Search results for: complete genome sequencing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3042

Search results for: complete genome sequencing

2952 Accurate HLA Typing at High-Digit Resolution from NGS Data

Authors: Yazhi Huang, Jing Yang, Dingge Ying, Yan Zhang, Vorasuk Shotelersuk, Nattiya Hirankarn, Pak Chung Sham, Yu Lung Lau, Wanling Yang

Abstract:

Human leukocyte antigen (HLA) typing from next generation sequencing (NGS) data has the potential for applications in clinical laboratories and population genetic studies. Here we introduce a novel technique for HLA typing from NGS data based on read-mapping using a comprehensive reference panel containing all known HLA alleles and de novo assembly of the gene-specific short reads. An accurate HLA typing at high-digit resolution was achieved when it was tested on publicly available NGS data, outperforming other newly-developed tools such as HLAminer and PHLAT.

Keywords: human leukocyte antigens, next generation sequencing, whole exome sequencing, HLA typing

Procedia PDF Downloads 627
2951 Microbial Dark Matter Analysis Using 16S rRNA Gene Metagenomics Sequences

Authors: Hana Barak, Alex Sivan, Ariel Kushmaro

Abstract:

Microorganisms are the most diverse and abundant life forms on Earth and account for a large portion of the Earth’s biomass and biodiversity. To date though, our knowledge regarding microbial life is lacking, as it is based mainly on information from cultivated organisms. Indeed, microbiologists have borrowed from astrophysics and termed the ‘uncultured microbial majority’ as ‘microbial dark matter’. The realization of how diverse and unexplored microorganisms are, actually stems from recent advances in molecular biology, and in particular from novel methods for sequencing microbial small subunit ribosomal RNA genes directly from environmental samples termed next-generation sequencing (NGS). This has led us to use NGS that generates several gigabases of sequencing data in a single experimental run, to identify and classify environmental samples of microorganisms. In metagenomics sequencing analysis (both 16S and shotgun), sequences are compared to reference databases that contain only small part of the existing microorganisms and therefore their taxonomy assignment may reveal groups of unknown microorganisms or origins. These unknowns, or the ‘microbial sequences dark matter’, are usually ignored in spite of their great importance. The goal of this work was to develop an improved bioinformatics method that enables more complete analyses of the microbial communities in numerous environments. Therefore, NGS was used to identify previously unknown microorganisms from three different environments (industrials wastewater, Negev Desert’s rocks and water wells at the Arava valley). 16S rRNA gene metagenome analysis of the microorganisms from those three environments produce about ~4 million reads for 75 samples. Between 0.1-12% of the sequences in each sample were tagged as ‘Unassigned’. Employing relatively simple methodology for resequencing of original gDNA samples through Sanger or MiSeq Illumina with specific primers, this study demonstrates that the mysterious ‘Unassigned’ group apparently contains sequences of candidate phyla. Those unknown sequences can be located on a phylogenetic tree and thus provide a better understanding of the ‘sequences dark matter’ and its role in the research of microbial communities and diversity. Studying this ‘dark matter’ will extend the existing databases and could reveal the hidden potential of the ‘microbial dark matter’.

Keywords: bacteria, bioinformatics, dark matter, Next Generation Sequencing, unknown

Procedia PDF Downloads 217
2950 Societal Acceptability Conditions of Genome Editing for Upland Rice in Madagascar

Authors: Anny Lucrece Nlend Nkott, Ludovic Temple

Abstract:

The appearance in 2012 of the CRISPR-CaS9 genome editing technique marks a turning point in the field of genetics. This technique would make it possible to create new varieties quickly and cheaply. Although some consider CRISPR-CaS9 to be revolutionary, others consider it a potential societal threat. To document the controversy, we explain the socioeconomic conditions under which this technique could be accepted for the creation of a rainfed rice variety in Madagascar. The methodological framework is based on 38 individual and semistructured interviews, a multistakeholder forum with 27 participants, and a survey of 148 rice producers. Results reveal that the acceptability of genome editing requires (i) strengthening the seed system through the operationalization of regulatory structures and the upgrading of stakeholders' knowledge of genetically modified organisms, (ii) assessing the effects of the edited variety on biodiversity and soil nitrogen dynamics, and (iii) strengthening the technical and human capacities of the biosafety body. Structural mechanisms for regulating the seed system are necessary to ensure safe experimentation of genome editing techniques. Organizational innovation also appears to be necessary. The study documents how collective learning between communities of scientists and nonscientists is a component of systemic processes of varietal innovation. This study was carried out with the financial support of the GENERICE project (Generation and Deployment of Genome-Edited, Nitrogen-use-Efficient Rice Varieties), funded by the Agropolis Foundation.

Keywords: CRISPR-CaS9, varietal innovation, seed system, innovation system

Procedia PDF Downloads 117
2949 Removal of Nitrogen Compounds from Industrial Wastewater Using Sequencing Batch Reactor: The Effects of React Time

Authors: Ali W. Alattabi, Khalid S. Hashim, Hassnen M. Jafer, Ali Alzeyadi

Abstract:

This study was performed to optimise the react time (RT) and study its effects on the removal rates of nitrogen compounds in a sequencing batch reactor (SBR) treating synthetic industrial wastewater. The results showed that increasing the RT from 4 h to 10, 16 and 22 h significantly improved the nitrogen compounds’ removal efficiency, it was increased from 69.5% to 95%, 75.7 to 97% and from 54.2 to 80.1% for NH3-N, NO3-N and NO2-N respectively. The results obtained from this study showed that the RT of 22 h was the optimum for nitrogen compounds removal efficiency.

Keywords: ammonia-nitrogen, retention time, nitrate, nitrite, sequencing batch reactor, sludge characteristics

Procedia PDF Downloads 334
2948 Automatic Reporting System for Transcriptome Indel Identification and Annotation Based on Snapshot of Next-Generation Sequencing Reads Alignment

Authors: Shuo Mu, Guangzhi Jiang, Jinsa Chen

Abstract:

The analysis of Indel for RNA sequencing of clinical samples is easily affected by sequencing experiment errors and software selection. In order to improve the efficiency and accuracy of analysis, we developed an automatic reporting system for Indel recognition and annotation based on image snapshot of transcriptome reads alignment. This system includes sequence local-assembly and realignment, target point snapshot, and image-based recognition processes. We integrated high-confidence Indel dataset from several known databases as a training set to improve the accuracy of image processing and added a bioinformatical processing module to annotate and filter Indel artifacts. Subsequently, the system will automatically generate data, including data quality levels and images results report. Sanger sequencing verification of the reference Indel mutation of cell line NA12878 showed that the process can achieve 83% sensitivity and 96% specificity. Analysis of the collected clinical samples showed that the interpretation accuracy of the process was equivalent to that of manual inspection, and the processing efficiency showed a significant improvement. This work shows the feasibility of accurate Indel analysis of clinical next-generation sequencing (NGS) transcriptome. This result may be useful for RNA study for clinical samples with microsatellite instability in immunotherapy in the future.

Keywords: automatic reporting, indel, next-generation sequencing, NGS, transcriptome

Procedia PDF Downloads 152
2947 Computational Pipeline for Lynch Syndrome Detection: Integrating Alignment, Variant Calling, and Annotations

Authors: Rofida Gamal, Mostafa Mohammed, Mariam Adel, Marwa Gamal, Marwa kamal, Ayat Saber, Maha Mamdouh, Amira Emad, Mai Ramadan

Abstract:

Lynch Syndrome is an inherited genetic condition associated with an increased risk of colorectal and other cancers. Detecting Lynch Syndrome in individuals is crucial for early intervention and preventive measures. This study proposes a computational pipeline for Lynch Syndrome detection by integrating alignment, variant calling, and annotation. The pipeline leverages popular tools such as FastQC, Trimmomatic, BWA, bcftools, and ANNOVAR to process the input FASTQ file, perform quality trimming, align reads to the reference genome, call variants, and annotate them. It is believed that the computational pipeline was applied to a dataset of Lynch Syndrome cases, and its performance was evaluated. It is believed that the quality check step ensured the integrity of the sequencing data, while the trimming process is thought to have removed low-quality bases and adaptors. In the alignment step, it is believed that the reads were accurately mapped to the reference genome, and the subsequent variant calling step is believed to have identified potential genetic variants. The annotation step is believed to have provided functional insights into the detected variants, including their effects on known Lynch Syndrome-associated genes. The results obtained from the pipeline revealed Lynch Syndrome-related positions in the genome, providing valuable information for further investigation and clinical decision-making. The pipeline's effectiveness was demonstrated through its ability to streamline the analysis workflow and identify potential genetic markers associated with Lynch Syndrome. It is believed that the computational pipeline presents a comprehensive and efficient approach to Lynch Syndrome detection, contributing to early diagnosis and intervention. The modularity and flexibility of the pipeline are believed to enable customization and adaptation to various datasets and research settings. Further optimization and validation are believed to be necessary to enhance performance and applicability across diverse populations.

Keywords: Lynch Syndrome, computational pipeline, alignment, variant calling, annotation, genetic markers

Procedia PDF Downloads 41
2946 Language Shapes Thought: An Experimental Study on English and Mandarin Native Speakers' Sequencing of Size

Authors: Hsi Wei

Abstract:

Does the language we speak affect the way we think? This question has been discussed for a long time from different aspects. In this article, the issue is examined with an experiment on how speakers of different languages tend to do different sequencing when it comes to the size of general objects. An essential difference between the usage of English and Mandarin is the way we sequence the size of places or objects. In English, when describing the location of something we may say, for example, ‘The pen is inside the trashcan next to the tree at the park.’ In Mandarin, however, we would say, ‘The pen is at the park next to the tree inside the trashcan.’ It’s clear that generally English use the sequence of small to big while Mandarin the opposite. Therefore, the experiment was conducted to test if the difference of the languages affects the speakers’ ability to do the different sequencing. There were two groups of subjects; one consisted of English native speakers, another of Mandarin native speakers. Within the experiment, three nouns were showed as a group to the subjects as their native languages. Before they saw the nouns, they would first get an instruction of ‘big to small’, ‘small to big’, or ‘repeat’. Therefore, the subjects had to sequence the following group of nouns as the instruction they get or simply repeat the nouns. After completing every sequencing and repetition in their minds, they pushed a button as reaction. The repetition design was to gather the mere reading time of the person. As the result of the experiment showed, English native speakers reacted more quickly to the sequencing of ‘small to big’; on the other hand, Mandarin native speakers reacted more quickly to the sequence ‘big to small’. To conclude, this study may be of importance as a support for linguistic relativism that the language we speak do shape the way we think.

Keywords: language, linguistic relativism, size, sequencing

Procedia PDF Downloads 250
2945 Non-Invasive Pre-Implantation Genetic Assessment Using NGS in IVF Clinical Routine

Authors: Katalin Gombos, Bence Gálik, Krisztina Ildikó Kalács, Krisztina Gödöny, Ákos Várnagy, József Bódis, Attila Gyenesei, Gábor L. Kovács

Abstract:

Although non-invasive pre-implantation genetic testing for aneuploidy (NIPGT-A) is potentially appropriate to assess chromosomal ploidy of the embryo, practical application of it in a routine IVF center has not been started in the absence of a recommendation. We developed a comprehensive workflow for a clinically applicable strategy for NIPGT-A based on next-generation sequencing (NGS) technology. We performed MALBAC whole genome amplification and NGS on spent blastocyst culture media of Day 3 embryos fertilized with intra-cytoplasmic sperm injection (ICSI). Spent embryonic culture media of morphologically good quality score embryos were enrolled in further analysis with the blank culture media as background control. Chromosomal abnormalities were identified by an optimized bioinformatics pipeline applying a copy number variation (CNV) detecting algorithm. We demonstrate a comprehensive workflow covering both wet- and dry-lab procedures supporting a clinically applicable strategy for NIPGT-A. It can be carried out within 48 h which is critical for the same-cycle blastocyst transfer, but also suitable for “freeze all” and “elective frozen embryo” strategies. The described integrated approach of non-invasive evaluation of embryonic DNA content of the culture media can potentially supplement existing pre-implantation genetic screening methods.

Keywords: next generation sequencing, in vitro fertilization, embryo assessment, non-invasive pre-implantation genetic testing

Procedia PDF Downloads 129
2944 CRISPR-DT: Designing gRNAs for the CRISPR-Cpf1 System with Improved Target Efficiency and Specificity

Authors: Houxiang Zhu, Chun Liang

Abstract:

The CRISPR-Cpf1 system has been successfully applied in genome editing. However, target efficiency of the CRISPR-Cpf1 system varies among different gRNA sequences. The published CRISPR-Cpf1 gRNA data was reanalyzed. Many sequences and structural features of gRNAs (e.g., the position-specific nucleotide composition, position-nonspecific nucleotide composition, GC content, minimum free energy, and melting temperature) correlated with target efficiency were found. Using machine learning technology, a support vector machine (SVM) model was created to predict target efficiency for any given gRNAs. The first web service application, CRISPR-DT (CRISPR DNA Targeting), has been developed to help users design optimal gRNAs for the CRISPR-Cpf1 system by considering both target efficiency and specificity. CRISPR-DT will empower researchers in genome editing.

Keywords: CRISPR-Cpf1, genome editing, target efficiency, target specificity

Procedia PDF Downloads 232
2943 Development of Microsatellite Markers for Genetic Variation Analysis in House Cricket, Acheta domesticus

Authors: Yash M. Gupta, Kittisak Buddhachat, Surin Peyachoknagul, Somjit Homchan

Abstract:

The house cricket, Acheta domesticus is one of the commonly found species of field crickets. Although it is very commonly used as food and feed, the genomic information of house cricket is still missing for genetic investigation. DNA sequencing technology has evolved over the decades, and it has also revolutionized the molecular marker development for genetic analysis. In the present study, we have sequenced the whole genome of A. domesticus using illumina platform based HiSeq X Ten sequencing technology for searching simple sequence repeats (SSRs) in DNA to develop polymorphic microsatellite markers for population genetic analysis. A total of 112,157 SSRs with primer pairs were identified, 91 randomly selected SSRs used to check DNA amplification, of which nine primers were polymorphic. These microsatellite markers have shown cross-amplification with other three species of crickets which are Gryllus bimaculatus, Gryllus testaceus and Brachytrupes portentosus. These nine polymorphic microsatellite markers were used to check genetic variation for forty-five individuals of A. domesticus, Phitsanulok population, Thailand. For nine loci, the number of alleles was ranging from 5 to 15. The observed heterozygosity was ranged from 0.4091 to 0.7556. These microsatellite markers will facilitate population genetic analysis for future studies of A. domesticus populations. Moreover, the transferability of these SSR makers would also enable researchers to conduct genetic studies for other closely related species.

Keywords: cross-amplification, microsatellite markers, observed heterozygosity, population genetic, simple sequence repeats

Procedia PDF Downloads 115
2942 A Comprehensive Analysis of LACK (Leishmania Homologue of Receptors for Activated C Kinase) in the Context of Visceral Leishmaniasis

Authors: Sukrat Sinha, Abhay Kumar, Shanthy Sundaram

Abstract:

The Leishmania homologue of activated C kinase (LACK) is known T cell epitope from soluble Leishmania antigens (SLA) that confers protection against Leishmania challenge. This antigen has been found to be highly conserved among Leishmania strains. LACK has been shown to be protective against L. donovani challenge. A comprehensive analysis of several LACK sequences was completed. The analysis shows a high level of conservation, lower variability and higher antigenicity in specific portions of the LACK protein. This information provides insights for the potential consideration of LACK as a putative candidate in the context of visceral Leishmaniasis vaccine target.

Keywords: bioinformatics, genome assembly, leishmania activated protein kinase c (lack), next-generation sequencing

Procedia PDF Downloads 308
2941 Influence of Food Microbes on Horizontal Transfer of β-Lactam Resistance Genes between Salmonella Strains in the Mouse Gut

Authors: M. Ottenbrite, G. Yilmaz, J. Devenish, M. Kang, H. Dan, M. Lin, C. Lau, C. Carrillo, K. Bessonov, J. Nash, E. Topp, J. Guan

Abstract:

Consumption of food contaminated by antibiotic-resistant (AR) bacteria may lead to the transmission of AR genes in the gut microbiota and cause AR bacterial infection, a significant public health concern. However, information is limited on if and how background microbes from the food matrix (food microbes) may influence resistance transmission. Thus, we assessed the colonization of a β-lactam resistant Salmonella Heidelberg strain (donor) and a β-lactam susceptible S. Typhimurium strain (recipient) and the transfer of the resistance genes in the mouse gut in the presence or absence of food microbes that were derived from washing freshly-harvested carrots. Mice were pre-treated with streptomycin and then inoculated with both donor and recipient bacteria or recipient only. Fecal shedding of the donor, recipient, and transconjugant bacteria was enumerated using selective culture techniques. Transfer of AR genes was confirmed by whole genome sequencing. Gut microbial composition was determined by 16s rRNA amplicon sequencing. Significantly lower numbers of donors and recipients were shed from mice that were inoculated with food microbes compared to those without food microbe inoculation. S. Typhimurium transconjugants were only recovered from mice without inoculation of food microbes. A significantly higher survival rate was in mice with vs. without inoculation of food microbes. The results suggest that the food microbes may compete with both the donor and recipient Salmonella, limit their growth and reduce transmission of the β-lactam resistance gene in the mouse gut.

Keywords: antibiotic resistance, gene transfer, gut microbiota, Salmonella infection

Procedia PDF Downloads 39
2940 On Tarski’s Type Theorems for L-Fuzzy Isotone and L-Fuzzy Relatively Isotone Maps on L-Complete Propelattices

Authors: František Včelař, Zuzana Pátíková

Abstract:

Recently a new type of very general relational structures, the so called (L-)complete propelattices, was introduced. These significantly generalize complete lattices and completely lattice L-ordered sets, because they do not assume the technically very strong property of transitivity. For these structures also the main part of the original Tarski’s fixed point theorem holds for (L-fuzzy) isotone maps, i.e., the part which concerns the existence of fixed points and the structure of their set. In this paper, fundamental properties of (L-)complete propelattices are recalled and the so called L-fuzzy relatively isotone maps are introduced. For these maps it is proved that they also have fixed points in L-complete propelattices, even if their set does not have to be of an awaited analogous structure of a complete propelattice.

Keywords: fixed point, L-complete propelattice, L-fuzzy (relatively) isotone map, residuated lattice, transitivity

Procedia PDF Downloads 254
2939 Difference in Virulence Factor Genes Between Transient and Persistent Streptococcus Uberis Intramammary Infection in Dairy Cattle

Authors: Anyaphat Srithanasuwan, Noppason Pangprasit, Montira Intanon, Phongsakorn Chuammitri, Witaya Suriyasathaporn, Ynte H. Schukken

Abstract:

Streptococcus uberis is one of the most common mastitis-causing pathogens, with a wide range of intramammary infection (IMI) durations and pathogenicity. This study aimed to compare shared or unique virulence factor gene clusters distinguishing persistent and transient strains of S. uberis. A total of 139 S. uberis strains were isolated from three small-holder dairy herds with a high prevalence of S. uberis mastitis. The duration of IMI was used to categorize bacteria into two groups: transient and persistent strains with an IMI duration of less than 1 month and longer than 2 months, respectively. Six representative S. uberis strains, three from each group (transience and persistence) were selected for analysis. All transient strains exhibited multi-locus sequence types (MLST), indicating a highly diverse population of transient S. uberis. In contrast, MLST of persistent strains was available in an online database (pubMLST). Identification of virulence genes was performed using whole-genome sequencing (WGS) data. Differences in genomic size and number of virulent genes were found. For example, the BCA gene or alpha-c protein and the gene associated with capsule formation (hasAB), found in persistent strains, are important for attachment and invasion, as well as the evasion of the antimicrobial mechanisms and survival persistence, respectively. These findings suggest a genetic-level difference between the two strain types. Consequently, a comprehensive study of 139 S. uberis isolates will be conducted to perform an in-depth genetic assessment through WGS analysis on an Illumina platform.

Keywords: Streptococcus Uberis, mastitis, whole genome sequence, intramammary infection, persistent S. Uberis, transient s. Uberis

Procedia PDF Downloads 20
2938 From Genome to Field: Applying Genome Wide Association Study for Sustainable Ascochyta Blight Management in Faba Beans

Authors: Rabia Faridi, Rizwana Maqbool, Umara Sahar Rana, Zaheer Ahmad

Abstract:

Climate change impacts agriculture, notably in Germany, where spring faba beans predominate. However, improved winter hardiness aligns with milder winters, enabling autumn-sown varieties. Genetic resistance to Ascochyta blight is vital for crop integration. Traditional breeding faces challenges due to complex inheritance. This study assessed 224 homozygous faba bean lines for Ascochyta resistance traits. To achieve h²>70%, 12 replicates were required (realized h²=87%). Genetic variation and strong trait correlations were observed. Five lines outperformed 29H, while three were highly susceptible. A genome-wide association study (GWAS) with 188 inbred lines and 2058 markers, including 17 guide SNP markers, identified 12 markers associated with resistance traits, potentially indicating new resistance genes. One guide marker (Vf-Mt1g014230-001) on chromosome III validated a known QTL. The guided marker approach complemented GWAS, facilitating marker-assisted selection for Ascochyta resistance. The Göttingen Winter Bean Population offers promise for resistance breeding.

Keywords: genome wide association studies, marker assisted breeding, faba bean, ascochyta blight

Procedia PDF Downloads 30
2937 RNA-Seq Analysis of the Wild Barley (H. spontaneum) Leaf Transcriptome under Salt Stress

Authors: Ahmed Bahieldin, Ahmed Atef, Jamal S. M. Sabir, Nour O. Gadalla, Sherif Edris, Ahmed M. Alzohairy, Nezar A. Radhwan, Mohammed N. Baeshen, Ahmed M. Ramadan, Hala F. Eissa, Sabah M. Hassan, Nabih A. Baeshen, Osama Abuzinadah, Magdy A. Al-Kordy, Fotouh M. El-Domyati, Robert K. Jansen

Abstract:

Wild salt-tolerant barley (Hordeum spontaneum) is the ancestor of cultivated barley (Hordeum vulgare or H. vulgare). Although the cultivated barley genome is well studied, little is known about genome structure and function of its wild ancestor. In the present study, RNA-Seq analysis was performed on young leaves of wild barley treated with salt (500 mM NaCl) at four different time intervals. Transcriptome sequencing yielded 103 to 115 million reads for all replicates of each treatment, corresponding to over 10 billion nucleotides per sample. Of the total reads, between 74.8 and 80.3% could be mapped and 77.4 to 81.7% of the transcripts were found in the H. vulgare unigene database (unigene-mapped). The unmapped wild barley reads for all treatments and replicates were assembled de novo and the resulting contigs were used as a new reference genome. This resultedin94.3 to 95.3%oftheunmapped reads mapping to the new reference. The number of differentially expressed transcripts was 9277, 3861 of which were uni gene-mapped. The annotated unigene- and de novo-mapped transcripts (5100) were utilized to generate expression clusters across time of salt stress treatment. Two-dimensional hierarchical clustering classified differential expression profiles into nine expression clusters, four of which were selected for further analysis. Differentially expressed transcripts were assigned to the main functional categories. The most important groups were ‘response to external stimulus’ and ‘electron-carrier activity’. Highly expressed transcripts are involved in several biological processes, including electron transport and exchanger mechanisms, flavonoid biosynthesis, reactive oxygen species (ROS) scavenging, ethylene production, signaling network and protein refolding. The comparisons demonstrated that mRNA-Seq is an efficient method for the analysis of differentially expressed genes and biological processes under salt stress.

Keywords: electron transport, flavonoid biosynthesis, reactive oxygen species, rnaseq

Procedia PDF Downloads 359
2936 Allele Mining for Rice Sheath Blight Resistance by Whole-Genome Association Mapping in a Tail-End Population

Authors: Naoki Yamamoto, Hidenobu Ozaki, Taiichiro Ookawa, Youming Liu, Kazunori Okada, Aiping Zheng

Abstract:

Rice sheath blight is one of the destructive fungal diseases in rice. We have thought that rice sheath blight resistance is a polygenic trait. Host-pathogen interactions and secondary metabolites such as lignin and phytoalexins are likely to be involved in defense against R. solani. However, to our knowledge, it is still unknown how sheath blight resistance can be enhanced in rice breeding. To seek for an alternative genetic factor that contribute to sheath blight resistance, we mined relevant allelic variations from rice core collections created in Japan. Based on disease lesion length on detached leaf sheath, we selected 30 varieties of the top tail-end and the bottom tail-end, respectively, from the core collections to perform genome-wide association mapping. Re-sequencing reads for these varieties were used for calling single nucleotide polymorphisms among the 60 varieties to create a SNP panel, which contained 1,137,131 homozygous variant sites after filitering. Association mapping highlighted a locus on the long arm of chromosome 11, which is co-localized with three sheath blight QTLs, qShB11-2-TX, qShB11, and qSBR-11-2. Based on the localization of the trait-associated alleles, we identified an ankyryn repeat-containing protein gene (ANK-M) as an uncharacterized candidate factor for rice sheath blight resistance. Allelic distributions for ANK-M in the whole rice population supported the reliability of trait-allele associations. Gene expression characteristics were checked to evaluiate the functionality of ANK-M. Since an ANK-M homolog (OsPIANK1) in rice seems a basal defense regulator against rice blast and bacterial leaf blight, ANK-M may also play a role in the rice immune system.

Keywords: allele mining, GWAS, QTL, rice sheath blight

Procedia PDF Downloads 47
2935 De Novo Assembly and Characterization of the Transcriptome during Seed Development, and Generation of Genic-SSR Markers in Pomegranate (Punica granatum L.)

Authors: Ozhan Simsek, Dicle Donmez, Burhanettin Imrak, Ahsen Isik Ozguven, Yildiz Aka Kacar

Abstract:

Pomegranate (Punica granatum L.) is known to be one of the oldest edible fruit tree species, with a wide geographical global distribution. Fruits from the two defined varieties (Hicaznar and 33N26) were taken at intervals after pollination and fertilization at different sizes. Seed samples were used for transcriptome sequencing. Primary sequencing was produced by Illumina Hi-Seq™ 2000. Firstly, we had raw reads, and it was subjected to quality control (QC). Raw reads were filtered into clean reads and aligned to the reference sequences. De novo analysis was performed to detect genes expressed in seeds of pomegranate varieties. We performed downstream analysis to determine differentially expressed genes. We generated about 27.09 gb bases in total after Illumina Hi-Seq sequencing. All samples were assembled together, we got 59,264 Unigenes, the total length, average length, N50, and GC content of Unigenes are 84.547.276 bp, 1.426 bp, 2,137 bp, and 46.20 %, respectively. Unigenes were annotated with 7 functional databases, finally, 42.681(NR: 72.02%), 39.660 (NT: 66.92%), 30.790 (Swissprot: 51.95%), 20.212 (COG: 34.11%), 27.689 (KEGG: 46.72%), 12.328 (GO: 20.80%), and 33,833 (Interpro: 57.09%) Unigenes were annotated. With functional annotation results, we detected 42.376 CDS, and 4.999 SSR distribute on 16.143 Unigenes.

Keywords: next generation sequencing, SSR, RNA-Seq, Illumina

Procedia PDF Downloads 209
2934 Systematic Identification of Noncoding Cancer Driver Somatic Mutations

Authors: Zohar Manber, Ran Elkon

Abstract:

Accumulation of somatic mutations (SMs) in the genome is a major driving force of cancer development. Most SMs in the tumor's genome are functionally neutral; however, some cause damage to critical processes and provide the tumor with a selective growth advantage (termed cancer driver mutations). Current research on functional significance of SMs is mainly focused on finding alterations in protein coding sequences. However, the exome comprises only 3% of the human genome, and thus, SMs in the noncoding genome significantly outnumber those that map to protein-coding regions. Although our understanding of noncoding driver SMs is very rudimentary, it is likely that disruption of regulatory elements in the genome is an important, yet largely underexplored mechanism by which somatic mutations contribute to cancer development. The expression of most human genes is controlled by multiple enhancers, and therefore, it is conceivable that regulatory SMs are distributed across different enhancers of the same target gene. Yet, to date, most statistical searches for regulatory SMs have considered each regulatory element individually, which may reduce statistical power. The first challenge in considering the cumulative activity of all the enhancers of a gene as a single unit is to map enhancers to their target promoters. Such mapping defines for each gene its set of regulating enhancers (termed "set of regulatory elements" (SRE)). Considering multiple enhancers of each gene as one unit holds great promise for enhancing the identification of driver regulatory SMs. However, the success of this approach is greatly dependent on the availability of comprehensive and accurate enhancer-promoter (E-P) maps. To date, the discovery of driver regulatory SMs has been hindered by insufficient sample sizes and statistical analyses that often considered each regulatory element separately. In this study, we analyzed more than 2,500 whole-genome sequence (WGS) samples provided by The Cancer Genome Atlas (TCGA) and The International Cancer Genome Consortium (ICGC) in order to identify such driver regulatory SMs. Our analyses took into account the combinatorial aspect of gene regulation by considering all the enhancers that control the same target gene as one unit, based on E-P maps from three genomics resources. The identification of candidate driver noncoding SMs is based on their recurrence. We searched for SREs of genes that are "hotspots" for SMs (that is, they accumulate SMs at a significantly elevated rate). To test the statistical significance of recurrence of SMs within a gene's SRE, we used both global and local background mutation rates. Using this approach, we detected - in seven different cancer types - numerous "hotspots" for SMs. To support the functional significance of these recurrent noncoding SMs, we further examined their association with the expression level of their target gene (using gene expression data provided by the ICGC and TCGA for samples that were also analyzed by WGS).

Keywords: cancer genomics, enhancers, noncoding genome, regulatory elements

Procedia PDF Downloads 81
2933 Revealing the Genome Based Biosynthetic Potential of a Streptomyces sp. Isolate BR123 Presenting Broad Spectrum Antimicrobial Activities

Authors: Neelma Ashraf

Abstract:

Actinomycetes, particularly genus Streptomyces is of great importance due to their role in the discovery of new natural products, particularly antimicrobial secondary metabolites in the medicinal science and biotechnology industry. Different Streptomyces strains were isolated from Helianthus annuus plants and tested for antibacterial and antifungal activities. The most promising five strains were chosen for further investigation, and growth conditions for antibiotic synthesis were optimised. The supernatants were extracted in different solvents, and the extracted products were analyzed using liquid chromatography-mass spectrometry (LC-MS) and biological testing. From one of the potent strains Streptomyces globusus sp. BR123, a compound lavendamycin was identified using these analytical techniques. In addition, this potent strain also produces a strong antifungal polyene compound with a quasimolecular ion of 2072. Streptomyces sp. BR123 was genome sequenced because of its promising antimicrobial potential in order to identify the gene cluster responsible for analyzed compound “lavendamycin”. The genome analysis yielded candidate genes responsible for the production of this potent compound. The genome sequence of 8.15 Mb of Streptomyces sp. isolate BR123 with a GC content of 72.63% and 8103 protein coding genes was attained. Many antimicrobial, antiparasitic, and anticancerous compounds were detected through multiple biosynthetic gene clusters predicted by in-Silico analysis. Though, the novelty of metabolites was determined through the insignificant resemblance with known biosynthetic gene clusters. The current study gives insight into the bioactive potential of Streptomyces sp. isolate BR123 with respect to the synthesis of bioactive secondary metabolites through genomic and spectrometric analysis. Moreover, the comparative genome study revealed the connection of isolate BR123 with other Streptomyces strains, which could expand the knowledge of this genus and the mechanism involved in the discovery of new antimicrobial metabolites.

Keywords: streptomyces, secondary metabolites, genome, biosynthetic gene clusters, high performance liquid chromatography, mass spectrometry

Procedia PDF Downloads 41
2932 A Biophysical Model of CRISPR/Cas9 on- and off-Target Binding for Rational Design of Guide RNAs

Authors: Iman Farasat, Howard M. Salis

Abstract:

The CRISPR/Cas9 system has revolutionized genome engineering by enabling site-directed and high-throughput genome editing, genome insertion, and gene knockdowns in several species, including bacteria, yeast, flies, worms, and human cell lines. This technology has the potential to enable human gene therapy to treat genetic diseases and cancer at the molecular level; however, the current CRISPR/Cas9 system suffers from seemingly sporadic off-target genome mutagenesis that prevents its use in gene therapy. A comprehensive mechanistic model that explains how the CRISPR/Cas9 functions would enable the rational design of the guide-RNAs responsible for target site selection while minimizing unexpected genome mutagenesis. Here, we present the first quantitative model of the CRISPR/Cas9 genome mutagenesis system that predicts how guide-RNA sequences (crRNAs) control target site selection and cleavage activity. We used statistical thermodynamics and law of mass action to develop a five-step biophysical model of cas9 cleavage, and examined it in vivo and in vitro. To predict a crRNA's binding specificities and cleavage rates, we then compiled a nearest neighbor (NN) energy model that accounts for all possible base pairings and mismatches between the crRNA and the possible genomic DNA sites. These calculations correctly predicted crRNA specificity across 5518 sites. Our analysis reveals that cas9 activity and specificity are anti-correlated, and, the trade-off between them is the determining factor in performing an RNA-mediated cleavage with minimal off-targets. To find an optimal solution, we first created a scheme of safe-design criteria for Cas9 target selection by systematic analysis of available high throughput measurements. We then used our biophysical model to determine the optimal Cas9 expression levels and timing that maximizes on-target cleavage and minimizes off-target activity. We successfully applied this approach in bacterial and mammalian cell lines to reduce off-target activity to near background mutagenesis level while maintaining high on-target cleavage rate.

Keywords: biophysical model, CRISPR, Cas9, genome editing

Procedia PDF Downloads 377
2931 Blackcurrant-Associated Rhabdovirus: New Pathogen for Blackcurrants in the Baltic Sea Region

Authors: Gunta Resevica, Nikita Zrelovs, Ivars Silamikelis, Ieva Kalnciema, Helvijs Niedra, Gunārs Lācis, Toms Bartulsons, Inga Moročko-Bičevska, Arturs Stalažs, Kristīne Drevinska, Andris Zeltins, Ina Balke

Abstract:

Newly discovered viruses provide novel knowledge for basic phytovirus research, serve as tools for biotechnology and can be helpful in identification of epidemic outbreaks. Blackcurrant-associated rhabdovirus (BCaRV) have been discovered in USA germplasm collection samples from Russia and France. As it was reported in one accession originating from France it is unclear whether the material was already infected when it entered in the USA or it became infected while in collection in the USA. Due to that BCaRV was definite as non-EU viruses. According to ICTV classification BCaRV is representative of Blackcurrant betanucleorhabdovirus specie in genus Betanucleorhabdovirus (family Rhabdoviridae). Nevertheless, BCaRV impact on the host, transmission mechanisms and vectors are still unknown. In RNA-seq data pool from Ribes plants resistance gene study by high throughput sequencing (HTS) we observed differences between sample group gene transcript heat maps. Additional analysis of the whole data pool (total 393660492 of 150 bp long read pairs) by rnaSPAdes v 3.13.1 resulted into 14424 bases long contig with an average coverage of 684x with shared 99.5% identity to the previously reported first complete genome of BCaRV (MF543022.1) using EMBOSS Needle. This finding proved BCaRV presence in EU and indicated that it might be relevant pathogen. In this study leaf tissue from twelve asymptomatic blackcurrant cv. Mara Eglite plants (negatively tested for blackcurrant reversion virus (BRV)) from Dobele, Latvia (56°36'31.9"N, 23°18'13.6"E) was collected and used for total RNA isolation with RNeasy Plant Mini Kit with minor modifications, followed by plant rRNA removal by a RiboMinus Plant Kit for RNA-Seq. HTS libraries were prepared using MGI Easy RNA Directional Library Prep Set for 16 reactions to obtain 150 bp pair-end reads. Libraries were pooled, circularized and cleaned and sequenced on DNBSEQ-G400 using PE150 flow cell. Additionally, all samples were tested by RT-PCR, and amplicons were directly sequenced by Sanger-based method. The contig representing the genome of BCaRV isolate Mara Eglite was deposited at European Nucleotide Archive under accession number OU015520. Those findings indicate a second evidence on the presence of this particular virus in the EU and further research on BCaRV prevalence in Ribes from other geographical areas should be performed. As there are no information on BCaRV impact on the host this should be investigated, regarding the fact that mixed infections with BRV and nucleorhabdoviruses are reported.

Keywords: BCaRV, Betanucleorhabdovirus, Ribes, RNA-seq

Procedia PDF Downloads 159
2930 Identification and Characterization of Antimicrobial Peptides Isolated from Entophytic Bacteria and Their Activity against Multidrug-Resistance Gram-Negative Bacteria in South Korea

Authors: Maryam Beiranvand

Abstract:

Multi-drug resistance in various microorganisms has increased globally in many healthcare facilities. Less effective antimicrobial activity of drug therapies for infection control becomes trouble. Since 1980, no new type of antimicrobial drug has been identified, even though combinations of antibiotic drugs have been discovered almost every decade. Between 1981 and 2006, over 70% of novel pharmaceuticals and chemical agents came from natural sources. Microorganisms have yielded almost 22,000 natural compounds. The identification of antimicrobial components from endophytes bacteria could help overcome the threat posed by multi-drug resistant strains. The project aims to analyze and identify antimicrobial peptides isolated from entophytic bacteria and their activity against multidrug-resistant Gram-negative bacteria in South Korea. Endophytic Paenibacillus polymyxa. 4G3 isolated from the plant, Gynura procumbery exhibited considerable antimicrobial activity against Methicillin-resistant Staphylococcus aureus, and Escherichia coli. The Rapid Annotations using Subsystems Technology showed that the total size of the draft genome was 5,739,603bp, containing 5178 genes with 45.8% G+C content. Genome annotation using antiSMASH version 6.0.0 was performed, which predicted the most common types of non-ribosomal peptide synthetase (NRPS) and polyketide synthase (PKS). In this study, diethyl aminoethyl cellulose (DEAEC) resin was used as the first step in purifying for unknown peptides, and then the target protein was identified using hydrophilic and hydrophobic solutions, optimal pH, and step-by-step tests for antimicrobial activity. This crude was subjected to C18 chromatography and elution with 0, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100% methanol, respectively. Only the fraction eluted with 20% -60% methanol demonstrated good antimicrobial activity against MDR E. coli. The concentration of the active fragment was measured by the Brad-ford test, and Protein A280 - Thermo Fisher Scientific at the end by examining the SDS PAGE Resolving Gel, 10% Acrylamide and purity were confirmed. Our study showed that, based on the combined results of the analysis and purification. P polymyxa. 4G3 has a high potential exists for producing novel functions of polymyxin E and bacitracin against bacterial pathogens.

Keywords: endophytic bacteria, antimicrobial activity, antimicrobial peptide, whole genome sequencing analysis, multi -drug resistance gram negative bacteria

Procedia PDF Downloads 46
2929 Generalized Correlation Coefficient in Genome-Wide Association Analysis of Cognitive Ability in Twins

Authors: Afsaneh Mohammadnejad, Marianne Nygaard, Jan Baumbach, Shuxia Li, Weilong Li, Jesper Lund, Jacob v. B. Hjelmborg, Lene Christensen, Qihua Tan

Abstract:

Cognitive impairment in the elderly is a key issue affecting the quality of life. Despite a strong genetic background in cognition, only a limited number of single nucleotide polymorphisms (SNPs) have been found. These explain a small proportion of the genetic component of cognitive function, thus leaving a large proportion unaccounted for. We hypothesize that one reason for this missing heritability is the misspecified modeling in data analysis concerning phenotype distribution as well as the relationship between SNP dosage and the phenotype of interest. In an attempt to overcome these issues, we introduced a model-free method based on the generalized correlation coefficient (GCC) in a genome-wide association study (GWAS) of cognitive function in twin samples and compared its performance with two popular linear regression models. The GCC-based GWAS identified two genome-wide significant (P-value < 5e-8) SNPs; rs2904650 near ZDHHC2 on chromosome 8 and rs111256489 near CD6 on chromosome 11. The kinship model also detected two genome-wide significant SNPs, rs112169253 on chromosome 4 and rs17417920 on chromosome 7, whereas no genome-wide significant SNPs were found by the linear mixed model (LME). Compared to the linear models, more meaningful biological pathways like GABA receptor activation, ion channel transport, neuroactive ligand-receptor interaction, and the renin-angiotensin system were found to be enriched by SNPs from GCC. The GCC model outperformed the linear regression models by identifying more genome-wide significant genetic variants and more meaningful biological pathways related to cognitive function. Moreover, GCC-based GWAS was robust in handling genetically related twin samples, which is an important feature in handling genetic confounding in association studies.

Keywords: cognition, generalized correlation coefficient, GWAS, twins

Procedia PDF Downloads 98
2928 Exploring MPI-Based Parallel Computing in Analyzing Very Large Sequences

Authors: Bilal Wajid, Erchin Serpedin

Abstract:

The health industry is aiming towards personalized medicine. If the patient’s genome needs to be sequenced it is important that the entire analysis be completed quickly. This paper explores use of parallel computing to analyze very large sequences. Two cases have been considered. In the first case, the sequence is kept constant and the effect of increasing the number of MPI-based processes is evaluated in terms of execution time, speed and efficiency. In the second case the number of MPI-based processes have been kept constant whereas, the length of the sequence was increased.

Keywords: parallel computing, alignment, genome assembly, alignment

Procedia PDF Downloads 239
2927 Evolution of DNA-Binding With-One-Finger Transcriptional Factor Family in Diploid Cotton Gossypium raimondii

Authors: Waqas Shafqat Chattha, Muhammad Iqbal, Amir Shakeel

Abstract:

Transcriptional factors are proteins that play a vital role in regulating the transcription of target genes in different biological processes and are being widely studied in different plant species. In the current era of genomics, plant genomes sequencing has directed to the genome-wide identification, analyses and categorization of diverse transcription factor families and hence provide key insights into their structural as well as functional diversity. The DNA-binding with One Finger (DOF) proteins belongs to C2-C2-type zinc finger protein family. DOF proteins are plant-specific transcription factors implicated in diverse functions including seed maturation and germination, phytohormone signalling, light-mediated gene regulation, cotton-fiber elongation and responses of the plant to biotic as well as abiotic stresses. In this context, a genome-wide in-silico analysis of DOF TF family in diploid cotton species i.e. Gossypium raimondii has enabled us to identify 55 non-redundant genes encoding DOF proteins renamed as GrDofs (Gossypium raimondii Dof). Gene distribution studies have shown that all of the GrDof genes are unevenly distributed across 12 out of 13 G. raimondii chromosomes. The gene structure analysis illustrated that 34 out of 55 GrDof genes are intron-less while remaining 21 genes have a single intron. Protein sequence-based phylogenetic analysis of putative 55 GrDOFs has divided these proteins into 5 major groups with various paralogous gene pairs. Molecular evolutionary studies aided with the conserved domain as well as gene structure analysis suggested that segmental duplications were the principal contributors for the expansion of Dof genes in G. raimondii.

Keywords: diploid cotton , G. raimondii, phylogenetic analysis, transcription factor

Procedia PDF Downloads 119
2926 Ribosomal Protein S4 Gene: Exploring the Presence in Syrian Strain of Leishmania Tropica Genome, Sequencing it and Evaluating Immune Response of pCI-S4 DNA Vaccine

Authors: Alyaa Abdlwahab

Abstract:

Cutaneous leishmaniasis represents a serious health problem in Syria; this problem has become noticeably aggravated after the civil war in the country. Leishmania tropica parasite is the main cause of cutaneous leishmaniasis in Syria. In order to control the disease, we need an effective vaccine against leishmania parasite. DNA vaccination remains one of the favorable approaches that have been used to face cutaneous leishmaniasis. Ribosomal protein S4 is responsible for important roles in Leishmania parasite life. DNA vaccine based on S4 gene has been used against infections by many species of Leishmania parasite but leishmania tropica parasite, so this gene represents a good candidate for DNA vaccine construction. After proving the existence of ribosomal protein S4 gene in a Syrian strain of Leishmania tropica (LCED Syrian 01), sequencing it and cloning it into pCI plasmid, BALB/C mice were inoculated with pCI-S4 DNA vaccine. The immune response was determined by monitoring the lesion progression in inoculated BALB/C mice for six weeks after challenging mice with Leishmania tropica (LCED Syrian 01) parasites. IL-12, IFN-γ, and IL-4 were quantified in draining lymph nodes (DLNa) of the immunized BALB/C mice by using the RT-qPCR technique. The parasite burden was calculated in the final week for the footpad lesion and the DLNs of the mice. This study proved the existence and the expression of the ribosomal protein S4 gene in Leishmania tropica (LCED Syrian 01) promastigotes. The sequence of ribosomal protein cDNA S4 gene was determined and published in Genbank; the gene size was 822 bp. Expression was also demonstrated at the level of cDNA. Also, this study revealed that pCI-S4 DNA vaccine induces TH1\TH2 response in immunized mice; this response prevents partially developing a dermal lesion of Leishmania.

Keywords: ribosomal protein S4, DNA vaccine, Leishmania tropica, BALB\c

Procedia PDF Downloads 106
2925 Novel Coprocessor for DNA Sequence Alignment in Resequencing Applications

Authors: Atef Ibrahim, Hamed Elsimary, Abdullah Aljumah, Fayez Gebali

Abstract:

This paper presents a novel semi-systolic array architecture for an optimized parallel sequence alignment algorithm. This architecture has the advantage that it can be modified to be reused for multiple pass processing in order to increase the number of processing elements that can be packed into a single FPGA and to increase the number of sequences that can be aligned in parallel in a single FPGA. This resolves the potential problem of many FPGA resources left unused for designs that have large values of short read length. When using the previously published conventional hardware design. FPGA implementation results show that, for large values of short read lengths (M>128), the proposed design has a slightly higher speed up and FPGA utilization over the the conventional one.

Keywords: bioinformatics, genome sequence alignment, re-sequencing applications, systolic array

Procedia PDF Downloads 494
2924 DNA Hypomethylating Agents Induced Histone Acetylation Changes in Leukemia

Authors: Sridhar A. Malkaram, Tamer E. Fandy

Abstract:

Purpose: 5-Azacytidine (5AC) and decitabine (DC) are DNA hypomethylating agents. We recently demonstrated that both drugs increase the enzymatic activity of the histone deacetylase enzyme SIRT6. Accordingly, we are comparing the changes H3K9 acetylation changes in the whole genome induced by both drugs using leukemia cells. Description of Methods & Materials: Mononuclear cells from the bone marrow of six de-identified naive acute myeloid leukemia (AML) patients were cultured with either 500 nM of DC or 5AC for 72 h followed by ChIP-Seq analysis using a ChIP-validated acetylated-H3K9 (H3K9ac) antibody. Chip-Seq libraries were prepared from treated and untreated cells using SMARTer ThruPLEX DNA- seq kit (Takara Bio, USA) according to the manufacturer’s instructions. Libraries were purified and size-selected with AMPure XP beads at 1:1 (v/v) ratio. All libraries were pooled prior to sequencing on an Illumina HiSeq 1500. The dual-indexed single-read Rapid Run was performed with 1x120 cycles at 5 pM final concentration of the library pool. Sequence reads with average Phred quality < 20, with length < 35bp, PCR duplicates, and those aligning to blacklisted regions of the genome were filtered out using Trim Galore v0.4.4 and cutadapt v1.18. Reads were aligned to the reference human genome (hg38) using Bowtie v2.3.4.1 in end-to-end alignment mode. H3K9ac enriched (peak) regions were identified using diffReps v1.55.4 software using input samples for background correction. The statistical significance of differential peak counts was assessed using a negative binomial test using all individuals as replicates. Data & Results: The data from the six patients showed significant (Padj<0.05) acetylation changes at 925 loci after 5AC treatment versus 182 loci after DC treatment. Both drugs induced H3K9 acetylation changes at different chromosomal regions, including promoters, coding exons, introns, and distal intergenic regions. Ten common genes showed H3K9 acetylation changes by both drugs. Approximately 84% of the genes showed an H3K9 acetylation decrease by 5AC versus 54% only by DC. Figures 1 and 2 show the heatmaps for the top 100 genes and the 99 genes showing H3K9 acetylation decrease after 5AC treatment and DC treatment, respectively. Conclusion: Despite the similarity in hypomethylating activity and chemical structure, the effect of both drugs on H3K9 acetylation change was significantly different. More changes in H3K9 acetylation were observed after 5 AC treatments compared to DC. The impact of these changes on gene expression and the clinical efficacy of these drugs requires further investigation.

Keywords: DNA methylation, leukemia, decitabine, 5-Azacytidine, epigenetics

Procedia PDF Downloads 117
2923 Full Length Transcriptome Sequencing and Differential Expression Gene Analysis of Hybrid Larch under PEG Stress

Authors: Zhang Lei, Zhao Qingrong, Wang Chen, Zhang Sufang, Zhang Hanguo

Abstract:

Larch is the main afforestation and timber tree species in Northeast China, and drought is one of the main factors limiting the growth of Larch and other organisms in Northeast China. In order to further explore the mechanism of Larch drought resistance, PEG was used to simulate drought stress. The full-length sequencing of Larch embryogenic callus under PEG simulated drought stress was carried out by combining Illumina-Hiseq and SMRT-seq. A total of 20.3Gb clean reads and 786492 CCS reads were obtained from the second and third generation sequencing. The de-redundant transcript sequences were predicted by lncRNA, 2083 lncRNAs were obtained, and the target genes were predicted, and a total of 2712 target genes were obtained. The de-redundant transcripts were further screened, and 1654 differentially expressed genes (DEGs )were obtained. Among them, different DEGs respond to drought stress in different ways, such as oxidation-reduction process, starch and sucrose metabolism, plant hormone pathway, carbon metabolism, lignin catabolic/biosynthetic process and so on. This study provides basic full-length sequencing data for the study of Larch drought resistance, and excavates a large number of DEGs in response to drought stress, which helps us to further understand the function of Larch drought resistance genes and provides a reference for in-depth analysis of the molecular mechanism of Larch drought resistance.

Keywords: larch, drought stress, full-length transcriptome sequencing, differentially expressed genes

Procedia PDF Downloads 125