Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 188

Search results for: centrifugal compressor volute

188 Effect of Volute Tongue Shape and Position on Performance of Turbo Machinery Compressor

Authors: Anuj Srivastava, Kuldeep Kumar


This paper proposes a numerical study of volute tongue design, which affects the centrifugal compressor operating range and pressure recovery. Increased efficiency has been the traditional importance of compressor design. However, the increased operating range has become important in an age of ever-increasing productivity and energy costs in the turbomachinery industry. Efficiency and overall operating range are the two most important parameters studied to evaluate the aerodynamic performance of centrifugal compressor. Volute is one of the components that have significant effect on these two parameters. Choice of volute tongue geometry has major role in compressor performance, also affects performance map. The author evaluates the trade-off on using pull-back tongue geometry on centrifugal compressor performance. In present paper, three different tongue positions and shapes are discussed. These designs are compared in terms of pressure recovery coefficient, pressure loss coefficient, and stable operating range. The detailed flow structures for various volute geometries and pull back angle near tongue are studied extensively to explore the fluid behavior. The viscous Navier-Stokes equations are used to simulate the flow inside the volute. The numerical calculations are compared with thermodynamic 1-D calculations. Author concludes that the increment in compression ratio accompanies with more uniform pressure distribution in the modified tongue shape and location, a uniform static pressure around the circumferential which build a more uniform flow in the impeller and diffuser. Also, the blockage at the tongue of the volute was causing circumferentially nonuniformed pressure along the volute. This nonuniformity may lead impeller and diffuser to operate unstably. However, it is not the volute that directly controls the stall.

Keywords: centrifugal compressor volute, tongue geometry, pull-back, compressor performance, flow instability

Procedia PDF Downloads 82
187 A Comparison of Design and Off-Design Performances of a Centrifugal Compressor

Authors: Zeynep Aytaç, Nuri Yücel


Today, as the need for high efficiency and fuel-efficient engines have increased, centrifugal compressor designs are expected to be high-efficient and have high-pressure ratios than ever. The present study represents a design methodology of centrifugal compressor placed in a mini jet engine for the design and off-design points with the utilization of computational fluid dynamics (CFD) and compares the performance characteristics at the mentioned two points. Although the compressor is expected to provide the required specifications at the design point, it is known that it is important for the design to deliver the required parameters at the off-design point also as it will not operate at the design point always. It was observed that the obtained mass flow rate, pressure ratio, and efficiency values are within the limits of the design specifications for the design and off-design points. Despite having different design inputs for the mentioned two points, they reveal similar flow characteristics in the general frame.

Keywords: centrifugal compressor, computational fluid dynamics, design point, off-design point

Procedia PDF Downloads 42
186 Effect of Surface Quality of 3D Printed Impeller on the Performance of a Centrifugal Compressor

Authors: Nader Zirak, Mohammadali Shirinbayan, Abbas Tcharkhtchi


Additive manufacturing is referred to as a method for fabrication of parts with a mechanism of layer by layer. Suitable economic efficiency and the ability to fabrication complex parts have made this method the focus of studies and industry. In recent years many studies focused on the fabrication of impellers, which is referred to as a key component of turbomachinery, through this technique. This study considers the important effect of the final surface quality of the impeller on the performance of the system, investigates the fabricated printed rotors through the fused deposition modeling with different process parameters. In this regard, the surface of each impeller was analyzed through the 3D scanner. The results show the vital role of surface quality on the final performance of the centrifugal compressor.

Keywords: additive manufacturing, impeller, centrifugal compressor, performance

Procedia PDF Downloads 57
185 Lightweight High-Pressure Ratio Centrifugal Compressor for Vehicles-Investigation of Pipe Diffuser Designs by Means of CFD

Authors: Eleni Ioannou, Pascal Nucara, Keith Pullen


The subject of this paper is the investigation of the best efficiency design of a compressor diffuser applied in new lightweight, ultra efficient micro-gas turbine engines for vehicles. The Computational Fluid Dynamics (CFD) results are obtained utilizing steady state simulations for a wedge and an ”oval” type pipe diffuser in an effort to identify the beneficial effects of the pipe diffuser design. The basic flow features are presented with particular focus on the optimization of the pipe diffuser leading to higher efficiencies for the compressor stage. The optimised pipe diffuser is designed to exploit the 3D freedom enabled by Selective Laser Melting, hence purposely involves an investigation of geometric characteristics that do not follow the traditional diffuser concept.

Keywords: CFD, centrifugal compressor, micro-gas turbine, pipe diffuser, SLM, wedge diffuser

Procedia PDF Downloads 327
184 Numerical and Experimental Investigation of Impeller Trimming on Fluid Flow inside a Centrifugal Pump

Authors: Rouhollah Torabi, Ashkan Chavoshi, Sheyda Almasi, Shima Almasi


In this paper the effect of impeller trim on centrifugal pump performance is studied and the most important effect which is decreasing the flow rate, differential head and efficiency is analyzed. For this case a low specific speed centrifugal pump is simulated with CFD. Total flow inside the pump including the secondary flow in sidewall gap which form internal leakage is modeled simultaneously in CFX software. The flow field in different area of pumps such as inside impeller, volute, balance holes and leakage through wear rings are studied. To validate the results experimental tests are done for various impeller diameters. Results also compared with analytic equations which predict pump performance with trimmed impeller.

Keywords: centrifugal pump, CFD, impeller, trim

Procedia PDF Downloads 332
183 Design Optimization of a Micro Compressor for Micro Gas Turbine Using Computational Fluid Dynamics

Authors: Kamran Siddique, Hiroyuki Asada, Yoshifumi Ogami


The use of Micro Gas Turbine (MGT) as the engine in Unmanned Aerobic Vehicles (UAVs) and power source in Robotics is widespread these days. Research has been conducted in the past decade or so to improve the performance of different components of MGT. This type of engine has interrelated components which have non-linear characteristics. Therefore, the overall engine performance depends on the individual engine element’s performance. Computational Fluid Dynamics (CFD) is one of the simulation method tools used to analyze or even optimize MGT system performance. In this study, the compressor of the MGT is designed, and performance optimization is being done using CFD. Performance of the micro compressor is improved in order to increase the overall performance of MGT. A high value of pressure ratio is to be achieved by studying the effect of change of different operating parameters like mass flow rate and revolutions per minute (RPM) and aerodynamical and geometrical parameters on the pressure ratio of the compressor. Two types of compressor designs are considered in this study; 3D centrifugal and ‘planar’ designs. For a 10 mm impeller, the planar model is the simplest compressor model with the ease in manufacturability. On the other hand, 3D centrifugal model, although more efficient, is very difficult to manufacture using current microfabrication resources. Therefore, the planar model is the best-suited model for a micro compressor. So. a planar micro compressor has been designed that has a good pressure ratio, and it is easy to manufacture using current microfabrication technologies. Future work is to fabricate the compressor to get experimental results and validate the theoretical model.

Keywords: computational fluid dynamics, microfabrication, MEMS, unmanned aerobic vehicles

Procedia PDF Downloads 66
182 Study of the Effect of the Contra-Rotating Component on the Performance of the Centrifugal Compressor

Authors: Van Thang Nguyen, Amelie Danlos, Richard Paridaens, Farid Bakir


This article presents a study of the effect of a contra-rotating component on the efficiency of centrifugal compressors. A contra-rotating centrifugal compressor (CRCC) is constructed using two independent rotors, rotating in the opposite direction and replacing the single rotor of a conventional centrifugal compressor (REF). To respect the geometrical parameters of the REF one, two rotors of the CRCC are designed, based on a single rotor geometry, using the hub and shroud length ratio parameter of the meridional contour. Firstly, the first rotor is designed by choosing a value of length ratio. Then, the second rotor is calculated to be adapted to the fluid flow of the first rotor according aerodynamics principles. In this study, four values of length ratios 0.3, 0.4, 0.5, and 0.6 are used to create four configurations CF1, CF2, CF3, and CF4 respectively. For comparison purpose, the circumferential velocity at the outlet of the REF and the CRCC are preserved, which means that the single rotor of the REF and the second rotor of the CRCC rotate with the same speed of 16000rpm. The speed of the first rotor in this case is chosen to be equal to the speed of the second rotor. The CFD simulation is conducted to compare the performance of the CRCC and the REF with the same boundary conditions. The results show that the configuration with a higher length ratio gives higher pressure rise. However, its efficiency is lower. An investigation over the entire operating range shows that the CF1 is the best configuration in this case. In addition, the CRCC can improve the pressure rise as well as the efficiency by changing the speed of each rotor independently. The results of changing the first rotor speed show with a 130% speed increase, the pressure ratio rises of 8.7% while the efficiency remains stable at the flow rate of the design operating point.

Keywords: centrifugal compressor, contra-rotating, interaction rotor, vacuum

Procedia PDF Downloads 64
181 Loading Factor Performance of a Centrifugal Compressor Impeller: Specific Features and Way of Modeling

Authors: K. Soldatova, Y. Galerkin


A loading factor performance is necessary for the modeling of centrifugal compressor gas dynamic performance curve. Measured loading factors are linear function of a flow coefficient at an impeller exit. The performance does not depend on the compressibility criterion. To simulate loading factor performances, the authors present two parameters: a loading factor at zero flow rate and an angle between an ordinate and performance line. The calculated loading factor performances of non-viscous are linear too and close to experimental performances. Loading factor performances of several dozens of impellers with different blade exit angles, blade thickness and number, ratio of blade exit/inlet height, and two different type of blade mean line configuration. There are some trends of influence, which are evident – comparatively small blade thickness influence, and influence of geometry parameters is more for impellers with bigger blade exit angles, etc. Approximating equations for both parameters are suggested. The next phase of work will be simulating of experimental performances with the suggested approximation equations as a base.

Keywords: loading factor performance, centrifugal compressor, impeller, modeling

Procedia PDF Downloads 263
180 Modern State of the Universal Modeling for Centrifugal Compressors

Authors: Y. Galerkin, K. Soldatova, A. Drozdov


The 6th version of Universal modeling method for centrifugal compressor stage calculation is described. Identification of the new mathematical model was made. As a result of identification the uniform set of empirical coefficients is received. The efficiency definition error is 0,86 % at a design point. The efficiency definition error at five flow rate points (except a point of the maximum flow rate) is 1,22 %. Several variants of the stage with 3D impellers designed by 6th version program and quasi three-dimensional calculation programs were compared by their gas dynamic performances CFD (NUMECA FINE TURBO). Performance comparison demonstrated general principles of design validity and leads to some design recommendations.

Keywords: compressor design, loss model, performance prediction, test data, model stages, flow rate coefficient, work coefficient

Procedia PDF Downloads 337
179 Aerodynamic Designing of Supersonic Centrifugal Compressor Stages

Authors: Y. Galerkin, A. Rekstin, K. Soldatova


Universal modeling method well proven for industrial compressors was applied for design of the high flow rate supersonic stage. Results were checked by ANSYS CFX and NUMECA Fine Turbo calculations. The impeller appeared to be very effective at transonic flow velocities. Stator elements efficiency is acceptable at design Mach numbers too. Their loss coefficient versus inlet flow angle performances correlates well with Universal modeling prediction. The impeller demonstrated ability of satisfactory operation at design flow rate. Supersonic flow behavior in the impeller inducer at the shroud blade to blade surface Φdes deserves additional study.

Keywords: centrifugal compressor stage, supersonic impeller, inlet flow angle, loss coefficient, return channel, shock wave, vane diffuser

Procedia PDF Downloads 404
178 A Compressor Map Optimizing Tool for Prediction of Compressor Off-Design Performance

Authors: Zhongzhi Hu, Jie Shen, Jiqiang Wang


A high precision aeroengine model is needed when developing the engine control system. Compared with other main components, the axial compressor is the most challenging component to simulate. In this paper, a compressor map optimizing tool based on the introduction of a modifiable β function is developed for FWorks (FADEC Works). Three parameters (d density, f fitting coefficient, k₀ slope of the line β=0) are introduced to the β function to make it modifiable. The comparison of the traditional β function and the modifiable β function is carried out for a certain type of compressor. The interpolation errors show that both methods meet the modeling requirements, while the modifiable β function can predict compressor performance more accurately for some areas of the compressor map where the users are interested in.

Keywords: beta function, compressor map, interpolation error, map optimization tool

Procedia PDF Downloads 183
177 Performance Improvement in a Micro Compressor for Micro Gas Turbine Using Computational Fluid Dynamics

Authors: Kamran Siddique, Hiroyuki Asada, Yoshifumi Ogami


Micro gas turbine (MGT) nowadays has a wide variety of applications from drones to hybrid electric vehicles. As microfabrication technology getting better, the size of MGT is getting smaller. Overall performance of MGT is dependent on the individual components. Each component’s performance is dependent and interrelated with another component. Therefore, careful consideration needs to be given to each and every individual component of MGT. In this study, the focus is on improving the performance of the compressor in order to improve the overall performance of MGT. Computational Fluid Dynamics (CFD) is being performed using the software FLUENT to analyze the design of a micro compressor. Operating parameters like mass flow rate and RPM, and design parameters like inner blade angle (IBA), outer blade angle (OBA), blade thickness and number of blades are varied to study its effect on the performance of the compressor. Pressure ratio is used as a tool to measure the performance of the compressor. Higher the pressure ratio, better the design is. In the study, target mass flow rate is 0.2 g/s and RPM to be less than or equal to 900,000. So far, a pressure ratio of above 3 has been achieved at 0.2 g/s mass flow rate with 5 rotor blades, 0.36 mm blade thickness, 94.25 degrees OBA and 10.46 degrees IBA. The design in this study differs from a regular centrifugal compressor used in conventional gas turbines such that compressor is designed keeping in mind ease of manufacturability. So, this study proposes a compressor design which has a good pressure ratio, and at the same time, it is easy to manufacture using current microfabrication technologies.

Keywords: computational fluid dynamics, FLUENT microfabrication, RPM

Procedia PDF Downloads 68
176 3D Steady and Transient Centrifugal Pump Flow within Ansys CFX and OpenFOAM

Authors: Clement Leroy, Guillaume Boitel


This paper presents a comparative benchmarking review of a steady and transient three-dimensional (3D) flow computations in centrifugal pump using commercial (AnsysCFX) and open source (OpenFOAM) computational fluid dynamics (CFD) software. In centrifugal rotor-dynamic pump, the fluid enters in the impeller along to the rotating axis to be accelerated in order to increase the pressure, flowing radially outward into another stage, vaned diffuser or volute casing, from where it finally exits into a downstream pipe. Simulations are carried out at the best efficiency point (BEP) and part load, for single-phase flow with several turbulence models. The results are compared with overall performance report from experimental data. The use of CFD technology in industry is still limited by the high computational costs, and even more by the high cost of commercial CFD software and high-performance computing (HPC) licenses. The main objectives of the present study are to define OpenFOAM methodology for high-quality 3D steady and transient turbomachinery CFD simulation to conduct a thorough time-accurate performance analysis. On the other hand a detailed comparisons between computational methods, features on latest Ansys release 18 and OpenFOAM is investigated to assess the accuracy and industrial applications of those solvers. Finally an automated connected workflow (IoT) for turbine blade applications is presented.

Keywords: benchmarking, CFX, internet of things, openFOAM, time-accurate, turbomachinery

Procedia PDF Downloads 132
175 Internal Power Recovery in Cryogenic Cooling Plants, Part II: Compressor Development

Authors: Ambra Giovannelli, Erika Maria Archilei


The electrical power consumption related to refrigeration systems is evaluated to be in the order of 15% of the total electricity consumption worldwide. For this reason, in the last years several energy saving techniques have been suggested to reduce the power demand of refrigeration and air conditioning plants. The research work deals with the development of an innovative internal power recovery system for industrial cryogenic cooling plants. Such system is based on a Compressor-Expander Group (CEG). Both the expander and the compressor have been designed starting from automotive turbocharging components, strongly modified to take refrigerant fluid properties and specific system requirements into consideration. A preliminary choice of the machines (radial compressors and expanders) among existing components available on the market was realised according to the rules of the similarity theory. Once the expander was selected, it was strongly modified and performance verified by means of steady-state 3D CFD simulations. This paper focuses the attention on the development of the second CEG main component: the compressor. Once the preliminary selection has been done, the compressor geometry has been modified to take the new boundary conditions into account. In particular, the impeller has been machined to address the required total enthalpy increase. Such evaluation has been carried out by means of a simplified 1D model. Moreover, a vaneless diffuser has been added, modifying the shape of casing rear and front disks. To verify the performance of the modified compressor geometry and suggest improvements, a numerical fluid dynamic model has been set up and the commercial Ansys-CFX software has been used to perform steady-state 3D simulations. In this work, all the numerical results will be shown, highlighting critical aspects and suggesting further developments to increase compressor performance and flexibility.

Keywords: vapour compression systems, energy saving, refrigeration plant, organic fluids, centrifugal compressor

Procedia PDF Downloads 140
174 Parameter Study for TPU Nanofibers Fabricated via Centrifugal Spinning

Authors: Yasin Akgül, Yusuf Polat, Emine Canbay, Ali Kılıç


Electrospinning is the most common method to produce nanofibers. However, low production rate is still a big challenge for industrial applications of this method. In this study, morphology of nanofibers obtained from namely centrifugal spinning was investigated. Dominant process parameters acting on the fiber diameter and fiber orientation were discussed.

Keywords: centrifugal spinning, electrospinning, nanofiber, TPU nanofibers

Procedia PDF Downloads 364
173 Investigation of the Flow in Impeller Sidewall Gap of a Centrifugal Pump Using CFD

Authors: Mohammadreza DaqiqShirazi, Rouhollah Torabi, Alireza Riasi, Ahmad Nourbakhsh


In this paper, the flow in a sidewall gap of an impeller which belongs to a centrifugal pump is studied using numerical method. The flow in sidewall gap forms internal leakage and is the source of “disk friction loss” which is the most important cause of reduced efficiency in low specific speed centrifugal pumps. Simulation is done using CFX software and a high quality mesh, therefore the modeling error has been reduced. Navier-Stokes equations have been solved for this domain. In order to predict the turbulence effects the SST model has been employed.

Keywords: numerical study, centrifugal pumps, disk friction loss, sidewall gap

Procedia PDF Downloads 398
172 Online Compressor Washing for Gas Turbine Power Output

Authors: Enyia James Diwa, Isaiah Thank-God Ebi, Dodeye Ina Igbong


The privatization of utilities has brought about very strong competition in industries such as petrochemical and gas distribution among others, considering the continuous increase in cost of fuel. This has brought about the intense reason for gas turbine owners and operators to reduce and control performance degradation of the engine in other to minimize cost. The most common and very crucial problem of the gas turbine is the fouling of compressor, which is mostly caused by a reduction in flow capacity, compressor efficiency, and pressure ratio, this, in turn, lead to the engine compressor re-matching and output power and thermal efficiency reduction. The content of this paper encompasses a detailed presentation of the major causes, effects and control mechanism of fouling. The major emphasis is on compressor water washing to enable power augmentation. A modelled gas turbine similar to that of GE LM6000 is modelled for the current study, based on TURBOMATCH which is a Cranfield University software specifically made for gas turbine performance simulation and fouling detection. The compounded and intricate challenges of compressor online water washing of large output gas turbine are carried out. The treatment is applied to axial compressor used in the petrochemical and hydrocarbon industry.

Keywords: gas turbine, fouling, degradation, compressor washing

Procedia PDF Downloads 275
171 Influence of Kinematic, Physical and Mechanical Structure Parameters on Aeroelastic GTU Shaft Vibrations in Magnetic Bearings

Authors: Evgeniia V. Mekhonoshina, Vladimir Ya. Modorskii, Vasilii Yu. Petrov


At present, vibrations of rotors of gas transmittal unit evade sustainable forecasting. This paper describes elastic oscillation modes in resilient supports and rotor impellers modeled during computational experiments with regard to interference in the system of gas-dynamic flow and compressor rotor. Verification of aeroelastic approach was done on model problem of interaction between supersonic jet in shock tube with deformed plate. ANSYS 15.0 engineering analysis system was used as a modeling tool of numerical simulation in this paper. Finite volume method for gas dynamics and finite elements method for assessment of the strain stress state (SSS) components were used as research methods. Rotation speed and material’s elasticity modulus varied during calculations, and SSS components and gas-dynamic parameters in the dynamic system of gas-dynamic flow and compressor rotor were evaluated. The analysis of time dependence demonstrated that gas-dynamic parameters near the rotor blades oscillate at 200 Hz, and SSS parameters at the upper blade edge oscillate four times higher, i.e. with blade frequency. It has been detected that vibration amplitudes correction in the test points at magnetic bearings by aeroelasticity may correspond up to 50%, and about -π/4 for phases.

Keywords: Centrifugal compressor, aeroelasticity, interdisciplinary calculation, oscillation phase displacement, vibration, nonstationarity

Procedia PDF Downloads 189
170 Experimental Set-Up for Investigation of Fault Diagnosis of a Centrifugal Pump

Authors: Maamar Ali Saud Al Tobi, Geraint Bevan, K. P. Ramachandran, Peter Wallace, David Harrison


Centrifugal pumps are complex machines which can experience different types of fault. Condition monitoring can be used in centrifugal pump fault detection through vibration analysis for mechanical and hydraulic forces. Vibration analysis methods have the potential to be combined with artificial intelligence systems where an automatic diagnostic method can be approached. An automatic fault diagnosis approach could be a good option to minimize human error and to provide a precise machine fault classification. This work aims to introduce an approach to centrifugal pump fault diagnosis based on artificial intelligence and genetic algorithm systems. An overview of the future works, research methodology and proposed experimental setup is presented and discussed. The expected results and outcomes based on the experimental work are illustrated.

Keywords: centrifugal pump setup, vibration analysis, artificial intelligence, genetic algorithm

Procedia PDF Downloads 333
169 One-Dimensional Performance Improvement of a Single-Stage Transonic Compressor

Authors: A. Shahsavari, M. Nili-Ahmadabadi


This paper presents an innovative one-dimensional optimization of a transonic compressor based on the radial equilibrium theory by means of increasing blade loading. Firstly, the rotor blade of the transonic compressor is redesigned based on the constant span-wise deHaller number and diffusion. The code is applied to extract compressor meridional plane and blade to blade geometry containing rotor and stator in order to design blade three-dimensional view. A structured grid is generated for the numerical domain of fluid. Finer grids are used for regions near walls to capture boundary layer effects and behavior. RANS equations are solved by finite volume method for rotating zones (rotor) and stationary zones (stator). The experimental data, available for the performance map of NASA Rotor67, is used to validate the results of simulations. Then, the capability of the design method is validated by CFD that is capable of predicting the performance map. The numerical results of new geometry show about 19% increase in pressure ratio and 11% improvement in overall efficiency of the transonic stage; however, the design point mass flow rate of the new compressor is 5.7% less than that of the original compressor.

Keywords: deHaller number, one dimensional design, radial equilibrium, transonic compressor

Procedia PDF Downloads 268
168 Overview on the Failure in the Multiphase Mechanical Seal in Centrifugal Pumps

Authors: Aydin Azizi, Ahmed Al. Azizi


Mechanical seals are essential components in centrifugal pumps since they help in controlling leaking out of the liquid that is pumped under pressure. Unlike the common types of packaging, mechanical seals are highly efficient and they reduce leakage by a great extent. However, all multiphase mechanical seals leak and they are subject to failure. Some of the factors that have been recognized to their failure include excessive heating, open seal faces, as well as environment related factors that trigger failure of the materials used to manufacture seals. The proposed research study will explore the failure of multiphase mechanical seal in centrifugal pumps. The objective of the study includes how to reduce the failure in multiphase mechanical seals and to make them more efficient.

Keywords: mechanical seals, centrifugal pumps, multi phase failure, excessive heating

Procedia PDF Downloads 240
167 Numerical Investigation and Optimization of the Effect of Number of Blade and Blade Type on the Suction Pressure and Outlet Mass Flow Rate of a Centrifugal Fan

Authors: Ogan Karabas, Suleyman Yigit


Number of blade and blade type of centrifugal fans are the most decisive factor on the field of application, noise level, suction pressure and outlet mass flow rate. Nowadays, in order to determine these effects on centrifugal fans, numerical studies are carried out in addition to experimental studies. In this study, it is aimed to numerically investigate the changes of suction pressure and outlet mass flow rate values of a centrifugal fan according to the number of blade and blade type. Centrifugal fans of the same size with forward, backward and straight blade type were analyzed by using a simulation program and compared with each other. This analysis was carried out under steady state condition by selecting k-Ɛ turbulence model and air is assumed incompressible. Then, 16, 32 and 48 blade centrifugal fans were again analyzed by using same simulation program, and the optimum number of blades was determined for the suction pressure and the outlet mass flow rate. According to the results of the analysis, it was obtained that the suction pressure in the 32 blade fan was twice the value obtained in the 16 blade fan. In addition, the outlet mass flow rate increased by 45% with the increase in the number of blade from 16 to 32. There is no significant change observed on the suction pressure and outlet mass flow rate when the number of blades increased from 32 to 48. In the light of the analysis results, the optimum blade number was determined as 32.

Keywords: blade type, centrifugal fan, cfd, outlet mass flow rate, suction pressure

Procedia PDF Downloads 73
166 Solution for Rider Ring Wear Problem in Boil off Gas Reciprocating Compressor: A Case Study

Authors: Hessam Mortezaei, Saeid Joudakian


In this paper, the wear problem on rider rings of boil off gas compressor has been studied. This kind of oil free double acting compressor has free floating piston (FFP) technology and as a result of that it should have the lowest possible wear on its rider rings. But a design problem had caused a complete wear of rider rings after one month of continuous operation. In this case study, the source of this problem was recognized and solved.

Keywords: piston rider, rings, gas distribution, pressure wear

Procedia PDF Downloads 294
165 Stress Corrosion Crack Identification with Direct Assessment Method in Pipeline Downstream from a Compressor Station

Authors: H. Gholami, M. Jalali Azizpour


Stress Corrosion Crack (SCC) in pipeline is a type of environmentally assisted cracking (EAC), since its discovery in 1965 as a possible cause of failure in pipeline, SCC has caused, on average, one of two failures per year in the U.S, According to the NACE SCC DA a pipe line segment is considered susceptible to SCC if all of the following factors are met: The operating stress exceeds 60% of specified minimum yield strength (SMYS), the operating temperature exceeds 38°C, the segment is less than 32 km downstream from a compressor station, the age of the pipeline is greater than 10 years and the coating type is other than Fusion Bonded Epoxy(FBE). In this paper as a practical experience in NISOC, Direct Assessment (DA) Method is used for identification SCC defect in unpiggable pipeline located downstream of compressor station.

Keywords: stress corrosion crack, direct assessment, disbondment, transgranular SCC, compressor station

Procedia PDF Downloads 292
164 Improvement of Parallel Compressor Model in Dealing Outlet Unequal Pressure Distribution

Authors: Kewei Xu, Jens Friedrich, Kevin Dwinger, Wei Fan, Xijin Zhang


Parallel Compressor Model (PCM) is a simplified approach to predict compressor performance with inlet distortions. In PCM calculation, it is assumed that the sub-compressors’ outlet static pressure is uniform and therefore simplifies PCM calculation procedure. However, if the compressor’s outlet duct is not long and straight, such assumption frequently induces error ranging from 10% to 15%. This paper provides a revised calculation method of PCM that can correct the error. The revised method employs energy equation, momentum equation and continuity equation to acquire needed parameters and replace the equal static pressure assumption. Based on the revised method, PCM is applied on two compression system with different blades types. The predictions of their performance in non-uniform inlet conditions are yielded through the revised calculation method and are employed to evaluate the method’s efficiency. Validating the results by experimental data, it is found that although little deviation occurs, calculated result agrees well with experiment data whose error ranges from 0.1% to 3%. Therefore, this proves the revised calculation method of PCM possesses great advantages in predicting the performance of the distorted compressor with limited exhaust duct.

Keywords: parallel compressor model (pcm), revised calculation method, inlet distortion, outlet unequal pressure distribution

Procedia PDF Downloads 247
163 Effect of the Mould Rotational Speed on the Quality of Centrifugal Castings

Authors: M. A. El-Sayed, S. A. Aziz


Centrifugal casting is a standard casting technique for the manufacture of hollow, intricate and sound castings without the use of cores. The molten metal or alloy poured into the rotating mold forms a hollow casting as the centrifugal forces lift the liquid along the mold inner surface. The rotational speed of the die was suggested to greatly affect the manner in which the molten metal flows within the mould and consequently the probability of the formation of a uniform cylinder. In this work the flow of the liquid metal at various speeds and its effect during casting were studied. The results suggested that there was a critical range for the speed, within which the produced castings exhibited best uniformity and maximum mechanical properties. When a mould was rotated at speeds below or beyond the critical range defects were found in the final castings, which affected the uniformity and significantly lowered the mechanical properties.

Keywords: centrifugal casting, rotational speed, critical speed range, mechanical properties

Procedia PDF Downloads 353
162 Measuring Investigation and Computational Simulation of Cavitation Phenomenon Effects on the Industrial Centrifugal Pump Vibration

Authors: Mahdi Hamzehei, Homan Alimoradzadeh, Mahdi Shahriyari


In this paper, vibration of the industrial centrifugal pumps studied by measuring analysis and computational simulation. Effects of different parameters on pump vibration were investigated. Also, simulation of cavitation in the centrifugal pump was down. First, via CF-TURBO software, the pump impeller and the fluid passing through the pump is modelled and finally, the phenomenon of cavitation in the impeller has been modelled by Ansys software. Also, the effects of changes in the amount of NPSH and bubbles generation in the pump impeller were investigated. By simulation of piping with pipe flow software, effect of fluid velocity and pressure on hydraulics and vibration were studied computationally by applying Computational Fluid Dynamic (CFD) techniques, fluent software and experimentally. Furthermore, this comparison showed that the model can predict hydraulics and vibration behaviour.

Keywords: cavitation, vibration, centrifugal pumps, performance curves, NPSH

Procedia PDF Downloads 384
161 Effects of Inlet Filtration Pressure Loss on Single and Two-Spool Gas Turbine

Authors: Enyia James Diwa, Dodeye Ina Igbong, Archibong Archibong Eso


Gas turbine operators have been faced with the dramatic financial setback resulting from compressor fouling. In a highly deregulated power industry where there is stiffness in the market competition, has made it imperative to improvise means of reducing maintenance cost in other to yield maximum profit. Compressor fouling results from the deposition of contaminants in the presence of oil and moisture on the compressor blade or annulus surfaces, which leads to a loss in flow capacity and compressor efficiency. These combined effects reduce power output, increase heat rate and cause creep life reduction. This paper also contains a model of two gas turbine engines via Cranfield University software known as TURBOMATCH, which is simulation software for detecting engine fouling rate. The model engines are of different configurations and capacities, and are operating in two different modes of constant output power and turbine inlet temperature for a two and three stage filter system. The idea is to investigate the more economically viable filtration systems by gas turbine users based on performance only. It has been demonstrated in the results that the two spool engine is a little more beneficial compared to the single spool. This is as a result of a higher pressure ratio of the two spools as well as the deceleration of the high-pressure compressor and high-pressure turbine speed in a constant TET. Meanwhile, the inlet filtration system was properly designed and balanced with a well-timed and economical compressor washing regime/scheme to control compressor fouling. The different technologies of inlet air filtration and compressor washing are considered and an attempt at optimization with respect to the cost of a combination of both control measures are made.

Keywords: inlet filtration, pressure loss, single spool, two spool

Procedia PDF Downloads 240
160 Computational Analysis of the Scaling Effects on the Performance of an Axial Compressor

Authors: Junting Xiang, Jörg Uwe Schlüter, Fei Duan


The miniaturization of gas turbines promises many advantages. Miniature gas turbines can be used for local power generation or the propulsion of small aircraft, such as UAV and MAV. However, experience shows that the miniaturization of conventional gas turbines, which are optimized at their current large size, leads to a substantial loss of efficiency and performance at smaller scales. This may be due to a number of factors, such as the Reynolds-number effect, the increased heat transfer, and manufacturing tolerances. In the present work, we focus on computational investigations of the Reynolds number effect and the wall heat transfer on the performance of axial compressor during its size change. The NASA stage 35 compressors are selected as the configuration in this study and Computational Fluid Dynamics (CFD) is used to carry out the miniaturization process and simulations. We perform parameter studies on the effect of Reynolds number and wall thermal conditions. Our results indicate a decrease of efficiency, if the compressor is miniaturized based on its original geometry due to the increase of viscous effects. The increased heat transfer through wall has only a small effect and will actually benefit compressor performance based on our study.

Keywords: axial compressor, CFD, heat transfer, miniature gas turbines, Reynolds number

Procedia PDF Downloads 333
159 Effects of Inlet Distorted Flows on the Performance of an Axial Compressor

Authors: Asad Islam, Khalid Parvez


Compressor fans in modern aircraft engines are of considerate importance, as they provide majority of thrust required by the aircraft. Their challenging environment is frequently subjected to non-uniform inflow conditions. These conditions could be either due to the flight operating requirements such as take-off and landing, wake interference from aircraft fuselage or cross-flow wind conditions. So, in highly maneuverable flights regimes of fighter aircrafts affects the overall performance of an engine. Since the flow in compressor of an aircraft application is highly sensitive because of adverse pressure gradient due to different flow orientations of the aircraft. Therefore, it is prone to unstable operations. This paper presents the study that focuses on axial compressor response to inlet flow orientations for the range of angles as 0 to 15 degrees. For this purpose, NASA Rotor-37 was taken and CFD mesh was developed. The compressor characteristics map was generated for the design conditions of pressure ratio of 2.106 with the rotor operating at rotational velocity of 17188.7 rpm using CFD simulating environment of ANSYS-CFX®. The grid study was done to see the effects of mesh upon computational solution. Then, the mesh giving the best results, (when validated with the available experimental NASA’s results); was used for further distortion analysis. The flow in the inlet nozzle was given angle orientations ranging from 0 to 15 degrees. The CFD results are analyzed and discussed with respect to stall margin and flow separations due to induced distortions.

Keywords: axial compressor, distortions, angle, CFD, ANSYS-CFX®, bladegen®

Procedia PDF Downloads 356