremely thin. In some cases, it is comparable to or even better than Q9-U3 element which has as many as 12 more external degrees of freedom. A significant improvement can be noticed in particular when modeling very skew plates and models with singularities in the stress fields as well as circular plates with distorted meshes.

Keywords: Mindlin plate theory, problem-independent linked interpolation, problem-dependent interpolation, quadrilateral displacement-based plate finite elements

Procedia PDF Downloads 280
423 Preventive Effect of Three Kinds of Bacteriophages to Control Vibrio coralliilyticus Infection in Oyster Larvae

Authors: Hyoun Joong Kim, Jin Woo Jun, Sib Sankar Giri, Cheng Chi, Saekil Yun, Sang Guen Kim, Sang Wha Kim, Jeong Woo Kang, Se Jin Han, Se Chang Park

Abstract:

Vibrio corallilyticus is a well-known pathogen of coral. It is also infectious to a variety of shellfish species, including Pacific oyster (Crassostrea gigas) larvae. V. corallilyticus is remained to be a major constraint in marine bivalve aquaculture practice, especially in artificial seed production facility. Owing to the high mortality and contagious nature of the pathogen, large amount of antibiotics has been used for disease prevention and control. However, indiscriminate use of antibiotics may result in food and environmental pollution, and development of antibiotic resistant strains. Therefore, eco-friendly disease preventative measures are imperative for sustainable bivalve culture. The present investigation proposes the application of bacteriophage (phage) as an effective alternative method for controlling V. corallilyticus infection in marine bivalve hatcheries. Isolation of phages from sea water sample was carried out using drop or double layer agar methods. The host range, stability and morphology of the phage isolates were studied. In vivo phage efficacy to prevent V. corallilyticus infection in oyster larvae was also performed. The isolated phages, named pVco-5 and pVco-7 was classified as a podoviridae and pVco-14, was classified as a siphoviridae. Each phages were infective to four strains of seven V. corallilyticus strains tested. When oyster larvae were pre-treated with the phage before bacterial challenge, mortality of the treated oyster larvae was lower than that in the untreated control. This result suggests that each phages have the potential to be used as therapeutic agent for controlling V. corallilyticus infection in marine bivalve hatchery.

Keywords: bacteriophage, Vibrio coralliilyticus, Oyster larvae, mortality

Procedia PDF Downloads 194
422 Anti-TNF: Possibilities of Rising Anti-Phosphorylcholine Antibodies

Authors: Md. Mizanur Rahman, Anquan Liu, Anna Frostegård, Johan Frostegård

Abstract:

The role of the human immune system is essential in cardiovascular diseases and atherosclerosis. Activated cells in atherosclerosis produce abundant amounts of cytokines, but the exact mechanisms involved in the effects of these inflammatory cytokines are not clear in atherosclerosis. In a large clinical cohort, we have previously determined that antibodies against phosphorylcholine (anti-PC) are negatively and independently associated with both development of atherosclerosis and also a low risk of cardiovascular disease. Further, we reported that rheumatoid arthritis patients who were non-responders to TNF-inhibitors, where those with low anti-PC levels. Upon anti-TNF treatment, anti-PC levels increased. We, therefore, hypothesised that proinflammatory cytokines such as TNF could play a role in anti-PC regulation. Peripheral blood mononuclear cells (PBMC) were cultured with or without TNF and anti-TNF. The cell supernatants were collected after six days for ELISA measurements. In separate experiments, cells were cultured for 24 hours in both polystyrene plates and ELISPOT plates under a similar condition for ELISA and ELISPOT assays respectively. Total RNA was extracted after 6 hours of cell culture to perform RT-qPCR. Cell viability was confirmed by trypan blue staining and MTT assays. ELISA measurements detected less than 40% of anti-PC in TNF-treated cells, in comparison to control cells, whereas anti-PC production was recovered by anti-TNF treatment. ELISPOT assays showed that TNF suppresses anti-PC production by inhibiting anti-PC producing B-cells. In addition, RT-qPCR and ELISA showed that TNF also has effects also on B-cell activation as BAFF expression was inhibited by TNF treatment. Atherosclerosis is a major cause of cardiovascular diseases, but anti-PC is a protection marker for atherosclerosis development. Our findings show that TNF is a negative regulator of anti-PC production. Immune modulation and rising of anti-PC could be of major significance for the patients.

Keywords: anti-PC, Anti-TNF, atherosclerosis, cardiovascular diseases, phosphorylecholine

Procedia PDF Downloads 216
421 Examination of Corrosion Durability Related to Installed Environments of Steel Bridges

Authors: Jin-Hee Ahn, Seok-Hyeon Jeon, Young-Bin Lee, Min-Gyun Ha, Yu-Chan Hong

Abstract:

Corrosion durability of steel bridges can be generally affected by atmospheric environments of bridge installation, since corrosion problem is related to environmental factors such as humidity, temperature, airborne salt, chemical components as SO₂, chlorides, etc. Thus, atmospheric environment condition should be measured to estimate corrosion condition of steel bridges as well as measurement of actual corrosion damage of structural members of steel bridge. Even in the same atmospheric environment, the corrosion environment may be different depending on the installation direction of structural members. In this study, therefore, atmospheric corrosion monitoring was conducted using atmospheric corrosion monitoring sensor, hygrometer, thermometer and airborne salt collection device to examine the corrosion durability of steel bridges. As a target steel bridge for corrosion durability monitoring, a cable-stayed bridge with truss steel members was selected. This cable-stayed bridge was located on the coast to connect the islands with the islands. Especially, atmospheric corrosion monitoring was carried out depending on structural direction of a cable-stayed bridge with truss type girders since it consists of structural members with various directions. For atmospheric corrosion monitoring, daily average electricity (corrosion current) was measured at each monitoring members to evaluate corrosion environments and corrosion level depending on structural members with various direction which have different corrosion environment in the same installed area. To compare corrosion durability connected with monitoring data depending on corrosion monitoring members, monitoring steel plate was additionally installed in same monitoring members. Monitoring steel plates of carbon steel was fabricated with dimension of 60mm width and 3mm thickness. And its surface was cleaned for removing rust on the surface by blasting, and its weight was measured before its installation on each structural members. After a 3 month exposure period on real atmospheric corrosion environment at bridge, surface condition of atmospheric corrosion monitoring sensors and monitoring steel plates were observed for corrosion damage. When severe deterioration of atmospheric corrosion monitoring sensors or corrosion damage of monitoring steel plates were found, they were replaced or collected. From 3month exposure tests in the actual steel bridge with various structural member with various direction, the rust on the surface of monitoring steel plate was found, and the difference in the corrosion rate was found depending on the direction of structural member from their visual inspection. And daily average electricity (corrosion current) was changed depending on the direction of structural member. However, it is difficult to identify the relative differences in corrosion durability of steel structural members using short-term monitoring results. After long exposure tests in this corrosion environments, it can be clearly evaluated the difference in corrosion durability depending on installed conditions of steel bridges. Acknowledgements: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1B03028755).

Keywords: corrosion, atmospheric environments, steel bridge, monitoring

Procedia PDF Downloads 325
420 Study of Laminar Convective Heat Transfer, Friction Factor, and Pumping Power Advantage of Aluminum Oxide-Water Nanofluid through a Channel

Authors: M. Insiat Islam Rabby, M. Mahbubur Rahman, Eshanul Islam, A. K. M. Sadrul Islam

Abstract:

The numerical and simulative analysis of laminar heat exchange convection of aluminum oxide (Al₂O₃) - water nanofluid for the developed region through two parallel plates is presented in this present work. The second order single phase energy equation, mass and momentum equation are solved by using finite volume method with the ANSYS FLUENT 16 software. The distance between two parallel plates is 4 mm and length is 600 mm. Aluminum oxide (Al₂O₃) is used as nanoparticle and water is used as the base/working fluid for the investigation. At the time of simulation 1% to 5% volume concentrations of the Al₂O₃ nanoparticles are used for mixing with water to produce nanofluid and a wide range of interval of Reynolds number from 500 to 1100 at constant heat flux 500 W/m² at the channel wall has also been introduced. The result reveals that for increasing the Reynolds number the Nusselt number and heat transfer coefficient are increased linearly and friction factor decreased linearly in the developed region for both water and Al₂O₃-H₂O nanofluid. By increasing the volume fraction of Al₂O₃-H₂O nanofluid from 1% to 5% the value of Nusselt number increased rapidly from 0.7 to 7.32%, heat transfer coefficient increased 7.14% to 31.5% and friction factor increased very little from 0.1% to 4% for constant Reynolds number compared to pure water. At constant heat transfer coefficient 700 W/m2-K the pumping power advantages have been achieved 20% for 1% volume concentration and 62% for 3% volume concentration of nanofluid compared to pure water.

Keywords: convective heat transfer, pumping power, constant heat flux, nanofluid, nanoparticles, volume concentration, thermal conductivity

Procedia PDF Downloads 134
419 Oncolytic Efficacy of Thymidine Kinase-Deleted Vaccinia Virus Strain Tiantan (oncoVV-TT) in Glioma

Authors: Seyedeh Nasim Mirbahari, Taha Azad, Mehdi Totonchi

Abstract:

Oncolytic viruses, which only replicate in tumor cells, are being extensively studied for their use in cancer therapy. A particular virus known as the vaccinia virus, a member of the poxvirus family, has demonstrated oncolytic abilities glioma. Treating Glioma with traditional methods such as chemotherapy and radiotherapy is quite challenging. Even though oncolytic viruses have shown immense potential in cancer treatment, their effectiveness in glioblastoma treatment is still low. Therefore, there is a need to improve and optimize immunotherapies for better results. In this study, we have designed oncoVV-TT, which can more effectively target tumor cells while minimizing replication in normal cells by replacing the thymidine kinase gene with a luc-p2a-GFP gene expression cassette. Human glioblastoma cell line U251 MG, rat glioblastoma cell line C6, and non-tumor cell line HFF were plated at 105 cells in a 12-well plates in 2 mL of DMEM-F2 medium with 10% FBS added to each well. Then incubated at 37°C. After 16 hours, the cells were treated with oncoVV-TT at an MOI of 0.01, 0.1 and left in the incubator for a further 24, 48, 72 and 96 hours. Viral replication assay, fluorescence imaging and viability tests, including trypan blue and crystal violet, were conducted to evaluate the cytotoxic effect of oncoVV-TT. The finding shows that oncoVV-TT had significantly higher cytotoxic activity and proliferation rates in tumor cells in a dose and time-dependent manner, with the strongest effect observed in U251 MG. To conclude, oncoVV-TT has the potential to be a promising oncolytic virus for cancer treatment, with a more cytotoxic effect in human glioblastoma cells versus rat glioma cells. To assess the effectiveness of vaccinia virus-mediated viral therapy, we have tested U251mg and C6 tumor cell lines taken from human and rat gliomas, respectively. The study evaluated oncoVV-TT's ability to replicate and lyse cells and analyzed the survival rates of the tested cell lines when treated with different doses of oncoVV-TT. Additionally, we compared the sensitivity of human and mouse glioma cell lines to the oncolytic vaccinia virus. All experiments regarding viruses were conducted under biosafety level 2. We engineered a Vaccinia-based oncolytic virus called oncoVV-TT to replicate specifically in tumor cells. To propagate the oncoVV-TT virus, HeLa cells (5 × 104/well) were plated in 24-well plates and incubated overnight to attach to the bottom of the wells. Subsequently, 10 MOI virus was added. After 48 h, cells were harvested by scraping, and viruses were collected by 3 sequential freezing and thawing cycles followed by removal of cell debris by centrifugation (1500 rpm, 5 min). The supernatant was stored at −80 ◦C for the following experiments. To measure the replication of the virus in Hela, cells (5 × 104/well) were plated in 24-well plates and incubated overnight to attach to the bottom of the wells. Subsequently, 5 MOI virus or equal dilution of PBS was added. At the treatment time of 0 h, 24 h, 48 h, 72 h and 96 h, the viral titers were determined under the fluorescence microscope (BZ-X700; Keyence, Osaka, Japan). Fluorescence intensity was quantified using the imagej software according to the manufacturer’s protocol. For the isolation of single-virus clones, HeLa cells seeded in six-well plates (5×105 cells/well). After 24 h (100% confluent), the cells were infected with a 10-fold dilution series of TianTan green fluorescent protein (GFP)virus and incubated for 4 h. To examine the cytotoxic effect of oncoVV-TT virus ofn U251mg and C6 cell, trypan blue and crystal violet assay was used.

Keywords: oncolytic virus, immune therapy, glioma, vaccinia virus

Procedia PDF Downloads 51
418 An Experimental Investigation of the Surface Pressure on Flat Plates in Turbulent Boundary Layers

Authors: Azadeh Jafari, Farzin Ghanadi, Matthew J. Emes, Maziar Arjomandi, Benjamin S. Cazzolato

Abstract:

The turbulence within the atmospheric boundary layer induces highly unsteady aerodynamic loads on structures. These loads, if not accounted for in the design process, will lead to structural failure and are therefore important for the design of the structures. For an accurate prediction of wind loads, understanding the correlation between atmospheric turbulence and the aerodynamic loads is necessary. The aim of this study is to investigate the effect of turbulence within the atmospheric boundary layer on the surface pressure on a flat plate over a wide range of turbulence intensities and integral length scales. The flat plate is chosen as a fundamental geometry which represents structures such as solar panels and billboards. Experiments were conducted at the University of Adelaide large-scale wind tunnel. Two wind tunnel boundary layers with different intensities and length scales of turbulence were generated using two sets of spires with different dimensions and a fetch of roughness elements. Average longitudinal turbulence intensities of 13% and 26% were achieved in each boundary layer, and the longitudinal integral length scale within the three boundary layers was between 0.4 m and 1.22 m. The pressure distributions on a square flat plate at different elevation angles between 30° and 90° were measured within the two boundary layers with different turbulence intensities and integral length scales. It was found that the peak pressure coefficient on the flat plate increased with increasing turbulence intensity and integral length scale. For example, the peak pressure coefficient on a flat plate elevated at 90° increased from 1.2 to 3 with increasing turbulence intensity from 13% to 26%. Furthermore, both the mean and the peak pressure distribution on the flat plates varied with turbulence intensity and length scale. The results of this study can be used to provide a more accurate estimation of the unsteady wind loads on structures such as buildings and solar panels.

Keywords: atmospheric boundary layer, flat plate, pressure coefficient, turbulence

Procedia PDF Downloads 109
417 Induction of Adaptive Response in Yeast Cells under Influence of Extremely High Frequency Electromagnetic Field

Authors: Sergei Voychuk

Abstract:

Introduction: Adaptive response (AR) is a manifestation of radiation hormesis, which deal with the radiation resistance that may be increased with the pretreatment with small doses of radiation. In the current study, we evaluated the potency of radiofrequency EMF to induce the AR mechanisms and to increase a resistance to UV light. Methods: Saccharomyces cerevisiae yeast strains, which were created to study induction of mutagenesis and recombination, were used in the study. The strains have mutations in rad2 and rad54 genes, responsible for DNA repair: nucleotide excision repair (PG-61), postreplication repair (PG-80) and mitotic (crossover) recombination (T2). An induction of mutation and recombination are revealed due to the formation of red colonies on agar plates. The PG-61 and T2 are UV sensitive strains, while PG-80 is sensitive to ionizing radiation. Extremely high frequency electromagnetic field (EHF-EMF) was used. The irradiation was performed in floating mode and frequency changed during exposure from 57 GHz to 62 GHz. The power of irradiation was 100 mkW, and duration of exposure was 10 and 30 min. Treatment was performed at RT and then cells were stored at 28° C during 1 h without any exposure but after that they were treated with UV light (254nm) for 20 sec (strain T2) and 120 sec (strain PG-61 and PG-80). Cell viability and quantity of red colonies were determined after 5 days of cultivation on agar plates. Results: It was determined that EHF-EMF caused 10-20% decrease of viability of T2 and PG-61 strains, while UV showed twice stronger effect (30-70%). EHF-EMF pretreatment increased T2 resistance to UV, and decreased it in PG-61. The PG-80 strain was insensitive to EHF-EMF and no AR effect was determined for this strain. It was not marked any induction of red colonies formation in T2 and PG-80 strain after EHF or UV exposure. The quantity of red colonies was 2 times more in PG-61 strain after EHF-EMF treatment and at least 300 times more after UV exposure. The pretreatment of PG-61 with EHF-EMF caused at least twice increase of viability and consequent decrease of amount of red colonies. Conclusion: EHF-EMF may induce AR in yeast cells and increase their viability under UV treatment.

Keywords: Saccharomyces cerevisiae, EHF-EMF, UV light, adaptive response

Procedia PDF Downloads 293
416 Statistical Correlation between Ply Mechanical Properties of Composite and Its Effect on Structure Reliability

Authors: S. Zhang, L. Zhang, X. Chen

Abstract:

Due to the large uncertainty on the mechanical properties of FRP (fibre reinforced plastic), the reliability evaluation of FRP structures are currently receiving much attention in industry. However, possible statistical correlation between ply mechanical properties has been so far overlooked, and they are mostly assumed to be independent random variables. In this study, the statistical correlation between ply mechanical properties of uni-directional and plain weave composite is firstly analyzed by a combination of Monte-Carlo simulation and finite element modeling of the FRP unit cell. Large linear correlation coefficients between the in-plane mechanical properties are observed, and the correlation coefficients are heavily dependent on the uncertainty of the fibre volume ratio. It is also observed that the correlation coefficients related to Poisson’s ratio are negative while others are positive. To experimentally achieve the statistical correlation coefficients between in-plane mechanical properties of FRP, all concerned in-plane mechanical properties of the same specimen needs to be known. In-plane shear modulus of FRP is experimentally derived by the approach suggested in the ASTM standard D5379M. Tensile tests are conducted using the same specimens used for the shear test, and due to non-uniform tensile deformation a modification factor is derived by a finite element modeling. Digital image correlation is adopted to characterize the specimen non-uniform deformation. The preliminary experimental results show a good agreement with the numerical analysis on the statistical correlation. Then, failure probability of laminate plates is calculated in cases considering and not considering the statistical correlation, using the Monte-Carlo and Markov Chain Monte-Carlo methods, respectively. The results highlight the importance of accounting for the statistical correlation between ply mechanical properties to achieve accurate failure probability of laminate plates. Furthermore, it is found that for the multi-layer laminate plate, the statistical correlation between the ply elastic properties significantly affects the laminate reliability while the effect of statistical correlation between the ply strength is minimal.

Keywords: failure probability, FRP, reliability, statistical correlation

Procedia PDF Downloads 127
415 Electrochemical Deposition of Pb and PbO2 on Polymer Composites Electrodes

Authors: A. Merzouki, N. Haddaoui

Abstract:

Polymers have a large reputation as electric insulators. These materials are characterized by weak weight, reduced price and a large domain of physical and chemical properties. They conquered new application domains that were until a recent past the exclusivity of metals. In this work, we used some composite materials (polymers/conductive fillers), as electrodes and we try to cover them with metallic lead layers in order to use them as courant collector grids in lead-acid battery plates.

Keywords: electrodeposition, polymer composites, carbon black, acetylene black

Procedia PDF Downloads 426
414 Influence of Flexible Plate's Contour on Dynamic Behavior of High Speed Flexible Coupling of Combat Aircraft

Authors: Dineshsingh Thakur, S. Nagesh, J. Basha

Abstract:

A lightweight High Speed Flexible Coupling (HSFC) is used to connect the Engine Gear Box (EGB) with an Accessory Gear Box (AGB) of the combat aircraft. The HSFC transmits the power at high speeds ranging from 10000 to 18000 rpm from the EGB to AGB. The HSFC is also accommodates larger misalignments resulting from thermal expansion of the aircraft engine and mounting arrangement. The HSFC has the series of metallic contoured annular thin cross-sectioned flexible plates to accommodate the misalignments. The flexible plates are accommodating the misalignment by the elastic material flexure. As the HSFC operates at higher speed, the flexural and axial resonance frequencies are to be kept away from the operating speed and proper prediction is required to prevent failure in the transmission line of a single engine fighter aircraft. To study the influence of flexible plate’s contour on the lateral critical speed (LCS) of HSFC, a mathematical model of HSFC as a elven rotor system is developed. The flexible plate being the bending member of the system, its bending stiffness which results from the contoured governs the LCS. Using transfer matrix method, Influence of various flexible plate contours on critical speed is analyzed. In the above analysis, the support bearing flexibility on critical speed prediction is also considered. Based on the study, a model is built with the optimum contour of flexible plate, for validation by experimental modal analysis. A good correlation between the theoretical prediction and model behavior is observed. From the study, it is found that the flexible plate’s contour is playing vital role in modification of system’s dynamic behavior and the present model can be extended for the development of similar type of flexible couplings for its computational simplicity and reliability.

Keywords: flexible rotor, critical speed, experimental modal analysis, high speed flexible coupling (HSFC), misalignment

Procedia PDF Downloads 190
413 Brazilian Brown Propolis as a Natural Source against Leishmania amazonensis

Authors: Victor Pena Ribeiro, Caroline Arruda, Jennyfer Andrea Aldana Mejia, Jairo Kenupp Bastos

Abstract:

Leishmaniasis is a serious health problem around the world. The treatment of infected individuals with pentavalent antimonial drugs is the main therapeutic strategy. However, they present high toxicity and persistence side effects. Therefore, the discovery of new and safe natural-derived therapeutic agents against leishmaniasis is important. Propolis is a resin of viscous consistency produced by Apis mellifera bees from parts of plants. The main types of Brazilian propolis are green, red, yellow and brown. Thus, the aim of this work was to investigate the chemical composition and leishmanicidal properties of a brown propolis (BP). For this purpose, the hydroalcoholic crude extract of BP was obtained and was fractionated by liquid-liquid chromatography. The chemical profile of the extract and its fractions were obtained by HPLC-UV-DAD. The fractions were submitted to preparative HPLC chromatography for isolation of the major compounds of each fraction. They were analyzed by NMR for structural determination. The volatile compounds were obtained by hydrodistillation and identified by GC/MS. Promastigote forms of Leishmania amazonensis were cultivated in M199 medium and then 2×106 parasites.mL-1 were incubated in 96-well microtiter plates with the samples. The BP was dissolved in dimethyl sulfoxide (DMSO) and diluted into the medium, to give final concentrations of 1.56, 3.12, 6.25, 12.5, 25 and 50 µg.mL⁻¹. The plates were incubated at 25ºC for 24 h, and the lysis percentage was determined by using a Neubauer chamber. The bioassays were performed in triplicate, using a medium with 0.5% DMSO as a negative control and amphotericin B as a positive control. The leishimnicidal effect against promastigote forms was also evaluated at the same concentrations. Cytotoxicity experiments also were performed in 96-well plates against normal (CHO-k1) and tumor cell lines (AGP01 and HeLa) using XTT colorimetric method. Phenolic compounds, flavonoids, and terpenoids were identified in brown propolis. The major compounds were identified as follows: p-coumaric acid (24.6%) for a methanolic fraction, Artepelin-C (29.2%) for ethyl acetate fraction and the compounds of hexane fraction are in the process of structural elucidation. The major volatile compounds identified were β-caryophyllene (10.9%), germacrene D (9.7%), nerolidol (10.8%) and spathulenol (8.5%). The propolis did not show cytotoxicity against normal cell lines (CHO) with IC₅₀ > 100 μg.mL⁻¹, whereas the IC₅₀ < 10 μg.mL⁻¹ showed a potential against the AGP01 cell line, propolis did not demonstrate cytotoxicity against HeLa cell lines IC₅₀ > 100 μg.mL⁻¹. In the determination of the leishmanicidal activity, the highest (50 μg.mL⁻¹) and lowest (1.56 μg.mL⁻¹) concentrations of the crude extract caused the lysis of 76% and 45% of promastigote forms of L. amazonensis, respectively. To the amastigote form, the highest (50 μg.mL⁻¹) and lowest (1.56 μg.mL⁻¹) concentrations caused the mortality of 89% and 75% of L. amazonensis, respectively. The IC₅₀ was 2.8 μg.mL⁻¹ to amastigote form and 3.9 μg.mL⁻¹ to promastigote form, showing a promising activity against Leishmania amazonensis.

Keywords: amastigote, brown propolis, cytotoxicity, promastigote

Procedia PDF Downloads 125
412 Study on the Wave Dissipation Performance of Double-Cylinder and Double-Plate Floating Breakwater

Authors: Liu Bijin

Abstract:

Floating breakwaters have several advantages, including being environmentally friendly, easy to construct, and cost-effective regardless of water depth. They have a broad range of applications in coastal engineering. However, they face significant challenges due to the unstable effect of wave dissipation, structural vulnerability, and high mooring system requirements. This paper investigates the wave dissipation performance of a floating breakwater structure. The structure consists of double cylinders, double vertical plates, and horizontal connecting plates. The investigation is carried out using physical model tests and numerical simulation methods based on STAR-CCM+. This paper discusses the impact of wave elements, relative vertical plate heights, and relative horizontal connecting plate widths on the wave dissipation performance of the double-cylinder, double-plate floating breakwater (DCDPFB). The study also analyses the changes in local vorticity and velocity fields around the DCDPFB to determine the optimal structural dimensions. The study found that the relative width of the horizontal connecting plate, the relative height of the vertical plate, and the size of the semi-cylinder are the key factors affecting the wave dissipation performance of the DCDPFB. The transmittance coefficient is minimally affected by the wave height and the depth of water entry. The local vortex and velocity field formed around the DCDPFB are important factors for dissipating wave energy. The test section of the DCDPFB, constructed according to the relative optimal structural dimensions, showed good wave dissipation performance during offshore prototype tests. The test section of DCDPFB, constructed with optimal structural dimensions, exhibits excellent wave dissipation performance in offshore prototype tests.

Keywords: floating breakwater, wave dissipation performance, transmittance coefficient, model test

Procedia PDF Downloads 16
411 A Textile-Based Scaffold for Skin Replacements

Authors: Tim Bolle, Franziska Kreimendahl, Thomas Gries, Stefan Jockenhoevel

Abstract:

The therapeutic treatment of extensive, deep wounds is limited. Autologous split-skin grafts are used as a so-called ‘gold standard’. Most common deficits are the defects at the donor site, the risk of scarring as well as the limited availability and quality of the autologous grafts. The aim of this project is a tissue engineered dermal-epidermal skin replacement to overcome the limitations of the gold standard. A key requirement for the development of such a three-dimensional implant is the formation of a functional capillary-like network inside the implant to ensure a sufficient nutrient and gas supply. Tailored three-dimensional warp knitted spacer fabrics are used to reinforce the mechanically week fibrin gel-based scaffold and further to create a directed in vitro pre-vascularization along the parallel-oriented pile yarns within a co-culture. In this study various three-dimensional warp knitted spacer fabrics were developed in a factorial design to analyze the influence of the machine parameters such as the stitch density and the pattern of the fabric on the scaffold performance and further to determine suitable parameters for a successful fibrin gel-incorporation and a physiological performance of the scaffold. The fabrics were manufactured on a Karl Mayer double-bar raschel machine DR 16 EEC/EAC. A fine machine gauge of E30 was used to ensure a high pile yarn density for sufficient nutrient, gas and waste exchange. In order to ensure a high mechanical stability of the graft, the fabrics were made of biocompatible PVDF yarns. Key parameters such as the pore size, porosity and stress/strain behavior were investigated under standardized, controlled climate conditions. The influence of the input parameters on the mechanical and morphological properties as well as the ability of fibrin gel incorporation into the spacer fabric was analyzed. Subsequently, the pile yarns of the spacer fabrics were colonized with Human Umbilical Vein Endothelial Cells (HUVEC) to analyze the ability of the fabric to further function as a guiding structure for a directed vascularization. The cells were stained with DAPI and investigated using fluorescence microscopy. The analysis revealed that the stitch density and the binding pattern have a strong influence on both the mechanical and morphological properties of the fabric. As expected, the incorporation of the fibrin gel was significantly improved with higher pore sizes and porosities, whereas the mechanical strength decreases. Furthermore, the colonization trials revealed a high cell distribution and density on the pile yarns of the spacer fabrics. For a tailored reinforcing structure, the minimum porosity and pore size needs to be evaluated which still ensures a complete incorporation of the reinforcing structure into the fibrin gel matrix. That will enable a mechanically stable dermal graft with a dense vascular network for a sufficient nutrient and oxygen supply of the cells. The results are promising for subsequent research in the field of reinforcing mechanically weak biological scaffolds and develop functional three-dimensional scaffolds with an oriented pre-vascularization.

Keywords: fibrin-gel, skin replacement, spacer fabric, pre-vascularization

Procedia PDF Downloads 230
410 Osteosuture in Fixation of Displaced Lateral Third Clavicle Fractures: A Case Report

Authors: Patrícia Pires, Renata Vaz, Bárbara Teles, Marco Pato, Pedro Beckert

Abstract:

Introduction: The management of lateral third clavicle fractures can be challenging due to difficulty in distinguishing subtle variations in the fracture pattern, which may be suggestive of potential fracture instability. They occur most often in men between 30 and 50 years of age, and in individuals over 70 years of age, its distribution is equal between both men and women. These fractures account for 10%–30% of all clavicle fractures and roughly 30%–45% of all clavicle nonunion fractures. Lateral third clavicle fractures may be treated conservatively or surgically, and there is no gold standard, although the risk of nonunion or pseudoarthrosis impacts the recommendation of surgical treatment when these fractures are unstable. There are many strategies for surgical treatment, including locking plates, hook plates fixation, coracoclavicular fixation using suture anchors, devices or screws, tension band fixation with suture or wire, transacromial Kirschner wire fixation and arthroscopically assisted techniques. Whenever taking the hardware into consideration, we must not disregard that obtaining adequate lateral fixation of small fragments is a difficult task, and plates are more associated to local irritation. The aim of the appropriate treatment is to ensure fracture healing and a rapid return to preinjury activities of daily living but, as explained, definitive treatment strategies have not been established and the variety of techniques avalilable add up to the discussion of this topic. Methods and Results: We present a clinical case of a 43-year-old man with the diagnosis of a lateral third clavicle fracture (Neer IIC) in the sequence of a fall on his right shoulder after a bicycle fall. He was operated three days after the injury, and through K-wire temporary fixation and indirect reduction using a ZipTight, he underwent osteosynthesis with an interfragmentary figure-of-eight tension band with polydioxanone suture (PDS). Two weeks later, there was a good aligment. He kept the sling until 6 weeks pos-op, avoiding efforts. At 7-weeks pos-op, there was still a good aligment, starting the physiotherapy exercises. After 10 months, he had no limitation in mobility or pain and returned to work with complete recovery in strength. Conclusion: Some distal clavicle fractures may be conservatively treated, but it is widely accepted that unstable fractures require surgical treatment to obtain superior clinical outcomes. In the clinical case presented, the authors chose an osteosuture technique due to the fracture pattern, its location. Since there isn´t a consensus on the prefered fixation method, it is important for surgeons to be skilled in various techniques and decide with their patient which approach is most appropriate for them, weighting the risk-benefit of each method. For instance, with the suture technique used, there is no wire migration or breakage, and it doesn´t require a reoperation for hardware removal; there is also less tissue exposure since it requires a smaller approach in comparison to the plate fixation and avoids cuff tears like the hook plate. The good clinical outcome on this case report serves the purpose of expanding the consideration of this method has a therapeutic option.

Keywords: lateral third, clavicle, suture, fixation

Procedia PDF Downloads 41
409 Preliminary Assessment of Arsenic Levels in Farmland Soils of Bokkos Local Government Area, Plateau State Nigeria

Authors: W. M. Buba, J. G. Nangbes, J. P. Butven

Abstract:

This research was undertaken to evolve community based awareness on the arsenic contamination from agricultural practices in Communities of Bokkos local government area. Contaminated farmland soil samples were collected from the surface for tailings and at various depths (50, 100, 150 cm intervals) in eight holes drilled in each farm at different locations using hand auger. A total of sixty- four (64) soil samples were collected from eight (8) different communities. A standard titrimetric method was applied for the determination of arsenic. It was found that the average concentration of arsenic in the surface soil (0-150cm) for the entire study areas was 0.0525mg/kg with range 0.0425 -0.0601mg/kg which is well above the recommended the soil to plant concentration guideline range of 2.3 – 4.3 x10-4 mg/kg value. This indicates that the arsenic concentration in the study areas does pose health risk for agricultural practices via potential bioaccumulation in plant food crops. However, some risks measures could follow the arsenic occurrence through direct exposure such as those resulting from the inhalation, oral or dermal intake of arsenic during agricultural practices and in the course of stay on the contaminated soil.

Keywords: agrochemicals, arsenic, bokkos, contamination, soil

Procedia PDF Downloads 319
408 Numerical Optimization of Cooling System Parameters for Multilayer Lithium Ion Cell and Battery Packs

Authors: Mohammad Alipour, Ekin Esen, Riza Kizilel

Abstract:

Lithium-ion batteries are a commonly used type of rechargeable batteries because of their high specific energy and specific power. With the growing popularity of electric vehicles and hybrid electric vehicles, increasing attentions have been paid to rechargeable Lithium-ion batteries. However, safety problems, high cost and poor performance in low ambient temperatures and high current rates, are big obstacles for commercial utilization of these batteries. By proper thermal management, most of the mentioned limitations could be eliminated. Temperature profile of the Li-ion cells has a significant role in the performance, safety, and cycle life of the battery. That is why little temperature gradient can lead to great loss in the performances of the battery packs. In recent years, numerous researchers are working on new techniques to imply a better thermal management on Li-ion batteries. Keeping the battery cells within an optimum range is the main objective of battery thermal management. Commercial Li-ion cells are composed of several electrochemical layers each consisting negative-current collector, negative electrode, separator, positive electrode, and positive current collector. However, many researchers have adopted a single-layer cell to save in computing time. Their hypothesis is that thermal conductivity of the layer elements is so high and heat transfer rate is so fast. Therefore, instead of several thin layers, they model the cell as one thick layer unit. In previous work, we showed that single-layer model is insufficient to simulate the thermal behavior and temperature nonuniformity of the high-capacity Li-ion cells. We also studied the effects of the number of layers on thermal behavior of the Li-ion batteries. In this work, first thermal and electrochemical behavior of the LiFePO₄ battery is modeled with 3D multilayer cell. The model is validated with the experimental measurements at different current rates and ambient temperatures. Real time heat generation rate is also studied at different discharge rates. Results showed non-uniform temperature distribution along the cell which requires thermal management system. Therefore, aluminum plates with mini-channel system were designed to control the temperature uniformity. Design parameters such as channel number and widths, inlet flow rate, and cooling fluids are optimized. As cooling fluids, water and air are compared. Pressure drop and velocity profiles inside the channels are illustrated. Both surface and internal temperature profiles of single cell and battery packs are investigated with and without cooling systems. Our results show that using optimized Mini-channel cooling plates effectively controls the temperature rise and uniformity of the single cells and battery packs. With increasing the inlet flow rate, cooling efficiency could be reached up to 60%.

Keywords: lithium ion battery, 3D multilayer model, mini-channel cooling plates, thermal management

Procedia PDF Downloads 134
407 Convergence Results of Two-Dimensional Homogeneous Elastic Plates from Truncation of Potential Energy

Authors: Erick Pruchnicki, Nikhil Padhye

Abstract:

Plates are important engineering structures which have attracted extensive research since the 19th century. The subject of this work is statical analysis of a linearly elastic homogenous plate under small deformations. A 'thin plate' is a three-dimensional structure comprising of a small transverse dimension with respect to a flat mid-surface. The general aim of any plate theory is to deduce a two-dimensional model, in terms of mid-surface quantities, to approximately and accurately describe the plate's deformation in terms of mid-surface quantities. In recent decades, a common starting point for this purpose is to utilize series expansion of a displacement field across the thickness dimension in terms of the thickness parameter (h). These attempts are mathematically consistent in deriving leading-order plate theories based on certain a priori scaling between the thickness and the applied loads; for example, asymptotic methods which are aimed at generating leading-order two-dimensional variational problems by postulating formal asymptotic expansion of the displacement fields. Such methods rigorously generate a hierarchy of two-dimensional models depending on the order of magnitude of the applied load with respect to the plate-thickness. However, in practice, applied loads are external and thus not directly linked or dependent on the geometry/thickness of the plate; thus, rendering any such model (based on a priori scaling) of limited practical utility. In other words, the main limitation of these approaches is that they do not furnish a single plate model for all orders of applied loads. Following analogy of recent efforts of deploying Fourier-series expansion to study convergence of reduced models, we propose two-dimensional model(s) resulting from truncation of the potential energy and rigorously prove the convergence of these two-dimensional plate models to the parent three-dimensional linear elasticity with increasing truncation order of the potential energy.

Keywords: plate theory, Fourier-series expansion, convergence result, Legendre polynomials

Procedia PDF Downloads 83
406 A Unified Model for Predicting Particle Settling Velocity in Pipe, Annulus and Fracture

Authors: Zhaopeng Zhu, Xianzhi Song, Gensheng Li

Abstract:

Transports of solid particles through the drill pipe, drill string-hole annulus and hydraulically generated fractures are important dynamic processes encountered in oil and gas well drilling and completion operations. Different from particle transport in infinite space, the transports of cuttings, proppants and formation sand are hindered by a finite boundary. Therefore, an accurate description of the particle transport behavior under the bounded wall conditions encountered in drilling and hydraulic fracturing operations is needed to improve drilling safety and efficiency. In this study, the particle settling experiments were carried out to investigate the particle settling behavior in the pipe, annulus and between the parallel plates filled with power-law fluids. Experimental conditions simulated the particle Reynolds number ranges of 0.01-123.87, the dimensionless diameter ranges of 0.20-0.80 and the fluid flow behavior index ranges of 0.48-0.69. Firstly, the wall effect of the annulus is revealed by analyzing the settling process of the particles in the annular geometry with variable inner pipe diameter. Then, the geometric continuity among the pipe, annulus and parallel plates was determined by introducing the ratio of inner diameter to an outer diameter of the annulus. Further, a unified dimensionless diameter was defined to confirm the relationship between the three different geometry in terms of the wall effect. In addition, a dimensionless term independent from the settling velocity was introduced to establish a unified explicit settling velocity model applicable to pipes, annulus and fractures with a mean relative error of 8.71%. An example case study was provided to demonstrate the application of the unified model for predicting particle settling velocity. This paper is the first study of annulus wall effects based on the geometric continuity concept and the unified model presented here will provide theoretical guidance for improved hydraulic design of cuttings transport, proppant placement and sand management operations.

Keywords: wall effect, particle settling velocity, cuttings transport, proppant transport in fracture

Procedia PDF Downloads 134
405 Essential Oils of Polygonum L. Plants Growing in Kazakhstan and Their Antibacterial and Antifungal Activity

Authors: Dmitry Yu. Korulkin, Raissa A. Muzychkina

Abstract:

Bioactive substances of plant origin can be one of the advanced means of solution to the issue of combined therapy to inflammation. The main advantages of medical plants are softness and width of their therapeutic effect on an organism, the absence of side effects and complications even if the used continuously, high tolerability by patients. Moreover, medial plants are often the only and (or) cost-effective sources of natural biologically active substances and medicines. Along with other biologically active groups of chemical compounds, essential oils with wide range of pharmacological effects became very ingrained in medical practice. Essential oil was obtained by the method hydrodistillation air-dry aerial part of Polygonum L. plants using Clevenger apparatus. Qualitative composition of essential oils was analyzed by chromatography-mass-spectrometry method using Agilent 6890N apparatus. The qualitative analysis is based on the comparison of retention time and full mass-spectra with respective data on components of reference oils and pure compounds, if there were any, and with the data of libraries of mass-spectra Wiley 7th edition and NIST 02. The main components of essential oil are for: Polygonum amphibium L. - γ-terpinene, borneol, piperitol, 1,8-cyneole, α-pinene, linalool, terpinolene and sabinene; Polygonum minus Huds. Fl. Angl. – linalool, terpinolene, camphene, borneol, 1,8-cyneole, α-pinene, 4-terpineol and 1-octen-3-ol; Polygonum alpinum All. – camphene, sabinene, 1-octen-3-ol, 4-carene, p- and o-cymol, γ-terpinene, borneol, -terpineol; Polygonum persicaria L. - α-pinene, sabinene, -terpinene, 4-carene, 1,8-cyneole, borneol, 4-terpineol. Antibacterial activity was researched relating to strains of gram-positive bacteria Staphylococcus aureus, Bacillus subtilis, Streptococcus agalacticae, relating to gram-negative strain Escherichia coli and to yeast fungus Сandida albicans using agar diffusion method. The medicines of comparison were gentamicin for bacteria and nystatin for yeast fungus Сandida albicans. It has been shown that Polygonum L. essential oils has moderate antibacterial effect to gram-positive microorganisms and weak antifungal activity to Candida albicans yeast fungus. At the second stage of our researches wound healing properties of ointment form of 3% essential oil was researched on the model of flat dermal wounds. To assess the influence of essential oil on healing processes the model of flat dermal wound. The speed of wound healing on rats of different groups was judged based on assessment the area of a wound from time to time. During research of wound healing properties disturbance of integral in neither group: general condition and behavior of animals, food intake, and excretion. Wound healing action of 3% ointment on base of Polygonum L. essential oil and polyethyleneglycol is comparable with the action of reference substances. As more favorable healing dynamics was observed in the experimental group than in control group, the tested ointment can be deemed more promising for further detailed study as wound healing means.

Keywords: antibacterial, antifungal, bioactive substances, essential oils, isolation, Polygonum L.

Procedia PDF Downloads 503
404 Seamounts and Submarine Landslides: Study Case of Island Arcs Area in North of Sulawesi

Authors: Muhammad Arif Rahman, Gamma Abdul Jabbar, Enggar Handra Pangestu, Alfi Syahrin Qadri, Iryan Anugrah Putra, Rizqi Ramadhandi.

Abstract:

Indonesia lies above three major tectonic plates, Indo-Australia plate, Eurasia plate, and Pacific plate. Interactions between those plates resulted in high tectonic and volcanic activities that corelates into high risk of geological hazards in adjacent areas, one of the areas is in North of Sulawesi’s Islands. This case raises a problem in terms of infrastructure in order to mitigate existing infrastructure and various future infrastructures plan. One of the infrastructures that is essentials to enhance telecommunication aspect is submarine fiber optic cable, that has risk to geological hazard. This cable is essential that act as backbone in telecommunication. Damaged fiber optic cables can pose serious problem that make existing signal to be loss and have negative impact to people’s social and economic factor with also decreasing various governmental services performance. Submarine cables are facing challenges in terms of geological hazards, for instance are seamounts activity. Previous studies show that until 2023, five seamounts are identified in North of Sulawesi. Seamounts itself can damage and trigger many activities that can risks submarine cables, one of the examples is submarine landslide. Main focuses of this study are to identify new possible seamounts and submarine landslide path in area North of Sulawesi Islands to help minimize risks pose by those hazards, either to existing or future plan submarine cables. Using bathymetry data, this study conduct slope analysis and use distinctive morphological features to interpret possible seamounts. Then we mapped out valleys in between seamounts and determine where sediments might flow in case of landslide, and to finally, know how it affect submarine cables in the area.

Keywords: bathymetry, geological hazard, mitigation, seamount, submarine cable, submarine landslide, volcanic activity

Procedia PDF Downloads 44
403 Finite Element Analysis of Debonding Propagation in FM73 Joint under Static Loading

Authors: Reza Hedayati, Meysam Jahanbakhshi

Abstract:

In this work, Fracture Mechanics is used to predict crack propagation in the adhesive joining aluminum and composite plates. Three types of loadings and two types of glass-epoxy composite sequences: [0/90]2s and [0/45/-45/90]s are considered for the composite plate. Therefore, 2*3=6 cases are considered and their results are compared. The debonding initiation load, complete debonding load, crack face profile and load-displacement diagram have been compared for the six cases.

Keywords: adhesive joint, debonding, fracture, LEFM, APDL

Procedia PDF Downloads 562
402 Prediction of Crack Propagation in Bonded Joints Using Fracture Mechanics

Authors: Reza Hedayati, Meysam Jahanbakhshi

Abstract:

In this work, Fracture Mechanics is used to predict crack propagation in the adhesive jointing aluminum and composite plates. Three types of loadings and two types of glass-epoxy composite sequences: [0/90]2s and [0/45/-45/90]s are considered for the composite plate. Therefore 2*3=6 cases are considered and their results are compared. The debonding initiation load, complete debonding load, crack face profile and load-displacement diagram have been compared for the six cases.

Keywords: fracture, adhesive joint, debonding, APDL, LEFM

Procedia PDF Downloads 386