Search results for: cylindrical particles
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1990

Search results for: cylindrical particles

1690 Challenges in the Characterization of Black Mass in the Recovery of Graphite from Spent Lithium Ion Batteries

Authors: Anna Vanderbruggen, Kai Bachmann, Martin Rudolph, Rodrigo Serna

Abstract:

Recycling of lithium-ion batteries has attracted a lot of attention in recent years and focuses primarily on valuable metals such as cobalt, nickel, and lithium. Despite the growth in graphite consumption and the fact that it is classified as a critical raw material in the European Union, USA, and Australia, there is little work focusing on graphite recycling. Thus, graphite is usually considered waste in recycling treatments, where graphite particles are concentrated in the “black mass”, a fine fraction below 1mm, which also contains the foils and the active cathode particles such as LiCoO2 or LiNiMnCoO2. To characterize the material, various analytical methods are applied, including X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD), Atomic Absorption Spectrometry (AAS), and SEM-based automated mineralogy. The latter consists of the combination of a scanning electron microscopy (SEM) image analysis and energy-dispersive X-ray spectroscopy (EDS). It is a powerful and well-known method for primary material characterization; however, it has not yet been applied to secondary material such as black mass, which is a challenging material to analyze due to fine alloy particles and to the lack of an existing dedicated database. The aim of this research is to characterize the black mass depending on the metals recycling process in order to understand the liberation mechanisms of the active particles from the foils and their effect on the graphite particle surfaces and to understand their impact on the subsequent graphite flotation. Three industrial processes were taken into account: purely mechanical, pyrolysis-mechanical, and mechanical-hydrometallurgy. In summary, this article explores various and common challenges for graphite and secondary material characterization.

Keywords: automated mineralogy, characterization, graphite, lithium ion battery, recycling

Procedia PDF Downloads 215
1689 Full-Field Estimation of Cyclic Threshold Shear Strain

Authors: E. E. S. Uy, T. Noda, K. Nakai, J. R. Dungca

Abstract:

Cyclic threshold shear strain is the cyclic shear strain amplitude that serves as the indicator of the development of pore water pressure. The parameter can be obtained by performing either cyclic triaxial test, shaking table test, cyclic simple shear or resonant column. In a cyclic triaxial test, other researchers install measuring devices in close proximity of the soil to measure the parameter. In this study, an attempt was made to estimate the cyclic threshold shear strain parameter using full-field measurement technique. The technique uses a camera to monitor and measure the movement of the soil. For this study, the technique was incorporated in a strain-controlled consolidated undrained cyclic triaxial test. Calibration of the camera was first performed to ensure that the camera can properly measure the deformation under cyclic loading. Its capacity to measure deformation was also investigated using a cylindrical rubber dummy. Two-dimensional image processing was implemented. Lucas and Kanade optical flow algorithm was applied to track the movement of the soil particles. Results from the full-field measurement technique were compared with the results from the linear variable displacement transducer. A range of values was determined from the estimation. This was due to the nonhomogeneous deformation of the soil observed during the cyclic loading. The minimum values were in the order of 10-2% in some areas of the specimen.

Keywords: cyclic loading, cyclic threshold shear strain, full-field measurement, optical flow

Procedia PDF Downloads 211
1688 Estimation of Particle Number and Mass Doses Inhaled in a Busy Street in Lublin, Poland

Authors: Bernard Polednik, Adam Piotrowicz, Lukasz Guz, Marzenna Dudzinska

Abstract:

Transportation is considered to be responsible for increased exposure of road users – i.e., drivers, car passengers, and pedestrians as well as inhabitants of houses located near roads - to pollutants emitted from vehicles. Accurate estimates are, however, difficult as exposure depends on many factors such as traffic intensity or type of fuel as well as the topography and the built-up area around the individual routes. The season and weather conditions are also of importance. In the case of inhabitants of houses located near roads, their exposure depends on the distance from the road, window tightness and other factors that decrease pollutant infiltration. This work reports the variations of particle concentrations along a selected road in Lublin, Poland. Their impact on the exposure for road users as well as for inhabitants of houses located near the road is also presented. Mobile and fixed-site measurements were carried out in peak (around 8 a.m. and 4 p.m.) and off-peak (12 a.m., 4 a.m., and 12 p.m.) traffic times in all 4 seasons. Fixed-site measurements were performed in 12 measurement points along the route. The number and mass concentration of particles was determined with the use of P-Trak model 8525, OPS 3330, DustTrak DRX model 8533 (TSI Inc. USA) and Grimm Aerosol Spectrometer 1.109 with Nano Sizer 1.321 (Grimm Aerosol Germany). The obtained results indicated that the highest concentrations of traffic-related pollution were measured near 4-way traffic intersections during peak hours in the autumn and winter. The highest average number concentration of ultrafine particles (PN0.1), and mass concentration of fine particles (PM2.5) in fixed-site measurements were obtained in the autumn and amounted to 23.6 ± 9.2×10³ pt/cm³ and 135.1 ± 11.3 µg/m³, respectively. The highest average number concentration of submicrometer particles (PN1) was measured in the winter and amounted to 68 ± 26.8×10³ pt/cm³. The estimated doses of particles deposited in the commuters’ and pedestrians’ lungs within an hour near 4-way TIs in peak hours in the summer amounted to 4.3 ± 3.3×10⁹ pt/h (PN0.1) and 2.9 ± 1.4 µg/h (PM2.5) and 3.9 ± 1.1×10⁹ pt/h (PN0.1) or 2.5 ± 0.4 µg/h (PM2.5), respectively. While estimating the doses inhaled by the inhabitants of premises located near the road one should take into account different fractional penetration of particles from outdoors to indoors. Such doses assessed for the autumn and winter are up to twice as high as the doses inhaled by commuters and pedestrians in the summer. In the winter traffic-related ultrafine particles account for over 70% of all ultrafine particles deposited in the pedestrians’ lungs. The share of traffic-related PM10 particles was estimated at approximately 33.5%. Concluding, the results of the particle concentration measurements along a road in Lublin indicated that the concentration is mainly affected by the traffic intensity and weather conditions. Further detailed research should focus on how the season and the metrological conditions affect concentration levels of traffic-related pollutants and the exposure of commuters and pedestrians as well as the inhabitants of houses located near traffic routes.

Keywords: air quality, deposition dose, health effects, vehicle emissions

Procedia PDF Downloads 76
1687 Microbial Reduction of Terpenes from Pine Wood Material

Authors: Bernhard Widhalm, Cornelia Rieder-Gradinger, Thomas Ters, Ewald Srebotnik, Thomas Kuncinger

Abstract:

Terpenes are natural components in softwoods and rank among the most frequently emitted volatile organic compounds (VOC) in the wood-processing industry. In this study, the main focus was on α- and β-pinene as well as Δ3-carene, which are the major terpenes in softwoods. To lower the total emission level of wood composites, defined terpene degrading microorganisms were applied to basic raw materials (e.g. pine wood particles and strands) in an optimised and industry-compatible testing procedure. In preliminary laboratory tests, bacterial species suitable for the utilisation of α-pinene as single carbon source in liquid culture were selected and then subjected to wood material inoculation. The two species Pseudomonas putida and Pseudomonas fluorescens were inoculated onto wood particles and strands and incubated at room temperature. Applying specific pre-cultivation and daily ventilation of the samples enabled a reduction of incubation time from six days to one day. SPME measurements and subsequent GC-MS analysis indicated a complete absence of α- and β-pinene emissions after 24 hours from pine wood particles. When using pine wood strands rather than particles, bacterial treatment resulted in a reduction of α- and β-pinene by 50%, while Δ3-carene emissions were reduced by 30% in comparison to untreated strands. Other terpenes were also reduced in the course of the microbial treatment. The method developed here appears to be feasible for industrial application. However, growth parameters such as time and temperature as well as the technical implementation of the inoculation step will have to be adapted for the production process.

Keywords: GC-MS, pseudomonas, SPME, terpenes

Procedia PDF Downloads 318
1686 Development of a Nanocompound Based Fibre to Combat Insects

Authors: Merle Bischoff, Thomas Gries, Gunnar Seide

Abstract:

Pesticides, which harm crop enemies, but can also interfere with the human body, are nowadays mostly used for crop spraying. Silica particles (SiO2) in the nanometer and micrometer scale offer a physical way to combat insects without harming humans and other mammals. Thereby, they allow foregoing pesticides, which can harm the environment. As silica particles are supplied as a powder or in a suspension to farmers, the silica use in large scale agriculture is not sufficient due to erosion through wind and rain. When silica is implemented in a textile’s surface (nanocompound), particles are locally bound and do resist erosion, but can function against bugs. By choosing polypropylene as a matrix polymer, the production of an inexpensive agritextile with an 'anti-bug' effect is made possible. In the Symposium the results of the manufacturing and filament spinning of silica nanocomposites from a polypropylene basis is compared to the fabrication from nanocomposites based on Polybutylene succinate, a biodegradable composite. The investigation focuses on the difference between degradable nanocomposite and stable nanocomposite. Focus will be laid on the filament characteristics as well as the degradation of the nanocompound to underline their potential use and application as an agricultural textile.

Keywords: agriculture, environment, insects, protection, silica, textile, nanocomposite

Procedia PDF Downloads 229
1685 Exploration of Graphite Nano-Particles as Anti-Wear Additive for Performance Enhancement of Oil

Authors: Manoj Kumar Gupta, Jayashree Bijwe

Abstract:

Additives in lubricating oils are the focus of research attention since the further reduction in friction and wear properties of oils would lead to the further saving of tribo-materials and energy apart from improving their efficiency. Remarkable tribo-performance enhancement is reported in the literature due to addition of particles of solid lubricants in lubricating oils; especially that of nano-sizes. In the present work graphite nano-particles (NPs) in various amounts (1, 2, 3 and 4 wt. %) were used to explore the possible anti-wear (AW) performance enhancement in Group III oil. Polyisobutylene succinimide (PIBSI- 1 wt. %) was used as a dispersant for dispersing these NPs and to enhance the stability of these nano-suspensions. It was observed that PIBSI inclusion enhanced the stability of oil almost by eight times. NPs in all amounts enhanced the AW performance of oil considerably. The optimum amount was three wt. %, which led to the highest enhancement under all loads. The extent of benefits, however, were dependent on load. At the lowest (392 N) and highest loads (784 N), the benefits were not profound. At moderate load (588 N), highest improvement (around 60 %) was recorded. The SEM and AFM studies were done on the worn ball surfaces to reveal the detailed features of films transferred and proved useful to correlate the wear performance of oils.

Keywords: dispersant, graphite, nano-lubricant, anti-wear additive

Procedia PDF Downloads 137
1684 Study of Electron Cyclotron Resonance Acceleration by Cylindrical TE₀₁₁ Mode

Authors: Oswaldo Otero, Eduardo A. Orozco, Ana M. Herrera

Abstract:

In this work, we present results from analytical and numerical studies of the electron acceleration by a TE₀₁₁ cylindrical microwave mode in a static homogeneous magnetic field under electron cyclotron resonance (ECR) condition. The stability of the orbits is analyzed using the particle orbit theory. In order to get a better understanding of the interaction wave-particle, we decompose the azimuthally electric field component as the superposition of right and left-hand circular polarization standing waves. The trajectory, energy and phase-shift of the electron are found through a numerical solution of the relativistic Newton-Lorentz equation in a finite difference method by the Boris method. It is shown that an electron longitudinally injected with an energy of 7 keV in a radial position r=Rc/2, being Rc the cavity radius, is accelerated up to energy of 90 keV by an electric field strength of 14 kV/cm and frequency of 2.45 GHz. This energy can be used to produce X-ray for medical imaging. These results can be used as a starting point for study the acceleration of electrons in a magnetic field changing slowly in time (GYRAC), which has some important applications as the electron cyclotron resonance ion proton accelerator (ECR-IPAC) for cancer therapy and to control plasma bunches with relativistic electrons.

Keywords: Boris method, electron cyclotron resonance, finite difference method, particle orbit theory, X-ray

Procedia PDF Downloads 136
1683 Characteristics of Aerosols Properties Over Different Desert-Influenced Aeronet Sites

Authors: Abou Bakr Merdji, Alaa Mhawish, Xiaofeng Xu, Chunsong Lu

Abstract:

The characteristics of optical and microphysical properties of aerosols near deserts are analyzed using 11 AErosol RObotic NETwork (AERONET) sites located in 6 major desert areas (the Sahara, Arabia, Thar, Karakum, Taklamakan, and Gobi) between 1998 and 2021. The regional mean of Aerosol Optical Depth (AOD) (coarse AOD (CAOD)) are 0.44 (0.187), 0.38 (0.26), 0.35 (0.24), 0.23 (0.11), 0.20 (0.14), 0.10 (0.05) in the Thar, Arabian, Sahara, Karakum, Taklamakan and Gobi Deserts respectively, while an opposite for AE and Fine Mode Fraction (FMF). Higher extinctions are associated with larger particles (dust) over all the main desert regions. This is shown by the almost inversely proportional variations of AOD and CAOD compared with AE and FMF. Coarse particles contribute the most to the total AOD over the Sahara Desert compared to those in the other deserts all year round. Related to the seasonality of dust events, the maximum AOD (CAOD) generally appears in summer and spring, while the minimum is in winter. The mean values of absorbing AOD (AAOD), Absorbing AE (AAE), and the Single Scattering Albedo (SSA) for all sites ranged from 0.017 to 0.037, from 1.16 to 2.81 and from 0.844 to 0.944, respectively. Generally, the highest absorbing aerosol load are observed over the Thar, followed by the Karakum, the Sahara, the Gobi, and then the Taklamakan Deserts, while the largest absorbing particles are observed in the Sahara followed by Arabia, Thar, Karakum, Gobi, and the smallest over the Taklamakan Desert. Similar absorption qualities are observed over the Sahara, Arabia, Thar, and Karakum Deserts, with SSA values varying between 0.90 and 0.91, whereas the most and least absorbing particles are observed at the Taklamakan and the Gobi Deserts, respectively. The seasonal AAODs are distinctly different over the deserts, with parts of Sahara and Arabia, and the Dalanzadgad sites experiencing the maximum in summer, the Southern Sahara, Western Arabia, Jaipur, and Dushanbe in winter, while the Eastern Arabia and the Muztagh Ata in autumn. AAOD and SSA spectra are consistent with dust-dominated conditions that resulted from aerosol typing (dust and polluted dust) at most deserts, with a possible presence of other absorbing particles apart from dust at Arabia, the Taklamakan, and the Gobi Desert sites.

Keywords: sahara, AERONET, desert, dust belt, aerosols, optical properties

Procedia PDF Downloads 62
1682 Investigation of Utilization Possibility of Fluid Gas Desulfurization Waste for Industrial Waste Water Treatment

Authors: S. Kızıltas Demir, A. S. Kipcak, E. Moroydor Derun, N. Tugrul, S. Piskin

Abstract:

Flue gas desulfurization gypsum (FGD) is a waste material arouse from coal power plants. Hydroxyapatite (HAP) is a biomaterial with porous structure. In this study, FGD gypsum which retrieved from coal power plant in Turkey was characterized and HAP particles which can be used as an adsorbent in wastewater treatment application were synthesized from the FGD gypsum. The raw materials are characterized by using X Ray Diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) techniques and produced HAP are characterized by using XRD. As a result, HAP particles were synthesized at the molar ratio of 5:10, 5:15, 5:20, 5:24, at room temperature, in alkaline medium (pH=11) and in 1 hour-reaction time. Among these conditions, 5:20 had the best result.

Keywords: FGD wastes, HAP, phosphogypsum, waste water

Procedia PDF Downloads 327
1681 Synthesis of Flower-Like Silver Nanoarchitectures in Special Shapes and Their Applications in Surface-Enhanced Raman Scattering

Authors: Radka Králová, Libor Kvítek, Václav Ranc, Aleš Panáček, Radek Zbořil

Abstract:

Surface–Enhanced Raman Scattering (SERS) is an optical spectroscopic technique with very good potential for sensitive detection of substances. In this research, active substrates with high enhancement were provided. Novel silver particles (nanostructures) with high roughened, flower–like morphology were prepared by reduction of cation complex [Ag(NH3)2]+ in presence of sodium borohydride as reducing agent and stabilized polyacrylic acid. The products were characterized by UV/VIS absorption spectrophotometry. Special shapes of silver particles were determined by scanning electron microscopy (SEM) and transmission electron spectroscopy (TEM). Dispersions of this particle were put on fixed substrate to producing suitable layer for SERS. Adenine was applied as basic substance whose effect of enhancement on the layer of silver nanostructures was studied. By comparison with our work, the important influence of stabilizers, polyacrylic acid with various molecular weight and concentration, on the transfer of particles and formation of new structure was confirmed.

Keywords: metals, nanostructures, chemical reduction, Raman spectroscopy, optical properties

Procedia PDF Downloads 350
1680 Production of Metal Matrix Composites with Diamond for Abrasive Cutting Resistance by Gas Infiltration Casting

Authors: Haydar S. Al Shabbani, M. Marshall, R. Goodall

Abstract:

Metal matrix composites (MMCs) have been explored for many applications for many decades. Recently, this includes investigations for thermal applications associated with electronics, such as in heat sinks. Here, to promote thermal conductivity, composites of a metal matrix with diamond particles are used. However, this class of composites has not yet been extensively examined for mechanical and tribological behavior, especially for applications that require extreme mechanical and tribological strength, such as the resistance to abrasive cutting. Therefore, this research seeks to develop a composite material with metal matrix and diamond particles which resist abrasive and cutting forces. The development progresses through a series of steps, exploring methods to process the material, understanding the mechanics of abrasive behavior and optimizing the composite structure to resist abrasive cutting. In processing, infiltration casting under gas pressure has been applied to molten aluminum to obtain a significant penetration of the metal into a preform of diamond particles. Different diamond particle sizes were used with different surface modifications (coated/uncoated), and to compare resulting composites with the same particle sizes. Al-1 wt.% Mg as a matrix alloy was utilised to investigate the possible effect of Mg on bonding phases during the infiltration process. The mechanical behavior and microstructure of the materials produced have been characterised. These tests showed that the surface modification of the diamond particles with a reactive material (Ti-coating) has an important role for enhancing the bonding between the aluminium matrix and diamond reinforcement as apparent under SEM observation. The effect of this improved bond is seen in the cutting resistance of the material.

Keywords: aluminium, composites, diamond, Ti-coated, tribology

Procedia PDF Downloads 246
1679 Effect of Temperature and Relative Humidity on Aerosol Spread

Authors: Getu Hailu, Catelynn Hettick, Niklas Pieper, Paul Kim, Augustine Hamner

Abstract:

Airborne transmission is a problem that all viral respiratory diseases have in common. In late 2019, a disease outbreak, now known as SARS-CoV-2, suddenly expanded across China and the rest of the world in a matter of months. Research on the spread and transmission of SARS-CoV-2 airborne particles is ongoing, as well as the development of strategies for the prevention of the spread of these pathogens using indoor air quality (IAQ) methods. By evaluating the surface area of pollutants on the surface of a mannequin in a mock-based clinic room, this study aims to better understand how altering temperature and relative humidity affect aerosol spread and contamination. Four experiments were carried out at a constant temperature of 70 degrees Fahrenheit but with four different humidity levels of 0%, 30%, 45 percent, and 60%. The mannequin was placed in direct aerosol flow since it was discovered that this was the position with the largest exposed surface area. The findings demonstrate that as relative humidity increased while the temperature remained constant, the amount of surface area infected by virus particles decreased. These findings point to approaches to reduce the spread of viral particles, such as SARS-CoV-2 and emphasize the significance of IAQ controls in enclosed environments.

Keywords: IAQ, ventilation, COVID-19, humidity, temperature

Procedia PDF Downloads 119
1678 Particleboard Production from Atmospheric Plasma Treated Wheat Straw Particles

Authors: Štěpán Hýsek, Milan Podlena, Miloš Pavelek, Matěj Hodoušek, Martin Böhm, Petra Gajdačová

Abstract:

Particle boards have being used in the civil engineering as a decking for load bearing and non-load bearing vertical walls and horizontal panels (e. g. floors, ceiling, roofs) in a large scale. When the straw is used as non-wood material for manufacturing of lignocellulosic panels, problems with wax layer on the surface of the material can occur. Higher percentage of silica and wax cause the problems with the adhesion of the adhesive and this is the reason why it is necessary to break the surface layer for the better bonding effect. Surface treatment of the particles cause better mechanical properties, physical properties and the overall better results of the composite material are reached. Plasma application is one possibility how to modify the surface layer. The aim of this research is to modify the surface of straw particles by using cold plasma treatment. Surface properties of lignocellulosic materials were observed before and after cold plasma treatment. Cold plasma does not cause any structural changes deeply in the material. There are only changes in surface layers, which are required. Results proved that the plasma application influenced the properties of surface layers and the properties of composite material.

Keywords: composite, lignocellulosic materials, straw, cold plasma, surface treatment

Procedia PDF Downloads 305
1677 Path-Spin to Spin-Spin Hybrid Quantum Entanglement: A Conversion Protocol

Authors: Indranil Bayal, Pradipta Panchadhyayee

Abstract:

Path-spin hybrid entanglement generated and confined in a single spin-1/2 particle is converted to spin-spin hybrid interparticle entanglement, which finds its important applications in quantum information processing. This protocol uses beam splitter, spin flipper, spin measurement, classical channel, unitary transformations, etc., and requires no collective operation on the pair of particles whose spin variables share complete entanglement after the accomplishment of the protocol. The specialty of the protocol lies in the fact that the path-spin entanglement is transferred between spin degrees of freedom of two separate particles initially possessed by a single party.

Keywords: entanglement, path-spin entanglement, spin-spin entanglement, CNOT operation

Procedia PDF Downloads 171
1676 A Novel Way to Create Qudit Quantum Error Correction Codes

Authors: Arun Moorthy

Abstract:

Quantum computing promises to provide algorithmic speedups for a number of tasks; however, similar to classical computing, effective error-correcting codes are needed. Current quantum computers require costly equipment to control each particle, so having fewer particles to control is ideal. Although traditional quantum computers are built using qubits (2-level systems), qudits (more than 2-levels) are appealing since they can have an equivalent computational space using fewer particles, meaning fewer particles need to be controlled. Currently, qudit quantum error-correction codes are available for different level qudit systems; however, these codes have sometimes overly specific constraints. When building a qudit system, it is important for researchers to have access to many codes to satisfy their requirements. This project addresses two methods to increase the number of quantum error correcting codes available to researchers. The first method is generating new codes for a given set of parameters. The second method is generating new error-correction codes by using existing codes as a starting point to generate codes for another level (i.e., a 5-level system code on a 2-level system). So, this project builds a website that researchers can use to generate new error-correction codes or codes based on existing codes.

Keywords: qudit, error correction, quantum, qubit

Procedia PDF Downloads 133
1675 Cold Spray High Entropy Alloy Coating Surface Microstructural Characterization and Mechanical Testing

Authors: Raffaella Sesana, Nazanin Sheibanian, Luca Corsaro, Sedat Özbilen, Rocco Lupoi, Francesco Artusio

Abstract:

High Entropy Alloy (HEA) coatings of Al0.1-0.5CoCrCuFeNi and MnCoCrCuFeNi on Mg substrates were prepared from mechanically alloyed HEA powder feedstocks and at three different Cold Spray (CS) process gas (N2) temperatures (650, 750 and 850°C). Mechanically alloyed and cold-sprayed HEA coatings were characterized by macro photography, OM, SEM+EDS study, micro-hardness testing, roughness, and porosity measurements. As a result of mechanical alloying (MA), harder particles are deformed and fractured. The particles in the Cu-rich region were coarser and more globular than those in the A1 phase, which is relatively soft and ductile. In addition to the A1 particles, there were some separate Cu-rich regions. Due to the brittle nature of the powder and the acicular shape, Mn-HEA powder exhibited a different trend with smaller particle sizes. It is observed that MA results in a loose structure characterized by many gaps, cracks, signs of plastic deformation, and small particles attached to the surface of the particle. Considering the experimental results obtained, it is not possible to conclude that the chemical composition of the high entropy alloy influences the roughness of the coating. It has been observed that the deposited volume increases with temperature only in the case of Al0.1 and Mg-based HEA, while for the rest of the Al-based HEA, there are no noticeable changes. There is a direct correlation between micro-hardness and the chemical composition of a coating: the micro-hardness of a coating increases as the percentage of aluminum increases in the sample. Compared to the substrate, the coating has a much higher hardness, and the hardness measured at the interface is intermediate.

Keywords: characterisation, cold spraying, HEA coatings, SEM+EDS

Procedia PDF Downloads 36
1674 Effects of Plasma Treatment on Seed Germination

Authors: Yong Ho Jeon, Youn Mi Lee, Yong Yoon Lee

Abstract:

Effects of cold plasma treatment on various plant seed germination were studied. The seeds of hot pepper, cucumber, tomato and arabidopsis were exposed to plasma and the plasma was generated in various devices. The germination speed was evaluated compared to an unexposed control. A positive effect on germination speed was observed in all tested seeds but the effects strongly depended on the type of the used plasma device (Argon-DBD, surface-DBD or MARX generator), time of exposure (6s~10min or 1~10shots) and kind of seeds. The SEM images showed that arrays of gold particles along the cell wall were observed on the surface of cucumber seeds showed a germination-accelerating effect by plasma treatment, which was the same as untreated. However, when treated with the high dose plasma, gold particles were not arrayed at the seed surface, it seems that due to the surface etching. This may suggest that the germination is not promoted by etching or damage of surface caused by the plasma treatment. Seedling growth improvement was also observed by indirect plasma treatment. These lead to an important conclusion that the effect of charged particles on plasma play the essential role in plant germination and indirect plasma treatment offers new perspectives for large scale application.

Keywords: cold plasma, cucumber, germination, SEM

Procedia PDF Downloads 279
1673 Clinical Outcomes of Toric Implantable Collamer Lens (T-ICL) and Toric Implantable Phakic Contact Lens (IPCL) for Correction of High Myopia with Astigmatism: Comparative Study

Authors: Mohamed Salah El-Din Mahmoud, Heba Radi Atta Allah

Abstract:

Background: Our study assesses the safety profile and efficacy of toric Implantable Collamer Lens (T-ICL) and toric implantable phakic contact lens (IPCL) for the correction of high myopia with astigmatism. Methods: A prospective interventional randomized comparative study included 60 myopic eyes divided into 2 groups, group A including 30 eyes that were implanted with T-ICL, and group B including 30 eyes that were implanted with toric IPCL. The refractive results, visual acuity, corneal endothelial cell count, and intraocular pressure (IOP) were evaluated at baseline and at 1, 6, and 9 months post-surgery. Any complications either during or after surgery were assessed. Results: A significant reduction in both spherical and cylindrical refractive errors with good predictability was reported in both groups compared with preoperative values. Regarding the predictability, In T-ICL group (A), the median spherical and cylindrical errors were significantly improved from (-10 D & -4.5 D) pre-operatively to (-0.25 D & - 0.3 D) at the end of 9 months follow up period. Similarly, in the toric IPCL group (B), the median spherical and cylindrical errors were significantly improved from (-11 D & -4.5 D) pre-operatively to (-0.25 D & - 0.3 D) at the end of 9 months follow up period. A statistically significant improvement of UCDVA at 9 months postoperatively was found in both groups, as median preoperative Log Mar UCDVA was 1.1 and 1.3 in groups A and B respectively, which was significantly improved to 0.2 in both groups at the end of follow-up period. Regarding IOP, no significant difference was found between both groups, either pre-operatively or during the postoperative period. Regarding the endothelial count, no significant differences were found during the pre-operative and postoperative follow-up periods between the two groups. Fortunately, no intra or postoperative complications as cataract, keratitis or lens decentration had occurred. Conclusions: Toric IPCL is a suitable alternative to T-ICL for the management of high myopia with astigmatism, especially in developing countries, as it is cheaper and easier for implantation than T-ICL. However, data over longer follow-up periods are needed to confirm its safety and stability.

Keywords: T-ICL, Toric IPCL, IOP, corneal endothelium

Procedia PDF Downloads 124
1672 Design of Cylindrical Crawler Robot Inspired by Amoeba Locomotion

Authors: Jun-ya Nagase

Abstract:

Recently, the need of colonoscopy is increasing because of the rise of colonic disorder including cancer of the colon. However, current colonoscopy depends on doctor's skill strongly. Therefore, a large intestine endoscope that does not depend on the techniques of a doctor with high safety is required. In this research, we aim at development a novel large intestine endoscope that can realize safe insertion without specific techniques. A wheel movement type robot, a snake-like robot and an earthworm-like robot are all described in the relevant literature as endoscope robots that are currently studied. Among them, the tracked crawler robot can travel by traversing uneven ground flexibly with a crawler belt attached firmly to the ground surface. Although conventional crawler robots have high efficiency and/or high ground-covering ability, they require a comparatively large space to move. In this study, a small cylindrical crawler robot inspired by amoeba locomotion, which does not need large space to move and which has high ground-covering ability, is proposed. In addition, we developed a prototype of the large intestine endoscope using the proposed crawler mechanism. Experiments have demonstrated smooth operation and a forward movement of the robot by application of voltage to the motor. This paper reports the structure, drive mechanism, prototype, and experimental evaluation.

Keywords: tracked-crawler, endoscopic robot, narrow path, amoeba locomotion.

Procedia PDF Downloads 362
1671 Experimental Study of the Behavior of Elongated Non-spherical Particles in Wall-Bounded Turbulent Flows

Authors: Manuel Alejandro Taborda Ceballos, Martin Sommerfeld

Abstract:

Transport phenomena and dispersion of non-spherical particle in turbulent flows are found everywhere in industrial application and processes. Powder handling, pollution control, pneumatic transport, particle separation are just some examples where the particle encountered are not only spherical. These types of multiphase flows are wall bounded and mostly highly turbulent. The particles found in these processes are rarely spherical but may have various shapes (e.g., fibers, and rods). Although research related to the behavior of regular non-spherical particles in turbulent flows has been carried out for many years, it is still necessary to refine models, especially near walls where the interaction fiber-wall changes completely its behavior. Imaging-based experimental studies on dispersed particle-laden flows have been applied for many decades for a detailed experimental analysis. These techniques have the advantages that they provide field information in two or three dimensions, but have a lower temporal resolution compared to point-wise techniques such as PDA (phase-Doppler anemometry) and derivations therefrom. The applied imaging techniques in dispersed two-phase flows are extensions from classical PIV (particle image velocimetry) and PTV (particle tracking velocimetry) and the main emphasis was simultaneous measurement of the velocity fields of both phases. In a similar way, such data should also provide adequate information for validating the proposed models. Available experimental studies on the behavior of non-spherical particles are uncommon and mostly based on planar light-sheet measurements. Especially for elongated non-spherical particles, however, three-dimensional measurements are needed to fully describe their motion and to provide sufficient information for validation of numerical computations. For further providing detailed experimental results allowing a validation of numerical calculations of non-spherical particle dispersion in turbulent flows, a water channel test facility was built around a horizontal closed water channel. Into this horizontal main flow, a small cross-jet laden with fiber-like particles was injected, which was also solely driven by gravity. The dispersion of the fibers was measured by applying imaging techniques based on a LED array for backlighting and high-speed cameras. For obtaining the fluid velocity fields, almost neutrally buoyant tracer was used. The discrimination between tracer and fibers was done based on image size which was also the basis to determine fiber orientation with respect to the inertial coordinate system. The synchronous measurement of fluid velocity and fiber properties also allow the collection of statistics of fiber orientation, velocity fields of tracer and fibers, the angular velocity of the fibers and the orientation between fiber and instantaneous relative velocity. Consequently, an experimental study the behavior of elongated non-spherical particles in wall bounded turbulent flows was achieved. The development of a comprehensive analysis was succeeded, especially near the wall region, where exists hydrodynamic wall interaction effects (e.g., collision or lubrication) and abrupt changes of particle rotational velocity. This allowed us to predict numerically afterwards the behavior of non-spherical particles within the frame of the Euler/Lagrange approach, where the particles are therein treated as “point-particles”.

Keywords: crossflow, non-spherical particles, particle tracking velocimetry, PIV

Procedia PDF Downloads 57
1670 Comparison of Entropy Coefficient and Internal Resistance of Two (Used and Fresh) Cylindrical Commercial Lithium-Ion Battery (NCR18650) with Different Capacities

Authors: Sara Kamalisiahroudi, Zhang Jianbo, Bin Wu, Jun Huang, Laisuo Su

Abstract:

The temperature rising within a battery cell depends on the level of heat generation, the thermal properties and the heat transfer around the cell. The rising of temperature is a serious problem of Lithium-Ion batteries and the internal resistance of battery is the main reason for this heating up, so the heat generation rate of the batteries is an important investigating factor in battery pack design. The delivered power of a battery is directly related to its capacity, decreases in the battery capacity means the growth of the Solid Electrolyte Interface (SEI) layer which is because of the deposits of lithium from the electrolyte to form SEI layer that increases the internal resistance of the battery. In this study two identical cylindrical Lithium-Ion (NCR18650)batteries from the same company with noticeable different in capacity (a fresh and a used battery) were compared for more focusing on their heat generation parameters (entropy coefficient and internal resistance) according to Brandi model, by utilizing potentiometric method for entropy coefficient and EIS method for internal resistance measurement. The results clarify the effect of capacity difference on cell electrical (R) and thermal (dU/dT) parameters. It can be very noticeable in battery pack design for its Safety.

Keywords: heat generation, Solid Electrolyte Interface (SEI), potentiometric method, entropy coefficient

Procedia PDF Downloads 440
1669 Standardized Testing of Filter Systems regarding Their Separation Efficiency in Terms of Allergenic Particles and Airborne Germs

Authors: Johannes Mertl

Abstract:

Our surrounding air contains various particles. Besides typical representatives of inorganic dust, such as soot and ash, also particles originating from animals, microorganisms or plants are floating through the air, so-called bioaerosols. The group of bioaerosols consists of a broad spectrum of particles of different size, including fungi, bacteria, viruses, spores, or tree, flower and grass pollen that are of high relevance for allergy sufferers. In dependence of the environmental climate and the actual season, these allergenic particles can be found in enormous numbers in the air and are inhaled by humans via the respiration tract, with a potential for inflammatory diseases of the airways, such as asthma or allergic rhinitis. As a consequence air filter systems of ventilation and air conditioning devices are required to meet very high standards to prevent, or at least lower the number of allergens and airborne germs entering the indoor air. Still, filter systems are merely classified for their separation rates using well-defined mineral test dust, while no appropriate sufficiently standardized test methods for bioaerosols exist. However, determined separation rates for mineral test particles of a certain size cannot simply be transferred to bioaerosols, as separation efficiency of particularly fine and respirable particles (< 10 microns) is dependent not only on their shape and particle diameter, but also defined by their density and physicochemical properties. For this reason, the OFI developed a test method, which directly enables a testing of filters and filter media for their separation rates on bioaerosols, as well as a classification of filters. Besides allergens from an intact or fractured tree or grass pollen, allergenic proteins bound to particulates, as well as allergenic fungal spores (e.g. Cladosporium cladosporioides), or bacteria can be used to classify filters regarding their separation rates. Allergens passing through the filter can then be detected by highly sensitive immunological assays (ELISA) or in the case of fungal spores by microbiological methods, which allow for the detection of even one single spore passing the filter. The test procedure, which is carried out in laboratory scale, was furthermore validated regarding its sufficiency to cover real life situations by upscaling using air conditioning devices showing great conformity in terms of separation rates. Additionally, a clinical study with allergy sufferers was performed to verify analytical results. Several different air conditioning filters from the car industry have been tested, showing significant differences in their separation rates.

Keywords: airborne germs, allergens, classification of filters, fine dust

Procedia PDF Downloads 226
1668 Carbonyl Iron Particles Modified with Pyrrole-Based Polymer and Electric and Magnetic Performance of Their Composites

Authors: Miroslav Mrlik, Marketa Ilcikova, Martin Cvek, Josef Osicka, Michal Sedlacik, Vladimir Pavlinek, Jaroslav Mosnacek

Abstract:

Magnetorheological elastomers (MREs) are a unique type of materials consisting of two components, magnetic filler, and elastomeric matrix. Their properties can be tailored upon application of an external magnetic field strength. In this case, the change of the viscoelastic properties (viscoelastic moduli, complex viscosity) are influenced by two crucial factors. The first one is magnetic performance of the particles and the second one is off-state stiffness of the elastomeric matrix. The former factor strongly depends on the intended applications; however general rule is that higher magnetic performance of the particles provides higher MR performance of the MRE. Since magnetic particles possess low stability properties against temperature and acidic environment, several methods how to improve these drawbacks have been developed. In the most cases, the preparation of the core-shell structures was employed as a suitable method for preservation of the magnetic particles against thermal and chemical oxidations. However, if the shell material is not single-layer substance, but polymer material, the magnetic performance is significantly suppressed, due to the in situ polymerization technique, when it is very difficult to control the polymerization rate and the polymer shell is too thick. The second factor is the off-state stiffness of the elastomeric matrix. Since the MR effectivity is calculated as the relative value of the elastic modulus upon magnetic field application divided by elastic modulus in the absence of the external field, also the tuneability of the cross-linking reaction is highly desired. Therefore, this study is focused on the controllable modification of magnetic particles using a novel monomeric system based on 2-(1H-pyrrol-1-yl)ethyl methacrylate. In this case, the short polymer chains of different chain lengths and low polydispersity index will be prepared, and thus tailorable stability properties can be achieved. Since the relatively thin polymer chains will be grafted on the surface of magnetic particles, their magnetic performance will be affected only slightly. Furthermore, also the cross-linking density will be affected, due to the presence of the short polymer chains. From the application point of view, such MREs can be utilized for, magneto-resistors, piezoresistors or pressure sensors especially, when the conducting shell on the magnetic particles will be created. Therefore, the selection of the pyrrole-based monomer is very crucial and controllably thin layer of conducting polymer can be prepared. Finally, such composite particle consisting of magnetic core and conducting shell dispersed in elastomeric matrix can find also the utilization in shielding application of electromagnetic waves.

Keywords: atom transfer radical polymerization, core-shell, particle modification, electromagnetic waves shielding

Procedia PDF Downloads 184
1667 Bearing Capacity of Sulphuric Acid Content Soil

Authors: R. N. Khare, J. P. Sahu, Rajesh Kumar Tamrakar

Abstract:

Tests were conducted to determine the property of soil with variation of H2SO4 content for soils under different stage. The soils had varying amounts of plasticity’s ranging from low to high plasticity. The unsaturated soil behavior was investigated for different conditions, covering a range of compactive efforts and water contents. The soil characteristic curves were more sensitive to changes in compaction effort than changes in compaction water content. In this research paper two types of water (Ground water Ph =7.9, Turbidity= 13 ppm; Cl =2.1mg/l and surface water Ph =8.65; Turbidity=18.5; Cl=1mg/l) were selected of Bhilai Nagar, State-Chhattisgarh, India which is mixed with a certain type of soil. Results shows that by the presence of ground water day by day the particles are becoming coarser in 7 days thereafter its size reduces; on the other hand by the presence of surface water the courser particles are disintegrating, finer particles are accumulating and also the dry density is reduces. Plasticity soils retained the smallest water content and the highest plasticity soils retained the highest water content at a specified suction. In addition, soil characteristic for soils to be compacted in the laboratory and in the field are still under process for analyzing the bearing capacity. The bearing capacity was reduced 2 to 3 times in the presence of H2SO4.

Keywords: soil compaction, H2SO4, soil water, water conditions

Procedia PDF Downloads 506
1666 Sand Production Modelled with Darcy Fluid Flow Using Discrete Element Method

Authors: M. N. Nwodo, Y. P. Cheng, N. H. Minh

Abstract:

In the process of recovering oil in weak sandstone formations, the strength of sandstones around the wellbore is weakened due to the increase of effective stress/load from the completion activities around the cavity. The weakened and de-bonded sandstone may be eroded away by the produced fluid, which is termed sand production. It is one of the major trending subjects in the petroleum industry because of its significant negative impacts, as well as some observed positive impacts. For efficient sand management therefore, there has been need for a reliable study tool to understand the mechanism of sanding. One method of studying sand production is the use of the widely recognized Discrete Element Method (DEM), Particle Flow Code (PFC3D) which represents sands as granular individual elements bonded together at contact points. However, there is limited knowledge of the particle-scale behavior of the weak sandstone, and the parameters that affect sanding. This paper aims to investigate the reliability of using PFC3D and a simple Darcy flow in understanding the sand production behavior of a weak sandstone. An isotropic tri-axial test on a weak oil sandstone sample was first simulated at a confining stress of 1MPa to calibrate and validate the parallel bond models of PFC3D using a 10m height and 10m diameter solid cylindrical model. The effect of the confining stress on the number of bonds failure was studied using this cylindrical model. With the calibrated data and sample material properties obtained from the tri-axial test, simulations without and with fluid flow were carried out to check on the effect of Darcy flow on bonds failure using the same model geometry. The fluid flow network comprised of every four particles connected with tetrahedral flow pipes with a central pore or flow domain. Parametric studies included the effects of confining stress, and fluid pressure; as well as validating flow rate – permeability relationship to verify Darcy’s fluid flow law. The effect of model size scaling on sanding was also investigated using 4m height, 2m diameter model. The parallel bond model successfully calibrated the sample’s strength of 4.4MPa, showing a sharp peak strength before strain-softening, similar to the behavior of real cemented sandstones. There seems to be an exponential increasing relationship for the bigger model, but a curvilinear shape for the smaller model. The presence of the Darcy flow induced tensile forces and increased the number of broken bonds. For the parametric studies, flow rate has a linear relationship with permeability at constant pressure head. The higher the fluid flow pressure, the higher the number of broken bonds/sanding. The DEM PFC3D is a promising tool to studying the micromechanical behavior of cemented sandstones.

Keywords: discrete element method, fluid flow, parametric study, sand production/bonds failure

Procedia PDF Downloads 295
1665 Physical Characterization of Indoor Dust Particles Using Scanning Electron Microscope (SEM)

Authors: Fatima S. Mohammed, Derrick Crump

Abstract:

Harmattan, a dusty weather condition characterized by thick smog-like suspended particles and dust storm are the peculiar events that happen during ¾ of the year in the Sahelian regions including Damaturu Town, Nigeria), resulting in heavy dust deposits especially indoors. The inhabitants of the Damaturu community are always inflicted with different ailments; respiratory tract infections, asthma, gastrointestinal infections and different ailments associated with the dusty nature of the immediate environment. This brought the need to investigate the nature of the settled indoor dust. Vacuum cleaner bag dust was collected from indoor of some Nigerian and UK homes, as well as outdoors including during seasonal dusty weather event (Harmattan and Storm dust). The dust was sieved, and the (150 µm size) particles were examined using scanning electron microscope (SEM). The physical characterization of the settled dust samples has revealed the various shapes and sizes, and elemental composition of the dust samples is indicating that some of the dust fractions were the respirable fractions and also the dust contained PM10 to PM 2.5 fractions with possible health effects. The elemental compositions were indicative of the diverse nature of the dust particle sources, which showed dust as a complex matrix.

Keywords: indoor dust, Harmattan dust, SEM, health effects

Procedia PDF Downloads 275
1664 Microfluidic Impedimetric Biochip and Related Methods for Measurement Chip Manufacture and Counting Cells

Authors: Amina Farooq, Nauman Zafar Butt

Abstract:

This paper is about methods and tools for counting particles of interest, such as cells. A microfluidic system with interconnected electronics on a flexible substrate, inlet-outlet ports and interface schemes, sensitive and selective detection of cells specificity, and processing of cell counting at polymer interfaces in a microscale biosensor for use in the detection of target biological and non-biological cells. The development of fluidic channels, planar fluidic contact ports, integrated metal electrodes on a flexible substrate for impedance measurements, and a surface modification plasma treatment as an intermediate bonding layer are all part of the fabrication process. Magnetron DC sputtering is used to deposit a double metal layer (Ti/Pt) over the polypropylene film. Using a photoresist layer, specified and etched zones are established. Small fluid volumes, a reduced detection region, and electrical impedance measurements over a range of frequencies for cell counts improve detection sensitivity and specificity. The procedure involves continuous flow of fluid samples that contain particles of interest through the microfluidic channels, counting all types of particles in a portion of the sample using the electrical differential counter to generate a bipolar pulse for each passing cell—calculating the total number of particles of interest originally in the fluid sample by using MATLAB program and signal processing. It's indeed potential to develop a robust and economical kit for cell counting in whole-blood samples using these methods and similar devices.

Keywords: impedance, biochip, cell counting, microfluidics

Procedia PDF Downloads 140
1663 Upsetting of Tri-Metallic St-Cu-Al and St-Cu60Zn-Al Cylindrical Billets

Authors: Isik Cetintav, Cenk Misirli, Yilmaz Can

Abstract:

This work investigates upsetting of the tri-metallic cylindrical billets both experimentally and analytically with a reduction ratio 30%. Steel, brass, and copper are used for the outer and outmost rings and aluminum for the inner core. Two different models have been designed to show material flow and the cavity took place over the two interfaces during forming after this reduction ratio. Each model has an outmost ring material as steel. Model 1 has an outer ring between the outmost ring and the solid core material as copper and Model 2 has a material as brass. Solid core is aluminum for each model. Billets were upset in press machine by using parallel flat dies. Upsetting load was recorded and compared for models and single billets. To extend the tests and compare with experimental procedure to a wider range of inner core and outer ring geometries, finite element model was performed. ABAQUS software was used for the simulations. The aim is to show how contact between outmost ring, outer ring and the inner core are carried on throughout the upsetting process. Results have shown that, with changing in height, between outmost ring, outer ring and inner core, the Model 1 and Model 2 had very good interaction, and the contact surfaces of models had various interface behaviour. It is also observed that tri-metallic materials have lower weight but better mechanical properties than single materials. This can give an idea for using and producing these new materials for different purposes.

Keywords: tri-metallic, upsetting, copper, brass, steel, aluminum

Procedia PDF Downloads 320
1662 Long Wavelength Coherent Pulse of Sound Propagating in Granular Media

Authors: Rohit Kumar Shrivastava, Amalia Thomas, Nathalie Vriend, Stefan Luding

Abstract:

A mechanical wave or vibration propagating through granular media exhibits a specific signature in time. A coherent pulse or wavefront arrives first with multiply scattered waves (coda) arriving later. The coherent pulse is micro-structure independent i.e. it depends only on the bulk properties of the disordered granular sample, the sound wave velocity of the granular sample and hence bulk and shear moduli. The coherent wavefront attenuates (decreases in amplitude) and broadens with distance from its source. The pulse attenuation and broadening effects are affected by disorder (polydispersity; contrast in size of the granules) and have often been attributed to dispersion and scattering. To study the effect of disorder and initial amplitude (non-linearity) of the pulse imparted to the system on the coherent wavefront, numerical simulations have been carried out on one-dimensional sets of particles (granular chains). The interaction force between the particles is given by a Hertzian contact model. The sizes of particles have been selected randomly from a Gaussian distribution, where the standard deviation of this distribution is the relevant parameter that quantifies the effect of disorder on the coherent wavefront. Since, the coherent wavefront is system configuration independent, ensemble averaging has been used for improving the signal quality of the coherent pulse and removing the multiply scattered waves. The results concerning the width of the coherent wavefront have been formulated in terms of scaling laws. An experimental set-up of photoelastic particles constituting a granular chain is proposed to validate the numerical results.

Keywords: discrete elements, Hertzian contact, polydispersity, weakly nonlinear, wave propagation

Procedia PDF Downloads 179
1661 The Impact of Liquid Glass-Infused Lignin Waste Particles on Performance of Polyurethane Foam for Building Industry

Authors: Agnė Kairyte, Saulius Vaitkus

Abstract:

The gradual depletion of fossil feedstock and growing environmental concerns attracted extensive attention to natural resources due to their low cost, high abundance, renewability, sustainability, and biodegradability. Lignin is a significant by-product of the pulp and paper industry, having unique functional groups. Recently it became interesting for the manufacturing of high value-added products such as polyurethane and polyisocyanurate foams. This study focuses on the development of high-performance polyurethane foams with various amounts of lignin as a filler. It is determined that the incorporation of lignin as a filler material results in brittle and hard products due to the low molecular mobility of isocyanates and the inherent stiffness of lignin. Therefore, the current study analyses new techniques and possibilities of liquid glass infusion onto the surface of lignin particles to reduce the negative aspects and improve the performance characteristics of the modified foams. The foams modified with sole lignin and liquid glass-infused lignin had an apparent density ranging from 35 kg/m3 to 45 kg/m3 and closed-cell content (80–90%). The incorporation of sole lignin reduced the compressive and tensile strengths and increased dimensional stability and water absorption, while the contrary results were observed for polyurethane foams with liquid glass-infused lignin particles. The effect on rheological parameters of lignin and liquid glass infused lignin modified polyurethane premixes and morphology of polyurethane foam products were monitored to optimize the conditions and reveal the significant influence of the interaction between particles and polymer matrix.

Keywords: filler, lignin waste, liquid glass, polymer matrix, polyurethane foam, sustainability

Procedia PDF Downloads 181