Search results for: convection drying
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 829

Search results for: convection drying

649 Numerical Study on the Urea Melting and Induced Natural Convection in a Urea Sender Module

Authors: Doo Ki Lee, Man Young Kim

Abstract:

The Urea-Selective Catalytic Reduction (SCR) system is considered to be the most promising technology to fulfill the stringent emission regulation. In the Urea-SCR system, the urea solutions are used as the reducing agent, which is a eutectic composition (32.5wt% of urea). The advantage of this eutectic compositions is that it has a low freezing point approximately at -11 ℃, however, the problem of freezing occurs at low-temperature levels below that freezing point. To prevent freezing of urea solutions, we need heating systems that can melt by heating the frozen urea solutions in urea storage tank at low-temperature environment. In this study, therefore, a numerical investigation of three-dimensional unsteady heating problems analyzed to find the melting characteristics of the urea solutions on melting process. In this work, it can be found that the urea melting initiated by heat conduction from the heater is enhanced by the natural convection inside the melted liquid urea solutions due to the temperature difference. Also, liquid urea solutions are initially concentrated on the upper parts of the urea sender module.

Keywords: urea solution, melting, heat conduction, natural convection, liquid fraction, phase change

Procedia PDF Downloads 240
648 A Study of the Formation, Existence and Stability of Localised Pulses in PDE

Authors: Ayaz Ahmad

Abstract:

TOPIC: A study of the formation ,existness and stability of localised pulses in pde Ayaz Ahmad ,NITP, Abstract:In this paper we try to govern the evolution deterministic variable over space and time .We analysis the behaviour of the model which allows us to predict and understand the possible behaviour of the physical system .Bifurcation theory provides a basis to systematically investigate the models for invariant sets .Exploring the behaviour of PDE using bifurcation theory which provides many challenges both numerically and analytically. We use the derivation of a non linear partial differential equation which may be written in this form ∂u/∂t+c ∂u/∂x+∈(∂^3 u)/(∂x^3 )+¥u ∂u/∂x=0 We show that the temperature increased convection cells forms. Through our work we look for localised solution which are characterised by sudden burst of aeroidic spatio-temporal evolution. Key word: Gaussian pulses, Aeriodic ,spatio-temporal evolution ,convection cells, nonlinearoptics, Dr Ayaz ahmad Assistant Professor Department of Mathematics National institute of technology Patna ,Bihar,,India 800005 [email protected] +91994907553

Keywords: Gaussian pulses, aeriodic, spatio-temporal evolution, convection cells, nonlinear optics

Procedia PDF Downloads 301
647 Numerical Study of Natural Convection in Isothermal Open Cavities

Authors: Gaurav Prabhudesai, Gaetan Brill

Abstract:

The sun's energy source comes from a hydrogen-to-helium thermonuclear reaction, generating a temperature of about 5760 K on its outer layer. On account of this high temperature, energy is radiated by the sun, a part of which reaches the earth. This sunlight, even after losing part of its energy en-route to scattering and absorption, provides a time and space averaged solar flux of 174.7 W/m^2 striking the earth’s surface. According to one study, the solar energy striking earth’s surface in one and a half hour is more than the energy consumption that was recorded in the year 2001 from all sources combined. Thus, technology for extraction of solar energy holds much promise for solving energy crisis. Of the many technologies developed in this regard, Concentrating Solar Power (CSP) plants with central solar tower and receiver system are very impressive because of their capability to provide a renewable energy that can be stored in the form of heat. One design of central receiver towers is an open cavity where sunlight is concentrated into by using mirrors (also called heliostats). This concentrated solar flux produces high temperature inside the cavity which can be utilized in an energy conversion process. The amount of energy captured is reduced by losses occurring at the cavity through all three modes viz., radiation to the atmosphere, conduction to the adjoining structure and convection. This study investigates the natural convection losses to the environment from the receiver. Computational fluid dynamics were used to simulate the fluid flow and heat transfer of the receiver; since no analytical solution can be obtained and no empirical correlations exist for the given geometry. The results provide guide lines for predicting natural convection losses for hexagonal and circular shaped open cavities. Additionally, correlations are given for various inclination angles and aspect ratios. These results provide methods to minimize natural convection through careful design of receiver geometry and modification of the inclination angle, and aspect ratio of the cavity.

Keywords: concentrated solar power (CSP), central receivers, natural convection, CFD, open cavities

Procedia PDF Downloads 255
646 Thermal Management of Ground Heat Exchangers Applied in High Power LED

Authors: Yuan-Ching Chiang, Chien-Yeh Hsu, Chen Chih-Hao, Sih-Li Chen

Abstract:

The p-n junction temperature of LEDs directly influences their operating life and luminous efficiency. An excessively high p-n junction temperature minimizes the output flux of LEDs, decreasing their brightness and influencing the photon wavelength; consequently, the operating life of LEDs decreases and their luminous output changes. The maximum limit of the p-n junction temperature of LEDs is approximately 120 °C. The purpose of this research was to devise an approach for dissipating heat generated in a confined space when LEDs operate at low temperatures to reduce light decay. The cooling mode of existing commercial LED lights can be divided into natural- and forced convection cooling. In natural convection cooling, the volume of LED encapsulants must be increased by adding more fins to increase the cooling area. However, this causes difficulties in achieving efficient LED lighting at high power. Compared with forced convection cooling, heat transfer through water convection is associated with a higher heat transfer coefficient per unit area; therefore, we dissipated heat by using a closed loop water cooling system. Nevertheless, cooling water exposed to air can be easily influenced by environmental factors. Thus, we incorporated a ground heat exchanger into the water cooling system to minimize the influence of air on cooling water and then observed the relationship between the amounts of heat dissipated through the ground and LED efficiency.

Keywords: helical ground heat exchanger, high power LED, ground source cooling system, heat dissipation

Procedia PDF Downloads 554
645 Experimental Investigation of Heat Pipe with Annular Fins under Natural Convection at Different Inclinations

Authors: Gangacharyulu Dasaroju, Sumeet Sharma, Sanjay Singh

Abstract:

Heat pipe is characterised as superconductor of heat because of its excellent heat removal ability. The operation of several engineering system results in generation of heat. This may cause several overheating problems and lead to failure of the systems. To overcome this problem and to achieve desired rate of heat dissipation, there is need to study the performance of heat pipe with annular fins under free convection at different inclinations. This study demonstrates the effect of different mass flow rate of hot fluid into evaporator section on the condenser side heat transfer coefficient with annular fins under natural convection at different inclinations. In this study annular fins are used for the experimental work having dimensions of length of fin, thickness of fin and spacing of fin as 10 mm, 1 mm and 6 mm, respectively. The main aim of present study is to discover at what inclination angles the maximum heat transfer coefficient shall be achieved. The heat transfer coefficient on the external surface of heat pipe condenser section is determined by experimental method and then predicted by empirical correlations. The results obtained from experimental and Churchill and Chu relation for laminar are in fair agreement with not more than 22% deviation. It is elucidated the maximum heat transfer coefficient of 31.2 W/(m2-K) at 25˚ tilt angle and minimal condenser heat transfer coefficient of 26.4 W/(m2-K) is seen at 45˚ tilt angle and 200 ml/min mass flow rate. Inclination angle also affects the thermal performance of heat pipe. Beyond 25o inclination, heat transport rate starts to decrease.

Keywords: heat pipe, annular fins, natural convection, condenser heat transfer coefficient, tilt angle

Procedia PDF Downloads 128
644 Solubility Enhancement of Poorly Soluble Anticancer Drug, Docetaxel Using a Novel Polymer, Soluplus via Solid Dispersion Technique

Authors: Adinarayana Gorajana, Venkata Srikanth Meka, Sanjay Garg, Lim Sue May

Abstract:

This study was designed to evaluate and enhance the solubility of poorly soluble drug, docetaxel through solid dispersion (SD) technique prepared using freeze drying method. Docetaxel solid dispersions were formulated with Soluplus in different weight ratios. Freeze drying method was used to prepare the solid dispersions. Solubility of the solid dispersions were evaluated respectively and the optimized of drug-solubilizers ratio systems were characterized with different analytical methods like Differential scanning calorimeter (DSC), Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) to confirm the formation of complexes between drug and solubilizers. The solubility data revealed an overall improvement in solubility for all SD formulations. The ternary combination 1:5:2 gave the highest increase in solubility that is approximately 3 folds from the pure drug, suggesting the optimum drug-solubilizers ratio system. This data corresponds with the DSC and SEM analyses, which demonstrates presence of drug in amorphous state and the dispersion in the solubilizers in molecular level. The solubility of the poorly soluble drug, docetaxel was enhanced through preparation of solid dispersion formulations employing freeze drying method. Solid dispersion with multiple carrier system shows better solubility compared to single carrier system.

Keywords: docetaxel, freeze drying, soluplus, solid dispersion technique

Procedia PDF Downloads 480
643 Over Cracking in Furnace and Corrective Action by Computational Fluid Dynamics (CFD) Analysis

Authors: Mokhtari Karchegani Amir, Maboudi Samad, Azadi Reza, Dastanian Raoof

Abstract:

Marun's petrochemical cracking furnaces have a very comprehensive operating control system for combustion and related equipment, utilizing advanced instrument circuits. However, after several years of operation, numerous problems arose in the pyrolysis furnaces. A team of experts conducted an audit, revealing that the furnaces were over-designed, leading to excessive consumption of air and fuel. This issue was related to the burners' shutter settings, which had not been configured properly. The operations department had responded by increasing the induced draft fan speed and forcing the instrument switches to counteract the wind effect in the combustion chamber. Using Fluent and Gambit software, the furnaces were analyzed. The findings indicated that this situation elevated the convection part's temperature, causing uneven heat distribution inside the furnace. Consequently, this led to overheating in the convection section and excessive cracking within the coils in the radiation section. The increased convection temperature damaged convection parts and resulted in equipment blockages downstream of the furnaces due to the production of more coke and tar in the process. To address these issues, corrective actions were implemented. The excess air for burners and combustion chambers was properly set, resulting in improved efficiency, reduced emissions of environmentally harmful gases, prevention of creep in coils, decreased fuel consumption, and lower maintenance costs.

Keywords: furnace, coke, CFD analysis, over cracking

Procedia PDF Downloads 40
642 Experimental Study on the Preparation of Pelletizing of the Panzhihua's Fine Ilmenite Concentrate

Authors: Han Kexi, Lv Xuewei, Song Bing

Abstract:

This paper focuses on the preparation of pelletizing with the Panzhihua ilmenite concentrate to satisfy the requirement of smelting titania slag. The effects of the moisture content, mixing time of raw materials, pressure of pellet, roller rotating speed of roller, drying temperature and time on the pelletizing yield and compressive strength were investigated. The experimental results show that the moister content was controlled at 2.0%~2.5%, mixing time at 20 min, the pressure of the ball forming machine at 13~15 mpa, the pelletizing yield can reach up 85%. When the roller rotating speed is 6~8 r/min while the drying temperature and time respectively is 350 ℃ and 40~60 min, the compressive strength of pelletizing more than 1500 N. The preparation of pelletizing can meet the requirement of smelting titania slag.

Keywords: Panzhihua fine ilmenite concentrate, pelletizing, pelletizing yield, compressive strength, drying

Procedia PDF Downloads 194
641 Numerical Analysis of the Effects of Transpiration on Transient/Steady Natural Convection Flow of Reactive Viscous Fluid in a Vertical Channel Formed by Two Vertical Porous Plates

Authors: Ahmad K. Samaila, Basant K. Jha

Abstract:

This study is devoted to investigate the effect of transpiration on transient as well as steady-state natural convection flow of a reactive viscous fluid in a vertical channel formed by two infinite vertical parallel porous plates. The Boussinesq assumption is applied and the nonlinear governing equations of energy and momentum are developed. The problem is solved numerically using implicit finite difference method and analytically for steady-state case using perturbation method. Solutions are presented in graphical form for fluid temperature, velocity, and skin-friction and wall heat transfer rate for various parametric values. It is found that velocity, temperature, rate of heat transfer as well as skin-friction are strongly affected by mass leakage through the porous plates.

Keywords: transpiration, reactive viscous fluid, porous plates, natural convection, suction/injection

Procedia PDF Downloads 346
640 Preparation of Tempeh Spores Powder

Authors: Jaruwan Chutrtong, Tanakwan Bussabun

Abstract:

Study production of tempeh inoculums powder by freeze-drying comparison with dry at 50°C and the sun bask for developing efficient tempeh inoculums for tempeh producing. Rhizopus oligosporus in PDA slant cultures was incubated at 30°C for 3-5 days until spores and mycelium. Preparation spores suspension with sterilized water and then count the number of started spores. Fill spores suspension in Rice flour and soy flour, mixed with water (in the ratio 10: 7), which is steamed and sterilized at 121°C 15min. Incubated at room temperature for 4 days, count number of spores. Then take the progressive infection and full spore dough to dry at 50°C, sun bask, and lyophilize. Grind to powder. Then pack in plastic bags, stored at 5°C. To investigate quality of inoculums which use different methods, tempeh was fermented every 4 weeks for 24 weeks of the experiment. The result found that rice flour is not suitable to use as raw material in the production of powdered spores. Fungi can growth rarely. Less number of spores and requires more time than soy flour. For drying method, lyophilization is the least possible time. Samples from this method are very hard and very dark and harder to grind than other methods. Drying at 50°C takes longer time than lyophilization but can also set time use for drying. Character of the dry samples is hard solid and brown color, but can be grinded easier. The sun drying takes the longest time, can’t determine the exact time. When the spore powder was used to fermented tempeh immediately, product has similar characters as which use spores that was fresh prepared. The tempeh has normal quality. When spore powder stored at low temperature, tempeh from storage spore in weeks 4, 8 and 12 is still normal. Time spending in production was close to the production of fresh spores. After storage spores for 16 and 20 weeks, tempeh is still normal but growth and sporulation were take longer time than usual (about 6 hours). At 24 week storage, fungal growth is not good, made tempeh looks inferior to normal color, also smell and texture.

Keywords: freez drying, preparation, spores powder, tempeh

Procedia PDF Downloads 182
639 Numerical Simulation of the Rotating Vertical Bridgman Growth

Authors: Nouri Sabrina

Abstract:

Numerical parametric study is conducted to study the effects of ampoule rotation on the flows and the dopant segregation in Vertical Bridgman (VB) crystal growth. Calculations were performed in unsteady state. The extended darcy model, whıch includes the time derivative and coriolis terms, has been employed in the momentum equation. It is found that the convection, and dopant segregation can be affected significantly by ampoule rotation, and the effect is similar to that by an axial magnetıc field. Ampoule rotation decreases the intensity of convection and stretches the flow cell axıally. When the convectıon is weak, the flow can be suppressed almost completely by moderate ampoule rotation and the dopant segregation becomes diffusion-controlled. For stronger convection, the elongated flow cell by ampoule rotation may bring dopant mixing into the bulk melt reducing axial segregation at the early stage of the growth. However, if the cellular flow cannot be suppressed completely, ampoule rotation may induce larger radial segregation due to poor mixing.

Keywords: rotating vertical solidification, Finite Volume Method, heat and mass transfer, porous medium, phase change

Procedia PDF Downloads 402
638 CFD Investigation of Turbulent Mixed Convection Heat Transfer in a Closed Lid-Driven Cavity

Authors: A. Khaleel, S. Gao

Abstract:

Both steady and unsteady turbulent mixed convection heat transfer in a 3D lid-driven enclosure, which has constant heat flux on the middle of bottom wall and with isothermal moving sidewalls, is reported in this paper for working fluid with Prandtl number Pr = 0.71. The other walls are adiabatic and stationary. The dimensionless parameters used in this research are Reynolds number, Re = 5000, 10000 and 15000, and Richardson number, Ri = 1 and 10. The simulations have been done by using different turbulent methods such as RANS, URANS, and LES. The effects of using different k- models such as standard, RNG and Realizable k- model are investigated. Interesting behaviours of the thermal and flow fields with changing the Re or Ri numbers are observed. Isotherm and turbulent kinetic energy distributions and variation of local Nusselt number at the hot bottom wall are studied as well. The local Nusselt number is found increasing with increasing either Re or Ri number. In addition, the turbulent kinetic energy is discernibly affected by increasing Re number. Moreover, the LES results have shown a good ability of this method in predicting more detailed flow structures in the cavity.

Keywords: mixed convection, lid-driven cavity, turbulent flow, RANS model, large Eddy simulation

Procedia PDF Downloads 184
637 Studies on the Proximate Composition and Functional Properties of Extracted Cocoyam Starch Flour

Authors: Adebola Ajayi, Francis B. Aiyeleye, Olakunke M. Makanjuola, Olalekan J. Adebowale

Abstract:

Cocoyam, a generic term for both xanthoma and colocasia, is a traditional staple root crop in many developing countries in Africa, Asia and the Pacific. It is mostly cultivated as food crop which is very rich in vitamin B6, magnesium and also in dietary fiber. The cocoyam starch is easily digested and often used for baby food. Drying food is a method of food preservation that removes enough moisture from the food so bacteria, yeast and molds cannot grow. It is a one of the oldest methods of preserving food. The effect of drying methods on the proximate composition and functional properties of extracted cocoyam starch flour were studied. Freshly harvested cocoyam cultivars at matured level were washed with portable water, peeled, washed and grated. The starch in the grated cocoyam was extracted, dried using sun drying, oven and cabinet dryers. The extracted starch flour was milled into flour using Apex mill and packed and sealed in low-density polyethylene film (LDPE) 75 micron thickness with Nylon sealing machine QN5-3200HI and kept for three months under ambient temperature before analysis. The result showed that the moisture content, ash, crude fiber, fat, protein and carbohydrate ranged from 6.28% to 12.8% 2.32% to 3.2%, 0.89% to 2.24%%, 1.89% to 2.91%, 7.30% to 10.2% and 69% to 83% respectively. The functional properties of the cocoyam starch flour ranged from 2.65ml/g to 4.84ml/g water absorption capacity, 1.95ml/g to 3.12ml/g oil absorption capacity, 0.66ml/g to 7.82ml/g bulk density and 3.82% to 5.30ml/g swelling capacity. Significant difference (P≥0.5) was not obtained across the various drying methods used. The drying methods provide extension to the shelf-life of the extracted cocoyam starch flour.

Keywords: cocoyam, extraction, oven dryer, cabinet dryer

Procedia PDF Downloads 259
636 Effect of Radiation on MHD Mixed Convection Stagnation Point Flow towards a Vertical Plate in a Porous Medium with Convective Boundary Condition

Authors: H. Niranjan, S. Sivasankaran, Zailan Siri

Abstract:

This study investigates mixed convection heat transfer about a thin vertical plate in the presence of magnetohydrodynamic (MHD) and heat transfer effects in the porous medium. The fluid is assumed to be steady, laminar, incompressible and in two-dimensional flow. The nonlinear coupled parabolic partial differential equations governing the flow are transformed into the non-similar boundary layer equations, which are then solved numerically using the shooting method. The effects of the conjugate heat transfer parameter, the porous medium parameter, the permeability parameter, the mixed convection parameter, the magnetic parameter, and the thermal radiation on the velocity and temperature profiles as well as on the local skin friction and local heat transfer are presented and analyzed. The validity of the methodology and analysis is checked by comparing the results obtained for some specific cases with those available in the literature. The various parameters on local skin friction, heat and mass transfer rates are presented in tabular form.

Keywords: MHD, porous medium, soret/dufour, stagnation-point

Procedia PDF Downloads 334
635 Sizing of Drying Processes to Optimize Conservation of the Nuclear Power Plants on Stationary

Authors: Assabo Mohamed, Bile Mohamed, Ali Farah, Isman Souleiman, Olga Alos Ramos, Marie Cadet

Abstract:

The life of a nuclear power plant is regularly punctuated by short or long period outages to carry out maintenance operations and/or nuclear fuel reloading. During these stops periods, it is essential to conserve all the secondary circuit equipment to avoid corrosion priming. This kind of circuit is one of the main components of a nuclear reactor. Indeed, the conservation materials on shutdown of a nuclear unit improve circuit performance and reduce the maintenance cost considerably. This study is a part of the optimization of the dry preservation of equipment from the water station of the nuclear reactor. The main objective is to provide tools to guide Electricity Production Nuclear Centre (EPNC) in order to achieve the criteria required by the chemical specifications of conservation materials. A theoretical model of drying exchangers of water station is developed by the software Engineering Equation Solver (EES). It used to size requirements and air quality needed for dry conservation of equipment. This model is based on heat transfer and mass transfer governing the drying operation. A parametric study is conducted to know the influence of aerothermal factor taking part in the drying operation. The results show that the success of dry conservation of equipment of the secondary circuit of nuclear reactor depends strongly on the draining, the quality of drying air and the flow of air injecting in the secondary circuit. Finally, theoretical case study performed on EES highlights the importance of mastering the entire system to balance the air system to provide each exchanger optimum flow depending on its characteristics. From these results, recommendations to nuclear power plants can be formulated to optimize drying practices and achieve good performance in the conservation of material from the water at the stop position.

Keywords: dry conservation, optimization, sizing, water station

Procedia PDF Downloads 235
634 Linear Stability of Convection in an Inclined Channel with Nanofluid Saturated Porous Medium

Authors: D. Srinivasacharya, Nidhi Humnekar

Abstract:

The goal of this research is to numerically investigate the convection of nanofluid flow in an inclined porous channel. Brownian motion and thermophoresis effects are accounted for by nanofluid. In addition, the flow in the porous region governs Brinkman’s equation. The perturbed state of the generalized eigenvalue problem is obtained using normal mode analysis, and Chebyshev spectral collocation was used to solve this problem. For various values of the governing parameters, the critical wavenumber and critical Rayleigh number are calculated, and preferred modes are identified.

Keywords: Brinkman model, inclined channel, nanofluid, linear stability, porous media

Procedia PDF Downloads 88
633 Free Convection from a Perforated Spinning Cone with Heat Generation, Temperature-Dependent Viscosity and Partial Slip

Authors: Gilbert Makanda

Abstract:

The problem of free convection from a perforated spinning cone with viscous dissipation, temperature-dependent viscosity, and partial slip was studied. The boundary layer velocity and temperature profiles were numerically computed for different values of the spin, viscosity variation, inertia drag force, Eckert, suction/blowing parameters. The partial differential equations were transformed into a system of ordinary differential equations which were solved using the fourth-order Runge-Kutta method. This paper considered the effect of partial slip and spin parameters on the swirling velocity profiles which are rarely reported in the literature. The results obtained by this method was compared to those in the literature and found to be in agreement. Increasing the viscosity variation parameter, spin, partial slip, Eckert number, Darcian drag force parameters reduce swirling velocity profiles.

Keywords: free convection, suction/injection, partial slip, viscous dissipation

Procedia PDF Downloads 223
632 Mixed Convection Enhancement in a 3D Lid-Driven Cavity Containing a Rotating Cylinder by Applying an Artificial Roughness

Authors: Ali Khaleel Kareem, Shian Gao, Ahmed Qasim Ahmed

Abstract:

A numerical investigation of unsteady mixed convection heat transfer in a 3D moving top wall enclosure, which has a central rotating cylinder and uses either artificial roughness on the bottom hot plate or smooth bottom hot plate to study the heat transfer enhancement, is completed for fixed circular cylinder, and anticlockwise and clockwise rotational speeds, -1 ≤ Ω ≤ 1, at Reynolds number of 5000. The top lid-driven wall was cooled, while the other remaining walls that completed obstructed cubic were kept insulated and motionless. A standard k-ε model of Unsteady Reynolds-Averaged Navier-Stokes (URANS) method is involved to deal with turbulent flow. It has been clearly noted that artificial roughness can strongly control the thermal fields and fluid flow patterns. Ultimately, the heat transfer rate has been dramatically increased by involving artificial roughness on the heated bottom wall in the presence of rotating cylinder.

Keywords: artificial roughness, lid-driven cavity, mixed convection heat transfer, rotating cylinder, URANS method

Procedia PDF Downloads 173
631 Effect of Corrugating Bottom Surface on Natural Convection in a Square Porous Enclosure

Authors: Khedidja Bouhadef, Imene Said Kouadri, Omar Rahli

Abstract:

In this paper numerical investigation is performed to analyze natural convection heat transfer characteristics within a wavy-wall enclosure filled with fluid-saturated porous medium. The bottom wall which has the wavy geometry is maintained at a constant high temperature, while the top wall is straight and is maintained at a constant lower temperature. The left and right walls of the enclosure are both straight and insulated. The governing differential equations are solved by Finite-volume approach and grid generation is used to transform the physical complex domain to a computational regular space. The aim is to examine flow field, temperature distribution and heat transfer evolutions inside the cavity when Darcy number, Rayleigh number and undulations number values are varied. The results mainly indicate that the heat transfer is rather affected by the permeability and Rayleigh number values since increasing these values enhance the Nusselt number; although the exchanges are not highly affected by the undulations number.

Keywords: grid generation, natural convection, porous medium, wavy wall enclosure

Procedia PDF Downloads 238
630 Heat and Flow Analysis of Solar Air Heaters with Artificial Roughness on the Absorber

Authors: Amel Boulemtafes-Boukadoum, Ahmed Benzaoui

Abstract:

Solar air heaters (SAH) are widely used in heating and drying applications using solar energy. Their efficiency needs to be improved to be competitive towards solar water heater. In this work, our goal is to study heat transfer enhancement in SAHs by the use of artificial roughness on the absorber. For this purpose, computational fluid dynamics (CFD) simulations were carried out to analyze the flow and heat transfer in the air duct of a solar air heater provided with transverse ribs. The air flows in forced convection and the absorber is heated with uniform flux. The effect of major parameters (Reynolds number, solar radiation, air inlet temperature, geometry of roughness) is examined and discussed. To highlight the effect of artificial roughness, we plotted the distribution of the important parameters: Nusselt number, friction factor, global thermohydraulic performance parameter etc. The results obtained are concordant to those found in the literature and shows clearly the heat transfer enhancement due to artifical roughness.

Keywords: solar air heater, artificial roughness, heat transfer enhancement, CFD

Procedia PDF Downloads 546
629 Mathematical Modeling and Simulation of Convective Heat Transfer System in Adjustable Flat Collector Orientation for Commercial Solar Dryers

Authors: Adeaga Ibiyemi Iyabo, Adeaga Oyetunde Adeoye

Abstract:

Interestingly, mechanical drying methods has played a major role in the commercialization of agricultural and agricultural allied sectors. In the overall, drying enhances the favorable storability and preservation of agricultural produce which in turn promotes its producibility, marketability, salability, and profitability. Recent researches have shown that solar drying is easier, affordable, controllable, and of course, cleaner and purer than other means of drying methods. It is, therefore, needful to persistently appraise solar dryers with a view to improving on the existing advantages. In this paper, mathematical equations were formulated for solar dryer using mass conservation law, material balance law and least cost savings method. Computer codes were written in Visual Basic.Net. The developed computer software, which considered Ibadan, a strategic south-western geographical location in Nigeria, was used to investigate the relationship between variable orientation angle of flat plate collector on solar energy trapped, derived monthly heat load, available energy supplied by solar and fraction supplied by solar energy when 50000 Kg/Month of produce was dried over a year. At variable collector tilt angle of 10°.13°,15°,18°, 20°, the derived monthly heat load, available energy supplied by solar were 1211224.63MJ, 102121.34MJ, 0.111; 3299274.63MJ, 10121.34MJ, 0.132; 5999364.706MJ, 171222.859MJ, 0.286; 4211224.63MJ, 132121.34MJ, 0.121; 2200224.63MJ, 112121.34MJ, 0.104, respectively .These results showed that if optimum collector angle is not reached, those factors needed for efficient and cost reduction drying will be difficult to attain. Therefore, this software has revealed that off - optimum collector angle in commercial solar drying does not worth it, hence the importance of the software in decision making as to the optimum collector angle of orientation.

Keywords: energy, ibadan, heat - load, visual-basic.net

Procedia PDF Downloads 380
628 Spray Drying and Physico-Chemical Microbiological Evaluation of Ethanolic Extracts of Propolis

Authors: David Guillermo Piedrahita Marquez, Hector Suarez Mahecha, Jairo Humberto Lopez

Abstract:

The propolis are substances obtained from the beehive have an action against pathogens, prooxidant substances and free radicals because of its polyphenols content, this has motivated the use of these compounds in the food and pharmaceutical industries. However, due to their organoleptic properties and their ability to react with other compounds, their application has been limited; therefore, the objective of this research was to propose a mechanism to protect propolis and mitigate side effects granted by its components. To achieve the stated purpose ethanolic extracts of propolis (EEP) from three samples from Santander were obtained and their antioxidant and antimicrobial activity were evaluated in order to choose the extract with the biggest potential. Subsequently mixtures of the extract with maltodextrin were prepared by spray drying varying concentration and temperature, finally the yield, the physicochemical, and antioxidant properties of the products were measured. It was concluded that Socorro propolis was the best for the production of microencapsulated due to their activity against pathogenic strains, for its large percentage of DPPH radical inactivation and for its high phenolic content. In spray drying, the concentration of bioactive had a greater impact than temperature and the conditions set allowed a good performance and the production of particles with high antioxidant potential and little chance of proliferation of microorganisms. Also, it was concluded that the best conditions that allowed us to obtain the best particles were obtained after drying a mixture 1:2 ( EEP: Maltodextrin), besides the concentration is the most important variable in the spray drying process, at the end we obtained particles of different sizes and shape and the uniformity of the surface depend on the temperature. After watching the previously mentioned microparticles by scanning electron microscopy (SEM) it was concluded that most of the particles produced during the spray dry process had a spherical shape and presented agglomerations due to the moisture content of the ethanolic extracts of propolis (EEP), the morphology of the microparticles contributed to the stability of the final product and reduce the loss of total phenolic content.

Keywords: spray drying, propolis, maltodextrin, encapsulation, scanning electron microscopy

Procedia PDF Downloads 261
627 Analyses of Natural Convection Heat Transfer from a Heated Cylinder Mounted in Vertical Duct

Authors: H. Bhowmik, A. Faisal, Ahmed Al Yaarubi, Nabil Al Alawi

Abstract:

Experiments are conducted to analyze the steady-state and the power-on transient natural convection heat transfer from a horizontal cylinder mounted in a vertical up flow circular duct. The heat flux ranges from 177 W/m2 to 2426 W/m2 and the Rayleigh number ranges from 1×104 to 4.35×104. For natural air flow and constant heat flux condition, the effects of heat transfer around the cylinder under steady-state condition are investigated. The steady-state results compare favorably with that of the available data. The effects of transient heat transfer data on different angular position of the thermocouple (0o, 90o, 180o) are also reported. It is observed that the transient heat transfer around the cylinder is strongly affected by the position of thermocouples. In the transient region, the rate of heat transfer obtained at 90o and 180o are higher than that of stagnation point (0o). Finally, the dependence of the average Nusselt number on Rayleigh number for steady and transient natural convection heat transfer are analyzed, and a correlation equation is presented.

Keywords: Fourier number, Nusselt number, Rayleigh number, steady state, transient

Procedia PDF Downloads 328
626 Spray Nebulisation Drying: Alternative Method to Produce Microparticulated Proteins

Authors: Josef Drahorad, Milos Beran, Ondrej Vltavsky, Marian Urban, Martin Fronek, Jiri Sova

Abstract:

Engineering efforts of researchers of the Food research institute Prague and the Czech Technical University in spray drying technologies led to the introduction of a demonstrator ATOMIZER and a new technology of Carbon Dioxide-Assisted Spray Nebulization Drying (CASND). The equipment combines the spray drying technology, when the liquid to be dried is atomized by a rotary atomizer, with Carbon Dioxide Assisted Nebulization - Bubble Dryer (CAN-BD) process in an original way. A solution, emulsion or suspension is saturated by carbon dioxide at pressure up to 80 bar before the drying process. The atomization process takes place in two steps. In the first step, primary droplets are produced at the outlet of the rotary atomizer of special construction. In the second step, the primary droplets are divided in secondary droplets by the CO2 expansion from the inside of primary droplets. The secondary droplets, usually in the form of microbubbles, are rapidly dried by warm air stream at temperatures up to 60ºC and solid particles are formed in a drying chamber. Powder particles are separated from the drying air stream in a high efficiency fine powder separator. The product is frequently in the form of submicron hollow spheres. The CASND technology has been used to produce microparticulated protein concentrates for human nutrition from alternative plant sources - hemp and canola seed filtration cakes. Alkali extraction was used to extract the proteins from the filtration cakes. The protein solutions after the alkali extractions were dried with the demonstrator ATOMIZER. Aerosol particle size distribution and concentration in the draying chamber were determined by two different on-line aerosol spectrometers SMPS (Scanning Mobility Particle Sizer) and APS (Aerodynamic Particle Sizer). The protein powders were in form of hollow spheres with average particle diameter about 600 nm. The particles were characterized by the SEM method. The functional properties of the microparticulated protein concentrates were compared with the same protein concentrates dried by the conventional spray drying process. Microparticulated protein has been proven to have improved foaming and emulsifying properties, water and oil absorption capacities and formed long-term stable water dispersions. This work was supported by the research grants TH03010019 of the Technology Agency of the Czech Republic.

Keywords: carbon dioxide-assisted spray nebulization drying, canola seed, hemp seed, microparticulated proteins

Procedia PDF Downloads 139
625 Physiological and Biochemical Based Analysis to Assess the Efficacy of Mulch under Partial Root Zone Drying in Wheat

Authors: Salman Ahmad, Muhammad Aown Sammar Raza, Muhammad Farrukh Saleem, Rashid Iqbal, Muhammad Saqlain Zaheer, Muhammad Usman Aslam, Imran Haider, Muhammad Adnan Nazar, Muhammad Ali

Abstract:

Among the various abiotic stresses, drought stress is one of the most challenging for field crops. Wheat is one of the major staple food of the world, which is highly affected by water deficit stress in the current scenario of climate change. In order to ensure food security by depleting water resources, there is an urgent need to adopt technologies which result in sufficient crop yield with less water consumption. Mulching and partial rootzone drying (PRD) are two important management techniques used for water conservation and to mitigate the negative impacts of drought. The experiment was conducted to screen out the best-suited mulch for wheat under PRD system. Two water application techniques (I1= full irrigation I2= PRD irrigation) and four mulch treatments (M0= un-mulched, M1= black plastic mulch, M2= wheat straw mulch and M4= cotton sticks mulch) were conducted in completely randomized design with four replications. The treatment, black plastic mulch was performed the best than other mulch treatments. For irrigation levels, higher values of growth, physiological and water-related parameters were recorded in control treatment while, quality traits and enzymatic activities were higher under partial root zone drying. The current study concluded that adverse effects of drought on wheat can be significantly mitigated by using mulches but black plastic mulch was best suited for partial rootzone drying irrigation system in wheat.

Keywords: antioxidants, leaf water relations, Mulches, osmolytes, partial root zone drying, photosynthesis

Procedia PDF Downloads 230
624 Thermal Instability in Rivlin-Ericksen Elastico-Viscous Nanofluid with Connective Boundary Condition: Effect of Vertical Throughflow

Authors: Shivani Saini

Abstract:

The effect of vertical throughflow on the onset of convection in Rivlin-Ericksen Elastico-Viscous nanofluid with convective boundary condition is investigated. The flow is stimulated with modified Darcy model under the assumption that the nanoparticle volume fraction is not actively managed on the boundaries. The heat conservation equation is formulated by introducing the convective term of nanoparticle flux. A linear stability analysis based upon normal mode is performed, and an approximate solution of eigenvalue problems is obtained using the Galerkin weighted residual method. Investigation of the dependence of the Rayleigh number on various viscous and nanofluid parameter is performed. It is found that through flow and nanofluid parameters hasten the convection while capacity ratio, kinematics viscoelasticity, and Vadasz number do not govern the stationary convection. Using the convective component of nanoparticle flux, critical wave number is the function of nanofluid parameters as well as the throughflow parameter. The obtained solution provides important physical insight into the behavior of this model.

Keywords: Darcy model, nanofluid, porous layer, throughflow

Procedia PDF Downloads 106
623 Wetting-Drying Cycles Effect on Piles Embedded in a Very High Expansive Soil

Authors: Bushra Suhail, Laith Kadim

Abstract:

The behavior of model piles embedded in a very high expansive soil was investigated, a specially manufactured saturation-drying tank was used to apply three cycles of wetting and drying to the expansive soil surrounding the model straight shaft and under reamed piles, the relative movement of the piles with respect to the soil surface was recorded with time, also the exerted uplift pressure of the piles due to soil swelling was recorded. The behavior of unloaded straight shaft and under reamed piles was investigated. Two design charts were presented for straight shaft and under reamed piles one for the required pile depth for zero upward movement due to soil swelling, the other for the required pile depth to exert zero uplift pressure when the soil swells. Under reamed piles showed a decrease in upward movement of 20% to 40%, and an uplift pressure decrease of 10% to 30%.

Keywords: expansive soil, piles, under reamed, structural and geotechnical engineering

Procedia PDF Downloads 292
622 Colour Formation and Maillard Reactions in Spray-Dried Milk Powders

Authors: Zelin Zhou, Timothy Langrish

Abstract:

Spray drying is the final stage of milk powder production. Traditionally, the quality of spray-dried milk powders has mainly been assessed using their physical properties, such as their moisture contents, while chemical changes occurring during the spray drying process have often been ignored. With growing concerns about food quality, it is necessary to establish a better understanding of heat-induced degradation due to the spray-drying process of skim milk. In this study, the extent of thermal degradation for skim milk in a pilot-scale spray dryer has been investigated using different inlet gas temperatures. The extent of heat-induced damage has been measured by the formation of advanced Maillard reaction products and the loss of soluble proteins at pH 4.6 as assessed by a fluorometric method. A significant increase in the extent of thermal degradation has been found when the inlet gas temperature increased from 170°C to 190°C, suggesting protein unfolding may play an important role in the kinetics of heat-induced degradation for milk in spray dryers. Colour changes of the spray-dried skim milk powders have also been analysed using a standard lighting box. Colourimetric analysis results were expressed in CIELAB colour space with the use of the E index (E) and the Chroma (C) for measuring the difference between colours and the intensity of the colours. A strong linear correlation between the colour intensity of the spray-dried skim milk powders and the formation of advanced Maillard reaction products has been observed.

Keywords: colour formation, Maillard reactions, spray drying, skim milk powder

Procedia PDF Downloads 152
621 Properties of Preplaced Aggregate Concrete with Modified Binder

Authors: Kunal Krishna Das, Eddie S. S. Lam

Abstract:

Preplaced Aggregate Concrete (PAC) is produced by first placing the coarse aggregate into the formwork, followed by injection of grout to fill in the voids in between the coarse aggregates. In this study, tests were carried out to determine the effects of supplementary cementitious materials on the properties of PAC. Cement was partially replaced by ground granulated blast furnace slag (GGBS) and silica fume (SF) at different proportions. Grout properties were determined by the flow cone test and compressive strength test. Grout proportion was optimized statistically. It was applied to form PAC. Hardened properties of PAC, comprising compressive strength, splitting tensile strength, chloride-ion penetration and drying shrinkage, were evaluated. GGBS enhanced the flowability of the grout, whereas SF enhanced the strength of PAC. Both GGBS and SF improved the resistance to chloride-ion penetration with the drawback of increased drying shrinkage. Nevertheless, drying shrinkage was within the range to be classified as low shrinkage concrete.

Keywords: factorial design, ground granulated blast furnace slag, preplaced aggregate concrete, silica fume

Procedia PDF Downloads 107
620 Evaluation of Heat Transfer and Entropy Generation by Al2O3-Water Nanofluid

Authors: Houda Jalali, Hassan Abbassi

Abstract:

In this numerical work, natural convection and entropy generation of Al2O3–water nanofluid in square cavity have been studied. A two-dimensional steady laminar natural convection in a differentially heated square cavity of length L, filled with a nanofluid is investigated numerically. The horizontal walls are considered adiabatic. Vertical walls corresponding to x=0 and x=L are respectively maintained at hot temperature, Th and cold temperature, Tc. The resolution is performed by the CFD code "FLUENT" in combination with GAMBIT as mesh generator. These simulations are performed by maintaining the Rayleigh numbers varied as 103 ≤ Ra ≤ 106, while the solid volume fraction varied from 1% to 5%, the particle size is fixed at dp=33 nm and a range of the temperature from 20 to 70 °C. We used models of thermophysical nanofluids properties based on experimental measurements for studying the effect of adding solid particle into water in natural convection heat transfer and entropy generation of nanofluid. Such as models of thermal conductivity and dynamic viscosity which are dependent on solid volume fraction, particle size and temperature. The average Nusselt number is calculated at the hot wall of the cavity in a different solid volume fraction. The most important results is that at low temperatures (less than 40 °C), the addition of nanosolids Al2O3 into water leads to a decrease in heat transfer and entropy generation instead of the expected increase, whereas at high temperature, heat transfer and entropy generation increase with the addition of nanosolids. This behavior is due to the contradictory effects of viscosity and thermal conductivity of the nanofluid. These effects are discussed in this work.

Keywords: entropy generation, heat transfer, nanofluid, natural convection

Procedia PDF Downloads 247