Search results for: corrosion in pipeline
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 916

Search results for: corrosion in pipeline

706 Automated Computer-Vision Analysis Pipeline of Calcium Imaging Neuronal Network Activity Data

Authors: David Oluigbo, Erik Hemberg, Nathan Shwatal, Wenqi Ding, Yin Yuan, Susanna Mierau

Abstract:

Introduction: Calcium imaging is an established technique in neuroscience research for detecting activity in neural networks. Bursts of action potentials in neurons lead to transient increases in intracellular calcium visualized with fluorescent indicators. Manual identification of cell bodies and their contours by experts typically takes 10-20 minutes per calcium imaging recording. Our aim, therefore, was to design an automated pipeline to facilitate and optimize calcium imaging data analysis. Our pipeline aims to accelerate cell body and contour identification and production of graphical representations reflecting changes in neuronal calcium-based fluorescence. Methods: We created a Python-based pipeline that uses OpenCV (a computer vision Python package) to accurately (1) detect neuron contours, (2) extract the mean fluorescence within the contour, and (3) identify transient changes in the fluorescence due to neuronal activity. The pipeline consisted of 3 Python scripts that could both be easily accessed through a Python Jupyter notebook. In total, we tested this pipeline on ten separate calcium imaging datasets from murine dissociate cortical cultures. We next compared our automated pipeline outputs with the outputs of manually labeled data for neuronal cell location and corresponding fluorescent times series generated by an expert neuroscientist. Results: Our results show that our automated pipeline efficiently pinpoints neuronal cell body location and neuronal contours and provides a graphical representation of neural network metrics accurately reflecting changes in neuronal calcium-based fluorescence. The pipeline detected the shape, area, and location of most neuronal cell body contours by using binary thresholding and grayscale image conversion to allow computer vision to better distinguish between cells and non-cells. Its results were also comparable to manually analyzed results but with significantly reduced result acquisition times of 2-5 minutes per recording versus 10-20 minutes per recording. Based on these findings, our next step is to precisely measure the specificity and sensitivity of the automated pipeline’s cell body and contour detection to extract more robust neural network metrics and dynamics. Conclusion: Our Python-based pipeline performed automated computer vision-based analysis of calcium image recordings from neuronal cell bodies in neuronal cell cultures. Our new goal is to improve cell body and contour detection to produce more robust, accurate neural network metrics and dynamic graphs.

Keywords: calcium imaging, computer vision, neural activity, neural networks

Procedia PDF Downloads 56
705 Numerical Simulation of the Remaining Life of Ramshir Bridge over the Karoon River

Authors: M. Jalali Azizpour, V.Tavvaf, E. Akhlaghi, H. Mohammadi Majd, A. Shirani, S. M. Moravvej, M. Kazemi, A. R. Aboudi Asl, A. Jaderi

Abstract:

The static and corrosion behavior of the bridge using for pipelines in the south of country have been evaluated. The bridge was constructed more than 40 years ago on the Karoon River. Mentioned bridge is located in Khuzestan province and at a distance of 15 km east from the suburbs of Ahwaz. In order to determine the mechanical properties, the experimental tools such as measuring the thickness and static simulations based on the actual load were used. In addition, the metallurgical studies were used to achieve a rate of corrosion of pipes in the river and in the river bed. The aim of this project is to determine the remaining life of the bridge using mechanical and metallurgical studies.

Keywords: FEM, stress, corrosion, bridge

Procedia PDF Downloads 441
704 Corrosion Characterization of Al6061 Hybrid Metal Matrix Composites in Acid Medium

Authors: P. V. Krupakara

Abstract:

This paper deals with the high corrosion resistance developed by the hybrid metal matrix composites when compared with that of matrix alloy. Matrix selected is Al6061. Reinforcements selected are graphite and red mud particulates. The composites are prepared using liquid melt metallurgy technique using vortex method. Metal matrix composites containing 2 percent graphite and 2 percent red mud, 2 percent graphite and 4 percent red mud, 2 percent graphite and 6 percent of red mud are prepared. Bar castings are cut into cylindrical discs of 20mm diameter and 20mm thickness. Corrosion tests were conducted at room temperature (230 °C) using conventional weight loss method according to ASTM G69-80. The corrodents used for the test were hydrochloric acid solution of different concentrations. Specimens were tested for every 24 hours interval up to 96 hours. Four specimens for each condition and time were immersed in corrodent. In each case the corrosion rate decreases with increase in exposure time for matrix and metal matrix composites whatever may be the concentration of hydrochloric acid. This may be due to aluminium, which may induce passivation due to development of non-porous layer. As red mud content increases the composites become corrosion resistant due to insulating nature of ceramic material red mud and less exposure of matrix alloy in those metal matrix composites.

Keywords: Al6061, graphite, passivation, red mud, vortex

Procedia PDF Downloads 506
703 Dynamic Corrosion Prevention through Magneto-Responsive Nanostructure with Controllable Hydrophobicity

Authors: Anne McCarthy, Anna Kim, Yin Song, Kyoo Jo, Donald Cropek, Sungmin Hong

Abstract:

Corrosion prevention remains an indispensable concern across a spectrum of industries, demanding inventive and adaptable methodologies to effectively tackle the ever-evolving obstacles presented by corrosive surroundings. This abstract introduces a pioneering approach to corrosion prevention that amalgamates the distinct attributes of magneto-responsive polymers with finely adjustable hydrophobicity inspired by the structure of cicada wings, effectively deterring bacterial proliferation and biofilm formation. The proposed strategy entails the creation of an innovative array of magneto-responsive nanostructures endowed with the capacity to dynamically modulate their hydrophobic characteristics. This dynamic control over hydrophobicity facilitates active repulsion of water and corrosive agents on demand. Additionally, the cyclic motion generated by magnetic activation prevents the biofilms formation and rejection. Thus, the synergistic interplay between magneto-active nanostructures and hydrophobicity manipulation establishes a versatile defensive mechanism against diverse corrosive agents. This study introduces a novel method for corrosion prevention, harnessing the advantages of magneto-active nanostructures and the precision of hydrophobicity adjustment, resulting in water-repellency, effective biofilm removal, and offering a promising solution to handle corrosion-related challenges. We believe that the combined effect will significantly contribute to extending asset lifespan, improving safety, and reducing maintenance costs in the face of corrosion threats.

Keywords: magneto-active material, nanoimprinting, corrosion prevention, hydrophobicity

Procedia PDF Downloads 31
702 Bowing of a Pipeline from Longitudinal Compressive Stress Induced by Ground Movement

Authors: Gennaro Marino

Abstract:

This paper concerns a case of a 10.75 inch diameter buried gas transmission line which was exposed to mine subsidence ground movements. The pipeline was buried about 4ft. below the surface with maximum operating pressure of 1440 psi. The mine subsidence movement was the result of long walling ore at a depth of approximately 1600 ft. As ore extraction progressed, the stress in the monitored pipeline worsened and was approaching unacceptable levels. The excessive pipe compression resulted when it was exposed to the compression zone of subsidence basin created by mining. The pipe stress reached a significant compressive level due to the extensive length of the pipe exposed to frictional ground-pipe slip resistance. The backfill ground movement slip resistance depends on normal stress around the pipe, the rate of slip, and the backfill characteristics. Normal stress depends on the burial depth of the backfill density and the lateral subsidence induced stress. The backfill in this site has a soil dry density of approximately 90 PCF. A suite of direct shear tests was conducted a residual friction angle of 36 was determined for the ambient backfill. These tests showed that the residual shearing resistance was reached within a fraction of an inch. The pipe was coated with fusion-bonded epoxy, so friction reduce factory of 0.6 can be considered. To relieve ground movement induced compressive stress, the line was uncovered. As more of the pipeline was exposed, the pipe abruptly bowed in the excavation. An analysis of this pipe formation which was performed is provided in this paper. Also discussed in this paper are ways to mitigate this pipe deformation or upheaval buckling from occurring. Keywords: Pipe Upheaval, Pipe Buckling, Ground subsidence, Buried Pipeline, Pipe Stress Mitigation.

Keywords: pipe upheaval, pipe buckling, ground subsidence, buried pipeline, pipe stress mitigation

Procedia PDF Downloads 134
701 Corrosion Protective Coatings in Machines Design

Authors: Cristina Diaz, Lucia Perez, Simone Visigalli, Giuseppe Di Florio, Gonzalo Fuentes, Roberto Canziani, Paolo Gronchi

Abstract:

During the last 50 years, the selection of materials is one of the main decisions in machine design for different industrial applications. It is due to numerous physical, chemical, mechanical and technological factors to consider in it. Corrosion effects are related with all of these factors and impact in the life cycle, machine incidences and the costs for the life of the machine. Corrosion affects the deterioration or destruction of metals due to the reaction with the environment, generally wet. In food industry, dewatering industry, concrete industry, paper industry, etc. corrosion is an unsolved problem and it might introduce some alterations of some characteristics in the final product. Nowadays, depending on the selected metal, its surface and its environment of work, corrosion prevention might be a change of metal, use a coating, cathodic protection, use of corrosion inhibitors, etc. In the vast majority of the situations, use of a corrosion resistant material or in its defect, a corrosion protection coating is the solution. Stainless steels are widely used in machine design, because of their strength, easily cleaned capacity, corrosion resistance and appearance. Typical used are AISI 304 and AISI 316. However, their benefits don’t fit every application, and some coatings are required against corrosion such as some paintings, galvanizing, chrome plating, SiO₂, TiO₂ or ZrO₂ coatings, etc. In this work, some coatings based in a bilayer made of Titanium-Tantalum, Titanium-Niobium, Titanium-Hafnium or Titanium-Zirconium, have been developed used magnetron sputtering configuration by PVD (Physical Vapor Deposition) technology, for trying to reduce corrosion effects on AISI 304, AISI 316 and comparing it with Titanium alloy substrates. Ti alloy display exceptional corrosion resistance to chlorides, sour and oxidising acidic media and seawater. In this study, Ti alloy (99%) has been included for comparison with coated AISI 304 and AISI 316 stainless steel. Corrosion tests were conducted by a Gamry Instrument under ASTM G5-94 standard, using different electrolytes such as tomato salsa, wine, olive oil, wet compost, a mix of sand and concrete with water and NaCl for testing corrosion in different industrial environments. In general, in all tested environments, the results showed an improvement of corrosion resistance of all coated AISI 304 and AISI 316 stainless steel substrates when they were compared to uncoated stainless steel substrates. After that, comparing these results with corrosion studies on uncoated Ti alloy substrate, it was observed that in some cases, coated stainless steel substrates, reached similar current density that uncoated Ti alloy. Moreover, Titanium-Zirconium and Titanium-Tantalum coatings showed for all substrates in study including coated Ti alloy substrates, a reduction in current density more than two order in magnitude. As conclusion, Ti-Ta, Ti-Zr, Ti-Nb and Ti-Hf coatings have been developed for improving corrosion resistance of AISI 304 and AISI 316 materials. After corrosion tests in several industry environments, substrates have shown improvements on corrosion resistance. Similar processes have been carried out in Ti alloy (99%) substrates. Coated AISI 304 and AISI 316 stainless steel, might reach similar corrosion protection on the surface than uncoated Ti alloy (99%). Moreover, coated Ti Alloy (99%) might increase its corrosion resistance using these coatings.

Keywords: coatings, corrosion, PVD, stainless steel

Procedia PDF Downloads 122
700 Liquid Sulphur Storage Tank

Authors: Roya Moradifar, Naser Agharezaee

Abstract:

In this paper corrosion in the liquid sulphur storage tank at South pars gas complex phases 2&3 is presented. This full hot insulated field-erected storage tanks are used for the temporary storage of 1800m3 of molten sulphur. Sever corrosion inside the tank roof was observed during over haul inspections, in the direction of roof gradient. Investigation shown, in spite of other parts of tank there was no insulation around these manholes. Internal steam coils do not maintain a sufficiently high tank roof temperature in the vapor space. Sulphur and formation of liquid water at cool metal surface, this combination leads to the formation of iron sulfide. By employing a distributed external heating system, the temperatures of any point of the tank roof should be based on ambient dew point and the liquid storage solidification point. Also other construction and operation of tank is more important. This paper will review potential corrosion mechanism and operational case study which illustrate the importance of heating systems.

Keywords: tank, steam, corrosion, sulphur

Procedia PDF Downloads 519
699 The Comparison of Chromium Ions Release Stainless Steel 18-8 between Artificial Saliva and Black Tea Leaves Extracts

Authors: Nety Trisnawaty, Mirna Febriani

Abstract:

The use of stainless steel wires in the field of dentistry is widely used, especially for orthodontic and prosthodontic treatment using stainless steel wire. The oral cavity is the ideal environment for corrosion, which can be caused by saliva. Prevention of corrosion on stainless steel wires can be done by using an organic or non-organic corrosion inhibitor. One of the organic inhibitors that can be used to prevent corrosion is black tea leaves extracts. To explain the comparison of chromium ions release for stainlees steel between artificial saliva and black tea leaves extracts. In this research we used artificial saliva, black tea leaves extracts, stainless steel wire and using Atomic Absorption Spectrophometric testing machine. The samples were soaked for 1, 3, 7 and 14 days in the artificial saliva and black tea leaves extracts. The results showed the difference of chromium ion release soaked in artificial saliva and black tea leaves extracts on days 1, 3, 7 and 14. Statistically, calculation with independent T-test with p < 0,05 showed a significant difference. The longer the duration of days, the more ion chromium were released. The conclusion of this study shows that black tea leaves extracts can inhibit the corrosion rate of stainless steel wires.

Keywords: chromium ion, stainless steel, artificial saliva, black tea leaves extracts

Procedia PDF Downloads 246
698 Titanium-Aluminium Oxide Coating on Aluminized Steel

Authors: Fuyan Sun, Guang Wang, Xueyuan Nie

Abstract:

In this study, a plasma electrolytic oxidation (PEO) process was used to form titanium-aluminium oxide coating on aluminized steel. The present work was mainly to study the effects of treatment time of PEO process on properties of the titanium coating. A potentiodynamic polarization corrosion test was employed to investigate the corrosion resistance of the coating. The friction coefficient and wear resistance of the coating were studied by using pin-on-disc test. The thermal transfer behaviours of uncoated and PEO-coated aluminized steels were also studied. It could be seen that treatment time of PEO process significantly influenced the properties of the titanium oxide coating. Samples with a longer treatment time had a better performance for corrosion and wear protection. This paper demonstrated different treatment time could alter the surface behaviour of the coating material.

Keywords: titanium-aluminum oxide, plasma electrolytic oxidation, corrosion, wear, thermal property

Procedia PDF Downloads 329
697 An Overview of Corroded Pipe Repair Techniques Using Composite Materials

Authors: Lim Kar Sing, Siti Nur Afifah Azraai, Norhazilan Md Noor, Nordin Yahaya

Abstract:

Polymeric composites are being increasingly used as repair material for repairing critical infrastructures such as building, bridge, pressure vessel, piping and pipeline. Technique in repairing damaged pipes is one of the major concerns of pipeline owners. Considerable researches have been carried out on the repair of corroded pipes using composite materials. This article attempts a short review of the subject matter to provide insight into various techniques used in repairing corroded pipes, focusing on a wide range of composite repair systems. These systems including pre-cured layered, flexible wet lay-up, pre-impregnated, split composite sleeve and flexible tape systems. Both advantages and limitations of these repair systems were highlighted. Critical technical aspects have been discussed through the current standards and practices. Research gaps and future study scopes in achieving more effective design philosophy are also presented.

Keywords: composite materials, pipeline, repair technique, polymers

Procedia PDF Downloads 484
696 Study of the Behavior of an Organic Coating Applied on Algerian Oil Tanker in Seawater

Authors: N. Hammouda, K. Belmokre

Abstract:

The paints are used extensively today in the industry to protect the metallic structures of the aggressive environments. This work is devoted to the study of corrosion resistance and aging behavior of a paint coating providing external protection for oil tankers. To avoid problems related to corrosion of these vessels, two protection modes are provided: An electro chemical active protection (cathodic protection of the hull). A passive protection by external painting. Investigations are conducted using stationary and non-stationary electro chemical tools such as electro chemical impedance spectroscopy has allowed us to characterize the protective qualities of these films. The application of the EIS on our damaged in-situ painting shows the existence of several capacitive loops which is an indicator of the failure of our tested paint. Microscopic analysis (micrograph) helped bring essential elements in understanding the degradation of our paint condition and immersion training corrosion products.

Keywords: epoxy paints, electrochemical impedance spectroscopy, corrosion mechanisms, seawater

Procedia PDF Downloads 364
695 Electrochemical Behaviour of 2014 and 2024 Al-Cu-Mg Alloys of Various Tempers

Authors: K. S. Ghosh, Sagnik Bose, Kapil Tripati

Abstract:

Potentiodynamic polarization studies carried out on AA2024 and AA2014 Al-Cu-Mg alloys of various tempers in 3.5 wt. % NaCl and in 3.5 wt. % NaCl + 1.0 % H2O2 solution characteristic E-i curves. Corrosion potential (Ecorr) value has shifted towards more negative potential with the increase of artificial aging time. The Ecorr value for the alloy tempers has also shifted anodically in presence of H2O2 in 3.5 % NaCl solution. Further, passivity phenomenon has been observed in all the alloy tempers when tested in 3.5 wt. % NaCl solution at pH 12. Stress corrosion cracking (SCC) behaviour of friction stir weld (FSW) joint of AA2014 alloy has been studied bu slow strain rate test (SSRT) in 3.5 wt. % NaCl solution. Optical micrographs of the corroded surfaces of polarised samples showed general corrosion, extensive pitting and intergranular corrosion as well. Further, potentiodynamic cyclic polarization curves displayed wide hysteresis loop indicating that the alloy tempers are susceptible to pit growth damage. Attempts have been made to explain the variation of observed electrochemical and SCC behaviour of the alloy tempers and the electrolyte conditions with the help of microstructural features.

Keywords: AA 2014 and AA 2024 Al-C-Mg alloy, artificial ageing, potentiodynamic polarization, TEM micrographs, stress corrosion cracking (SCC)

Procedia PDF Downloads 298
694 EIS Study of the Corrosion Behavior of an Organic Coating Applied on Algerian Oil Tanker in Sea Water

Authors: Nadia Hammouda, Kamel Belmokre

Abstract:

Organic coatings are widely employed in the corrosion protection of most metal surfaces, particularly steel. They provide a barrier against corrosive species present in the environment, due to their high resistance to oxygen, water and ions transport. This study focuses on the evaluation of corrosion protection performance of epoxy paint on the carbon steel surface in sea water by Electrochemical Impedance Spectroscopy (EIS). The electrochemical behavior of painted surface was estimated by EIS parameters that contained paint film resistance, paint film capacitance and double layer capacitance. On the basis of calculation using EIS spectrums it was observed that pore resistance (Rpore) decreased with the appearance of doubled layer capacitance (Cdl) due to the electrolyte penetration through the film. This was further confirmed by the decrease of diffusion resistance (Rd) which was also the indicator of the deterioration of paint film protectiveness.

Keywords: epoxy paints, carbon steel, electrochemical impedance spectroscopy, corrosion mechanisms, sea water

Procedia PDF Downloads 348
693 Corrosion Behavior of Austempered Ductile Iron Microalloyed with Boron in Rainwater

Authors: S. Gvazava, N. Khidasheli, V. Tediashvili, M. Donadze

Abstract:

The work presented in this paper studied the of austempered ductile iron (ADI) with different combinations of structural composition (upper bainite, lower bainite, retained austenite) in rainwater. A range of structural states of the metal matrix was obtained by changing the regimes of thermal treantments of a high-strength cast iron. The specimens were austenised at 900 0C for 30, 60, 90, 120 minutes. Afterwards, isothermal quenching was performed at 280 and 400 0C for40 seconds. The study was carried out using weight-change (WC), cyclic potentiodynamic polarization (CPP), open-circuit potential (OCP), and electrochemical impedance spectroscopy (EIS) measurements and complemented by scanning electron microscopy (SEM-EDS). According to the results, corrosion resistance of the boron microallyedbainitic ADI greatly depends on the type of the bainitic matrix and the amount of the retained austenite, which is driven by diffusion permeability of interphase and intergrain boundaries.

Keywords: austempered ductile iron, corrosion behaviour, retained austenite, corrosion rate, interphase boundary, upper bainite, lower bainite

Procedia PDF Downloads 96
692 Influence of Different Thicknesses on Mechanical and Corrosion Properties of a-C:H Films

Authors: S. Tunmee, P. Wongpanya, I. Toda, X. L. Zhou, Y. Nakaya, N. Konkhunthot, S. Arakawa, H. Saitoh

Abstract:

The hydrogenated amorphous carbon films (a-C:H) were deposited on p-type Si (100) substrates at different thicknesses by radio frequency plasma enhanced chemical vapor deposition technique (rf-PECVD). Raman spectra display asymmetric diamond-like peaks, representative of the a-C:H films. The decrease of intensity ID/IG ratios revealed the sp3 content arise at different thicknesses of the a-C:H films. In terms of mechanical properties, the high hardness and elastic modulus values show the elastic and plastic deformation behaviors related to sp3 content in amorphous carbon films. Electro chemical properties showed that the a-C:H films exhibited excellent corrosion resistance in air-saturated 3.5 wt% NaCl solution for pH 2 at room temperature. Thickness increasing affected the small sp2 clusters in matrix, restricting the velocity transfer and exchange of electrons. The deposited a-C:H films exhibited excellent mechanical properties and corrosion resistance.

Keywords: thickness, mechanical properties, electrochemical corrosion properties, a-C:H film

Procedia PDF Downloads 419
691 Time-Dependent Reliability Analysis of Corrosion Affected Cast Iron Pipes with Mixed Mode Fracture

Authors: Chun-Qing Li, Guoyang Fu, Wei Yang

Abstract:

A significant portion of current water networks is made of cast iron pipes. Due to aging and deterioration with corrosion being the most predominant mechanism, the failure rate of cast iron pipes is very high. Although considerable research has been carried out in the past few decades, most are on the effect of corrosion on the structural capacity of pipes using strength theory as the failure criterion. This paper presents a reliability-based methodology for the assessment of corrosion affected cast iron pipe cracking failures. A nonlinear limit state function taking into account all three fracture modes is proposed for brittle metal pipes with mixed mode fracture. A stochastic model of the load effect is developed, and time-dependent reliability method is employed to quantify the probability of failure and predict the remaining service life. A case study is carried out using the proposed methodology, followed by sensitivity analysis to investigate the effects of the random variables on the probability of failure. It has been found that the larger the inclination angle or the Mode I fracture toughness is, the smaller the probability of pipe failure is. It has also been found that the multiplying and exponential coefficients k and n in the power law corrosion model and the internal pressure have the most influence on the probability of failure for cast iron pipes. The methodology presented in this paper can assist pipe engineers and asset managers in developing a risk-informed and cost-effective strategy for better management of corrosion-affected pipelines.

Keywords: corrosion, inclined surface cracks, pressurized cast iron pipes, stress intensity

Procedia PDF Downloads 285
690 Corrosion Behavior of Induced Stress Duplex Stainless Steel in Chloride Environment

Authors: Serge Mudinga Lemika, Samuel Olukayode Akinwamide, Aribo Sunday, Babatunde Abiodun Obadele, Peter Apata Olubambi

Abstract:

Use of Duplex stainless steel has become predominant in applications where excellent corrosion resistance is of utmost importance. Corrosion behavior of duplex stainless steel induced with varying stress in a chloride media were studied. Characterization of as received 2205 duplex stainless steels were carried out to reveal its structure and properties tensile sample produced from duplex stainless steel was initially subjected to tensile test to obtain the yield strength. Stresses obtained by various percentages (20, 40, 60 and 80%) of the yield strength was induced in DSS samples. Corrosion tests were carried out in magnesium chloride solution at room temperature. Morphologies of cracks observed with optical and scanning electron microscope showed that samples induced with higher stress had its austenite and ferrite grains affected by pitting.

Keywords: duplex stainless steel, hardness, nanoceramics, spark plasma sintering

Procedia PDF Downloads 272
689 Advanced Numerical and Analytical Methods for Assessing Concrete Sewers and Their Remaining Service Life

Authors: Amir Alani, Mojtaba Mahmoodian, Anna Romanova, Asaad Faramarzi

Abstract:

Pipelines are extensively used engineering structures which convey fluid from one place to another. Most of the time, pipelines are placed underground and are encumbered by soil weight and traffic loads. Corrosion of pipe material is the most common form of pipeline deterioration and should be considered in both the strength and serviceability analysis of pipes. The study in this research focuses on concrete pipes in sewage systems (concrete sewers). This research firstly investigates how to involve the effect of corrosion as a time dependent process of deterioration in the structural and failure analysis of this type of pipe. Then three probabilistic time dependent reliability analysis methods including the first passage probability theory, the gamma distributed degradation model and the Monte Carlo simulation technique are discussed and developed. Sensitivity analysis indexes which can be used to identify the most important parameters that affect pipe failure are also discussed. The reliability analysis methods developed in this paper contribute as rational tools for decision makers with regard to the strengthening and rehabilitation of existing pipelines. The results can be used to obtain a cost-effective strategy for the management of the sewer system.

Keywords: reliability analysis, service life prediction, Monte Carlo simulation method, first passage probability theory, gamma distributed degradation model

Procedia PDF Downloads 426
688 Comparison of Structure and Corrosion Properties of Titanium Oxide Films Prepared by Thermal Oxidation, DC Plasma Oxidation, and by the Sol-Gel

Authors: O. Çomaklı, M. Yazıcı, T. Yetim, A. F. Yetim, A. Çelik

Abstract:

In this work, TiO₂ films were deposited on Cp-Ti substrates by thermal oxidation, DC plasma oxidation, and by the sol-gel method. Microstructures of uncoated and TiO₂ film coated samples were examined by X-ray diffraction and SEM. Thin oxide film consisting of anatase (A) and rutile (R) TiO₂ structures was observed on the surface of CP-Ti by under three different treatments. Also, the more intense anatase and rutile peaks appeared at samples plasma oxidized at 700˚C. The thicknesses of films were about 1.8 μm at the TiO₂ film coated samples by sol-gel and about 2.7 μm at thermal oxidated samples, while it was measured as 3.9 μm at the plasma oxidated samples. Electrochemical corrosion behaviour of uncoated and coated specimens was mainly carried out by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) in simulated body fluid (SBF) solution. Results showed that at the plasma oxidated samples exhibited a better resistance property to corrosion than that of other treatments.

Keywords: TiO₂, CP-Ti, corrosion properties, thermal oxidation, plasma oxidation, sol-gel

Procedia PDF Downloads 252
687 A Density Functional Theory Computational Study on the Inhibiting Action of Some Derivatives of 1,8-Bis(Benzylideneamino)Naphthalene against Aluminum Corrosion

Authors: Taher S. Ababneh, Taghreed M. A. Jazzazi, Tareq M. A. Alshboul

Abstract:

The inhibiting action against aluminum corrosion by three derivatives of 1,8-bis (benzylideneamino) naphthalene (BN) Schiff base has been investigated by means of DFT quantum chemical calculations at the B3LYP/6-31G(d) level of theory. The derivatives (CBN, NBN and MBN) were prepared from the condensation reaction of 1,8-diaminonaphthalene with substituted benzaldehyde (4-CN, 3-NO₂ and 3,4-(OMe)₂, respectively). Calculations were conducted to study the adsorption of each Schiff base on aluminum surface to evaluate its potential as a corrosion inhibitor. The computational structural features and electronic properties of each derivative such as relative energies and energies of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) have been reported. Thermodynamic functions and quantum chemical parameters such as the hardness of the inhibitor, the softness and the electrophilicity index were calculated to determine the derivative of the highest inhibition efficiency.

Keywords: corrosion, aluminum, DFT calculation, 1, 8-diaminonaphthalene, benzaldehyde

Procedia PDF Downloads 311
686 Imported Oil Logistics to Central and Southern Europe Refineries

Authors: Vladimir Klepikov

Abstract:

Countries of Central and Southern Europe have a typical feature: oil consumption in the region exceeds own commodity production capacity by far. So crude oil import prevails in the region’s crude oil consumption structure. Transportation using marine and pipeline transport is a common method of the imported oil delivery in the region. For certain refineries, in addition to possible transportation by oil pipelines from seaports, oil is delivered from Russian oil fields. With the view to these specific features and geographic location of the region’s refineries, three ways of imported oil delivery can be singled out: oil delivery by tankers to the port and subsequent transportation by pipeline transport of the port and the refinery; oil delivery by tanker fleet to the port and subsequent transportation by oil trunk pipeline transport; oil delivery from the fields by oil trunk pipelines to refineries. Oil is also delivered by road, internal water, and rail transport. However, the volumes transported this way are negligible in comparison to the three above transportation means. Multimodal oil transportation to refineries using the pipeline and marine transport is one of the biggest cargo flows worldwide. However, in scientific publications this problem is considered mainly for certain modes of transport. Therefore, this study is topical. To elaborate an efficient transportation policy of crude oil supply to Central and Southern Europe, in this paper the geographic concentration of oil refineries was determined and the capacities of the region’s refineries were assessed. The quantitative analysis method is used as a tool. The port infrastructure and the oil trunk pipeline system capacity were assessed in terms of delivery of raw materials to the refineries. The main groups of oil consuming countries were determined. The trends of crude oil production in the region were reviewed. The changes in production capacities and volumes at refineries in the last decade were shown. Based on the revealed refining trends, the scope of possible crude oil supplies to the refineries of the region under review was forecast. The existing transport infrastructure is able to handle the increased oil flow.

Keywords: European region, infrastructure, oil terminal capacity, pipeline capacity, refinery capacity, tanker draft

Procedia PDF Downloads 128
685 Improvement of Fatigue and Fatigue Corrosion Resistances of Turbine Blades Using Laser Cladding

Authors: Sami I. Jafar, Sami A. Ajeel, Zaman A. Abdulwahab

Abstract:

The turbine blades used in electric power plants are made of low alloy steel type 52. These blades will be subjected to fatigue and also at other times to fatigue corrosion with aging time. Due to their continuous exposure to cyclic rotational stresses in corrosive steam environments, The current research aims to deal with this problem using the laser cladding method for low alloy steel type 52, which works to re-compose the metallurgical structure and improve the mechanical properties by strengthening the resulting structure, which leads to an increase in fatigue and wears resistance, therefore, an increase in the life of these blades is observed.

Keywords: fatigue, fatigue corrosion, turbine blades, laser cladding

Procedia PDF Downloads 168
684 Benzimidazole as Corrosion Inhibitor for Heat Treated 6061 Al-SiCp Composite in Acetic Acid

Authors: Melby Chacko, Jagannath Nayak

Abstract:

6061 Al-SiCp composite was solutionized at 350 °C for 30 minutes and water quenched. It was then underaged at 140 °C (T6 treatment). The aging behaviour of the composite was studied using Rockwell B hardness measurement. Corrosion behaviour of the underaged sample was studied in different concentrations of acetic acid and at different temperatures. Benzimidazole at different concentrations was used for the inhibition studies. Inhibition efficiency of benzimidazole was calculated for different experimental conditions. Thermodynamic parameters were found out which suggested benzimidazole is an efficient inhibitor and it adsorbed onto the surface of composite by mixed adsorption where chemisorption is predominant.

Keywords: 6061 Al-SiCp composite, T6 treatment, corrosion inhibition, chemisorption

Procedia PDF Downloads 363
683 Investigation of Corrosion of Steel Buried in Unsaturated Soil in the Presence of Cathodic Protection: The Modified Voltammetry Technique

Authors: Mandlenkosi G. R. Mahlobo, Peter A. Olubambi, Philippe Refait

Abstract:

The aim of this study was to use voltammetry as a method to understand the behaviour of steel in unsaturated soil in the presence of cathodic protection (CP). Three carbon steel coupons were buried in artificial soil wetted at 65-70% of saturation for 37 days. All three coupons were left at open circuit potential (OCP) for the first seven days in the unsaturated soil before CP, which was only applied on two of the three coupons at the protection potential -0.8 V vs Cu/CuSO₄ for the remaining 30 days of the experiment. Voltammetry was performed weekly on the coupon without CP, while electrochemical impedance spectroscopy (EIS) was performed daily to monitor and correct the applied CP potential from the ohmic drop. Voltammetry was finally performed on the last day on the coupons under CP. All the voltammograms were modeled with mathematical equations in order to compute the electrochemical parameters and subsequently deduced the corrosion rate of the steel coupons. For the coupon without CP, the corrosion rate was determined at 300 µm/y. For the coupons under CP, the residual corrosion rate under CP was estimated at 12 µm/y while the corrosion rate of the coupons, after interruption of CP, was estimated at 25 µm/y. This showed that CP was efficient due to two effects: a direct effect from the decreased potential and an induced effect associated with the increased interfacial pH that promoted the formation of a protective layer on the steel surface.

Keywords: carbon steel, cathodic protection, voltammetry, unsaturated soil, Raman spectroscopy

Procedia PDF Downloads 35
682 Effect of Hot Extrusion on the Mechanical and Corrosion Properties of Mg-Zn-Ca and Mg-Zn-Ca-Mn Alloys for Medical Application

Authors: V. E. Bazhenov, A. V. Li, A. A. Komissarov, A. V. Koltygin, S. A. Tavolzhanskii, O. O. Voropaeva, A. M. Mukhametshina, A. A. Tokar, V. A. Bautin

Abstract:

Magnesium-based alloys are considered as effective materials in the development of biodegradable implants. The magnesium alloys containing Mg, Zn, Ca as an alloying element are the subject of the particular interest. These elements are the nutrients for the human body, which provide their high biocompatibility. In this work, we investigated the effect of severe plastic deformation (SPD) on the mechanical and corrosion properties of Mg-Zn-Ca and Mg-Zn-Ca-Mn alloys containing from 2 to 4 wt.% Zn; 0.7 wt.% Ca and up to 1 wt.% Mn. Hot extrusion was used as a method of intensive plastic deformation. The temperature of hot extrusion was set to 220 °C and 300 °C. Metallographic analysis after hot extrusion shows that the grain size in the studied alloys depends on the deformation temperature. The grain size for all of investigated alloys is in the range from 3 to 7 microns, and 3 μm corresponds to the extrusion temperature of 220 °C. Analysis of mechanical properties after extrusion shows that extrusion at a temperature of 220 °C and alloying with Mn increase the strength characteristics and decrease the ductility of studied alloys. A slight anisotropy of properties in the longitudinal and transverse directions was also observed. Measurements of corrosion properties revealed that the addition of Mn to Mg-Zn-Ca alloys reduces the corrosion rate. On the other hand, increasing the Zn content in alloys increases the corrosion rate. The extrusion temperature practically does not affect the corrosion rate. Acknowledgement: The authors gratefully acknowledge the financial support of the Ministry of Science and Higher Education of the Russian Federation in the framework of Increase Competitiveness Program of NUST «MISiS» (No K2-2019-008), implemented by a governmental decree dated 16th of March 2013, N 211.

Keywords: biocompatibility, hot extrusion, magnesium alloys, severe plastic deformation, properties

Procedia PDF Downloads 80
681 The Effectiveness of Cathodic Protection on Microbiologically Influenced Corrosion Control

Authors: S. Taghavi Kalajahi, A. Koerdt, T. Lund Skovhus

Abstract:

Cathodic protection (CP) is an electrochemical method to control and manage corrosion in different industries and environments. CP which is widely used, especially in buried and sub-merged environments, which both environments are susceptible to microbiologically influenced corrosion (MIC). Most of the standards recommend performing CP using -800 mV, however, if MIC threats are high or sulfate reducing bacteria (SRB) is present, the recommendation is to use more negative potentials for adequate protection of the metal. Due to the lack of knowledge and research on the effectiveness of CP on MIC, to the author’s best knowledge, there is no information about what MIC threat is and how much more negative potentials should be used enabling adequate protection and not overprotection (due to hydrogen embrittlement risk). Recently, the development and cheaper price of molecular microbial methods (MMMs) open the door for more effective investigations on the corrosion in the presence of microorganisms, along with other electrochemical methods and surface analysis. In this work, using MMMs, the gene expression of SRB biofilm under different potentials of CP will be investigated. The specific genes, such as pH buffering, metal oxidizing, etc., will be compared at different potentials, enabling to determine the precise potential that protect the metal effectively from SRB. This work is the initial step to be able to standardize the recommended potential under MIC condition, resulting better protection for the infrastructures.

Keywords: cathodic protection, microbiologically influenced corrosion, molecular microbial methods, sulfate reducing bacteria

Procedia PDF Downloads 68
680 Conversion of Carcinogenic Liquid-Wastes of Poly Vinyl Chloride (PVC) Industry to ‎an Environmentally Safe Product: Corrosion Inhibitor and Biocide

Authors: Mohamed A. Hegazy

Abstract:

Most of Poly Vinyl Chloride (PVC) petrochemical companies produce huge amount of byproduct which characterized as carcinogenic liquid-wastes, insoluble in water, highly corrosive and highly offensive. This byproduct is partially use, a small part, in the production of hydrochloric acid and the huge part is a waste. Therefore, the aim of this work was to conversion of such PVC wastes, to an environmentally safe product that act as a corrosion Inhibitor for metals in ‎aqueous media and as a biocide for microorganisms. This conversion method was accomplished mainly to protect the environment and to produce high economic value-products. The conversion process was established and the final product was tested for the toxicity, water solubility in comparison to the crude product. Furthermore, the end product was tested as a corrosion inhibitor in 1M HCl and as a broad-spectrum biocide against standard microbial strains and against the environmentally isolated Sulfate-reducing bacteria (SRB) microbial community.

Keywords: PVC, surfactant, corrosion inhibitor, biocide, SRB

Procedia PDF Downloads 96
679 Evaluation of Pelargonium Extract and Oil as Eco-Friendly Corrosion Inhibitor for Steel in Acidic Chloride Solutions and Pharmacological Properties

Authors: Ahmed Chetouani

Abstract:

Corrosion is a natural occurring process where it can be defined as the deterioration of materials properties due to its interaction with its environment. Corrosion can lead to failures in plant infrastructure and machines which are usually costly to repair. In terms of loss of contaminated products which will cause environmental damage and possibly costly in terms of human health. The driving force that causes metals to corrode is due to the natural consequence of their temporary existence in metallic form. There is a growing trend in utilizing plant extracts and pharmaceutical compounds as corrosion inhibitors. Exquisite identification of the essential oil of aerial parts of Pelargonium was obtained using hydrodistillation and identification using GC (gas chromatography) and GC/MS (gas chromatography-mass spectrometry). The oil was predominated by Citronellol (22.8%). The inhibitory effect of essential oil and extract of Pelargonium was estimated on the corrosion of mild steel in 1M hydrochloric acid (HCl) using weight loss, Electrochemical Impedance Spectroscopy (EIS) and Tafel polarization curves. Inhibition was found to increase with increasing concentration of the essential oil and extract of Pelargonium. The effect of temperature on the corrosion behaviour of mild steel in 1M HCl with addition of essential oil and extract was also studied and the thermodynamic parameters were determined and discussed. Values of inhibition efficiency were calculated from weight loss, Tafel polarization curves, and EIS. All results are in good agreement. Polarization curves showed that essential oil and extract of Pelargonium behave as mixed type inhibitors in hydrochloric acid. The results obtained showed that the essential oil and extract of Pelargonium could serve as an effective inhibitor of the corrosion of mild steel in Hydrochloric acid solution. To avoid any surprise of toxicity, the majority compounds have been studied by using POM analyses.

Keywords: corrosion inhibition, mild steel, pelargonium oil, extract, electrochemical system, hydrodistillation, side effects, POM Analyses

Procedia PDF Downloads 371
678 Inhibition of the Corrosion of Copper in 0.5 NaCl Solutions by Aqueous Extract and Hydrolysis Acid of Olive Leaf Extract

Authors: Chahla Rahal, Philippe Refait

Abstract:

Oleuropein-rich extract from olive leaf and acid hydrolysates, rich in hydroxytyrosol and elenolic acid was prepared under different experimental conditions. These phenolic compounds may be used as a corrosion inhibitor. The inhibitive action of these extracts and its major constituents on the corrosion of copper in 0.5 M NaCl solution has been evaluated by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and weight loss measurements. The product of extraction was analyzed with high performance liquid chromatography (HPLC), whose analysis shows that olive leaf extract are greatly rich in phenolic compounds, mainly Oleuropeine (OLE), Hydroxytyrosol (HT) and elenolic acid (EA). After the acid hydrolysis and high temperature of extraction, an increase in hydroxytyrosol concentration was detected, coupled with relatively low oleuropeine content and high concentration of elenolic acid. The potentiodynamic measurements have shown that this extract acts as a mixed-type corrosion inhibitor, and good inhibition efficiency is observed with the increase in HT and EA concentration. These results suggest that the inhibitive effect of olive leaf extract might be due to the adsorption of the various phenolic compounds onto the copper surface.

Keywords: olive leaf extract, oleuropein, voltammetry, copper, corrosion, HPLC, EIS

Procedia PDF Downloads 273
677 Surface Modification of SUS-304 Using Nitriding Treatment for Application of Bipolar Plates of Proton Exchange Membrane Fuel Cells

Authors: Wei-Ru Chang, Jenn-Jiang Hwang, Zen-Ting Hsiao, Shu-Feng Lee

Abstract:

Proton exchange membrane (PEM) fuel cells are widely used in electrical systems as an economical, low-polluting energy source. This study investigates the effects of PEMFC gas nitriding treatment on metal bipolar plates. The test material was SUS304 stainless steel. The study explored five different pretreatment processes, varying the corrosion resistance and electrical conductivity conditions. The most effective process was industrial acid washing, followed by heating to 500 °C. Under the condition, the corrosion current density was 8.695 μA, significantly lower than that of the untreated pretreatment sample flakes, which was measured as 38.351 μA.

Keywords: nitriding, bipolar, 304, corrosion, resistance, pretreatment

Procedia PDF Downloads 1051